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Supplementary Material

This supplement contains some lemmas that we will need to use in our proofs, as well as the proofs of the asymptotic

properties introduced in Section 3.

S1 Technical Lemma

Lemma 1 (Adapted from Vershynin (2018)). Let W1, . . . ,Wp be mean-zero, sub-Gaussian

random variables. There exist positive constants c1, c2 > 0, independent of the indices a and

b, such that for any 1 ≤ a, b ≤ p and all t > 0,

P
{
|WaWb| > t

}
≤ c1e

−c2t.

†Canhuang Xu and Lei Shu are co-first authors
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Furthermore, if these random variables are independent, there exist positive constants c1, c2 > 0

such that

P
{∣∣1

p

p∑
i=1

Wi

∣∣ > t
}
≤ c1e

−c2pt2 .

The first inequality follows from the fact that each product WaWb is sub-exponential (Lemma

2.7.7 in Vershynin (2018)), while the second is a direct application of the concentration bound

for sub-Gaussian variables (Theorem 2.6.3 in Vershynin (2018)).

Alternatively, if W1, . . . ,Wp are independent, mean-zero, sub-exponential random vari-

ables, then, adapted from Corollary 2.8.3 in Vershynin (2018), there exist positive constants

c1, c2 > 0 such that for all t > 0,

P
{∣∣1

p

p∑
i=1

Wi

∣∣ > t
}
≤ c1e

−c2p·min{t2,t}.

S2 Proof of Proposition 1

Denote µa = EXia, X̄a =
∑n

i=1 Xia, Ẋia = Xia−X̄a, X̄k,h = 1
k

∑k
i=1 XiaXib, Ȳk,h = 1

n−k

∑n
i=k+1 XiaXib,

˙̄Xk,h = 1
k

∑k
i=1 ẊiaẊib, and ˙̄Yk,h = 1

n−k

∑n
i=k+1 ẊiaẊib. Note that Ẋia = Xia − µa + µa − X̄a.

To streamline notation in subsequent proofs, we use Xia to denote Xia − µa and X̄a to denote

X̄a − µa. Thus,

ẊiaẊib = XiaXib −XiaX̄b − X̄aXib + X̄aX̄b. (S2.1)

We decompose vk,h as vk,h = vk1,h + vk2,h − vk3,h, where

vk1,h =
[ ˙̄Xk,h − ˙̄Yk,h

]2
, vk2,h =

[ 1

k − 1
˙̄X2
k,h +

1

n− k − 1
˙̄Y 2
k,h

]
,

vk3,h =
[ 1

(k)2

k∑
i=1

(ẊiaẊib)
2 +

1

(n− k)2

n∑
i=k+1

(ẊiaẊib)
2
]
.
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Then, dh can be decomposed as follows:

dh =
1

n− 3

n−2∑
k=2

k(n− k)

n
vk,h

=
1

n− 3

n−2∑
k=2

k(n− k)

n
vk1,h +

1

n− 3

n−2∑
k=2

k(n− k)

n
vk2,h −

1

n− 3

n−2∑
k=2

k(n− k)

n
vk3,h

= d1,h + d2,h − d3,h.

For Proposition 1(a): Considering the positions (a, b) satisfying Σ1,ab = Σ2,ab = Σab.

First, it is evident that vk1,h =
[ ˙̄Xk,h− ˙̄Yk,h

]2
=

[
( ˙̄Xk,h−Σab)−( ˙̄Yk,h−Σab)

]2. Then we calculate

[ 1

k − 1
( ˙̄Xk,h − Σab)

2 +
1

n− k − 1
( ˙̄Yk,h − Σab)

2
]

−
[ 1

(k)2

k∑
i=1

(ẊiaẊib − Σab)
2 +

1

(n− k)2

n∑
i=k+1

(ẊiaẊib − Σab)
2
]

=
[ 1

k − 1
˙̄X2
k,h +

1

n− k − 1
˙̄Y 2
k,h −

2

k − 1
Σab

˙̄Xk,h −
2

n− k − 1
Σab

˙̄Yk,h + (
1

k − 1
+

1

n− k − 1
)Σ2

ab

]
−

[ 1

(k)2

k∑
i=1

(ẊiaẊib)
2 +

1

(n− k)2

n∑
i=k+1

(ẊiaẊib)
2 − 2

(k)2
Σab

k∑
i=1

ẊiaẊib

− 2

(n− k)2
Σab

n∑
i=k+1

ẊiaẊib + (
1

k − 1
+

1

n− k − 1
)Σ2

ab

]
.

