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In this supplemental file, Section S1 includes some examples; Section S2 speci-
fies the calculation of empirical distance correlation; Section S3 provides technical
derivations and proofs of all theoretical results; Section S4 outlines the imple-
mentation details and extended results of the simulation studies in the main text;
Section SH provides additional simulations; Section S6 presents some additional

analysis for the ADNI study.

S1. Examples

In this section, we present some examples for further illustration. We first consider

Example S1.1 to illustrate several key concepts related to DAGs.

Example S1.1. Consider the causal graph G shown in Figure S1.1, where U
represents unobserved confounders. In view of the directed path Y| — Y5 — Y53,
the mediator set of Y7 and Y3 is meg(1,3) = {2}. The unmediated parent of
Y3 is Y3 because Y3 is the only parent of Y3 with meg(2,3) = (). The height of

Y] is 2 since the longest path from Y] to a leaf node of G is Y, — Yo — Y,



l/l\
\T/

Figure S1.1: An example of the causal graph G.

whose length is 2. The corresponding ancestral relation graph (ARG) is Gt =
{Xq, .., Xu ), V1, Yo, Y51, EF,ZT), where €7 = {(1,2),(1,3),(2,3)} and ZT =
{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3),(4,2),(4,3)}. As shown in this example,

the ARG describes the ancestral relationships among the nodes in G.

Since the estimation of Z.(Xca,(k)) plays an important role in our estimates

for 3*, we further clarify its concrete instantiation through Example S1.2.

Example S1.2. Focus on £ = 2 in Figure S1.1, where v = 1 according to Assump-
tion 3. The candidate IV set for Y5 is {2,4} and suppose that X; € {0,1}, i = 2,4.

Then we have

H(X{2,4}) = Span({X2 — p2, X4 — g, (Xz - Mz)(X4 - M4)})7

where p; = E(X;), ¢ = 2,4. The valid IV set for Y3 which satisfies ivg(2) C cag(2)
and |ivg(2)] > 1 can be {2}, {4} or {2,4}, corresponding to the potential
values for ay in Definition 3. According to Assumption 1, when ay = {2}, the
corresponding D({2}) is span({Xs — po, (Xo — u2)(Xy — pg)}); when ay = {4},
D({4}) = span({ Xy —pua, (Xo—p12) (Xa—pua) }); and when oy = {2, 4}, D({2,4}) =

span({Xo — po, X4 — g, (Xo — p2)(Xy — p4)}). The intersection of all possible



D(aw), defined as Z1(2), is span({(Xs — p2)(X4 — p4)}). Therefore, the vector

Z1(Xcai(2)) consisting of the basis functions of Z;(2) is (Xa — p12) (X4 — f1a).

To further clarify the role of Assumption 1, we next provide an example where
the identification fails specifically because this assumption is violated. In particu-
lar, we show that if Assumption 1 is violated, then the surrogate IVs may become
invalid. As a result, the causal effects cannot be identified by (3.4), thereby in-

validating the identification result in Theorem 1.

Example S1.3. Consider the causal graph G shown in Figure S1.2, where U
represents unobserved confounders, and the dashed undirected edge between X;
and X5 indicates that X; /I Xs. In this graph, |cag(j)| = |iva(j)| = v =1 for

j = 1,2, and the corresponding SEM in (2.2) is

Y1 =ag1(Xh) + e,

Yo = 61,Y1 + 92(Xs) + 2.

We proceed to show that even in this simple case where meg(1,2) = (), the
surrogate IV denoted by Z;(X;) can be invalid, thereby causing (3.4) to fail.
Suppose that X; € {0, 1} for simplicity. By Definition 3, Z;(X;) = X; — E(X4),
and thus
E{M(B7)} = E{Z:(X1)(Y2 — f12Y1)}
= E{(X1 — E(X1))(g2(X2) + £2)}
= E{(X1 — E(X1))g2(X2)},

which may not be zero due to the potential dependency between X; and X, and



Figure S1.2: An example of the causal graph G when Assumption 1 fails.

the unknown form of go(+). For example, if X is correlated with X5 and go(X5)
is linear in X5, then E{M(8*)} # 0. As a result, the direct causal effect of Y7 on

Y, cannot be identified by (3.4).

S2. Distance correlation

In this section, we introduce the distance correlation (DC) proposed by Székely
et al. (2007) in a brief. Let f¢(-) denote the characteristic function for a random

variable (.

Definition S2.1 (Distance correlation). The distance correlation between ran-
dom vectors i and € with finite first moments is the non-negative number R (&, n)

defined by

M 3 V2<€7€)V2(nan) >0
RQ(f, ,r’) _ V2(€,£)V?*(n,m)

0 , V(& €)V(n,m) =0

, where
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V(€)= | fen(t: s) — fe(t) ful3)] =

V2(¢,€) and V?(n,n) are defined similarly, the non-negative number V(€,n) is



called distance covariance; the positive constants ¢; and ¢y only depend on the

dimensions pg of € and p,, of 1, respectively.

The distance correlation can be intuitively thought of as measuring the differ-
ence between the characteristic functions of the distribution under the assumption
of independence of two random vectors, and the true joint one. Therefore, un-
like the Pearson correlation coefficient, the distance correlation is not limited to
measuring only linear relationships.

We next introduce the calculation of empirical DC in our setting. For finite
sample estimation, consider an independent and identically distributed sample

(Xixq> Ynxp). The empirical DC between X; and Y is defined by

Va(Xi, ;)
\/Vn(Xi7 Xi)Vn<Yjv YJ) ’

Ru(X,,Y;) =

ir g

(S2.1)

where V,(+, -) is the empirical distance covariance. Note from Székely et al. (2007,

(2.18)) that V2(X,,Y;) = Si(X:,Y;) + Sa(Xi, ;) — 255(X.,Y;), where

S 17 j = 2 ZZ|XM stl |Y;’j sg|

r=1 s=1

S 17 ] - ZZ‘XM XSZ| ZZ’Y;J 5]
r=1 s=1 r=1 s=1

SuX, V) = 5 3030 S K — Xl Yy Vi
r=1 s=1 t=1

The distance variances V,(X;, X;) and V,(Y;,Y;) are calculated similarly. For
testing the null hypothesis Hy: X; 1L Y;, the test statistic is given by

nVQ(Xi, }/;)

T(XHYD 5«2( ; ]) :



Then a test of asymptotic significance level a rejects Hy, denoting R;; = 1, where
R;j = 1{ T.(X;,Y;) > @ 11— a/Z)}, (S2.2)

with ®(-) being the standard normal cumulative distribution function (Székely
et al., 2007, Theorem 6).

Székely et al. (2007) also presented an alternative definition of empirical dis-
tance covariance as follows, which is equivalent to the aforementioned definition
but more convenient for calculations. Considering the empirical DC between X,

and Y}, define

_ 1 _ _
= ) E CLZ'j, Az’j = CLZ'j — ;. — a.j + a..,
i,5=1

i,j =1,...,n, A = (Ajj)nxn. Similarly, define b;; = |Yi, — Yji|2, Bij = bij —
bi —b;+0b.,i,5 =1,...,n, B = (Bjj)axn- The empirical distance covariance
V,(Xy, Yy) is then defined as the non-negative number by
V2(X,, V) = Z Ay Bj;.
ij=1
We next recall the asymptotic properties of the empirical DC and DC-based
independence tests from Székely et al. (2007), which will be used to prove the

consistency of the proposed ARG estimator in Algorithm 1.

Lemma S2.1 (Székely et al. (2007, Corollary 1 and Theorem 3)). If the random



variables & and m satisfy E(||€]|2 + ||n]]2) < oo, then almost surely,

lim R, (&,m) = R(&,m),
where 0 < R(€,m) <1, and R(§,m) = 0 if and only if € 1L 7.

For testing Hy : & 1L i versus H;, : & /L m, let P'(n) denote the Type I
error probability of the DC-based test that rejects independence if \/T,,(&,1m) >

d~1(1 — a/2) for some significance level a.

Lemma S2.2 (Székely et al. (2007, Theorem 6)). If the random variables & and

n satisfy E(||€||2 + ||nll2) < oo, then for all 0 < a < 0.215, lim,, ., P!(n) < a.

