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In this supplemental file, Section S1 includes some examples; Section S2 speci-

fies the calculation of empirical distance correlation; Section S3 provides technical

derivations and proofs of all theoretical results; Section S4 outlines the imple-

mentation details and extended results of the simulation studies in the main text;

Section S5 provides additional simulations; Section S6 presents some additional

analysis for the ADNI study.

S1. Examples

In this section, we present some examples for further illustration. We first consider

Example S1.1 to illustrate several key concepts related to DAGs.

Example S1.1. Consider the causal graph G shown in Figure S1.1, where U

represents unobserved confounders. In view of the directed path Y1 → Y2 → Y3,

the mediator set of Y1 and Y3 is meG(1, 3) = {2}. The unmediated parent of

Y3 is Y2 because Y2 is the only parent of Y3 with meG(2, 3) = ∅. The height of

Y1 is 2 since the longest path from Y1 to a leaf node of G is Y1 → Y2 → Y3,
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Figure S1.1: An example of the causal graph G.

whose length is 2. The corresponding ancestral relation graph (ARG) is G+ =

({X1, . . . , X4}, {Y1, Y2, Y3}; E+, I+), where E+ = {(1, 2), (1, 3), (2, 3)} and I+ =

{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3), (4, 2), (4, 3)}. As shown in this example,

the ARG describes the ancestral relationships among the nodes in G.

Since the estimation of Zγ(XcaG(k)) plays an important role in our estimates

for β∗, we further clarify its concrete instantiation through Example S1.2.

Example S1.2. Focus on k = 2 in Figure S1.1, where γ = 1 according to Assump-

tion 3. The candidate IV set for Y2 is {2, 4} and suppose that Xi ∈ {0, 1}, i = 2, 4.

Then we have

H(X{2,4}) = span({X2 − µ2, X4 − µ4, (X2 − µ2)(X4 − µ4)}),

where µi = E(Xi), i = 2, 4. The valid IV set for Y2 which satisfies ivG(2) ⊆ caG(2)

and | ivG(2)| ≥ 1 can be {2}, {4} or {2, 4}, corresponding to the potential

values for α2 in Definition 3. According to Assumption 1, when α2 = {2}, the

corresponding D({2}) is span({X2 − µ2, (X2 − µ2)(X4 − µ4)}); when α2 = {4},

D({4}) = span({X4−µ4, (X2−µ2)(X4−µ4)}); and when α2 = {2, 4}, D({2, 4}) =

span({X2 − µ2, X4 − µ4, (X2 − µ2)(X4 − µ4)}). The intersection of all possible
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D(α2), defined as Z1(2), is span({(X2 − µ2)(X4 − µ4)}). Therefore, the vector

Z1(XcaG(2)) consisting of the basis functions of Z1(2) is (X2 − µ2)(X4 − µ4).

To further clarify the role of Assumption 1, we next provide an example where

the identification fails specifically because this assumption is violated. In particu-

lar, we show that if Assumption 1 is violated, then the surrogate IVs may become

invalid. As a result, the causal effects cannot be identified by (3.4), thereby in-

validating the identification result in Theorem 1.

Example S1.3. Consider the causal graph G shown in Figure S1.2, where U

represents unobserved confounders, and the dashed undirected edge between X1

and X2 indicates that X1 ̸⊥⊥ X2. In this graph, | caG(j)| = | ivG(j)| = γ = 1 for

j = 1, 2, and the corresponding SEM in (2.2) is

Y1 = g1(X1) + ε1,

Y2 = β∗
12Y1 + g2(X2) + ε2.

We proceed to show that even in this simple case where meG(1, 2) = ∅, the

surrogate IV denoted by Z1(X1) can be invalid, thereby causing (3.4) to fail.

Suppose that X1 ∈ {0, 1} for simplicity. By Definition 3, Z1(X1) = X1 − E(X1),

and thus

E{M(β∗)} = E{Z1(X1)(Y2 − β∗
12Y1)}

= E{(X1 − E(X1))(g2(X2) + ε2)}

= E{(X1 − E(X1))g2(X2)},

which may not be zero due to the potential dependency between X1 and X2 and
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Figure S1.2: An example of the causal graph G when Assumption 1 fails.

the unknown form of g2(·). For example, if X1 is correlated with X2 and g2(X2)

is linear in X2, then E{M(β∗)} ̸= 0. As a result, the direct causal effect of Y1 on

Y2 cannot be identified by (3.4).

S2. Distance correlation

In this section, we introduce the distance correlation (DC) proposed by Székely

et al. (2007) in a brief. Let fζ(·) denote the characteristic function for a random

variable ζ.

Definition S2.1 (Distance correlation). The distance correlation between ran-

dom vectors η and ξ with finite first moments is the non-negative number R(ξ,η)

defined by

R2(ξ,η) =


V2(ξ,η)√

V2(ξ,ξ)V2(η,η)
, V2(ξ, ξ)V2(η,η) > 0

0 , V2(ξ, ξ)V2(η,η) = 0

, where

V2(ξ,η) = ∥fξ,η(t, s)− fξ(t)fη(s)∥2 =
1

c1c2

∫
Rpξ+pη

|fξ,η(t, s)− fξ(t)fη(s)|2

||t||1+pξ
2 ||s||1+pη

2

dtds,

V2(ξ, ξ) and V2(η,η) are defined similarly, the non-negative number V(ξ,η) is
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called distance covariance; the positive constants c1 and c2 only depend on the

dimensions pξ of ξ and pη of η, respectively.

The distance correlation can be intuitively thought of as measuring the differ-

ence between the characteristic functions of the distribution under the assumption

of independence of two random vectors, and the true joint one. Therefore, un-

like the Pearson correlation coefficient, the distance correlation is not limited to

measuring only linear relationships.

We next introduce the calculation of empirical DC in our setting. For finite

sample estimation, consider an independent and identically distributed sample

(Xn×q,Yn×p). The empirical DC between Xi and Yj is defined by

Rn(Xi, Yj) =
Vn(Xi, Yj)√

Vn(Xi, Xi)Vn(Yj, Yj)
, (S2.1)

where Vn(·, ·) is the empirical distance covariance. Note from Székely et al. (2007,

(2.18)) that V2
n(Xi, Yj) = S1(Xi, Yj) + S2(Xi, Yj)− 2S3(Xi, Yj), where

S1(Xi, Yj) =
1

n2

n∑
r=1

n∑
s=1

|Xri −Xsi| |Yrj − Ysj|,

S2(Xi, Yj) =
1

n2

n∑
r=1

n∑
s=1

|Xri −Xsi|
1

n2

n∑
r=1

n∑
s=1

|Yrj − Ysj|,

S3(Xi, Yj) =
1

n3

n∑
r=1

n∑
s=1

n∑
t=1

|Xri −Xti| |Ysj − Ytj|.

The distance variances Vn(Xi, Xi) and Vn(Yj, Yj) are calculated similarly. For

testing the null hypothesis H0 : Xi ⊥⊥ Yj, the test statistic is given by

Tn(Xi, Yj) =
nV2

n(Xi, Yj)

S2(Xi, Yj)
.
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Then a test of asymptotic significance level α rejects H0, denoting Rij = 1, where

Rij := 1

{√
Tn(Xi, Yj) > Φ−1(1− α/2)

}
, (S2.2)

with Φ(·) being the standard normal cumulative distribution function (Székely

et al., 2007, Theorem 6).

Székely et al. (2007) also presented an alternative definition of empirical dis-

tance covariance as follows, which is equivalent to the aforementioned definition

but more convenient for calculations. Considering the empirical DC between Xℓ

and Yk, define

aij = |Xiℓ −Xjℓ|, āi. =
1

n

n∑
j=1

aij, ā·j =
1

n

n∑
i=1

aij,

ā·· =
1

n2

n∑
i,j=1

aij, Aij = aij − āi· − ā·j + ā··,

i, j = 1, . . . , n, A = (Aij)n×n. Similarly, define bij = |Yik − Yjk|2, Bij = bij −

b̄i· − b̄·j + b̄··, i, j = 1, . . . , n, B = (Bij)n×n. The empirical distance covariance

Vn(Xℓ, Yk) is then defined as the non-negative number by

V2
n(Xℓ, Yk) =

1

n2

n∑
i,j=1

AijBij.

We next recall the asymptotic properties of the empirical DC and DC-based

independence tests from Székely et al. (2007), which will be used to prove the

consistency of the proposed ARG estimator in Algorithm 1.

Lemma S2.1 (Székely et al. (2007, Corollary 1 and Theorem 3)). If the random
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variables ξ and η satisfy E(∥ξ∥2 + ∥η∥2) < ∞, then almost surely,

lim
n→∞

Rn(ξ,η) = R(ξ,η),

where 0 ≤ R(ξ,η) ≤ 1, and R(ξ,η) = 0 if and only if ξ ⊥⊥ η.

For testing H0 : ξ ⊥⊥ η versus H1 : ξ ̸⊥⊥ η, let P I(n) denote the Type I

error probability of the DC-based test that rejects independence if
√

Tn(ξ,η) ≥

Φ−1(1− α/2) for some significance level α.

Lemma S2.2 (Székely et al. (2007, Theorem 6)). If the random variables ξ and

η satisfy E(∥ξ∥2 + ∥η∥2) < ∞, then for all 0 < α ≤ 0.215, limn→∞ P I(n) ≤ α.