Recall that ˙̄Xk,h = 1
k

∑k
i=1 ẊiaẊib, and ˙̄Yk,h = 1

n−k

∑n
i=k+1 ẊiaẊib, thus we have

[
1

k−1
( ˙̄Xk,h −

Σab)
2 + 1

n−k−1
( ˙̄Yk,h − Σab)

2
]
−

[
1

(k)2

∑k
i=1(ẊiaẊib − Σab)

2 + 1
(n−k)2

∑n
i=k+1(ẊiaẊib − Σab)

2
]
=

vk2,h − vk3,h. Summarizing we have

vk,h =
[
( ˙̄Xk,h − Σ1,ab)− ( ˙̄Yk,h − Σ2,ab)

]2
+
[ 1

k − 1
( ˙̄Xk,h − Σ1,ab)

2 +
1

n− k − 1
( ˙̄Yk,h − Σ2,ab)

2
]

−
[ 1

(k)2

k∑
i=1

(ẊiaẊib − Σ1,ab)
2 +

1

(n− k)2

n∑
i=k+1

(ẊiaẊib − Σ2,ab)
2
]
.

Hence we can assume that Σ1,ab = Σ2,ab = 0 in this proof, that is, XiaXib is a zero-mean

sub-exponential random variable for any 1 ≤ a, b ≤ p.
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Observing the inclusion {dh > τ} ⊂ {d1,h > 1
2
τ} ∪ {d2,h > 1

2
τ}, it’s sufficient to calculate

P
{
d1,h > 1

2
τ
}
and P

{
d2,h > 1

2
τ
}
. Hereafter in the proof, c and ci(i = 1, 2, . . . ) indicate some

positive constants that may change from line to line. The first term can be handled as follows:

P
{
d1,h >

1

2
τ
}
= P

{ 1

n− 3

n−2∑
k=2

k(n− k)

n

[ ˙̄Xk,h − ˙̄Yk,h

]2
>

1

2
τ
}

≤
n−2∑
k=2

P
{k(n− k)

n

[ ˙̄Xk,h − ˙̄Yk,h

]2
>

1

2
τ
}

≤
n−2∑
k=2

[
P
{∣∣ ˙̄Xk,h

∣∣ > 1

2

√
nτ

2k(n− k)

}
+ P

{∣∣ ˙̄Yk,h

∣∣ > 1

2

√
nτ

2k(n− k)

}]
.

Consider the components in (S2.1). We use Lemma 1 to calculate the following probabilities

P
{∣∣1

k

k∑
i=1

XiaXib

∣∣ > 1

8

√
nτ

2k(n− k)

}
≤ c1e

−c2kmin{ nτ
128k(n−k)

, 1
8

√
nτ

2k(n−k)
}
, (S2.2)

Similarly, it follows from Lemma 1

P
{∣∣1

k

k∑
i=1

XiaX̄b

∣∣ > 1

8

√
nτ

2k(n− k)

}
≤P

{∣∣1
k

k∑
i=1

Xia

∣∣ > (1
8

√
nτ

2k(n− k)

) 1
2

}
+ P

{∣∣ 1
n

n∑
i=1

Xib

∣∣ > (1
8

√
nτ

2k(n− k)

) 1
2

}
≤c1e

−c2k
1
8

√
nτ

2k(n−k) + c3e
−c4n

1
8

√
nτ

2k(n−k) .

(S2.3)

Using similar arguments, we obtain that

P
{∣∣1

k

k∑
i=1

X̄aXib

∣∣ > 1

8

√
nτ

2k(n− k)

}
≤ c1e

−c2k
1
8

√
nτ

2k(n−k) + c3e
−c4n

1
8

√
nτ

2k(n−k) ,

P
{∣∣1

k

k∑
i=1

X̄aX̄b

∣∣ > 1

8

√
nτ

2k(n− k)

}
≤ c1e

−c2n
1
8

√
nτ

2k(n−k) .