Building on these results, we show that Algorithm 1 with the significance
level set to a = O(n~?) asymptotically yields the correct decision for every test
Hy: X; 1LY versus Hy : X; LY, wherei =1,...,gqand j = 1,...,p. Indeed,
Lemma S2.1 implies that when X; /L Yj, the test statistic T,,(X;,Y;)/n — C for
some C' > 0 depending on R(X;,Y;). Therefore, the Type II error probability of
the test vanishes asymptotically with o = O(n™2). On the other hand, Lemma
S2.2 implies that if a tends to zero, then the Type I error probability also converges

to zero. Consequently, with this choice of «, Algorithm 1 correctly recovers all

dependencies between X and Y as n — oo, thereby consistently estimating the

ARG.



S3. Proofs

In this section, we provide the proofs of Theorems 1-4. In particular, the proof
strategy of Theorem 1 aligns with the estimation approaches introduced in the

main text.

S3.1 Proof of Theorem 1

Our identification strategy consists of two stages. We begin by identifying the
ARG to roughly capture the causal directions among Y and obtain the candidate
IV sets. We then establish the identification of the causal effects B* based on the
identified ARG and candidate IV sets.

First, we introduce some definitions. Let s (k,j) denote the length of the
longest directed path from Y}, to Y;. Define the height of Y}, hg(j), as the length
of the longest directed path from Y; to a leaf node of G. It follows that if (k, j) € £
then hg(k) > ha(j), and the height of any leaf node is 0. For a DAG G, we define

its ARG formally as follows.

Definition S3.2 (Ancestral relation graph). For a causal graph G = (X,Y;E,7),
its ancestral relation graph is defined by Gt = (X,Y;E",Z"), where

&t ={(k,j) : k € ang(j)}, I+ = {(f,j) e ing(k)}.
)u{i}

keang(j

The ARG G describes the ancestral relationships among the nodes in G.

Specifically, if there exists a directed path from Y; to Y; in G, then (i,7) € €.



Similarly, if there exits a directed path from X, to Y; in G, then (¢, j) € Z*. To re-
cover £7, we need only identify all edges originating from the unmediated parents
of each node in G. Note that we can derive the mediator sets {meg(k, j)} . )ce+
and the lengths {lq(k,j)} @k jjest from G since meq(k,j) = meg+(k,j) and
la(k,j) = la+ (k. j).

The next two propositions extend Propositions 1 and 2 in Chen et al. (2024)
to the semiparametric model (2.2) and are the key ingredients for identifying G

and {cag(k)}_;-

Proposition S3.1. Suppose that Assumptions 1-3 hold. Then there exists some
Xy such that X, LY, and X, 1L Yy for all k' # k if and only if Yy is a leaf node

of G. Furthermore, such an X, is a valid IV for Yy in G.

Proof of Proposition S3.1. On the one hand, if Y}, is a leaf node of GG, then let X,
be a valid IV of Y} since iv(k) # () due to Assumption 3. We then have X, 1 Y}
for any k" £ k because Y} has no descendant and X, Il X; for any i # ¢ according
to Assumption 1. On the other hand, if Y} is not a leaf node of G, then there
exists a Y such that Y}, is an unmediated parent of ;. There are two cases leading
to Xy L Yy, ie, ((,k) € Z and ({,k) ¢ Z. If (¢,k) € Z, then we have X, 1 Y;
according to Assumption 2. If (¢, k) ¢ Z, then there exists an ancestor i € ang(k)
such that (¢,7) € Z, and thus X, /L Y;. Therefore, for any non-leaf of G, we can
not find an X, satisfying the conditions in Proposition S3.1. The analysis above
shows the identification of leaf nodes in G. Moreover, under Assumptions 1-3, for

any leaf node Y} of G, it follows that X, J{ Y, and X, 1L Y} for all k' # k if and
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only if ¢ € ivg(k). O

Proposition S3.1 shows that the leaves of G and their valid Vs are identifiable:

leaf(G) = {k : for some ¢, X, Y Y} and X, 1L Y for all &’ # k},

ivg(k) ={¢: X, UL Yy and X, 1L Y} for all k" # k}, Kk € leaf(G).

Once the leaves of G have been identified, we can remove these nodes along
with their valid IVs to obtain a subgraph G~ = (X7, Y ;&7,Z7), where X~ =
X\Ukeleaf(G) Xivek), Y =Y\ Yiear(e), and £~ and Z~ denote the remaining edges
from &€ and Z, respectively. By Definition 1, it is clear that ivg(j) C ivg-(j) for all
Y; € Y, implying that Assumption 3 holds in G~. Assumptions 1 and 2 also hold
naturally in the subgraph G—. Therefore, Proposition S3.1 remains applicable to
G, so that leaf(G™) and ivg- (k) for k € leaf(G™) are identifiable. By iteratively
applying this method to identify and remove the leaves of the current graph,
a topological order among the variables in Y can be determined. During this
process, the variables in Y are removed in ascending order of their heights. It is
obvious from the definition of height that there are no directed paths from Y; to
nodes with the same or greater height. However, the causal relationships for the
other case are yet to be determined. The following proposition helps to complete

the construction of G™.
Proposition S3.2. Suppose that Assumptions 1-3 hold. For any k € leaf(G™)
andY; €e Y\Y~: (i) if Xo LY for all 0 € ivg-(k), then (k,j) € ET; (i) if Yy

is an unmediated parent of Y;, then X, JLY; for all £ € ivg- (k).
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Proof of Proposition S3.2. 1t is obvious that ivg(k) C ivg-(k) for any Y, € Y~
according to Definition 1 for valid IVs. According to Assumption 1 and Definition
1, if Xy 1L Y}, for all ¢ € ivg(k), there must be a directed path from Y to Y in
G. Thereby, we prove the first conclusion of Proposition S3.2. Moreover, for
any ¢ € ivg-(k), we have (¢, k) € Z= C T based on the definition of valid IV in
Definition 1. Therefore, if Y, is an unmediated parent of Y, we have X, IL Y;

according to Assumption 2, which leads to the second conclusion. O

Proposition S3.2 allows us to derive the ancestral relations between Yiearg-)

and Y \Y~ by

{(k,j) - k €leaf(G7),Y; € Y\ Y™, X, JLY; for all £ € v (k)} C €Y,

which ensures that all edges from an unmediated parent to Y; are included. The
remaining edges in £ correspond to the directed paths containing mediators in G.
Since these paths are formed by edges previously identified, adding the ancestral
relationships inferred from these paths to £ is sufficient to recover £7. Moreover,

we can reconstruct ZT by

It ={(¢,7) : for some k € ang(j) U {5}, X, U Y}

Subsequently, by Definition 2, the candidate IV sets are identified by

cag(k) ={0: ((,k) € Z" and (¢,j) € T,k # jonlyif (k,j) €&}, k=1,...,p.

Building on the identifiability of £ and {cag(k)};_, established in the pre-
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ceding subsection, we now proceed to demonstrate the identification of the causal
effects B* = (B;) (k.j)ce+ and subsequently identify €.

First, consider the simple case where (k,j) € £ and meg(k,j) = ). When
Assumption 1 holds, we have Yom,kj) 4 Xeagr) and Xingg)y b Xeagr) |

XcaG( E\ive (k) It then follows that for any d(XcaG(k)) - D(iVG(k)),
E{d(Xeag ) (Y — Bi;Ye)}

= E{d(XcaG k) ( Z BUY + gj (XIHG(J)) + 83) }

ienmg (k.j)

= E{d(Xeag)) 95 (Xing (7)) } (S3.3)

= E[E{d(Xcao(t) | Xeagtonive ) M9 King () | Xeagtoniva }]

=0.
By Definition 3 and the identifiability of cag(k), Z,(k) and hence Z-(Xcag (k)
are also identifiable. Therefore, under Assumption 4, equation 3.3 has a unique
solution, and thus Sy, is identifiable. Based on the above analysis, we can identify
all B; with lg(k,j) = 1.

Next, we identify the remaining parameters recursively. Suppose we have

identified all ;; with lg(k, j) < [ for some [ > 0. Then, for any 8}, with lg(k, j) =
[ + 1, any mediator variable Y; € meg(k,j) satisfies lg(4,j) < [, and thus all

mediated effects 3j; are identified. We can then substitute Y; — 3, Y

i€meg (k,7)

for Y; and identify f;; under Assumption 4 from the equation E{My;(8*)} =0,
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where

My;(B*) = Z(Xeag (k) (Yj - > BYi- ﬁ;;ij)

i€meg (k,j)

The above procedure implies that we can determine all 5;; recursively in ascending

order of I (k, 7). As a result, 3* can be identified as the unique solution to
E{M(8")} =0, (S3.4)

where M(3*) is the concatenation of all My;(8*) for (k, j) € £*. Finally, based on
the identified value of 3%, we can identify & by € = {(k, ) : B;; # 0, (k,j) € ET}.
To summarize, our analysis shows that the causal graph and causal effects in

model (2.2) are identifiable under Assumptions 1-4, thereby justifying Theorem

1.