Building on these results, we show that Algorithm 1 with the significance

level set to α = O(n−2) asymptotically yields the correct decision for every test

H0 : Xi ⊥⊥ Yj versus H1 : Xi ̸⊥⊥ Yj, where i = 1, . . . , q and j = 1, . . . , p. Indeed,

Lemma S2.1 implies that when Xi ̸⊥⊥ Yj, the test statistic Tn(Xi, Yj)/n → C for

some C > 0 depending on R(Xi, Yj). Therefore, the Type II error probability of

the test vanishes asymptotically with α = O(n−2). On the other hand, Lemma

S2.2 implies that if α tends to zero, then the Type I error probability also converges

to zero. Consequently, with this choice of α, Algorithm 1 correctly recovers all

dependencies between X and Y as n → ∞, thereby consistently estimating the

ARG.
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S3. Proofs

In this section, we provide the proofs of Theorems 1–4. In particular, the proof

strategy of Theorem 1 aligns with the estimation approaches introduced in the

main text.

S3.1 Proof of Theorem 1

Our identification strategy consists of two stages. We begin by identifying the

ARG to roughly capture the causal directions among Y and obtain the candidate

IV sets. We then establish the identification of the causal effects B∗ based on the

identified ARG and candidate IV sets.

First, we introduce some definitions. Let lG(k, j) denote the length of the

longest directed path from Yk to Yj. Define the height of Yj, hG(j), as the length

of the longest directed path from Yj to a leaf node of G. It follows that if (k, j) ∈ E

then hG(k) > hG(j), and the height of any leaf node is 0. For a DAG G, we define

its ARG formally as follows.

Definition S3.2 (Ancestral relation graph). For a causal graph G = (X,Y; E , I),

its ancestral relation graph is defined by G+ = (X,Y; E+, I+), where

E+ = {(k, j) : k ∈ anG(j)}, I+ =

{
(ℓ, j) : ℓ ∈

⋃
k∈anG(j)∪{j}

inG(k)

}
.

The ARG G+ describes the ancestral relationships among the nodes in G.

Specifically, if there exists a directed path from Yi to Yj in G, then (i, j) ∈ E+.
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Similarly, if there exits a directed path from Xℓ to Yj in G, then (ℓ, j) ∈ I+. To re-

cover E+, we need only identify all edges originating from the unmediated parents

of each node in G. Note that we can derive the mediator sets {meG(k, j)}(k,j)∈E+

and the lengths {lG(k, j)}(k,j)∈E+ from G+ since meG(k, j) = meG+(k, j) and

lG(k, j) = lG+(k, j).

The next two propositions extend Propositions 1 and 2 in Chen et al. (2024)

to the semiparametric model (2.2) and are the key ingredients for identifying G+

and {caG(k)}pk=1.

Proposition S3.1. Suppose that Assumptions 1–3 hold. Then there exists some

Xℓ such that Xℓ ⊥̸⊥ Yk and Xℓ ⊥⊥ Yk′ for all k
′ ̸= k if and only if Yk is a leaf node

of G. Furthermore, such an Xℓ is a valid IV for Yk in G.

Proof of Proposition S3.1. On the one hand, if Yk is a leaf node of G, then let Xℓ

be a valid IV of Yk since iv(k) ̸= ∅ due to Assumption 3. We then have Xℓ ⊥⊥ Yk′

for any k′ ̸= k because Yk has no descendant and Xℓ ⊥⊥ Xi for any i ̸= ℓ according

to Assumption 1. On the other hand, if Yk is not a leaf node of G, then there

exists a Yj such that Yk is an unmediated parent of Yj. There are two cases leading

to Xℓ ̸⊥⊥ Yk, i.e., (ℓ, k) ∈ I and (ℓ, k) /∈ I. If (ℓ, k) ∈ I, then we have Xℓ ̸⊥⊥ Yj

according to Assumption 2. If (ℓ, k) /∈ I, then there exists an ancestor i ∈ anG(k)

such that (ℓ, i) ∈ I, and thus Xℓ ̸⊥⊥ Yi. Therefore, for any non-leaf of G, we can

not find an Xℓ satisfying the conditions in Proposition S3.1. The analysis above

shows the identification of leaf nodes in G. Moreover, under Assumptions 1–3, for

any leaf node Yk of G, it follows that Xℓ ⊥̸⊥ Yk and Xℓ ⊥⊥ Yk′ for all k
′ ̸= k if and
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only if ℓ ∈ ivG(k).

Proposition S3.1 shows that the leaves of G and their valid IVs are identifiable:

leaf(G) = {k : for some ℓ, Xℓ ⊥̸⊥ Yk and Xℓ ⊥⊥ Yk′ for all k
′ ̸= k},

ivG(k) = {ℓ : Xℓ ⊥̸⊥ Yk and Xℓ ⊥⊥ Yk′ for all k
′ ̸= k}, k ∈ leaf(G).

Once the leaves of G have been identified, we can remove these nodes along

with their valid IVs to obtain a subgraph G− = (X−,Y−; E−, I−), where X− =

X\
⋃

k∈leaf(G)XivG(k),Y
− = Y\Yleaf(G), and E− and I− denote the remaining edges

from E and I, respectively. By Definition 1, it is clear that ivG(j) ⊆ ivG−(j) for all

Yj ∈ Y−, implying that Assumption 3 holds in G−. Assumptions 1 and 2 also hold

naturally in the subgraph G−. Therefore, Proposition S3.1 remains applicable to

G−, so that leaf(G−) and ivG−(k) for k ∈ leaf(G−) are identifiable. By iteratively

applying this method to identify and remove the leaves of the current graph,

a topological order among the variables in Y can be determined. During this

process, the variables in Y are removed in ascending order of their heights. It is

obvious from the definition of height that there are no directed paths from Yj to

nodes with the same or greater height. However, the causal relationships for the

other case are yet to be determined. The following proposition helps to complete

the construction of G+.

Proposition S3.2. Suppose that Assumptions 1–3 hold. For any k ∈ leaf(G−)

and Yj ∈ Y \Y−: (i) if Xℓ ⊥̸⊥ Yj for all ℓ ∈ ivG−(k), then (k, j) ∈ E+; (ii) if Yk

is an unmediated parent of Yj, then Xℓ ⊥̸⊥ Yj for all ℓ ∈ ivG−(k).
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Proof of Proposition S3.2. It is obvious that ivG(k) ⊆ ivG−(k) for any Yk ∈ Y−

according to Definition 1 for valid IVs. According to Assumption 1 and Definition

1, if Xℓ ⊥⊥ Yk for all ℓ ∈ ivG(k), there must be a directed path from Yk to Yj in

G. Thereby, we prove the first conclusion of Proposition S3.2. Moreover, for

any ℓ ∈ ivG−(k), we have (ℓ, k) ∈ I− ⊆ I based on the definition of valid IV in

Definition 1. Therefore, if Yk is an unmediated parent of Yj, we have Xℓ ⊥̸⊥ Yj

according to Assumption 2, which leads to the second conclusion.

Proposition S3.2 allows us to derive the ancestral relations between Yleaf(G−)

and Y \Y− by

{(k, j) : k ∈ leaf(G−), Yj ∈ Y \Y−, Xℓ ⊥̸⊥ Yj for all ℓ ∈ ivG−(k)} ⊆ E+,

which ensures that all edges from an unmediated parent to Yj are included. The

remaining edges in E+ correspond to the directed paths containing mediators in G.

Since these paths are formed by edges previously identified, adding the ancestral

relationships inferred from these paths to E+ is sufficient to recover E+. Moreover,

we can reconstruct I+ by

I+ = {(ℓ, j) : for some k ∈ anG(j) ∪ {j}, Xℓ ⊥̸⊥ Yk}.

Subsequently, by Definition 2, the candidate IV sets are identified by

caG(k) = {ℓ : (ℓ, k) ∈ I+ and (ℓ, j) ∈ I+, k ̸= j only if (k, j) ∈ E+}, k = 1, . . . , p.

Building on the identifiability of E+ and {caG(k)}pk=1 established in the pre-
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ceding subsection, we now proceed to demonstrate the identification of the causal

effects β∗ = (β∗
kj)(k,j)∈E+ and subsequently identify E .

First, consider the simple case where (k, j) ∈ E+ and meG(k, j) = ∅. When

Assumption 1 holds, we have YnmG(k,j) ⊥⊥ XcaG(k) and XinG(j) ⊥⊥ XcaG(k) |

XcaG(k)\ivG(k). It then follows that for any d(XcaG(k)) ∈ D(ivG(k)),

E{d(XcaG(k))(Yj − β∗
kjYk)}

= E

{
d(XcaG(k))

( ∑
i∈nmG(k,j)

β∗
ijYi + gj(XinG(j)) + εj

)}

= E{d(XcaG(k))gj(XinG(j))}

= E
[
E{d(XcaG(k)) | XcaG(k)\ivG(k)}E{gj(XinG(j)) | XcaG(k)\ivG(k)}

]
= 0.

(S3.3)

By Definition 3 and the identifiability of caG(k), Zγ(k) and hence Zγ(XcaG(k))

are also identifiable. Therefore, under Assumption 4, equation 3.3 has a unique

solution, and thus β∗
kj is identifiable. Based on the above analysis, we can identify

all β∗
kj with lG(k, j) = 1.