(S2.4)

Combining (S2.2)-(S2.4), we obtain the upper bound

P
{∣∣ ˙̄Xk,h

∣∣ > 1

2

√
nτ

2k(n− k)

}
≤ c1e

−c2kmin{ nτ
16k(n−k)

,
√

nτ
2k(n−k)

}
+ c3e

−c4k
√

nτ
2k(n−k) + c5e

−c6n
√

nτ
2k(n−k) ,
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and similarly for ˙̄Yk,h

P
{∣∣ ˙̄Yk,h

∣∣ > 1

2

√
nτ

2k(n− k)

}
≤ c1e

−c2(n−k)min{ nτ
16k(n−k)

,
√

nτ
2k(n−k)

}
+c3e

−c4(n−k)
√

nτ
2k(n−k)+c5e

−c6n
√

nτ
2k(n−k) .

Therefore, we have P{d1,h > 1
2
τ} ≤ c1n[e

−c2
√
τ + e−c3

√
nτ ].

Similarly, the second term can be estimated as follows:

P
{
d2,h >

1

2
τ
}
= P

{ 1

n− 3

n−2∑
k=2

k(n− k)

n

[ 1

k − 1
˙̄X2
k,h +

1

n− k − 1
˙̄Y 2
k,h

]
>

1

2
τ
}

≤
n−2∑
k=2

P
{k(n− k)

n

[ 1

k − 1
˙̄X2
k,h +

1

n− k − 1
˙̄Y 2
k,h

]
>

1

2
τ
}

≤
n−2∑
k=2

[
P
{∣∣ ˙̄Xk,h

∣∣ > √
n(k − 1)τ

4k(n− k)

}
+ P

{∣∣ ˙̄Yk,h

∣∣ > √
n(n− k − 1)τ

4k(n− k)

}]
≤ c1n

[
e−c2

√
τ + e−c3n

√
τ
]
.

Summarizing we have p2 · P{dh > τ} ≤ c1p
2n[e−c2

√
τ + e−c3

√
nτ + e−c4n

√
τ ]. In particular, if

p2n = o(ec
√
τ ) holds we have p2 · P{dh > τ} → 0.

For Proposition 1(b): Considering the positions (a, b) satisfying
∣∣Σ1,ab −Σ2,ab

∣∣ ≥ c
√

τ
n

for some constant c. Observing the inclusion {dh ≤ τ} ⊂ {d1,h ≤ 3τ} ∪ {d3,h ≥ 2τ}, one

can see that it is sufficient to calculate P
{
d1,h ≤ 3τ

}
and P

{
d3,h ≥ 2τ

}
. The second term is

estimated as follows:

P
{
d3,h > 2τ

}
= P

{ 1

n− 3

n−2∑
k=2

k(n− k)

n

[ 1

(k)2

k∑
i=1

(
ẊiaẊib

)2
+

1

(n− k)2

n∑
i=k+1

(
ẊiaẊib

)2] ≥ 2τ
}

≤
n−2∑
k=2

P
{k(n− k)

n

[ 1

(k)2

k∑
i=1

(
ẊiaẊib

)2
+

1

(n− k)2

n∑
i=k+1

(
ẊiaẊib

)2] ≥ 2τ
}

≤
n−2∑
k=2

[
P
{1

k

k∑
i=1

(
ẊiaẊib

)2
>

n(k − 1)τ

k(n− k)

}
+ P

{ 1

n− k

n∑
i=k+1

(
ẊiaẊib

)2
>

n(n− k − 1)τ

k(n− k)

}]

≤
n−2∑
k=2

[
kP

{∣∣ẊiaẊib

∣∣ > √
n(k − 1)τ

k(n− k)

}
+ (n− k)P

{∣∣ẊiaẊib

∣∣ > √
n(n− k − 1)τ

k(n− k)

}]
.
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Consider the components in (S2.1). We use Lemma 1 to calculate the following probability

P
{∣∣XiaXib

∣∣ > 1

4

√
n(k − 1)τ

k(n− k)

}
≤ c1e

−c2
1
4

√
n(k−1)τ
k(n−k) . (S2.5)

Similarly, it follows from Assumption 1(a) and Lemma 1

P
{∣∣XiaX̄b

∣∣ > 1

4

√
n(k − 1)τ

k(n− k)

}
≤P

{∣∣Xia

∣∣ > (1
4

√
n(k − 1)τ

k(n− k)

) 1
2

}
+ P

{∣∣X̄b

∣∣ > (1
4

√
n(k − 1)τ

k(n− k)

) 1
2

}
≤c1e

−c2
1
4

√
n(k−1)τ
k(n−k) + c3e

−c4n
1
4

√
n(k−1)τ
k(n−k) .