S3.2 Proof of Theorem 2

Proof. Let Pj(n) and P}/(n) denote the probability of making a Type I and Type
IT error of the DC-based independence test of X; and Y;, respectively. Firstly, we
prove that if we take v = O(n™?), then limy, 4o P} (n) = lim,_, o P (n) = 0.
Note that E(X7}) < oo, E(Y?) <oo,foralli=1,...,q,j=1,...,p, and when n
is sufficiently large, o < 0.215. Therefore, by Theorem 6 of Székely et al. (2007),

under the null hypothesis,

lim PL(n) < lim a=0.

n—-+o0o n—-+o0o
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If the alternative hypothesis is true, then by Corollary 2 of Székely et al. (2007),

it follows that

o Vg(*XZ?Y;)
— —Sz(X“Y) —p C > O,

<

where C' is a positive constant. For any sufficiently small number 0 < € < C, we

have

lim P{|C, — C| > ¢} = 0.

Therefore,

PH(n) = P{n¢, < (7'(1 - a/2))"}
= P{n¢, < (0711 = /2))%, G — C| > €} + P{n¢, < (71(1 — a/2))’,[¢, — C] < €}
< P{|¢, — C| > e} + P{Qn —C+C< (D7 (1—af2))/n ‘ 6 — O] < e}
< P{¢ —C| > e} +1{—e+C < (d7'(1 — a/2))*/n},

where ®(-) is the standard normal cumulative distribution function. Since —e +

C > 0, it remains to show that

— 1 —-a/2
i -2

n—00 \/ﬁ
Define z,, = ®~!(1—a/2), then it is obvious that x,, — +00. When n is sufficiently
large, we have 1 — ®(z,,) < 1/v/2mexp(—x2/2)/x, according to the property of

the standard normal distribution. Therefore, when n is sufficiently large,

12 =1 - B(a,) < — ( xi)
a/2=1—-d(x,) < exp| ——2 ),
V22, P 2
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ie.,

T, 2 1 x?

If lim,, o zp/v/n = 7 > 0, then there exists a subsequence {z,,} such that

lim; 4 oo @y, /+/n; = 7 > 0. For this subsequence, we have

x2
li L] =0.
[IEEWE S

This contradicts (S3.5), and thus

lim P < Tim P{¢,—C| > e} +1{—c+C < (@711 —a/2))/n} =0.
n—-+0o0o

n—+o0 -

Next we prove that G* is consistent when o = O(n™2). Let R = (Rij)qxp
where R;; = 1(X; L Y;) and R denote the estimate of R as shown in line 2 of
Algorithm 1. According to Propositions $3.1 and S3.2, if R = R then G+ = G,

which implies that

P(GT #GT) < P(R#R).

Moreover,
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Since lim,, P,Lg (n) = lim, 400 PH( ) =0, it follows that

+ ) I 11 =
Jip PG #6033 R+ Jim P00} =0

=1 j=1
In conclusion, the estimated ARG is consistent, implying that the estimated can-

didate IV sets are also consistent. O

S3.3 Proof of Theorem 3

Proof. We first introduce some notations. Let 1, denote the d-dimensional vector
with all elements equal to 1. For a vector v, let v ® w denote the Hadamard
product of it with another vector w of the same dimension. The diagonal matrix
with diagonal elements being v is denoted as diag(v). To distinguish from O;
denoting the ith feature of a sample O, we use O(;) to denote the ith sample.

From Theorem 2, for any Borel set B C Rl‘é|+, we have

lim P(8—p° € B)
= lim P(B—f°€ B|G"=G"P(GT=G")+ P(B~B° € B|G" #G"P(G #GY)
= lim P(3-B° € B|G" =GY),
where B° = (Bkj)(,% f)eé+- It is therefore sufficient to consider the asymptotic
distribution of 3 only when G+ = G, and thus 8° = 8* in such cases.
We first rewrite equation (4.5) in Algorithm 2 for further discussion. Following

the same order of concatenating {M;;(8)} . jjee+ to obtain M(3) denoted by

(k1,71),--.,(kn,jn), the basis functions Z.(Xca, ) of dimension ¢(k;v) can be
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arranged to

T
Z'y = (ZW(XcaG(lﬂ))Ta SRR Z’Y(XcaG(kN))T) ’

whose dimension is ¢, = >27_, 37, ) t(k;7). Let the vector By € R denote

(v;, 17 Y 1%

31 ikysy) -0 Yin t(kN;'y))T' Define t(ko;y) = 0 and the matrix Ay € RW*V

depending on Y with the sth row and /th column element given by:

Yip, ki€ {ki} Umec(k;, ji), ji = Ji i1
(Ay)s = , Where Zt(kg;vﬂ—l <s<
=0

0 , otherwise

In other words, if the sth row of By corresponds to the part Y}iltT(km), then the
sth row of Ay € RN gatisfies
N
(AV)IB=) (Av)abi= D BuYe+ Bei Vi,

=1 @Gmec(ki,ji)
for any B8 = (Brijys- - - Brwjn)’- Since Z., is associated with p* = E(X), let Z,
denote Z., with p* substituted by its estimate fi. This allows us to express (4.5)

as the following equivalent problem:
B = arg min E{Z,® By — AyB8)Y QE,{Z,® (By — AyB)}.  (S3.6)

Therefore,

0 ~ (s Toh 5
3552 © By — Av@)} QB2 © By ~ AvB)}|

= —2F,(diag(Z,)Ay) " QE, {diag(Z,)(By — AvB)}

=0.
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By concatenating the estimation equations for p* and 3*, we have

T
p - p—X L 0
= argmin F, .
8 a diag(Z,)(By — Ay/3) 0 QF,(diag(Z,)Ay)E,(diag(Z,)Ay)"Q
X p—X
diag(Z,)(By — Ayf3)
T
~ Mn— X . mw— X
= argmin F, W, E, ,
" |diag(2,)(By — AvB) diag(Z,)(By — Ayf3)

where W, is a data-adaptive positive semi-definite weighting matrix. For ease of

notation, define 6 = (ﬂT,BT)T, 0* = (w7, 31T and

r—Xa .
m; = m(0),0) = , fori=1,...,n.
diag(Z,);(By ) — Ay ;B)
Let O C RP*? denote the sample space of O(;, and © C RIHEIT the parameter

space of 8, then m(Oy;),#) is a mapping from O x © to R?™ . According to

Theorem 3.2 of Hall (2005), we introduce the following regular conditions:

Assumption S3.1 (Regularity conditions on m(QO;,@)). The function m; :
O x © — R satisfies that (i) it is continuous on © for each O € O; (ii)

E(m;) is continuous on ©.
Assumption S3.2 (Regularity conditions on dm(Oy;),0)/9607). (i) The deriva-

tive matrix dm(Oy;), 8)/067 exists and is continuous on O for each O;) € O; (ii)

0 is an interior point of ©; (iii) E(dm(Oy,, 8)/00" )exists and is finite.
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Assumption S3.3 (Properties of €2). The weighting matrix € may depend on

data, but converges in probability to a positive definite matrix of constants.

Under Assumption 4, when the positive semi-definite matrix €2 satisfies the
regularity condition S3.3, W,, convergence in probability to a positive definite

matrix Wgq as n — o0,

I, 0
Wn — WQ =
0 QF(diag(Z,)Ay)E(diag(Z,)Ay)' Q2
Assumption S3.4 (Compactness of ©). The parameter space © is a compact
set.

Assumption S3.5 (Domination of m(O;);80)). E{supgeg | m(O),0)2} < oo.

Assumption S3.6 (Properties of the variance of the sample moment). (i) The
moment E{m(O;, 8*)m(O;, 0*)"} exists and is finite; (ii) The limit
. pr—X
lirf var <\/5En )
n—-+0oo
dlag(ZW)(BY — Ayﬁ*)
exists and is finite.

Assumption S3.7 (Continuity of E{0m(Oy;, 8)/06" }). The function E{0m(Oy,, 8)/00" }

is continuous on some neighborhood N, of 6*.

Assumption S3.8 (Uniform Convergence of G,(0) =n~' """, dm(Oy,,0)/06").

supgey, ||Gn(0) — E{dm(Oy;), 0)/80T}H2 —p 0.



20

Suppose that Assumptions 1-4 and the regularity conditions S3.1-S3.7 hold.