Next, we identify the remaining parameters recursively. Suppose we have

identified all β∗
kj with lG(k, j) ≤ l for some l > 0. Then, for any β∗

kj with lG(k, j) =

l + 1, any mediator variable Yi ∈ meG(k, j) satisfies lG(i, j) ≤ l, and thus all

mediated effects β∗
ij are identified. We can then substitute Yj −

∑
i∈meG(k,j) β

∗
ijYi

for Yj and identify β∗
kj under Assumption 4 from the equation E{Mkj(β

∗)} = 0,
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where

Mkj(β
∗) = Zγ(XcaG(k))

(
Yj −

∑
i∈meG(k,j)

β∗
ijYi − β∗

kjYk

)
.

The above procedure implies that we can determine all β∗
kj recursively in ascending

order of lG(k, j). As a result, β∗ can be identified as the unique solution to

E{M(β∗)} = 0, (S3.4)

whereM(β∗) is the concatenation of allMkj(β
∗) for (k, j) ∈ E+. Finally, based on

the identified value of β∗, we can identify E by E = {(k, j) : β∗
kj ̸= 0, (k, j) ∈ E+}.

To summarize, our analysis shows that the causal graph and causal effects in

model (2.2) are identifiable under Assumptions 1–4, thereby justifying Theorem

1.

S3.2 Proof of Theorem 2

Proof. Let P I
ij(n) and P II

ij (n) denote the probability of making a Type I and Type

II error of the DC-based independence test of Xi and Yj, respectively. Firstly, we

prove that if we take α = O(n−2), then limn→+∞ P I
ij(n) = limn→+∞ P II

ij (n) = 0.

Note that E(X2
i ) < ∞, E(Y 2

j ) < ∞, for all i = 1, . . . , q, j = 1, . . . , p, and when n

is sufficiently large, α ≤ 0.215. Therefore, by Theorem 6 of Székely et al. (2007),

under the null hypothesis,

lim
n→+∞

P I
ij(n) ≤ lim

n→+∞
α = 0.
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If the alternative hypothesis is true, then by Corollary 2 of Székely et al. (2007),

it follows that

Tn/n = ζn =
V2
n(Xi, Yj)

S2(Xi, Yj)
→P C > 0,

where C is a positive constant. For any sufficiently small number 0 < ϵ < C, we

have

lim
n→+∞

P{|ζn − C| > ϵ} = 0.

Therefore,

P II
ij (n) = P

{
nζn ≤

(
Φ−1(1− α/2)

)2}
= P

{
nζn ≤

(
Φ−1(1− α/2)

)2
, |ζn − C| > ϵ

}
+ P

{
nζn ≤

(
Φ−1(1− α/2)

)2
, |ζn − C| ≤ ϵ

}
≤ P{|ζn − C| > ϵ}+ P

{
ζn − C + C ≤

(
Φ−1(1− α/2)

)2
/n
∣∣∣ |ζn − C| ≤ ϵ

}
≤ P{|ζn − C| > ϵ}+ 1

{
−ϵ+ C ≤

(
Φ−1(1− α/2)

)2
/n
}
,

where Φ(·) is the standard normal cumulative distribution function. Since −ϵ +

C > 0, it remains to show that

lim
n→∞

Φ−1(1− α/2)√
n

= 0.

Define xn = Φ−1(1−α/2), then it is obvious that xn → +∞. When n is sufficiently

large, we have 1 − Φ(xn) ≤ 1/
√
2πexp(−x2

n/2)/xn according to the property of

the standard normal distribution. Therefore, when n is sufficiently large,

α/2 = 1− Φ(xn) ≤
1√
2πxn

exp

(
−x2

n

2

)
,
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i.e.,

xn√
n
≤ 2√

2π

1

n−3/2
exp

(
−x2

n

2

)
. (S3.5)

If limn→∞ xn/
√
n = τ > 0, then there exists a subsequence {xni

} such that

limi→+∞ xni
/
√
ni = τ > 0. For this subsequence, we have

lim
i→+∞

2
√
2πn

−3/2
i

exp

(
−
x2
ni

2

)
= 0.

This contradicts (S3.5), and thus

lim
n→+∞

P II
ij ≤ lim

n→+∞
P{|ζn − C| > ϵ}+ 1

{
−ϵ+ C ≤

(
Φ−1(1− α/2)

)2
/n
}
= 0.

Next we prove that Ĝ+ is consistent when α = O(n−2). Let R = (Rij)q×p

where Rij = 1(Xi ⊥̸⊥ Yj) and R̂ denote the estimate of R as shown in line 2 of

Algorithm 1. According to Propositions S3.1 and S3.2, if R̂ = R then Ĝ+ = G+,

which implies that

P (Ĝ+ ̸= G+) ≤ P (R̂ ̸= R).

Moreover,

P (R̂ ̸= R) = P

( p⋃
i=1

{R̂i,+(n) ̸= Ri,+}
)

≤
q∑

i=1

p∑
j=1

{
P I
ij(n) + P II

ij (n)
}
.

Therefore,

P (Ĝ+ ̸= G+) ≤ P (R̂ ̸= R) ≤
q∑

i=1

p∑
j=1

{
P I
ij(n) + P II

ij (n)
}
.
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Since limn→+∞ P I
ij(n) = limn→+∞ P II

ij (n) = 0, it follows that

lim
n→+∞

P (Ĝ+ ̸= G+) ≤
q∑

i=1

p∑
j=1

{
lim

n→+∞
P I
ij(n) + lim

n→+∞
P II
ij (n)

}
= 0.

In conclusion, the estimated ARG is consistent, implying that the estimated can-

didate IV sets are also consistent.

S3.3 Proof of Theorem 3

Proof. We first introduce some notations. Let 1d denote the d-dimensional vector

with all elements equal to 1. For a vector v, let v ⊙ w denote the Hadamard

product of it with another vector w of the same dimension. The diagonal matrix

with diagonal elements being v is denoted as diag(v). To distinguish from Oi

denoting the ith feature of a sample O, we use O(i) to denote the ith sample.

From Theorem 2, for any Borel set B ⊆ R|Ê|+ , we have

lim
n→∞

P (β̂ − β◦ ∈ B)

= lim
n→∞

P (β̂ − β◦ ∈ B | Ĝ+ = G+)P (Ĝ+ = G+) + P (β̂ − β◦ ∈ B | Ĝ+ ̸= G+)P (Ĝ+ ̸= G+)

= lim
n→∞

P (β̂ − β◦ ∈ B | Ĝ+ = G+),

where β◦ = (βkj)(k,j)∈Ê+ . It is therefore sufficient to consider the asymptotic

distribution of β̂ only when Ĝ+ = G+, and thus β◦ = β∗ in such cases.

We first rewrite equation (4.5) in Algorithm 2 for further discussion. Following

the same order of concatenating {Mkj(β)}(k,j)∈E+ to obtain M(β) denoted by

(k1, j1), . . . , (kN , jN), the basis functions Zγ(XcaG(k)) of dimension t(k; γ) can be
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arranged to

Zγ :=
(
Zγ(XcaG(k1))

T , . . . , Zγ(XcaG(kN ))
T
)T

,

whose dimension is tγ =
∑p

j=1

∑
k∈anG(j) t(k; γ). Let the vector BY ∈ Rtγ denote(

Yj11
T
t(k1;γ)

, . . . , YjN1
T
t(kN ;γ)

)T
. Define t(k0; γ) = 0 and the matrix AY ∈ Rtγ×N

depending on Y with the sth row and lth column element given by:

(AY)sl =


Ykl , kl ∈ {ki} ∪meG(ki, ji), jl = ji

0 , otherwise

, where
i−1∑
ℓ=0

t(kℓ; γ)+1 ≤ s ≤
i∑

ℓ=0

t(kℓ; γ).

In other words, if the sth row of BY corresponds to the part Yji1
T
t(ki;γ)

, then the

sth row of AY ∈ Rtγ×N satisfies

(AY)
T
s,·β =

N∑
l=1

(AY)slβl =
∑

ℓ∈meG(ki,ji)

βℓjiYℓ + βkijiYki ,

for any β = (βk1j1 , . . . , βkN jN )
T . Since Zγ is associated with µ∗ = E(X), let Ẑγ

denote Zγ with µ∗ substituted by its estimate µ̂. This allows us to express (4.5)

as the following equivalent problem:

β̂ = argmin
β

Ên

{
Ẑγ ⊙ (BY −AYβ)

}T
ΩÊn

{
Ẑγ ⊙ (BY −AYβ)

}
. (S3.6)

Therefore,

∂

∂β
Ên

{
Ẑγ ⊙ (BY −AYβ)

}T
ΩÊn

{
Ẑγ ⊙ (BY −AYβ)

}∣∣∣
β=β̂

= −2Ên(diag(Ẑγ)AY)
TΩÊn

{
diag(Ẑγ)(BY −AYβ̂)

}
= 0.
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By concatenating the estimation equations for µ∗ and β∗, we haveµ̂
β̂

 = argmin
µ,β

Ên

 µ−X

diag(Ẑγ)(BY −AYβ)


T

·

Iq 0

0 ΩÊn(diag(Ẑγ)AY)Ên(diag(Ẑγ)AY)
TΩ



·Ên

 µ−X

diag(Ẑγ)(BY −AYβ)



= argmin
µ,β

Ên

 µ−X

diag(Ẑγ)(BY −AYβ)


T

WnÊn

 µ−X

diag(Ẑγ)(BY −AYβ)

 ,

where Wn is a data-adaptive positive semi-definite weighting matrix. For ease of

notation, define θ̂ = (µ̂T , β̂T )T , θ∗ = (µ∗T ,β∗T )T , and

mi = m(O(i),θ) :=

 µ−X(i)

diag(Ẑγ)(i)(BY(i) −AY(i)β)

 , for i = 1, . . . , n.