(S2.6)

And using similar arguments, we obtain for

P
{∣∣XibX̄a

∣∣ > 1

4

√
n(k − 1)τ

k(n− k)

}
≤ c1e

−c2
1
4

√
n(k−1)τ
k(n−k) + c3e

−c4n
1
4

√
n(k−1)τ
k(n−k) ,

P
{∣∣X̄aX̄b

∣∣ > 1

4

√
n(k − 1)τ

k(n− k)

}
≤ c1e

−c2n
1
4

√
n(k−1)τ
k(n−k) .

(S2.7)

Combining (S2.5)-(S2.7), we obtain the upper bound

P
{∣∣ẊiaẊib

∣∣ > √
n(k − 1)τ

k(n− k)

}
≤ c1e

−c2
1
4

√
n(k−1)τ
k(n−k) + c3e

−c4n
1
4

√
n(k−1)τ
k(n−k) ,

P
{∣∣ẊiaẊib

∣∣ > √
n(n− k − 1)τ

k(n− k)

}
≤ c1e

−c2
1
4

√
n(n−k−1)τ

k(n−k) + c3e
−c4n

1
4

√
n(n−k−1)τ

k(n−k) .

Therefore, we have

P
{
d3,h > 2τ

}
≤ c1n

2
[
e−c2

√
τ + e−c3n

√
τ
]
.

Then we estimate the term P
{
d1,h ≤ 3τ

}
. A straightforward calculation gives

E
(
X̄k,h − Ȳk,h

)
=


n−k0
n−k

(Σ1,ab − Σ2,ab), k ≤ k0,

k0
k
(Σ1,ab − Σ2,ab), k > k0.

Let Ak,h = ˙̄Xk,h − ˙̄Yk,h − E
(
X̄k,h − Ȳk,h

)
, Bk,h = E

(
X̄k,h − Ȳk,h

)
. One can observe that

|Bk,h| ≥ min
{n− k0

n
,
k0
n

}
·
∣∣Σ1,h − Σ2,ab

∣∣ = c0
∣∣Σ1,ab − Σ2,ab

∣∣
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where c0 = min{k0
n
, n−k0

n
} and

1

n− 3

n−2∑
k=2

k(n− k)

n

(
Bk,h

)2 ≥ c20 · n(Σ1,ab − Σ2,ab)
2 · 1

n− 3

n−2∑
k=2

k(n− k)

n2
≥ c20 ·

n(Σ1,ab − Σ2,ab)
2

6
.

Consequently, by Assumption 1(b) (with a sufficiently large constant c) we obtain the estimate

3τ ≤ 1

2(n− 3)

n−2∑
k=2

k(n− k)

n

(
Bk,h

)2
.

Then we can obtain that

P{d1,h ≤ 3τ} = P
{ 1

n− 3

n−2∑
k=2

k(n− k)

n

[
Ak,h +Bk,h

]2 ≤ 3τ
}

≤ P
{ 2

n− 3

n−2∑
k=2

k(n− k)

n
Ak,hBk,h ≤ 3τ − 1

n− 3

n−2∑
k=2

k(n− k)

n

(
Bk,h

)2}
≤ P

{ 2

n− 3

∣∣ n−2∑
k=2

k(n− k)

n
Ak,hBk,h

∣∣ ≥ 1

2(n− 3)

∣∣ n−2∑
k=2

k(n− k)

n
(Bk,h)

2
∣∣}

≤ n · P
{∣∣k(n− k)

n
Ak,h

∣∣ ≥ c

|Bk,h|
· n(Σ1,ab − Σ2,ab)

2
}
= n · P

{
|Ak,h| ≥ cϕ

}
,

where ϕ = 1
|Bk,h|

n2

k(n−k)
(Σ1,ab −Σ2,ab)

2. Since |Bk,h| ≤ |Σ1,ab −Σ2,ab|, under Assumption 1(b) we

have

ϕ ≥ n2

k(n− k)

∣∣Σ1,ab − Σ2,ab

∣∣ ≥ C
n

k(n− k)

√
nτ.

Observing the decomposition (S2.1), the term Ak,h can be written as

Ak,h =
(
X̄k,h − EX̄k,h

)
−

(
Ȳk,h − EȲk,h

)
− 1

k

k∑
i=1

XiaX̄b −
1

k

k∑
i=1

XibX̄a

+
1

n− k

n−k∑
i=1

XiaX̄b +
1

n− k

n−k∑
i=1

XibX̄a.