According to Theorem 3.2 of Hall (2005), we have

V(0 —6%) % N (0,(G"WoG) 'GTWoFWoG(GTWoG) ™),

where
0.0 I, O
G:E{amag), ) }: o O
0=0* C D
. p =X
F= lirf var{\/ﬁEn },
n—-+0oo
diag(Z,)(By — Ay/3")
with

C= E{%diag(zv)(BY — AypB)

p=p*,B=p* }

D } = —F{diag(Z,)Avy}.
u=p*,B=p*

0 A
E{%diag(zv)(BY —AypB)

In particular, the matrix C depends on the form of Z.(Xc.,x)). For example,

when the candidate IVs all take values in {0, 1},

. T
Z'y (Xcag(k)) = (Hseak(l) (Xs - ,Us)a cee aHseak(t(k;'y))(Xs - ,us)) )
where ay(+) are the elements of {a : o C cag(k), |a] > |cag(k)] —~v + 1} as

described in the main text. Therefore for each j = 1,..., ¢, the partial derivation

1S

0Z(Xcag (k)
Op;

_H—WG%(@) 11 “S"“‘D}t(wr'

p=p*,B=p* s€a(€),s#]
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Since we are only interested in the asymptotic properties of ,é, Theorem 3 holds

by extracting the corresponding submatrix. O]

S3.4 Proof of Theorem 4

Proof. Under Assumptions 1-3, it has been shown that G is consistent according

to Theorem 2. Moreover, as long as Gt = G, we have RE(n) = 0. Therefore,

lim E{RE(n)}

n—oo
= lim E{RE(n) | Gt £GHIP(GT #GT) + lim E{RE(n) | Gt =GHYP(GT = GY)
< [€] lim P(GT #G*) +0
=0.

Note that ¢* is the target FDR level in Algorithm 2. Applying Theorem 1.3 of

Benjamini and Yekutieli (2001), we have

: FP(”) N+ o+ *
JLIEOE{TP(n) TRE(M) 1 FPm) | ¢ T C } =4
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Since the G is consistent and & # (), it follows that

lim FDR()

n—oo

o RE(n) . FP(n)
= E{ TP(n) + RE(n) + FP(n) } + JLHSO E{ TP(n) + RE(n) + FP(n) }

FP(n)

{TP(n) + RE(n) + FP(n)
FP(n)

TP(n) + RE(n) + FP(n)

= E{TP(n) n EIE)((Z)) + FP(n) ‘ G = G+}

Gt = G+}P(é+ =GH)

‘ Gt + G+}P(é+ £ GF)

which completes the proof. 0

S4. Simulation details and extended results

In this section, we present the implementation details and extended results of
the simulation studies. Computationally, we use the R package grivet for the
implementation of GrIVET, pcalg for RFCI, and 1rpsadmm and pcalg for LRpS-
GES.

We consider two types of DAGs with unobserved confounders: random graphs
and hub graphs. Let A € RP*P denote the adjacency matrix for the DAG. For
random graphs, the upper off-diagonal entries of A are independently sampled
from Bernoulli(1/(2p)), while the other entries are set to 0. For hub graphs, the
entries Ay, j = 2,...,p, are set to 1, with the remaining set to 0. Further, if Aj; #

0, then 3, is sampled from the uniform distribution on (—1.2,—0.8) U (0.8,1.2);
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otherwise, it is set to 0. We consider the SEM
P
Y=Y B5Yi+ gi(Xine) + 91 Ute;, j=1,....p, (S4.7)
i=1
where e = (ey,...,e,)T ~ N,(0, A) and the unobserved confounders U ~ N,.(0,1,.).
Here A = diag(o?, ... ,ag) with o; sampled uniformly from (0.3,0.4). The coef-
ficients ¢; = (¢1j,...,0)" are set as follows: ¢1; and ¢y, j = 2k — 1,2k,
k=1,...,r, are sampled uniformly from (—0.4,—0.3) U(0.3,0.4), while the other
entries are set to 0. We set ¢ = 2p + [p/2] and ing(j) = {j,p+ 7,20+ [j/2]}
Hence, each Xy, ¢ =2p,...,2p+ |(p—1)/2], intervenes on two primary variables,
while any other X, intervenes on a single Y.
We consider two types of secondary variables X: (1) the continuous case where
X; ~ N(0,1) independently, and (2) the discrete case where X; ~ Bernoulli(0.5)
independently. Depending on the types of X, we specify g;(Xin,(;)) as follows:
for the continuous case,

9i(XKina(3)) = C(%‘ > X+ LXe >0} + % > Xk:X€>a (54.8)

Leing(j) kteing (5), kAL

where C' =1 and w; are sampled uniformly from (—3.2, —2.8) U (2.8, 3.2); for the

discrete case,

9i(Xina (7)) = O( Z XkX€>- (S4.9)
), ki

k,(€ing (j

To examine our method for DAGs of different sizes, we fix the sample size at
n = 1000 while varying the dimension as (p,q,r) = (10,25,5) and (20,50, 10).

We set v = 1 for PLACID. In Algorithm 2, we set the weighting matrix 2 =1
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Table S4.1: Means of the average first-stage F-statistic as an empirical measure
of surrogate IV strength for PLACID when C' =1 and v = 1.

Setting Graph P F-statistic
Continuous Random 10 29.48
20 28.92
Hub 10 25.84
20 23.35
Discrete Random 10 56.74
20 58.26
Hub 10 49.47
20 45.19

and the FDR level ¢* = 0.05. For the continuous case, we use tensor products of
polynomial bases to approximate Z.(Xca, k). All simulations are repeated 100
times.

To empirically measure the strength of surrogate IVs, we present the average
first-stage F-statistics in Table S4.1. All values are well above the commonly used
threshold of 10 (Staiger and Stock, 1997), suggesting that the surrogate IVs are
sufficiently strong across all simulation settings.

To complement the simulation results in Section 5, where we set v = 1 to
construct surrogate IVs, we conduct additional simulations with v = 2 = |ivg(7)]
for all j = 1,...,p. Tables S4.2 and S4.3 present the performance of PLACID
under this setting. The corresponding average first-stage F-statistics are reported
in Table S4.4. For continuous secondary variables, the results in Tables S4.2 and
S4.3 are comparable to those in Tables 1 and 3, which indicates that PLACID
appears insensitive to the choice of 4 under certain conditions. This can be

attributed to the comparable strength of the surrogate IVs induced by v = 1 and
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Table S4.2: Means and standard deviations (in parentheses) of different causal dis-
covery performance metrics for PLACID with continuous and discrete secondary
variables when C' =1 and v = 2.

Setting Graph FDP TPR SHD J1
Continuous  Random 10  0.02(0.08) 0.95(0.14)  0.26(0.61)  0.93(0.16)
20 0.02(0.08) 0.92(0.17) 0.43(0.87) 0.91(0.18)
Hub 10 0.00(0.00) 1.00(0.00)  0.00(0.00) 1.00(0.00)
20 0.00(0.00) 1.00(0.01) 0.03(0.17)  1.00(0.01)
Discrete Random 10  0.01(0.04) 0.95(0.19) 0.10(0.41)  0.95(0.19)
20 0.01(0.03) 0.99(0.05) 0.18(0.54)  0.98(0.06)
Hub 10 0.00(0.00) 0.95(0.09) 0.41(0.79)  0.95(0.09)
20 0.00(0.00) 0.96(0.05) 0.76(1.04)  0.96(0.05)

Table S4.3: Means and standard deviations (in parentheses) of different estimation
losses for PLACID with continuous and discrete secondary variables when C' =1

and v = 2.

Setting Graph P Lo Ly Lo
Continuous Random 10 0.19(0.36) 0.30(0.63) 0.22(0.43)
20 0.38(0.39)  0.78(0.90)  0.47(0.49)
Hub 10 0.07(0.02)  0.280.08)  0.11(0.03)
20 0.12(0.06)  0.82(0.26)  0.24(0.08)
Discrete Random 10 0.10(0.24) 0.16(0.39) 0.12(0.28)
20 0.17(0.37) 0.36(0.79) 0.22(0.49)
Hub 10 0.3000.36)  0.78(0.78)  0.40(0.45)
20  0.44(0.41)  L60(L11)  0.64(0.53)

v = 2, as evidenced by the similar average first-stage F-statistics for continuous
secondary variables in Tables S4.1 and S4.4. For discrete secondary variables,
PLACID with v = 2 performs slightly better for parameter estimation, which

may be due to the stronger surrogate IVs induced by this larger value of 7.
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Table S4.4: Means of the average first-stage F-statistic as an empirical measure
of surrogate IV strength for PLACID when C' =1 and v = 2.