Let O ⊆ Rp+q denote the sample space of O(i), and Θ ⊆ Rq+|E|+ the parameter

space of θ, then m(O(i),θ) is a mapping from O × Θ to Rq+tγ . According to

Theorem 3.2 of Hall (2005), we introduce the following regular conditions:

Assumption S3.1 (Regularity conditions on m(O(i),θ)). The function mi :

O × Θ → Rq+tγ satisfies that (i) it is continuous on Θ for each O(i) ∈ O; (ii)

E(mi) is continuous on Θ.

Assumption S3.2 (Regularity conditions on ∂m(O(i),θ)/∂θ
T ). (i) The deriva-

tive matrix ∂m(O(i),θ)/∂θ
T exists and is continuous on Θ for each O(i) ∈ O; (ii)

θ∗ is an interior point of Θ; (iii) E(∂m(O(i),θ)/∂θ
T )exists and is finite.
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Assumption S3.3 (Properties of Ω). The weighting matrix Ω may depend on

data, but converges in probability to a positive definite matrix of constants.

Under Assumption 4, when the positive semi-definite matrix Ω satisfies the

regularity condition S3.3, Wn convergence in probability to a positive definite

matrix WΩ as n → ∞,

Wn → WΩ =

Iq 0

0 ΩE(diag(Zγ)AY)E(diag(Zγ)AY)
TΩ

 .

Assumption S3.4 (Compactness of Θ). The parameter space Θ is a compact

set.

Assumption S3.5 (Domination of m(O(i);θ)). E{supθ∈Θ ∥m(O(i),θ)∥2} < ∞.

Assumption S3.6 (Properties of the variance of the sample moment). (i) The

moment E{m(O(i),θ
∗)m(O(i),θ

∗)T} exists and is finite; (ii) The limit

lim
n→+∞

var

(√
nÊn

 µ∗ −X

diag(Zγ)(BY −AYβ
∗)

)

exists and is finite.

Assumption S3.7 (Continuity ofE
{
∂m(O(i),θ)/∂θ

T
}
). The functionE

{
∂m(O(i),θ)/∂θ

T
}

is continuous on some neighborhood Nϵ of θ
∗.

Assumption S3.8 (Uniform Convergence ofGn(θ) = n−1
∑n

i=1 ∂m(O(i),θ)/∂θ
T ).

supθ∈Nϵ

∥∥Gn(θ)− E
{
∂m(O(i),θ)/∂θ

T
}∥∥

2
→P 0.



20

Suppose that Assumptions 1–4 and the regularity conditions S3.1–S3.7 hold.

According to Theorem 3.2 of Hall (2005), we have

√
n(θ̂ − θ∗)

d−→ N
(
0, (GTWΩG)−1GTWΩFWΩG(GTWΩG)−1

)
,

where

G = E

{
∂m(O(i),θ)

∂θ

∣∣∣∣∣
θ=θ∗

}
=

Iq 0

C D

 ,

F = lim
n→+∞

var

{√
nÊn

 µ∗ −X

diag(Zγ)(BY −AYβ
∗)

},
with

C = E

{
∂

∂µ
diag(Ẑγ)(BY −AYβ)

∣∣∣∣
µ=µ∗,β=β∗

}
,

D = E

{
∂

∂β
diag(Ẑγ)(BY −AYβ)

∣∣∣∣
µ=µ∗,β=β∗

}
= −E{diag(Zγ)AY}.

In particular, the matrix C depends on the form of Zγ(XcaG(k)). For example,

when the candidate IVs all take values in {0, 1},

Zγ(XcaG(k)) =
(
Πs∈αk(1)(Xs − µ̂s), . . . ,Πs∈αk(t(k;γ))(Xs − µ̂s)

)T
,

where αk(·) are the elements of {α : α ⊆ caG(k), |α| ≥ | caG(k)| − γ + 1} as

described in the main text. Therefore for each j = 1, . . . , q, the partial derivation

is

∂Zγ(XcaG(k))

∂µj

∣∣∣∣∣
µ=µ∗,β=β∗

=

[{
−1(j ∈ αk(ℓ))

∏
s∈αk(ℓ),s̸=j

(Xs − µ∗
s)

}t(k;γ)

ℓ=1

]T
.
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Since we are only interested in the asymptotic properties of β̂, Theorem 3 holds

by extracting the corresponding submatrix.

S3.4 Proof of Theorem 4

Proof. Under Assumptions 1–3, it has been shown that Ĝ+ is consistent according

to Theorem 2. Moreover, as long as Ĝ+ = G+, we have RE(n) = 0. Therefore,

lim
n→∞

E{RE(n)}

= lim
n→∞

E{RE(n) | Ĝ+ ̸= G+}P (Ĝ+ ̸= G+
)
+ lim

n→∞
E{RE(n) | Ĝ+ = G+}P (Ĝ+ = G+)

≤ |E| lim
n→∞

P (Ĝ+ ̸= G+) + 0

= 0.

Note that q∗ is the target FDR level in Algorithm 2. Applying Theorem 1.3 of

Benjamini and Yekutieli (2001), we have

lim
n→∞

E

{
FP(n)

TP(n) + RE(n) + FP(n)

∣∣∣∣∣ Ĝ+ = G+

}
≤ q∗.
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Since the Ĝ+ is consistent and E ̸= ∅, it follows that

lim
n→∞

FDR(Ê)

= lim
n→∞

E

{
RE(n)

TP(n) + RE(n) + FP(n)

}
+ lim

n→∞
E

{
FP(n)

TP(n) + RE(n) + FP(n)

}
= 0 + lim

n→∞
E

{
FP(n)

TP(n) + RE(n) + FP(n)

∣∣∣∣ Ĝ+ = G+

}
P (Ĝ+ = G+)

+ lim
n→∞

E

{
FP(n)

TP(n) + RE(n) + FP(n)

∣∣∣∣ Ĝ+ ̸= G+

}
P (Ĝ+ ̸= G+)

= lim
n→∞

E

{
FP(n)

TP(n) + RE(n) + FP(n)

∣∣∣∣ Ĝ+ = G+

}
≤ q∗,

which completes the proof.

S4. Simulation details and extended results

In this section, we present the implementation details and extended results of

the simulation studies. Computationally, we use the R package grivet for the

implementation of GrIVET, pcalg for RFCI, and lrpsadmm and pcalg for LRpS-

GES.

We consider two types of DAGs with unobserved confounders: random graphs

and hub graphs. Let A ∈ Rp×p denote the adjacency matrix for the DAG. For

random graphs, the upper off-diagonal entries of A are independently sampled

from Bernoulli(1/(2p)), while the other entries are set to 0. For hub graphs, the

entries A1j, j = 2, . . . , p, are set to 1, with the remaining set to 0. Further, if Akj ̸=

0, then β∗
kj is sampled from the uniform distribution on (−1.2,−0.8) ∪ (0.8, 1.2);
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otherwise, it is set to 0. We consider the SEM

Yj =

p∑
i=1

β∗
ijYi + gj(XinG(j)) + ϕT

j U+ ej, j = 1, . . . , p, (S4.7)

where e = (e1, . . . , ep)
T ∼ Np(0,Λ) and the unobserved confoundersU ∼ Nr(0, Ir).

Here Λ = diag(σ2
1, . . . , σ

2
p) with σi sampled uniformly from (0.3, 0.4). The coef-

ficients ϕj = (ϕ1j, . . . , ϕrj)
T are set as follows: ϕ11 and ϕkj, j = 2k − 1, 2k,

k = 1, . . . , r, are sampled uniformly from (−0.4,−0.3)∪ (0.3, 0.4), while the other

entries are set to 0. We set q = 2p + ⌊p/2⌋ and inG(j) = {j, p + j, 2p + ⌊j/2⌋}.

Hence, each Xℓ, ℓ = 2p, . . . , 2p+ ⌊(p−1)/2⌋, intervenes on two primary variables,

while any other Xℓ intervenes on a single Yj.

We consider two types of secondary variables X: (1) the continuous case where

Xi ∼ N(0, 1) independently, and (2) the discrete case where Xi ∼ Bernoulli(0.5)

independently. Depending on the types of X, we specify gj(XinG(j)) as follows:

for the continuous case,

gj(XinG(j)) = C

(
wj

∑
ℓ∈inG(j)

{X2
ℓ + 1(Xℓ > 0)}+ wj

2

∑
k,ℓ∈inG(j), k ̸=ℓ

XkXℓ

)
, (S4.8)

where C = 1 and wj are sampled uniformly from (−3.2,−2.8)∪ (2.8, 3.2); for the

discrete case,

gj(XinG(j)) = C

( ∑
k,ℓ∈inG(j), k ̸=ℓ

XkXℓ

)
. (S4.9)

To examine our method for DAGs of different sizes, we fix the sample size at

n = 1000 while varying the dimension as (p, q, r) = (10, 25, 5) and (20, 50, 10).

We set γ = 1 for PLACID. In Algorithm 2, we set the weighting matrix Ω = I
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Table S4.1: Means of the average first-stage F -statistic as an empirical measure
of surrogate IV strength for PLACID when C = 1 and γ = 1.

Setting Graph p F -statistic

Continuous Random 10 29.48
20 28.92

Hub 10 25.84
20 23.35

Discrete Random 10 56.74
20 58.26

Hub 10 49.47
20 45.19

and the FDR level q∗ = 0.05. For the continuous case, we use tensor products of

polynomial bases to approximate Zγ(XcaG(k)). All simulations are repeated 100

times.