Considering the components of this decomposition, we use Lemma 1 to calculate the following

probabilities

P
{∣∣X̄k,h − EX̄k,h

∣∣ > c

6
ϕ
}
≤ c1e

−c2kmin{ϕ2,ϕ}, P
{∣∣Ȳk,h − EȲk,h

∣∣ > c

6
ϕ
}
≤ c1e

−c2(n−k)min{ϕ2,ϕ}.

(S2.8)
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Similarly, we can obtain that

P
{∣∣1

k

k∑
i=1

XiaX̄b

∣∣ > c

6
ϕ
}
≤ c1e

−c2kϕ + c3e
−c4nϕ, P

{∣∣1
k

k∑
i=1

XibX̄a

∣∣ > c

6
ϕ
}
≤ c1e

−c2kϕ + c3e
−c4nϕ,

P
{∣∣ 1

n− k

n−k∑
i=1

XiaX̄b

∣∣ > c

6
ϕ
}
≤ c1e

−c2(n−k)ϕ + c3e
−c4nϕ,

P
{∣∣ 1

n− k

n−k∑
i=1

XibX̄a

∣∣ > c

6
ϕ
}
≤ c1e

−c2(n−k)ϕ + c3e
−c4nϕ.

(S2.9)

Combining (S2.8) and (S2.9), we can obtain that

P{d1,h ≤ 3τ} ≤ n · P
{
|Ak,h| ≥ cϕ

}
≤ c1n

[
e−c2kmin{ϕ2,ϕ} + e−c3(n−k)min{ϕ2,ϕ} + e−c4kϕ + e−c5(n−k)ϕ + e−c6nϕ

]
≤ c1n

[
e−c2 min{τ,

√
nτ} + e−c3

√
nτ
]
.

Summarizing we have p2 · P
{
dh ≤ τ

}
≤ c1p

2n
[
e−c2 min{τ,

√
nτ} + e−c3

√
nτ + ne−c4

√
τ + ne−c5n

√
τ
]
.

In particular, if p2n2 = o(ec
√
τ ) holds we have p2 · P

{
dh ≤ τ

}
→ 0.

S3 Proof of Theorem 1

Recalling the definition of the statistic TW (k) given in (1) and the change point estimator k̂0

defined in (3), it follows that

P
{∣∣ k̂0

k0
− 1

∣∣ ≥ ϵ
}
≤ P

{
k̂0 ≥ (1 + ϵ)k0

}
+ P

{
k̂0 ≤ (1− ϵ)k0

}
.

To establish that this probability converges to zero asymptotically, we bound the two terms

on the right-hand side. For brevity, we focus on the first term, as the second can be analyzed
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analogously. Specifically, it suffices to show that

P
{ ⋃

k≥(1+ϵ)k0

(
TW (k) ≥ TW (k0)

)}
≤

∑
k≥(1+ϵ)k0

P
{
TW (k) ≥ TW (k0)

}
.

Denote σ̃(i) = σ̇(i) − Eσ(i) = (σ̃ij)j=1,...,
p(p+1)

2

and σ = vech(Σ1 −Σ2) =
(
σh

)
1≤h≤ p(p+1)

2

, where

σ(i) = vech
(
(Xi − µ)(Xi − µ)⊤

)
. We will make use of the decomposition

TW (k) =
1

(k)2(n− k)2

k∑ k∑
(i ̸=t)=1

n∑ n∑
(j ̸=l)=k+1

[(
σ̃(i) − σ̃(j)

)
+

(
Eσ(i) − Eσ(j)

)]T
W

[(
σ̃(t) − σ̃(l)

)
+

(
Eσ(t) − Eσ(l)

)]

= A(k) +B(k) + C(k) +D(k),

where W = Γ+ δδ⊤, Γ =
(
γ(a,b)

)
∈ R

p(p+1)
2

× p(p+1)
2 , δ =

(
δ(a,b)

)
∈ R

p(p+1)
2 and

A(k) =
1

(k)2(n− k)2

k∑ k∑
(i ̸=t)=1

n∑ n∑
(j ̸=l)=k+1

(
σ̃(i) − σ̃(j)

)⊤
W

(
σ̃(t) − σ̃(l)

)
,

B(k) =
1

(k)2(n− k)2

k∑ k∑
(i ̸=t)=1

n∑ n∑
(j ̸=l)=k+1

(
Eσ(t) − Eσ(l)

)⊤
W

(
σ̃(i) − σ̃(j)

)
,

C(k) =
1

(k)2(n− k)2

k∑ k∑
(i ̸=t)=1

n∑ n∑
(j ̸=l)=k+1

(
Eσ(i) − Eσ(j)

)⊤
W

(
σ̃(t) − σ̃(l)

)
,

D(k) =
1

(k)2(n− k)2

k∑ k∑
(i ̸=t)=1

n∑ n∑
(j ̸=l)=k+1

(
Eσ(i) − Eσ(j)

)⊤
W

(
Eσ(t) − Eσ(l)

)
.