Setting Graph P F-statistic
Continuous Random 10 34.36
20 27.83
Hub 10 21.47
20 20.75
Discrete Random 10 99.11
20 96.83
Hub 10 90.18
20 86.33

S5. Additional simulation studies

In this section, we provide additional simulation studies. Results with correlated
secondary variables are presented in Sections S5.1, and results with varying IV
strengths, sample sizes, values of v, and numbers of valid IVs are given in Sections

S5.2, S5.3, S5.4, and S5.5, respectively. All simulations are repeated 100 times.

S5.1 Correlated secondary variables

In this subsection, we conduct additional simulations to examine how PLACID
performs when Assumption 1 is violated.

We consider the same settings as in Section S4 with n = 1000, (p,q,r) =
(10,25,5), C' =1, and v = 1, but modify the data-generating mechanism for X to
induce dependence. For the continuous case, we let X follow a mean-zero multi-
variate Gaussian distribution whose (i, j)-th correlation is 0.17=7!. For the discrete

case, we first generate a latent Gaussian vector X from the same distribution and
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Table S5.5: Means and standard deviations (in parentheses) of different causal
discovery performance metrics for four methods with correlated secondary vari-

ables.

Setting Graph ~ Method FDP TPR SHD JI
Continuous Random PLACID  0.03(0.10) 0.87(0.24) 0.48(0.90) 0.86(0.25)
GrIVET  0.50(0.38) 0.50(0.38) 3.07(2.43) 0.31(0.31)
RFCI 0.00(0.05) 0.63(0.36) 1.04(1.09) 0.63(0.36)
LRpS-GES 0.64(0.17) 0.99(0.04) 3.87(0.79) 0.35(0.17)
Hub  PLACID  0.00(0.00) 0.89(0.24) 0.98(2.20) 0.89(0.24)
GIIVET  0.38(0.37) 0.44(0.37) 7.28(4.81) 0.38(0.34)
RFCI 0.01(0.04) 0.57(0.24) 3.96(2.19) 0.56(0.24)
LRpS-GES 0.38(0.05) 0.85(0.11) 6.08(1.46) 0.56(0.09)
Discrete Random PLACID  0.02(0.08) 0.91(0.22) 0.28(0.57) 0.89(0.22)
GIIVET  0.19(0.31) 0.62(0.38) 1.35(1.28) 0.53(0.37)
RECI 0.00(0.00) 0.80(0.30) 0.43(0.64) 0.80(0.30)
LRpS-GES 0.76(0.15) 0.97(0.13) 6.31(1.48) 0.24(0.15)
Hub  PLACID  0.00(0.00) 0.95(0.09) 0.48(0.83) 0.95(0.09)
GIIVET  0.00(0.02) 0.50(0.15) 4.47(1.36) 0.50(0.15)
RFCI 0.00(0.00) 0.38(0.19) 5.59(1.71) 0.38(0.19)
LRpS-GES 0.47(0.05) 0.77(0.06) 8.25(1.23) 0.46(0.05)

then define X; = 1()N(Z >0)fori=1,...,q.

The causal discovery and parameter estimation results are reported in Ta-

bles S5.5 and S5.6, respectively. We also report the empirical measures of surro-
gate IV strength in Table S5.7. Comparisons of Tables 1, 2, and S5.5 for causal
discovery, as well as Tables 3 and S5.6 for parameter estimation, show that the
accuracy of PLACID deteriorates when Assumption 1 is violated, as theoretically
expected. Such a decline is especially apparent for continuous secondary vari-
ables. Nevertheless, PLACID remains superior to the competing methods across

all scenarios, demonstrating its robustness.
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Table S5.6: Means and standard deviations (in parentheses) of different estimation
losses for two methods with correlated secondary variables.

Setting Graph Method L Ly Lo
Continuous ~ Random  PLACID 0.44(0.43) 0.77(0.99) 0.52(0.55)
GIIVET  0.91(0.36)  2.15(1.59)  1.22(0.60)
Hub PLACID  0.49(0.37)  2.14(2.24)  0.85(0.79)
GrIVET  1.02(0.27)  6.96(3.64)  2.31(0.92)
Discrete Random PLACID 0.25(0.36) 0.37(0.52) 0.28(0.39)
GrIVET  0.83(0.37)  1.59(1.11)  1.04(0.53)
Hub PLACID  0.41(0.36)  1.04(0.71)  0.53(0.42)
GrIVET 1.16(0.04) 8.96(0.37) 3.00(0.12)

Table S5.7: Means of the average first-stage F-statistic as an empirical measure
of surrogate IV strength for PLACID with correlated secondary variables.

Setting Graph F-statistic

Continuous Random 33.73
Hub 26.34

Discrete Random 57.21
Hub 49.61

S5.2  Varying IV strengths

In this subsection, we conduct additional simulations to examine the performance
of PLACID under varying surrogate IV strengths.

We consider the same settings as in Section S4 with n = 1000, (p,q,r) =
(10,25,5), and v = 1. To vary the IV strength, we set the coefficient C' to either
0.6 or 1.5 in the data-generating models (S4.8) and (S4.9). The empirical measures
of surrogate IV strength are summarized in Table S5.8. As expected, Table S5.8
shows that IV strength increases with larger values of C'.

The causal discovery results for the continuous and discrete cases are pre-

sented in Tables S5.9 and S5.10, respectively, with parameter estimation results
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Table S5.8: Means of the average first-stage F-statistic as an empirical measure
of surrogate IV strength for PLACID with varying C' when v = 1.

Setting Graph C F-statistic
Continuous Random 0.6 16.01
1.5 47.58
Hub 0.6 18.75
1.5 39.12
Discrete Random 0.6 19.05
1.5 71.83
Hub 0.6 18.82
1.5 65.76

in Table S5.11. Overall, these results indicate that stronger surrogate IVs lead to
better performance of PLACID in both causal discovery and parameter estima-
tion. While performance degrades under weak IV settings as expected, PLACID
consistently outperforms the competing methods across all scenarios. In addition,
it effectively controls the FDP below the nominal level ¢* = 0.05, demonstrating

its robustness.

S5.3 Varying sample sizes

In this subsection, we conduct additional simulations to assess the performance
of PLACID under varying sample sizes.

We consider the same settings as in Section S4 with (p,q,r7) = (10,25,5),
C =1, and v = 1. In addition to the moderate sample size n = 1000 studied in
Section 5 or Section S4, we examine two additional scenarios with n = 500 and
n = 2000.

The causal discovery results for the continuous and discrete cases are presented
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Table S5.9: Means and standard deviations (in parentheses) of different causal
discovery performance metrics for four methods with continuous secondary vari-

ables across varying surrogate IV strengths.

Graph ~ C  Method FDP TPR SHD JI
Random 0.6 PLACID  0.02(0.09) 0.86(0.24) 0.51(0.94) 0.85(0.25)
GrIVET  0.11(0.26)  0.15(0.32) 2.16(1.59)  0.12(0.26)
RFCI 0.02(0.12)  0.41(0.38) 1.20(1.06)  0.41(0.38)
LRpS-GES  0.68(0.17) 0.87(0.32) 4.41(1.06) 0.31(0.17)
1.5 PLACID  0.01(0.04) 0.95(0.17) 0.15(0.44) 0.94(0.17)
GrIVET  0.59(0.38) 0.42(0.37) 3.76(2.76)  0.25(0.27)
RFCI 0.01(0.07)  0.50(0.40)  0.94(0.94)  0.50(0.40)
LRpS-GES  0.68(0.17) 0.86(0.33) 4.10(0.97)  0.32(0.17)
Hub 0.6 PLACID  0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00)
GrIVET  0.16(0.25) 0.35(0.40) 6.82(3.07)  0.30(0.34)
RFCI 0.01(0.04) 0.63(0.21) 3.34(1.90)  0.63(0.21)
LRpS-GES  0.42(0.04) 0.79(0.07)  7.09(1.09)  0.50(0.06)
1.5 PLACID  0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00)
GrIVET  0.33(0.32) 0.51(0.36) 6.59(4.30) 0.43(0.33)
RFCI 0.01(0.04) 0.58(0.21) 3.80(1.86) 0.58(0.21)
LRpS-GES  0.40(0.05) 0.82(0.09) 6.54(1.31)  0.53(0.08)

in Tables S5.12 and S5.13, respectively, with parameter estimation results in Table

S5.14. We also report the empirical measures of surrogate IV strength in Table

S5.15. Comparisons between Tables 1-3 and S5.12-S5.14 show that the accuracy

of PLACID improves with increasing sample size across all settings. For causal

discovery, the FDP is well controlled at or below the nominal level ¢* = 0.05

across all sample sizes. For parameter estimation, the estimation error decreases

as the sample size increases, confirming the consistency of PLACID. Moreover,

PLACID outperforms the competing methods across all scenarios, including the

small-sample case with n = 500, demonstrating its robustness.
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Table S5.10: Means and standard deviations (in parentheses) of different causal
discovery performance metrics for four methods with discrete secondary variables
across varying surrogate IV strengths.