To empirically measure the strength of surrogate IVs, we present the average

first-stage F -statistics in Table S4.1. All values are well above the commonly used

threshold of 10 (Staiger and Stock, 1997), suggesting that the surrogate IVs are

sufficiently strong across all simulation settings.

To complement the simulation results in Section 5, where we set γ = 1 to

construct surrogate IVs, we conduct additional simulations with γ = 2 = | ivG(j)|

for all j = 1, . . . , p. Tables S4.2 and S4.3 present the performance of PLACID

under this setting. The corresponding average first-stage F -statistics are reported

in Table S4.4. For continuous secondary variables, the results in Tables S4.2 and

S4.3 are comparable to those in Tables 1 and 3, which indicates that PLACID

appears insensitive to the choice of γ under certain conditions. This can be

attributed to the comparable strength of the surrogate IVs induced by γ = 1 and
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Table S4.2: Means and standard deviations (in parentheses) of different causal dis-
covery performance metrics for PLACID with continuous and discrete secondary
variables when C = 1 and γ = 2.

Setting Graph p FDP TPR SHD JI

Continuous Random 10 0.02(0.08) 0.95(0.14) 0.26(0.61) 0.93(0.16)
20 0.02(0.08) 0.92(0.17) 0.43(0.87) 0.91(0.18)

Hub 10 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00)
20 0.00(0.00) 1.00(0.01) 0.03(0.17) 1.00(0.01)

Discrete Random 10 0.01(0.04) 0.95(0.19) 0.10(0.41) 0.95(0.19)
20 0.01(0.03) 0.99(0.05) 0.18(0.54) 0.98(0.06)

Hub 10 0.00(0.00) 0.95(0.09) 0.41(0.79) 0.95(0.09)
20 0.00(0.00) 0.96(0.05) 0.76(1.04) 0.96(0.05)

Table S4.3: Means and standard deviations (in parentheses) of different estimation
losses for PLACID with continuous and discrete secondary variables when C = 1
and γ = 2.

Setting Graph p L∞ L1 L2

Continuous Random 10 0.19(0.36) 0.30(0.63) 0.22(0.43)
20 0.38(0.39) 0.78(0.90) 0.47(0.49)

Hub 10 0.07(0.02) 0.28(0.08) 0.11(0.03)
20 0.12(0.06) 0.82(0.26) 0.24(0.08)

Discrete Random 10 0.10(0.24) 0.16(0.39) 0.12(0.28)
20 0.17(0.37) 0.36(0.79) 0.22(0.49)

Hub 10 0.30(0.36) 0.78(0.78) 0.40(0.45)
20 0.44(0.41) 1.60(1.11) 0.64(0.53)

γ = 2, as evidenced by the similar average first-stage F -statistics for continuous

secondary variables in Tables S4.1 and S4.4. For discrete secondary variables,

PLACID with γ = 2 performs slightly better for parameter estimation, which

may be due to the stronger surrogate IVs induced by this larger value of γ.
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Table S4.4: Means of the average first-stage F -statistic as an empirical measure
of surrogate IV strength for PLACID when C = 1 and γ = 2.

Setting Graph p F -statistic

Continuous Random 10 34.36
20 27.83

Hub 10 21.47
20 20.75

Discrete Random 10 99.11
20 96.83

Hub 10 90.18
20 86.33

S5. Additional simulation studies

In this section, we provide additional simulation studies. Results with correlated

secondary variables are presented in Sections S5.1, and results with varying IV

strengths, sample sizes, values of γ, and numbers of valid IVs are given in Sections

S5.2, S5.3, S5.4, and S5.5, respectively. All simulations are repeated 100 times.

S5.1 Correlated secondary variables

In this subsection, we conduct additional simulations to examine how PLACID

performs when Assumption 1 is violated.

We consider the same settings as in Section S4 with n = 1000, (p, q, r) =

(10, 25, 5), C = 1, and γ = 1, but modify the data-generating mechanism for X to

induce dependence. For the continuous case, we let X follow a mean-zero multi-

variate Gaussian distribution whose (i, j)-th correlation is 0.1|i−j|. For the discrete

case, we first generate a latent Gaussian vector X̃ from the same distribution and
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Table S5.5: Means and standard deviations (in parentheses) of different causal
discovery performance metrics for four methods with correlated secondary vari-
ables.

Setting Graph Method FDP TPR SHD JI

Continuous Random PLACID 0.03(0.10) 0.87(0.24) 0.48(0.90) 0.86(0.25)
GrIVET 0.50(0.38) 0.50(0.38) 3.07(2.43) 0.31(0.31)
RFCI 0.00(0.05) 0.63(0.36) 1.04(1.09) 0.63(0.36)
LRpS-GES 0.64(0.17) 0.99(0.04) 3.87(0.79) 0.35(0.17)

Hub PLACID 0.00(0.00) 0.89(0.24) 0.98(2.20) 0.89(0.24)
GrIVET 0.38(0.37) 0.44(0.37) 7.28(4.81) 0.38(0.34)
RFCI 0.01(0.04) 0.57(0.24) 3.96(2.19) 0.56(0.24)
LRpS-GES 0.38(0.05) 0.85(0.11) 6.08(1.46) 0.56(0.09)

Discrete Random PLACID 0.02(0.08) 0.91(0.22) 0.28(0.57) 0.89(0.22)
GrIVET 0.19(0.31) 0.62(0.38) 1.35(1.28) 0.53(0.37)
RFCI 0.00(0.00) 0.80(0.30) 0.43(0.64) 0.80(0.30)
LRpS-GES 0.76(0.15) 0.97(0.13) 6.31(1.48) 0.24(0.15)

Hub PLACID 0.00(0.00) 0.95(0.09) 0.48(0.83) 0.95(0.09)
GrIVET 0.00(0.02) 0.50(0.15) 4.47(1.36) 0.50(0.15)
RFCI 0.00(0.00) 0.38(0.19) 5.59(1.71) 0.38(0.19)
LRpS-GES 0.47(0.05) 0.77(0.06) 8.25(1.23) 0.46(0.05)

then define Xi = 1(X̃i > 0) for i = 1, . . . , q.

The causal discovery and parameter estimation results are reported in Ta-

bles S5.5 and S5.6, respectively. We also report the empirical measures of surro-

gate IV strength in Table S5.7. Comparisons of Tables 1, 2, and S5.5 for causal

discovery, as well as Tables 3 and S5.6 for parameter estimation, show that the

accuracy of PLACID deteriorates when Assumption 1 is violated, as theoretically

expected. Such a decline is especially apparent for continuous secondary vari-

ables. Nevertheless, PLACID remains superior to the competing methods across

all scenarios, demonstrating its robustness.
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Table S5.6: Means and standard deviations (in parentheses) of different estimation
losses for two methods with correlated secondary variables.

Setting Graph Method L∞ L1 L2

Continuous Random PLACID 0.44(0.43) 0.77(0.99) 0.52(0.55)
GrIVET 0.91(0.36) 2.15(1.59) 1.22(0.60)

Hub PLACID 0.49(0.37) 2.14(2.24) 0.85(0.79)
GrIVET 1.02(0.27) 6.96(3.64) 2.31(0.92)

Discrete Random PLACID 0.25(0.36) 0.37(0.52) 0.28(0.39)
GrIVET 0.83(0.37) 1.59(1.11) 1.04(0.53)

Hub PLACID 0.41(0.36) 1.04(0.71) 0.53(0.42)
GrIVET 1.16(0.04) 8.96(0.37) 3.00(0.12)

Table S5.7: Means of the average first-stage F -statistic as an empirical measure
of surrogate IV strength for PLACID with correlated secondary variables.

Setting Graph F -statistic

Continuous Random 33.73
Hub 26.34

Discrete Random 57.21
Hub 49.61

S5.2 Varying IV strengths

In this subsection, we conduct additional simulations to examine the performance

of PLACID under varying surrogate IV strengths.

We consider the same settings as in Section S4 with n = 1000, (p, q, r) =

(10, 25, 5), and γ = 1. To vary the IV strength, we set the coefficient C to either

0.6 or 1.5 in the data-generating models (S4.8) and (S4.9). The empirical measures

of surrogate IV strength are summarized in Table S5.8. As expected, Table S5.8

shows that IV strength increases with larger values of C.

The causal discovery results for the continuous and discrete cases are pre-

sented in Tables S5.9 and S5.10, respectively, with parameter estimation results
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Table S5.8: Means of the average first-stage F -statistic as an empirical measure
of surrogate IV strength for PLACID with varying C when γ = 1.

Setting Graph C F -statistic

Continuous Random 0.6 16.01
1.5 47.58

Hub 0.6 18.75
1.5 39.12

Discrete Random 0.6 19.05
1.5 71.83

Hub 0.6 18.82
1.5 65.76

in Table S5.11. Overall, these results indicate that stronger surrogate IVs lead to

better performance of PLACID in both causal discovery and parameter estima-

tion. While performance degrades under weak IV settings as expected, PLACID

consistently outperforms the competing methods across all scenarios. In addition,

it effectively controls the FDP below the nominal level q∗ = 0.05, demonstrating

its robustness.

S5.3 Varying sample sizes

In this subsection, we conduct additional simulations to assess the performance

of PLACID under varying sample sizes.