Starting to study the constant terms D(k) and D(k0). Notice that

Eσ(i) =


vech(Σ1), i ≤ k0;

vech(Σ2), i > k0.
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We calculate that

D = D(k0)−D(k) =
1

(k0)2(n− k0)2

k0∑ k0∑
(i ̸=t)=1

n∑ n∑
(j ̸=l)=k0+1

(
Eσ(i) − Eσ(j)

)⊤
W

(
Eσ(t) − Eσ(l)

)
− 1

(k)2(n− k)2

k∑ k∑
(i ̸=t)=1

n∑ n∑
(j ̸=l)=k+1

(
Eσ(i) − Eσ(j)

)⊤
W

(
Eσ(t) − Eσ(l)

)
=σ⊤Wσ − 1

(k)2(n− k)2

k0∑ k0∑
(i ̸=t)=1

n∑ n∑
(j ̸=l)=k+1

σ⊤Wσ

=
(
1− (k0)2

(k)2

)
σ⊤Wσ.

Observing the inclusion

{
TW (k) ≥ TW (k0)

}
⊂

{
A(k) + B(k) + C(k)−

(
A(k0) + B(k0) + C(k0)

)
≥ D

}
,

we now investigate the other terms A(k)−A(k0), B(k)−B(k0), C(k)−C(k0). By calculating

this, we can obtain the decomposition

B(k)− B(k0) = B1 +B2 +B3

where

B1 =
( k0 − 1

k(k − 1)
− 1

k0

) k0∑
i=1

σ̃⊤
(i)Wσ, B2 = −

( k0
k(n− k)

− 1

n− k0

) n∑
i=k0+1

σ̃⊤
(i)Wσ,

B3 =
( k0
k(k − 1)

+
k0

k(n− k)

) k∑
i=k0+1

σ̃⊤
(i)Wσ.

The term B1 can be handled as follows

P
{
|B1| ≥ cD

}
= P

{∣∣ k0∑
i=1

σ̃⊤
(i)Wσ

∣∣ ≥ ck0σ
⊤Wσ

}
≤ P

{∥∥W 1
2

k0∑
i=1

σ̃(i)

∥∥
2

∥∥W 1
2σ

∥∥
2
≥ ck0

∥∥W 1
2σ

∥∥2

2

}
≤ P

{∑
j∈J1

γj
( k0∑

i=1

σ̃ij

)2 ≥ ck2
0

∑
j∈J1

γjσ
2
j

}
+ P

{∣∣∑
j∈J2

k0∑
i=1

δjσ̃ij

∣∣ ≥ ck0
∣∣∑
j∈J2

δjσj

∣∣},
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where J1 and J2 represent the sets of subscripts for which γh and δh are non-zero, respectively.

Note that for each j there exist a position (a, b) such that σ̃ij can be written as

σ̃ij =
(
XiaXib − EXiaXib

)
−XiaX̄b −XibX̄a + X̄aX̄b.

Consider this decomposition. We can use Lemma 1 to handle the first term as follows:

P
{∑

j∈J1

γj
( k0∑

i=1

σ̃ij

)2 ≥ ck2
0

∑
j∈J1

γjσ
2
j

}
≤
∑
j∈J1

P
{∣∣ 1

k0

k0∑
i=1

σ̃ij

∣∣ ≥ c|σj|
}

≤P
{∣∣ 1

k0

k0∑
i=1

(
XiaXib − EXiaXib

)∣∣ ≥ c|σj|
}
+ P

{∣∣ 1
k0

k0∑
i=1

XiaX̄b

∣∣ ≥ c|σj|
}

+ P
{∣∣ 1

k0

k0∑
i=1

XibX̄a

∣∣ ≥ c|σj|
}
+ P

{∣∣X̄aX̄b

∣∣ ≥ c|σj|
}

≤
∑
j∈J1

c1[e
−c2k0 min{σ2

j ,|σj |} + e−c3k0|σj | + e−c4n|σj |].