Graph ~ C  Method FDP TPR SHD JI
Random 0.6 PLACID  0.02(0.10) 0.83(0.28) 0.54(1.06) 0.82(0.28)
GrIVET  0.07(0.19)  0.59(0.39) 1.06(1.09) 0.55(0.37)
RFCI 0.00(0.00)  0.70(0.34)  0.60(0.83)  0.70(0.34)
LRpS-GES  0.79(0.14)  0.79(0.36)  7.91(1.71)  0.20(0.14)
1.5 PLACID  0.00(0.00) 0.97(0.10) 0.09(0.29) 0.97(0.10)
GrIVET  0.24(0.33) 0.60(0.37) 1.67(1.76)  0.50(0.35)
RFCI 0.00(0.00)  0.89(0.26)  0.25(0.69)  0.89(0.26)
LRpS-GES  0.67(0.15)  0.93(0.23) 4.29(1.33)  0.33(0.15)
Hub 0.6 PLACID  0.00(0.00) 0.79(0.20) 1.88(1.83) 0.79(0.20)
GrIVET  0.00(0.00) 0.50(0.17) 4.50(1.54)  0.50(0.17)
RFCI 0.00(0.00)  0.36(0.20)  5.75(1.80)  0.36(0.20)
LRpS-GES  0.50(0.08)  0.76(0.08)  9.21(2.02)  0.43(0.09)
1.5 PLACID  0.00(0.00) 1.00(0.02) 0.04(0.20) 1.00(0.02)
GrIVET  0.00(0.00) 0.49(0.17) 4.57(1.57)  0.49(0.17)
RFCI 0.00(0.00)  0.50(0.21) 4.51(1.89)  0.50(0.21)
LRpS-GES  0.40(0.05) 0.82(0.09) 6.56(1.28)  0.53(0.08)
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Table S5.11: Means and standard deviations (in parentheses) of different esti-
mation losses for two methods with continuous and discrete secondary variables
across varying surrogate IV strengths.

Setting Graph C Method Lo Ly Lo
Continuous Random 0.6 PLACID 0.28(0.35) 0.46(0.73) 0.32(0.44)
GIIVET  0.94(0.35) 2.20(1.51)  1.34(0.63)
1.5 PLACID 0.23(0.33) 0.36(0.57) 0.26(0.38)
GrIVET  0.23(0.33)  1.94(1.39)  1.09(0.56)
Hub 0.6 PLACID 0.18(0.06) 0.69(0.22)  0.28(0.09)
GIIVET  1.16(0.04) 9.03(0.37)  3.02(0.12)
1.5 PLACID 0.08(0.03) 0.32(0.08) 0.13(0.03)
GIIVET  0.99(0.28)  6.29(3.56)  2.15(0.92)
Discrete Random 0.6 PLACID 0.41(0.46) 0.70(1.10)  0.49(0.59)
GiIVET  0.81(0.37) 1.73(1.29)  1.08(0.60)
1.5 PLACID 0.11(0.22)  0.17(0.36)  0.13(0.26)
GrIVET  0.82(0.37) 1.90(1.61)  1.10(0.62)
Hub 0.6 PLACID 0.81(0.35) 2.38(1.63) 1.17(0.65)
GIIVET  1.17(0.03)  9.04(0.34)  3.03(0.11)
1.5 PLACID 0.16(0.14) 0.53(0.21)  0.23(0.14)
GIIVET  1.13(0.07) 6.79(1.35)  2.43(0.36)
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Table S5.12: Means and standard deviations (in parentheses) of different causal
discovery performance metrics for four methods with continuous secondary vari-
ables across varying sample sizes.

Setting n Method FDP TPR SHD JI
Random 500 PLACID 0.05(0.15) 0.79(0.31)  0.69(1.18)  0.77(0.32)
GrIVET 0.75(0.31) 0.33(0.37)  4.85(3.07)  0.17(0.23)
RFCI 0.01(0.10)  0.66(0.39)  0.76(0.93)  0.66(0.39)
LRpS-GES 0.66(0.16) 0.96(0.18)  3.94(0.79)  0.34(0.16)
2000 PLACID 0.01(0.05) 0.97(0.12)  0.15(0.44)  0.96(0.13)
GrIVET 0.37(0.39) 0.63(0.39) 2.02(1.99) 0.46(0.36)
RFCI 0.00(0.05) 0.71(0.36)  0.82(1.05)  0.71(0.36)
LRpS-GES 0.70(0.16) 0.98(0.08)  4.30(1.07)  0.30(0.15)
Hub 500  PLACID 0.00(0.00) 0.98(0.07)  0.18(0.67)  0.98(0.07)
GrIVET 0.55(0.33)  0.34(0.30) 10.19(5.29) 0.26(0.26)
RFCI 0.06(0.11) 0.52(0.22)  4.65(2.06)  0.50(0.22)
LRpS-GES 0.42(0.05) 0.77(0.11)  6.96(1.36)  0.50(0.09)
2000 PLACID 0.00(0.00) 1.00(0.00)  0.00(0.00)  1.00(0.00)
GrIVET 0.19(0.30) 0.57(0.39)  4.68(4.37)  0.55(0.39)
RFCI 0.00(0.01) 0.64(0.22)  3.27(1.98)  0.64(0.22)
LRpS-GES 0.38(0.05) 0.85(0.11)  6.02(1.45)  0.56(0.09)
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Table S5.13: Means and standard deviations (in parentheses) of different causal
discovery performance metrics for four methods with discrete secondary variables
across varying sample sizes.

Setting n Method FDP TPR SHD JI
Random 500  PLACID 0.02(0.07) 0.76(0.33) 0.68(1.02) 0.75(0.33)
GrIVET 0.16(0.29) 0.69(0.36) 1.15(1.12) 0.61(0.36)
RFCI 0.00(0.00) 0.69(0.36) 0.74(0.82) 0.69(0.36)
LRpS-GES 0.71(0.18) 0.96(0.15) 4.72(1.36) 0.28(0.18)
2000 PLACID  0.01(0.04) 0.94(0.24) 0.06(0.34) 0.93(0.24)
GrIVET 0.19(0.31) 0.65(0.33) 1.33(1.12) 0.55(0.34)
RFCI 0.00(0.03) 0.74(0.36) 0.65(0.88) 0.73(0.36)
LRpS-GES  0.78(0.14) 0.94(0.17) 7.51(1.44) 0.22(0.13)
Hub 500 PLACID  0.00(0.00) 0.75(0.21) 2.26(1.86) 0.75(0.21)
GrIVET 0.01(0.04) 0.49(0.17) 4.63(1.50) 0.49(0.17)
RFCI 0.00(0.00) 0.37(0.18) 5.66(1.63) 0.37(0.18)
LRpS-GES 0.39(0.09) 0.76(0.09) 6.66(1.87) 0.51(0.10)
2000 PLACID 0.00(0.00)  1.00(0.00) 0.00(0.00) 1.00(0.00)
GrIVET 0.00(0.00)  0.50(0.17)  4.51(1.56) 0.50(0.17)
RFCI 0.00(0.00) 0.47(0.18) 4.73(1.62) 0.47(0.18)
LRpS-GES  0.49(0.05) 0.79(0.07) 8.85(1.30) 0.45(0.05)
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Table S5.14: Means and standard deviations (in parentheses) of different esti-
mation losses for two methods with continuous and discrete secondary variables
across varying sample sizes.