We consider the same settings as in Section S4 with (p, q, r) = (10, 25, 5),

C = 1, and γ = 1. In addition to the moderate sample size n = 1000 studied in

Section 5 or Section S4, we examine two additional scenarios with n = 500 and

n = 2000.

The causal discovery results for the continuous and discrete cases are presented
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Table S5.9: Means and standard deviations (in parentheses) of different causal
discovery performance metrics for four methods with continuous secondary vari-
ables across varying surrogate IV strengths.

Graph C Method FDP TPR SHD JI

Random 0.6 PLACID 0.02(0.09) 0.86(0.24) 0.51(0.94) 0.85(0.25)
GrIVET 0.11(0.26) 0.15(0.32) 2.16(1.59) 0.12(0.26)
RFCI 0.02(0.12) 0.41(0.38) 1.20(1.06) 0.41(0.38)
LRpS-GES 0.68(0.17) 0.87(0.32) 4.41(1.06) 0.31(0.17)

1.5 PLACID 0.01(0.04) 0.95(0.17) 0.15(0.44) 0.94(0.17)
GrIVET 0.59(0.38) 0.42(0.37) 3.76(2.76) 0.25(0.27)
RFCI 0.01(0.07) 0.50(0.40) 0.94(0.94) 0.50(0.40)
LRpS-GES 0.68(0.17) 0.86(0.33) 4.10(0.97) 0.32(0.17)

Hub 0.6 PLACID 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00)
GrIVET 0.16(0.25) 0.35(0.40) 6.82(3.07) 0.30(0.34)
RFCI 0.01(0.04) 0.63(0.21) 3.34(1.90) 0.63(0.21)
LRpS-GES 0.42(0.04) 0.79(0.07) 7.09(1.09) 0.50(0.06)

1.5 PLACID 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00)
GrIVET 0.33(0.32) 0.51(0.36) 6.59(4.30) 0.43(0.33)
RFCI 0.01(0.04) 0.58(0.21) 3.80(1.86) 0.58(0.21)
LRpS-GES 0.40(0.05) 0.82(0.09) 6.54(1.31) 0.53(0.08)

in Tables S5.12 and S5.13, respectively, with parameter estimation results in Table

S5.14. We also report the empirical measures of surrogate IV strength in Table

S5.15. Comparisons between Tables 1–3 and S5.12–S5.14 show that the accuracy

of PLACID improves with increasing sample size across all settings. For causal

discovery, the FDP is well controlled at or below the nominal level q∗ = 0.05

across all sample sizes. For parameter estimation, the estimation error decreases

as the sample size increases, confirming the consistency of PLACID. Moreover,

PLACID outperforms the competing methods across all scenarios, including the

small-sample case with n = 500, demonstrating its robustness.
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Table S5.10: Means and standard deviations (in parentheses) of different causal
discovery performance metrics for four methods with discrete secondary variables
across varying surrogate IV strengths.

Graph C Method FDP TPR SHD JI

Random 0.6 PLACID 0.02(0.10) 0.83(0.28) 0.54(1.06) 0.82(0.28)
GrIVET 0.07(0.19) 0.59(0.39) 1.06(1.09) 0.55(0.37)
RFCI 0.00(0.00) 0.70(0.34) 0.60(0.83) 0.70(0.34)
LRpS-GES 0.79(0.14) 0.79(0.36) 7.91(1.71) 0.20(0.14)

1.5 PLACID 0.00(0.00) 0.97(0.10) 0.09(0.29) 0.97(0.10)
GrIVET 0.24(0.33) 0.60(0.37) 1.67(1.76) 0.50(0.35)
RFCI 0.00(0.00) 0.89(0.26) 0.25(0.69) 0.89(0.26)
LRpS-GES 0.67(0.15) 0.93(0.23) 4.29(1.33) 0.33(0.15)

Hub 0.6 PLACID 0.00(0.00) 0.79(0.20) 1.88(1.83) 0.79(0.20)
GrIVET 0.00(0.00) 0.50(0.17) 4.50(1.54) 0.50(0.17)
RFCI 0.00(0.00) 0.36(0.20) 5.75(1.80) 0.36(0.20)
LRpS-GES 0.50(0.08) 0.76(0.08) 9.21(2.02) 0.43(0.09)

1.5 PLACID 0.00(0.00) 1.00(0.02) 0.04(0.20) 1.00(0.02)
GrIVET 0.00(0.00) 0.49(0.17) 4.57(1.57) 0.49(0.17)
RFCI 0.00(0.00) 0.50(0.21) 4.51(1.89) 0.50(0.21)
LRpS-GES 0.40(0.05) 0.82(0.09) 6.56(1.28) 0.53(0.08)
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Table S5.11: Means and standard deviations (in parentheses) of different esti-
mation losses for two methods with continuous and discrete secondary variables
across varying surrogate IV strengths.

Setting Graph C Method L∞ L1 L2

Continuous Random 0.6 PLACID 0.28(0.35) 0.46(0.73) 0.32(0.44)
GrIVET 0.94(0.35) 2.20(1.51) 1.34(0.63)

1.5 PLACID 0.23(0.33) 0.36(0.57) 0.26(0.38)
GrIVET 0.23(0.33) 1.94(1.39) 1.09(0.56)

Hub 0.6 PLACID 0.18(0.06) 0.69(0.22) 0.28(0.09)
GrIVET 1.16(0.04) 9.03(0.37) 3.02(0.12)

1.5 PLACID 0.08(0.03) 0.32(0.08) 0.13(0.03)
GrIVET 0.99(0.28) 6.29(3.56) 2.15(0.92)

Discrete Random 0.6 PLACID 0.41(0.46) 0.70(1.10) 0.49(0.59)
GrIVET 0.81(0.37) 1.73(1.29) 1.08(0.60)

1.5 PLACID 0.11(0.22) 0.17(0.36) 0.13(0.26)
GrIVET 0.82(0.37) 1.90(1.61) 1.10(0.62)

Hub 0.6 PLACID 0.81(0.35) 2.38(1.63) 1.17(0.65)
GrIVET 1.17(0.03) 9.04(0.34) 3.03(0.11)

1.5 PLACID 0.16(0.14) 0.53(0.21) 0.23(0.14)
GrIVET 1.13(0.07) 6.79(1.35) 2.43(0.36)
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Table S5.12: Means and standard deviations (in parentheses) of different causal
discovery performance metrics for four methods with continuous secondary vari-
ables across varying sample sizes.

Setting n Method FDP TPR SHD JI

Random 500 PLACID 0.05(0.15) 0.79(0.31) 0.69(1.18) 0.77(0.32)
GrIVET 0.75(0.31) 0.33(0.37) 4.85(3.07) 0.17(0.23)
RFCI 0.01(0.10) 0.66(0.39) 0.76(0.93) 0.66(0.39)
LRpS-GES 0.66(0.16) 0.96(0.18) 3.94(0.79) 0.34(0.16)

2000 PLACID 0.01(0.05) 0.97(0.12) 0.15(0.44) 0.96(0.13)
GrIVET 0.37(0.39) 0.63(0.39) 2.02(1.99) 0.46(0.36)
RFCI 0.00(0.05) 0.71(0.36) 0.82(1.05) 0.71(0.36)
LRpS-GES 0.70(0.16) 0.98(0.08) 4.30(1.07) 0.30(0.15)

Hub 500 PLACID 0.00(0.00) 0.98(0.07) 0.18(0.67) 0.98(0.07)
GrIVET 0.55(0.33) 0.34(0.30) 10.19(5.29) 0.26(0.26)
RFCI 0.06(0.11) 0.52(0.22) 4.65(2.06) 0.50(0.22)
LRpS-GES 0.42(0.05) 0.77(0.11) 6.96(1.36) 0.50(0.09)

2000 PLACID 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00)
GrIVET 0.19(0.30) 0.57(0.39) 4.68(4.37) 0.55(0.39)
RFCI 0.00(0.01) 0.64(0.22) 3.27(1.98) 0.64(0.22)
LRpS-GES 0.38(0.05) 0.85(0.11) 6.02(1.45) 0.56(0.09)
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Table S5.13: Means and standard deviations (in parentheses) of different causal
discovery performance metrics for four methods with discrete secondary variables
across varying sample sizes.

Setting n Method FDP TPR SHD JI

Random 500 PLACID 0.02(0.07) 0.76(0.33) 0.68(1.02) 0.75(0.33)
GrIVET 0.16(0.29) 0.69(0.36) 1.15(1.12) 0.61(0.36)
RFCI 0.00(0.00) 0.69(0.36) 0.74(0.82) 0.69(0.36)
LRpS-GES 0.71(0.18) 0.96(0.15) 4.72(1.36) 0.28(0.18)

2000 PLACID 0.01(0.04) 0.94(0.24) 0.06(0.34) 0.93(0.24)
GrIVET 0.19(0.31) 0.65(0.33) 1.33(1.12) 0.55(0.34)
RFCI 0.00(0.03) 0.74(0.36) 0.65(0.88) 0.73(0.36)
LRpS-GES 0.78(0.14) 0.94(0.17) 7.51(1.44) 0.22(0.13)

Hub 500 PLACID 0.00(0.00) 0.75(0.21) 2.26(1.86) 0.75(0.21)
GrIVET 0.01(0.04) 0.49(0.17) 4.63(1.50) 0.49(0.17)
RFCI 0.00(0.00) 0.37(0.18) 5.66(1.63) 0.37(0.18)
LRpS-GES 0.39(0.09) 0.76(0.09) 6.66(1.87) 0.51(0.10)

2000 PLACID 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00)
GrIVET 0.00(0.00) 0.50(0.17) 4.51(1.56) 0.50(0.17)
RFCI 0.00(0.00) 0.47(0.18) 4.73(1.62) 0.47(0.18)
LRpS-GES 0.49(0.05) 0.79(0.07) 8.85(1.30) 0.45(0.05)
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Table S5.14: Means and standard deviations (in parentheses) of different esti-
mation losses for two methods with continuous and discrete secondary variables
across varying sample sizes.