For the second term, note that δj and σj share the same sign, and thus we can similarly proceed

as follows:

P
{∣∣∑

j∈J2

k0∑
i=1

δjσ̃ij

∣∣ ≥ ck0
∣∣∑
j∈J2

δjσj

∣∣} ≤ P
{∑

j∈J2

∣∣δj k0∑
i=1

σ̃ij

∣∣ ≥ ck0
∑
j∈J2

∣∣δj∣∣∣∣σj

∣∣}
≤

∑
j∈J2

P
{ 1

k0

∣∣ k0∑
i=1

σ̃ij

∣∣ ≥ c
∣∣σj

∣∣}
≤

∑
j∈J2

c1[e
−c2k0 min{σ2

j ,|σj |} + e−c3k0|σj | + e−c4n|σj |].

Under Assumption 1(b), we have

P
{
|B1| ≥ cD

}
≤ c1p

2[e−c2 min{τ,
√
nτ} + e−c3

√
nτ ]. (S3.10)
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For the term B2, it is similar to B1 to obtain the result as follows

P
{
|B2| ≥ cD

}
= P

{∣∣ n∑
i=k0+1

σ̃⊤
(i)Wσ

∣∣ ≥ ca(k, k0)σ
⊤Wσ

}

≤ P
{∥∥W 1

2

n∑
i=k0+1

σ̃(i)

∥∥
2

∥∥W 1
2σ

∥∥
2
≥ ca(k, k0)

∥∥W 1
2σ

∥∥2

2

}

≤
∑

j∈J1∪J2

c1
[
e
−c2(n−k0)min

{
a(k,k0)2

(n−k0)2
σ2
j ,

a(k,k0)
n−k0

|σj |
}
+ e−c3a(k,k0)|σj | + e

−c4n
a(k,k0)
n−k0

|σj |
]
,

where a(k, k0) =
(k(k−1)−k0(k0−1))(n−k)(n−k0)

|k(n−k)−k0(n−k0)|(k−1)
. Lemma 1 give the last inequality, and we have

P
{
|B2| ≥ cD

}
≤ c1p

2[e−c2 min{τ,
√
nτ} + e−c3

√
nτ ]. (S3.11)

For the term B3 similarly, we have

P
{
|B3| ≥ cD

}
= P

{∣∣ k∑
i=k0+1

σ̃⊤
i Wσ̃

∣∣ ≥ ca(k, k0)σ̃
⊤Wσ̃

}
,

where a(k, k0) =
(k(k−1)−k0(k0−1))(n−k)

k0(n−1)
and similarly we can obtain the result

P
{
|B3| ≥ cD

}
≤ c1p

2
[
e−c2 min{τ,

√
nτ} + e−c3

√
nτ
]
. (S3.12)

Combining (S3.10)-(S3.12), we can conclude that

P
{
|B(k)− B(k0)| ≥ cD

}
≤ c1p

2
[
e−c2 min{τ,

√
nτ} + e−c3

√
nτ
]
. (S3.13)

The terms C(k) and C(k0) are the same, that is

P
{
|C(k)− C(k0)| ≥ cD

}
≤ c1p

2
[
e−c2 min{τ,

√
nτ} + e−c3

√
nτ
]
. (S3.14)

Finally, we investigate the terms A(k) and A(k0) introducing the decomposition

A(k)− A(k0) = H1 +H2 +H3 +H4 +H5 +H6,
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where

H1 = a1

k0∑ k0∑
(i ̸=t)=1

σ̃⊤
(i)Wσ̃(t), H2 = a2

k∑ k∑
(i ̸=t)=k0+1

σ̃⊤
(i)σ̃(t), H3 = a3

n∑ n∑
(i ̸=t)=k+1

σ̃⊤
(i)Wσ̃(t),

H4 = a4

k0∑
i=1

k∑
t=k0+1

σ̃⊤
(i)Wσ̃(t), H5 = a5

k∑
i=k0+1

n∑
t=k+1

σ̃⊤
(i)Wσ̃(t), H6 = a6

k0∑
i=1

n∑
t=k+1

σ̃⊤
(i)Wσ̃(t),

and

a1 =
1

(k)2
− 1

(k0)2
, a2 =

1

(k)2
− 1

(n− k0)2
, a3 =

1

(n− k)2
− 1

(n− k0)2
,

a4 =
2

(k)2
+

2

k0(n− k0)
, a5 = − 2

k(n− k)
− 2

(n− k0)2
, a6 =

2

k0(n− k0)
− 2

k(n− k)
.