Setting Graph n Method Lo Ly Lo
Continuous Random 500  PLACID 0.43(0.44) 0.86(1.25) 0.55(0.64)
GrIVET  0.95(0.29) 2.49(1.40) 1.33(0.53)
2000 PLACID 0.17(0.25) 0.27(0.41) 0.20(0.29)
GIIVET  0.70(0.44) 1.28(1.03) 0.84(0.57)
Hub 500  PLACID 0.30(0.28) 0.94(0.78) 0.42(0.33)
GrIVET ~ 1.12(0.18)  9.19(3.70)  2.78(0.76)
2000 PLACID 0.08(0.02) 0.32(0.09) 0.13(0.03)
GIIVET  0.84(0.41) 5.10(3.70) 1.81(1.11)
Discrete Random 500 PLACID 0.49(0.46) 0.81(1.04) 0.58(0.60)
GIIVET  0.79(0.39) 1.62(1.21) 1.03(0.58)
2000 PLACID 0.04(0.14) 0.08(0.35) 0.05(0.37)
GrIVET  0.87(0.35) 1.83(1.18) 1.13(0.53)
Hub 500 PLACID 0.82(0.35) 2.67(1.62) 1.28(0.65)
GIIVET  1.16(0.04) 9.00(0.36) 3.01(0.11)
2000 PLACID 0.11(0.03) 0.43(0.12) 0.17(0.05)
GIIVET  1.16(0.04) 9.04(0.35) 3.03(0.12)

Table S5.15: Means of the average first-stage F-statistic as an empirical measure
of surrogate IV strength for PLACID across varying sample sizes with C' = 1 and

v =1

Setting Graph n F-statistic
Continuous Random 500 19.43
2000 62.91
Hub 500 13.15
2000 46.83
Discrete Random 500 30.14
2000 113.20
Hub 500 24.53
2000 99.17
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S5.4 Varying values of v

In this subsection, we conduct additional simulations to assess the performance
of PLACID under different values of ~.

To further evaluate the scenarios in which v > |ivg(j)| for some j, so that
Assumption 3 is violated, we consider a modified data-generating process that
differs from the one described in Section S4. Specifically, we maintain most of the
simulation setup in Section S4 while altering the settings of ing(j) and g;(Xin,(j))
for j =1,...,p. Weset ¢ =3p and cag(j) = {J,j +p,j+2p} for all Y;. For each
X, that is a candidate IV of Y; but not a valid IV of Y}, we let X, have causal
effects on all descendants of Y;. That is, for every ¢ € cag(j) \ iva(j), we set
¢ € ing(k) if j € ang(k). According to Definitions 1 and 2, this setup enables us
to control the number of valid IVs for Y; by adjusting whether its candidate IVs
have causal effects on its descendants.

Depending on the types of X, we specify g;(Xing(;)) as follows: for the contin-

ing(j

uous case,

9i(Xing (7)) = wj( YA HUX 0+ Y XX

Leing () keing (5), k#L

+ > XiXkXe) :

i,k L€ing (.]) 7k kAL LFET

where w; are sampled uniformly from (—3.2, —2.8) U (2.8, 3.2); for the discrete
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case,

9 (Xinaiy) = Y, XiXe+ > XXX,
kLeing(5), k#L ik L€ing (7),itk kA0 0+

To examine the performance of PLACID with different values of ~, we set
ivg(j) = {4,j + p} for all Y; with descendants and vary v among 1, 2, and 3.
These values correspond to the cases where «y is less than, equal to, and larger
than the number of valid IVs for certain primary variables. We set the sample
size n = 2000 and the dimensions (p, ¢,r) = (10, 30, 5).

The causal discovery and parameter estimation results are presented in Tables
S5.16 and S5.17, respectively. We also report the empirical measures of surrogate
IV strength in Table S5.18. Tables S5.16 and S5.17 show that PLACID performs
best when ~ is set to 2. In contrast, its accuracy decreases with v = 1, particularly
in settings with discrete secondary variables. This occurs because a smaller
leads to fewer surrogate IVs according to Definition 3, which may lack sufficient
strength. Table S5.18 confirms that the IV strength at v = 1 is notably lower.
In the discrete case, the first-stage F'-statistic is below 10, corresponding to the
rule-of-thumb threshold for weak IVs (Staiger and Stock, 1997). On the other
hand, setting v = 3 violates Assumption 3 as it exceeds the number of valid IVs
for some primary variables. Consequently, the accuracy of PLACID decreases

with v = 3, especially for parameter estimation.
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Table S5.16: Means and standard deviations (in parentheses) of different causal
discovery performance metrics for PLACID with continuous and discrete sec-

ondary variables across varying values of ~.

Setting Graph vy FDP TPR SHD JI
Continuous Random 1  0.03(0.10) 0.95(0.14) 0.34(1.01)  0.94(0.17)
2 0.01(0.04) 0.97(0.10 0.11(0.37 0.97(0.10)
3 0.05(0.15) 0.92(0.20) 0.55(1.45)  0.90(0.22)
Hub 1 0.00(0.00) 0.99(0.09) 0.09(0.81) 0.99(0.09)
2 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00)
3 0.0000.00) 0.98(0.12) 0.22(1.06)  0.98(0.12)
Discrete Random 1  0.00(0.00) 0.80(0.34 0.38(0.62 0.80(0.34)
2 0.01(0.05) 0.96(0.14) 0.23(0.71)  0.95(0.15)
3 0.01(0.05) 0.91(0.22)  0.33(0.70)  0.90(0.22)
Hub 1 0.0000.00) 0.86(0.19) 1.25(1.72)  0.86(0.19)
2 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00)
3 0.00(0.00) 0.97(0.14) 0.25(1.27)  0.97(0.14)

Table S5.17: Means and standard deviations (in parentheses) of different estima-
tion losses for PLACID with continuous and discrete secondary variables across
varying values of 7.

Setting Graph ¥ Lo Ly Lo
Continuous Random 1 0.25(0.36) 0.61(1.33) 0.34(0.58)
2 0.22(0.33)  0.45(0.85)  0.29(0.48)
3 0.36(0.84)  0.84(1.91)  0.47(1.00)
Hub 1 024(0.19)  1.03(1.03)  0.40(0.36)
2 0.17(0.07) 0.68(0.24) 0.27(0.10)
3 0.27(0.73) 1.17(3.28) 0.45(1.16)
Discrete Random 1 0.62(0.44) 1.16(1.16) 0.78(0.62)
2 0.16(0.30)  0.27(0.63)  0.19(0.38)
3 0.50(0.21) 1.06(0.74)  0.68(0.33)
Hub 1 087(0.30)  4.07(2.43) 1.61(0.80)
2 0.09(0.03)  0.36(0.12)  0.14(0.04)
3 0.48(0.03) 3.88(0.18) 1.30(0.06)
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Table S5.18: Means of the average first-stage F-statistic as an empirical measure
of surrogate IV strength for PLACID across varying values of ~.

F-statistic

65.06
273.73
169.27

29.95
106.23

64.43

9.84
141.11
191.26

2.58

57.09

99.51

Setting Graph

Continuous Random

Hub

Discrete Random

Hub

WNHF WD WD~ WN (D

S5.5 Varying numbers of valid IVs

In this subsection, we conduct additional simulations to examine how PLACID
performs with varying numbers of valid IVs for the primary variables.

We consider the same data-generating process as in Section S5.4 with n =
2000, ¢ = 3p, cag(j) = {j,j + p,j +2p} for all j = 1,...,p, and (p,q,r) =
(10,30,5). We set the valid IV set ivg(j) to {5}, {J,j +p}, or {4, 7 +p,j+2p} for
all Y; with descendants, corresponding to 1, 2, or 3 valid IVs. Following the setup
in Section S5.4, for any X, that is a candidate IV of Y; but not a valid IV of Y},
we let X, have causal effects on all descendants of ;. To meet Assumption 3, we
set v to 1, 2, or 3 accordingly, so that v = min;<;<, |ivg(j)|. We then compare
PLACID with the competing methods across these settings.

The causal discovery results for the continuous and discrete cases are presented

in Tables S5.19 and 55.20, respectively, with parameter estimation results in Table
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S5.21. We also report the empirical measures of surrogate IV strength in Table
S5.22. Tables S5.19-S5.21 show that the performance of PLACID improves as
the number of valid IVs increases. On the other hand, its performance declines
notably in settings where only one valid IV is available and the secondary variables
are discrete, as shown in Tables S5.20 and S5.21. This is attributable to the much
weaker surrogate IVs in these settings, as reflected in Table S5.22. In particular,
for the hub graph with discrete secondary variables, the average first-stage F-
statistic falls below 10, meeting the conventional threshold for weak IVs (Staiger
and Stock, 1997). Nevertheless, PLACID remains robust, controlling the FDP
below the nominal level ¢* = 0.05 and outperforming the competing methods

across all scenarios.

S6. Additional analysis for the ADNI study

In this section, we provide additional analysis for the ADNI study. Specifically,
Figure S6.3 visualizes potential nonlinear relationships between primary and sec-
ondary variables, while Figure S6.4 examines the independence among secondary
variables.