Setting Graph n Method L∞ L1 L2

Continuous Random 500 PLACID 0.43(0.44) 0.86(1.25) 0.55(0.64)
GrIVET 0.95(0.29) 2.49(1.40) 1.33(0.53)

2000 PLACID 0.17(0.25) 0.27(0.41) 0.20(0.29)
GrIVET 0.70(0.44) 1.28(1.03) 0.84(0.57)

Hub 500 PLACID 0.30(0.28) 0.94(0.78) 0.42(0.33)
GrIVET 1.12(0.18) 9.19(3.70) 2.78(0.76)

2000 PLACID 0.08(0.02) 0.32(0.09) 0.13(0.03)
GrIVET 0.84(0.41) 5.10(3.70) 1.81(1.11)

Discrete Random 500 PLACID 0.49(0.46) 0.81(1.04) 0.58(0.60)
GrIVET 0.79(0.39) 1.62(1.21) 1.03(0.58)

2000 PLACID 0.04(0.14) 0.08(0.35) 0.05(0.37)
GrIVET 0.87(0.35) 1.83(1.18) 1.13(0.53)

Hub 500 PLACID 0.82(0.35) 2.67(1.62) 1.28(0.65)
GrIVET 1.16(0.04) 9.00(0.36) 3.01(0.11)

2000 PLACID 0.11(0.03) 0.43(0.12) 0.17(0.05)
GrIVET 1.16(0.04) 9.04(0.35) 3.03(0.12)

Table S5.15: Means of the average first-stage F -statistic as an empirical measure
of surrogate IV strength for PLACID across varying sample sizes with C = 1 and
γ = 1.

Setting Graph n F -statistic

Continuous Random 500 19.43
2000 62.91

Hub 500 13.15
2000 46.83

Discrete Random 500 30.14
2000 113.20

Hub 500 24.53
2000 99.17
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S5.4 Varying values of γ

In this subsection, we conduct additional simulations to assess the performance

of PLACID under different values of γ.

To further evaluate the scenarios in which γ > | ivG(j)| for some j, so that

Assumption 3 is violated, we consider a modified data-generating process that

differs from the one described in Section S4. Specifically, we maintain most of the

simulation setup in Section S4 while altering the settings of inG(j) and gj(XinG(j))

for j = 1, . . . , p. We set q = 3p and caG(j) = {j, j + p, j +2p} for all Yj. For each

Xℓ that is a candidate IV of Yj but not a valid IV of Yj, we let Xℓ have causal

effects on all descendants of Yj. That is, for every ℓ ∈ caG(j) \ ivG(j), we set

ℓ ∈ inG(k) if j ∈ anG(k). According to Definitions 1 and 2, this setup enables us

to control the number of valid IVs for Yj by adjusting whether its candidate IVs

have causal effects on its descendants.

Depending on the types of X, we specify gj(XinG(j)) as follows: for the contin-

uous case,

gj(XinG(j)) = wj

( ∑
ℓ∈inG(j)

{X2
ℓ + 1(Xℓ > 0)}+

∑
k,ℓ∈inG(j), k ̸=ℓ

XkXℓ

+
∑

i,k,ℓ∈inG(j),i̸=k,k ̸=ℓ,ℓ̸=i

XiXkXℓ

)
,

where wj are sampled uniformly from (−3.2,−2.8) ∪ (2.8, 3.2); for the discrete
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case,

gj(XinG(j)) =
∑

k,ℓ∈inG(j), k ̸=ℓ

XkXℓ +
∑

i,k,ℓ∈inG(j),i̸=k,k ̸=ℓ,ℓ̸=i

XiXkXℓ.

To examine the performance of PLACID with different values of γ, we set

ivG(j) = {j, j + p} for all Yj with descendants and vary γ among 1, 2, and 3.

These values correspond to the cases where γ is less than, equal to, and larger

than the number of valid IVs for certain primary variables. We set the sample

size n = 2000 and the dimensions (p, q, r) = (10, 30, 5).

The causal discovery and parameter estimation results are presented in Tables

S5.16 and S5.17, respectively. We also report the empirical measures of surrogate

IV strength in Table S5.18. Tables S5.16 and S5.17 show that PLACID performs

best when γ is set to 2. In contrast, its accuracy decreases with γ = 1, particularly

in settings with discrete secondary variables. This occurs because a smaller γ

leads to fewer surrogate IVs according to Definition 3, which may lack sufficient

strength. Table S5.18 confirms that the IV strength at γ = 1 is notably lower.

In the discrete case, the first-stage F -statistic is below 10, corresponding to the

rule-of-thumb threshold for weak IVs (Staiger and Stock, 1997). On the other

hand, setting γ = 3 violates Assumption 3 as it exceeds the number of valid IVs

for some primary variables. Consequently, the accuracy of PLACID decreases

with γ = 3, especially for parameter estimation.
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Table S5.16: Means and standard deviations (in parentheses) of different causal
discovery performance metrics for PLACID with continuous and discrete sec-
ondary variables across varying values of γ.

Setting Graph γ FDP TPR SHD JI

Continuous Random 1 0.03(0.10) 0.95(0.14) 0.34(1.01) 0.94(0.17)
2 0.01(0.04) 0.97(0.10) 0.11(0.37) 0.97(0.10)
3 0.05(0.15) 0.92(0.20) 0.55(1.45) 0.90(0.22)

Hub 1 0.00(0.00) 0.99(0.09) 0.09(0.81) 0.99(0.09)
2 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00)
3 0.00(0.00) 0.98(0.12) 0.22(1.06) 0.98(0.12)

Discrete Random 1 0.00(0.00) 0.80(0.34) 0.38(0.62) 0.80(0.34)
2 0.01(0.05) 0.96(0.14) 0.23(0.71) 0.95(0.15)
3 0.01(0.05) 0.91(0.22) 0.33(0.70) 0.90(0.22)

Hub 1 0.00(0.00) 0.86(0.19) 1.25(1.72) 0.86(0.19)
2 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00)
3 0.00(0.00) 0.97(0.14) 0.25(1.27) 0.97(0.14)

Table S5.17: Means and standard deviations (in parentheses) of different estima-
tion losses for PLACID with continuous and discrete secondary variables across
varying values of γ.

Setting Graph γ L∞ L1 L2

Continuous Random 1 0.25(0.36) 0.61(1.33) 0.34(0.58)
2 0.22(0.33) 0.45(0.85) 0.29(0.48)
3 0.36(0.84) 0.84(1.91) 0.47(1.00)

Hub 1 0.24(0.19) 1.03(1.03) 0.40(0.36)
2 0.17(0.07) 0.68(0.24) 0.27(0.10)
3 0.27(0.73) 1.17(3.28) 0.45(1.16)

Discrete Random 1 0.62(0.44) 1.16(1.16) 0.78(0.62)
2 0.16(0.30) 0.27(0.63) 0.19(0.38)
3 0.50(0.21) 1.06(0.74) 0.68(0.33)

Hub 1 0.87(0.30) 4.07(2.43) 1.61(0.80)
2 0.09(0.03) 0.36(0.12) 0.14(0.04)
3 0.48(0.03) 3.88(0.18) 1.30(0.06)



39

Table S5.18: Means of the average first-stage F -statistic as an empirical measure
of surrogate IV strength for PLACID across varying values of γ.

Setting Graph γ F -statistic

Continuous Random 1 65.06
2 273.73
3 169.27

Hub 1 29.95
2 106.23
3 64.43

Discrete Random 1 9.84
2 141.11
3 191.26

Hub 1 5.58
2 57.09
3 99.51

S5.5 Varying numbers of valid IVs

In this subsection, we conduct additional simulations to examine how PLACID

performs with varying numbers of valid IVs for the primary variables.

We consider the same data-generating process as in Section S5.4 with n =

2000, q = 3p, caG(j) = {j, j + p, j + 2p} for all j = 1, . . . , p, and (p, q, r) =

(10, 30, 5). We set the valid IV set ivG(j) to {j}, {j, j+p}, or {j, j+p, j+2p} for

all Yj with descendants, corresponding to 1, 2, or 3 valid IVs. Following the setup

in Section S5.4, for any Xℓ that is a candidate IV of Yj but not a valid IV of Yj,

we let Xℓ have causal effects on all descendants of Yj. To meet Assumption 3, we

set γ to 1, 2, or 3 accordingly, so that γ = min1≤j≤p | ivG(j)|. We then compare

PLACID with the competing methods across these settings.

The causal discovery results for the continuous and discrete cases are presented

in Tables S5.19 and S5.20, respectively, with parameter estimation results in Table
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S5.21. We also report the empirical measures of surrogate IV strength in Table

S5.22. Tables S5.19–S5.21 show that the performance of PLACID improves as

the number of valid IVs increases. On the other hand, its performance declines

notably in settings where only one valid IV is available and the secondary variables

are discrete, as shown in Tables S5.20 and S5.21. This is attributable to the much

weaker surrogate IVs in these settings, as reflected in Table S5.22. In particular,

for the hub graph with discrete secondary variables, the average first-stage F -

statistic falls below 10, meeting the conventional threshold for weak IVs (Staiger

and Stock, 1997). Nevertheless, PLACID remains robust, controlling the FDP

below the nominal level q∗ = 0.05 and outperforming the competing methods

across all scenarios.