To show the potential nonlinear relationships, we present the partial residual
plots for several primary and secondary variables in both AD-MCI and CN groups.
Partial residual plot is a frequently useful graphical diagnostic for nonlinearity

among variables (Cook, 1993). A greater deviation between the solid and dashed
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Table S5.19: Means and standard deviations (in parentheses) of different causal
discovery performance metrics for four methods with continuous secondary vari-
ables across varying numbers of valid IVs.

Graph  # valid IVs Method FDP TPR SHD JI
Random 1 PLACID  0.03(0.10) 0.91(0.18) 0.38(0.81) 0.90(0.20)
GrIVET 0.34(0.42) 0.52(0.41) 2.05(1.84) 0.43(0.38)
RFCI 0.01(0.11) 0.32(0.37) 1.65(1.21) 0.32(0.37)
LRpS-GES 0.20(0.33) 1.00(0.00) 0.46(0.66) 0.80(0.33)
2 PLACID  0.01(0.04) 0.97(0.10) 0.11(0.37) 0.97(0.10)
GrIVET 0.25(0.37) 0.50(0.39) 1.86(1.65) 0.43(0.38)
RFCI 0.01(0.11) 0.46(0.43) 1.48(1.47) 0.46(0.43)
LRpS-GES 0.13(0.27) 1.00(0.00) 0.36(0.67) 0.87(0.27)
3 PLACID  0.01(0.06) 1.00(0.01) 0.08(0.27) 0.98(0.06)
GrIVET 0.26(0.36) 0.54(0.39) 1.86(1.95) 0.45(0.38)
RFCI 0.00(0.00) 0.69(0.37) 0.81(1.02) 0.69(0.37)
LRpS-GES 0.15(0.34) 0.99(0.04) 0.33(0.93) 0.85(0.34)
Hub 1 PLACID  0.00(0.00) 0.98(0.08) 0.22(0.72) 0.98(0.08)
GrIVET 0.51(0.40) 0.43(0.39) 9.97(6.56) 0.32(0.34)
RFCI 0.41(0.37) 0.42(0.35) 7.01(3.84) 0.37(0.32)
LRpS-GES 0.18(0.12) 0.85(0.13) 3.07(2.19) 0.73(0.18)
2 PLACID  0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00)
GrIVET 0.32(0.39) 0.35(0.36) 8.38(5.36) 0.31(0.33)
RFCI 0.17(0.21) 0.69(0.32) 4.15(3.45) 0.62(0.31)
LRpS-GES 0.14(0.12) 0.80(0.13) 3.05(1.96) 0.72(0.17)
3 PLACID  0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00)
GrIVET 0.23(0.35) 0.41(0.39) 6.71(4.67) 0.38(0.37)
RFCI 0.07(0.23) 0.87(0.32) 1.53(3.53) 0.86(0.32)
LRpS-GES 0.04(0.12) 0.81(0.31) 1.94(3.05) 0.80(0.32)

lines in Figures S6.3 suggests a nonlinear relationship. It can be observed that

some primary and secondary variables exhibit highly nonlinear relationships.

We further provide DC heatmaps for secondary variables in both AD-MCI

and CN groups as shown in Figure S6.4. Since low DC values in Figure S6.4
indicate weak dependence among secondary variables, we empirically conclude

that Assumption 1 approximately holds. Additionally, the heatmaps from two
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Table S5.20: Means and standard deviations (in parentheses) of different causal
discovery performance metrics for four methods with discrete secondary variables
across varying numbers of valid I'Vs.

Graph  # valid IVs Method FDP TPR SHD JI
Random 1 PLACID  0.00(0.00) 0.74(0.39) 0.46(0.67) 0.74(0.39)
GrIVET  0.46(0.43) 0.33(0.39) 2.74(2.25) 0.29(0.37)
RFCI 0.00(0.00) 0.62(0.38) 1.08(1.25) 0.62(0.38)
LRpS-GES 0.39(0.30) 0.96(0.13) 1.60(1.39) 0.61(0.31)
2 PLACID  0.01(0.05) 0.96(0.14) 0.23(0.71) 0.95(0.15)
GrIVET  0.20(0.39) 0.26(0.40) 2.15(1.68) 0.26(0.40)
RFCI 0.00(0.00) 0.82(0.30) 0.52(0.94) 0.82(0.30)
LRpS-GES 0.38(0.32) 0.99(0.08) 1.30(1.21) 0.62(0.32)
3 PLACID  0.00(0.03) 1.00(0.00) 0.02(0.14) 1.00(0.03)
GrIVET  0.07(0.23) 0.43(0.36) 1.60(1.46) 0.42(0.36)
RFCI 0.00(0.00) 0.95(0.18) 0.14(0.38) 0.95(0.18)
LRpS-GES 0.37(0.26) 0.98(0.08) 1.46(1.27) 0.62(0.27)
Hub 1 PLACID  0.00(0.00) 0.81(0.29) 1.67(2.62) 0.81(0.29)
GrIVET  0.01(0.09) 0.26(0.42) 6.72(3.81) 0.26(0.42)
RFCI 0.00(0.00) 0.05(0.06) 8.57(0.57) 0.05(0.06)
LRpS-GES 0.19(0.26) 0.31(0.16) 6.99(1.88) 0.29(0.15)
2 PLACID  0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00)
GrIVET  0.58(0.44) 0.12(0.18) 11.14(4.31) 0.11(0.16)
RFCI 0.00(0.00) 0.79(0.15) 1.85(1.36) 0.79(0.15)
LRpS-GES 0.15(0.19) 0.50(0.15) 5.33(2.03) 0.47(0.16)
3 PLACID  0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00)
GrIVET  0.23(0.34) 0.25(0.22) 7.61(2.50) 0.23(0.21)
RFCI 0.00(0.00) 0.81(0.38) 1.72(3.46) 0.81(0.38)
LRpS-GES 0.05(0.14) 0.76(0.33) 2.35(3.31) 0.76(0.34)

groups show similar patterns, suggesting similar SNP dependencies across the

dataset.



43

Table S5.21: Means and standard deviations (in parentheses) of different esti-
mation losses for two methods with continuous and discrete secondary variables

across varying numbers of valid IVs.

Setting Graph  # valid IVs Method L Ly L,
Continuous Random 1 PLACID 0.46(0.42) 1.06(1.39) 0.61(0.65)
GrIVET 0.87(0.49) 1.89(1.42) 1.15(0.69)
2 PLACID 0.22(0.33) 0.45(0.85) 0.29(0.48)
GrIVET 0.83(0.43) 1.62(1.33) 1.05(0.63)
3 PLACID 0.06(0.10) 0.11(0.22) 0.07(0.13)
GIIVET 0.73(0.46) 1.44(1.35) 0.92(0.65)
Hub 1 PLACID 0.42(0.22) 1.62(0.89) 0.66(0.34)
GrIVET 1.21(0.28) 11.13(5.60) 3.13(1.04)
2 PLACID 0.17(0.07) 0.68(0.24) 0.27(0.10)
GIIVET 1.08(0.28) 8.52(4.35) 2.65(0.97)
3 PLACID 0.08(0.03) 0.30(0.09) 0.13(0.04)
GIIVET 1.03(0.29) 6.77(4.00) 2.29(1.03)
Discrete Random 1 PLACID 0.83(0.39) 1.68(1.22) 1.10(0.61)
GrIVET 1.81(1.66) 3.70(3.30) 2.25(1.81)
2 PLACID 0.16(0.30) 0.27(0.63) 0.19(0.38)
GrIVET 0.98(0.47) 2.28(1.67) 1.38(0.73)
3 PLACID 0.02(0.01) 0.03(0.02) 0.02(0.01)
GIIVET 0.89(0.39) 1.96(1.81) 1.20(0.67)
Hub 1 PLACID 0.61(0.40) 3.04(2.62) 1.18(0.92)
GrIVET 1.88(1.13) 13.67(8.42) 4.64(2.81)
2 PLACID 0.09(0.03) 0.36(0.12) 0.14(0.04)
GrIVET 1.17(0.10) 10.82(2.50) 3.19(0.37)
3 PLACID 0.02(0.01) 0.09(0.02) 0.04(0.01)
GrIVET 1.15(0.43) 7.93(2.34) 2.71(0.67)
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Table S5.22: Means of the average first-stage F-statistic as an empirical measure

of surrogate IV strength for PLACID across varying numbers of valid IVs.

Setting Graph

# valid IVs

F-statistic

Continuous Random

Hub

Discrete Random

Hub

—_

W N WNHFHE WND R W

61.30
273.73
282.70

24.02
106.23

93.89

12.03
141.11
348.12

6.64

57.09

193.45
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