S6. Additional analysis for the ADNI study

In this section, we provide additional analysis for the ADNI study. Specifically,

Figure S6.3 visualizes potential nonlinear relationships between primary and sec-

ondary variables, while Figure S6.4 examines the independence among secondary

variables.

To show the potential nonlinear relationships, we present the partial residual

plots for several primary and secondary variables in both AD-MCI and CN groups.

Partial residual plot is a frequently useful graphical diagnostic for nonlinearity

among variables (Cook, 1993). A greater deviation between the solid and dashed
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Table S5.19: Means and standard deviations (in parentheses) of different causal
discovery performance metrics for four methods with continuous secondary vari-
ables across varying numbers of valid IVs.

Graph # valid IVs Method FDP TPR SHD JI

Random 1 PLACID 0.03(0.10) 0.91(0.18) 0.38(0.81) 0.90(0.20)
GrIVET 0.34(0.42) 0.52(0.41) 2.05(1.84) 0.43(0.38)
RFCI 0.01(0.11) 0.32(0.37) 1.65(1.21) 0.32(0.37)
LRpS-GES 0.20(0.33) 1.00(0.00) 0.46(0.66) 0.80(0.33)

2 PLACID 0.01(0.04) 0.97(0.10) 0.11(0.37) 0.97(0.10)
GrIVET 0.25(0.37) 0.50(0.39) 1.86(1.65) 0.43(0.38)
RFCI 0.01(0.11) 0.46(0.43) 1.48(1.47) 0.46(0.43)
LRpS-GES 0.13(0.27) 1.00(0.00) 0.36(0.67) 0.87(0.27)

3 PLACID 0.01(0.06) 1.00(0.01) 0.08(0.27) 0.98(0.06)
GrIVET 0.26(0.36) 0.54(0.39) 1.86(1.95) 0.45(0.38)
RFCI 0.00(0.00) 0.69(0.37) 0.81(1.02) 0.69(0.37)
LRpS-GES 0.15(0.34) 0.99(0.04) 0.33(0.93) 0.85(0.34)

Hub 1 PLACID 0.00(0.00) 0.98(0.08) 0.22(0.72) 0.98(0.08)
GrIVET 0.51(0.40) 0.43(0.39) 9.97(6.56) 0.32(0.34)
RFCI 0.41(0.37) 0.42(0.35) 7.01(3.84) 0.37(0.32)
LRpS-GES 0.18(0.12) 0.85(0.13) 3.07(2.19) 0.73(0.18)

2 PLACID 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00)
GrIVET 0.32(0.39) 0.35(0.36) 8.38(5.36) 0.31(0.33)
RFCI 0.17(0.21) 0.69(0.32) 4.15(3.45) 0.62(0.31)
LRpS-GES 0.14(0.12) 0.80(0.13) 3.05(1.96) 0.72(0.17)

3 PLACID 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00)
GrIVET 0.23(0.35) 0.41(0.39) 6.71(4.67) 0.38(0.37)
RFCI 0.07(0.23) 0.87(0.32) 1.53(3.53) 0.86(0.32)
LRpS-GES 0.04(0.12) 0.81(0.31) 1.94(3.05) 0.80(0.32)

lines in Figures S6.3 suggests a nonlinear relationship. It can be observed that

some primary and secondary variables exhibit highly nonlinear relationships.

We further provide DC heatmaps for secondary variables in both AD-MCI

and CN groups as shown in Figure S6.4. Since low DC values in Figure S6.4

indicate weak dependence among secondary variables, we empirically conclude

that Assumption 1 approximately holds. Additionally, the heatmaps from two
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Table S5.20: Means and standard deviations (in parentheses) of different causal
discovery performance metrics for four methods with discrete secondary variables
across varying numbers of valid IVs.

Graph # valid IVs Method FDP TPR SHD JI

Random 1 PLACID 0.00(0.00) 0.74(0.39) 0.46(0.67) 0.74(0.39)
GrIVET 0.46(0.43) 0.33(0.39) 2.74(2.25) 0.29(0.37)
RFCI 0.00(0.00) 0.62(0.38) 1.08(1.25) 0.62(0.38)
LRpS-GES 0.39(0.30) 0.96(0.13) 1.60(1.39) 0.61(0.31)

2 PLACID 0.01(0.05) 0.96(0.14) 0.23(0.71) 0.95(0.15)
GrIVET 0.20(0.39) 0.26(0.40) 2.15(1.68) 0.26(0.40)
RFCI 0.00(0.00) 0.82(0.30) 0.52(0.94) 0.82(0.30)
LRpS-GES 0.38(0.32) 0.99(0.08) 1.30(1.21) 0.62(0.32)

3 PLACID 0.00(0.03) 1.00(0.00) 0.02(0.14) 1.00(0.03)
GrIVET 0.07(0.23) 0.43(0.36) 1.60(1.46) 0.42(0.36)
RFCI 0.00(0.00) 0.95(0.18) 0.14(0.38) 0.95(0.18)
LRpS-GES 0.37(0.26) 0.98(0.08) 1.46(1.27) 0.62(0.27)

Hub 1 PLACID 0.00(0.00) 0.81(0.29) 1.67(2.62) 0.81(0.29)
GrIVET 0.01(0.09) 0.26(0.42) 6.72(3.81) 0.26(0.42)
RFCI 0.00(0.00) 0.05(0.06) 8.57(0.57) 0.05(0.06)
LRpS-GES 0.19(0.26) 0.31(0.16) 6.99(1.88) 0.29(0.15)

2 PLACID 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00)
GrIVET 0.58(0.44) 0.12(0.18) 11.14(4.31) 0.11(0.16)
RFCI 0.00(0.00) 0.79(0.15) 1.85(1.36) 0.79(0.15)
LRpS-GES 0.15(0.19) 0.50(0.15) 5.33(2.03) 0.47(0.16)

3 PLACID 0.00(0.00) 1.00(0.00) 0.00(0.00) 1.00(0.00)
GrIVET 0.23(0.34) 0.25(0.22) 7.61(2.50) 0.23(0.21)
RFCI 0.00(0.00) 0.81(0.38) 1.72(3.46) 0.81(0.38)
LRpS-GES 0.05(0.14) 0.76(0.33) 2.35(3.31) 0.76(0.34)

groups show similar patterns, suggesting similar SNP dependencies across the

dataset.
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Table S5.21: Means and standard deviations (in parentheses) of different esti-
mation losses for two methods with continuous and discrete secondary variables
across varying numbers of valid IVs.

Setting Graph # valid IVs Method L∞ L1 L2

Continuous Random 1 PLACID 0.46(0.42) 1.06(1.39) 0.61(0.65)
GrIVET 0.87(0.49) 1.89(1.42) 1.15(0.69)

2 PLACID 0.22(0.33) 0.45(0.85) 0.29(0.48)
GrIVET 0.83(0.43) 1.62(1.33) 1.05(0.63)

3 PLACID 0.06(0.10) 0.11(0.22) 0.07(0.13)
GrIVET 0.73(0.46) 1.44(1.35) 0.92(0.65)

Hub 1 PLACID 0.42(0.22) 1.62(0.89) 0.66(0.34)
GrIVET 1.21(0.28) 11.13(5.60) 3.13(1.04)

2 PLACID 0.17(0.07) 0.68(0.24) 0.27(0.10)
GrIVET 1.08(0.28) 8.52(4.35) 2.65(0.97)

3 PLACID 0.08(0.03) 0.30(0.09) 0.13(0.04)
GrIVET 1.03(0.29) 6.77(4.00) 2.29(1.03)

Discrete Random 1 PLACID 0.83(0.39) 1.68(1.22) 1.10(0.61)
GrIVET 1.81(1.66) 3.70(3.30) 2.25(1.81)

2 PLACID 0.16(0.30) 0.27(0.63) 0.19(0.38)
GrIVET 0.98(0.47) 2.28(1.67) 1.38(0.73)

3 PLACID 0.02(0.01) 0.03(0.02) 0.02(0.01)
GrIVET 0.89(0.39) 1.96(1.81) 1.20(0.67)

Hub 1 PLACID 0.61(0.40) 3.04(2.62) 1.18(0.92)
GrIVET 1.88(1.13) 13.67(8.42) 4.64(2.81)

2 PLACID 0.09(0.03) 0.36(0.12) 0.14(0.04)
GrIVET 1.17(0.10) 10.82(2.50) 3.19(0.37)

3 PLACID 0.02(0.01) 0.09(0.02) 0.04(0.01)
GrIVET 1.15(0.43) 7.93(2.34) 2.71(0.67)
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Table S5.22: Means of the average first-stage F -statistic as an empirical measure
of surrogate IV strength for PLACID across varying numbers of valid IVs.

Setting Graph # valid IVs F -statistic

Continuous Random 1 61.30
2 273.73
3 282.70

Hub 1 24.02
2 106.23
3 93.89

Discrete Random 1 12.03
2 141.11
3 348.12

Hub 1 6.64
2 57.09
3 193.45
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Figure S6.3: Partial residual plots for AD-MCI and CN groups.
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Figure S6.4: Heatmaps of DC for (a) AD-MCI and (b) CN groups.
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