In order to prove that P
{
|A(k)− A(k0)| ≥ cD

}
= o

(
1
n

)
, it is sufficient to show that P

{
|Hi| ≥

cD
}
= o

(
1
n

)
, i = 1, . . . , 6 uniformly with respect to (1 + ϵ)k0 ≤ k ≤ c2n.

The term H1 can be handled as follows:

P
{∣∣H1

∣∣ ≥ cD
}
≤ P

{∣∣ k0∑
i=1

k0∑
t=1

σ̃⊤
(i)Wσ̃(t)

∣∣ ≥ c

|a1|
D
}
+ P

{∣∣ k0∑
i=1

σ̃⊤
(i)Wσ̃(i)

∣∣ ≥ c

|a1|
D
}
.

For the first term, we can find that

P
{∣∣ k0∑

i=1

k0∑
t=1

σ̃⊤
(i)Wσ̃(t)

∣∣ ≥ c

|a1|
D
}
= P

{∥∥W 1
2

k0∑
i=1

σ̃(i)

∥∥2

2
≥ cb1(k, k0)

∥∥W 1
2σ

∥∥2

2

}
,

where b1(k, k0) =
1− (k0)2

(k)2

|a1| and similarly we can obtain the result

P
{∣∣ k0∑

i=1

k0∑
t=1

σ̃⊤
i Wσ̃t

∣∣ ≥ c

|a1|
D
}
≤ c1p

2[e−c2 min{τ,
√
nτ} + e−c3

√
nτ ].
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For the second term,

P
{∣∣ k0∑

i=1

σ̃⊤
(i)Wσ̃(i)

∣∣ ≥ c

a1
D
}

≤P
{ k0∑

i=1

∑
j∈J1

γjσ̃
2
ij ≥ cb1(k, k0)

∑
j∈J1

γjσ
2
j

}
+ P

{ k0∑
i=1

(∑
j∈J2

δjσ̃ij

)2 ≥ cb1(k, k0)
( m∑
j∈J2

δjσj

)2}

≤
k0∑
i=1

∑
j∈J1∪J2

P
{
|σ̃ij| ≥ c

√
b1(k, k0)

k0
|σj|

}

≤
k0∑
i=1

∑
j∈J1∪J2

[
P
{∣∣XiaXib − EXiaXib

∣∣ ≥ c

√
b1(k, k0)

k0
|σj|

}
+ P

{∣∣XiaX̄b

∣∣ ≥ c

√
b1(k, k0)

k0
|σj|

}

+ P
{∣∣XibX̄a

∣∣ ≥ c

√
b1(k, k0)

k0
|σj|

}
+ P

{∣∣X̄aX̄b

∣∣ ≥ c

√
b1(k, k0)

k0

∣∣σj

}]
≤

k0∑
i=1

∑
j∈J1∪J2

c1
[
e
−c2

√
b1(k,k0)

k0
|σ̃j |

+ e
−c3n

√
b1(k,k0)

k0
|σ̃j |] ≤ c1p

2n[e−c2
√
τ + e−c3n

√
τ ].

The penultimate inequality is given by Assumption 1(a) and Lemma 1, hence we have

P{|H1| ≥ cD} ≤ c1p
2[e−c2 min{τ,

√
nτ} + e−c3

√
nτ + ne−c4

√
τ + ne−c5n

√
τ ]. (S3.15)

For the terms H2 and H3, similarly we can obtain the results

P{|H2| ≥ cD} ≤ c1p
2[e−c2 min{τ,

√
nτ} + e−c3

√
nτ + ne−c4

√
τ + ne−c5n

√
τ ],

P{|H3| ≥ cD} ≤ c1p
2[e−c2 min{τ,

√
nτ} + e−c3

√
nτ + ne−c4

√
τ + ne−c5n

√
τ ].

(S3.16)

The term H4 can be handled as follows:

P
{∣∣H4

∣∣ ≥ cD
}
= P

{∣∣a4 k0∑
i=1

k∑
t=k0+1

σ̃⊤
(i)Wσ̃(t)

∣∣ ≥ cD
}

≤ P
{∥∥W 1

2

k0∑
i=1

σ̃(i)

∥∥
2

∥∥W 1
2

k∑
t=k0+1

σ̃(t)

∥∥
2
≥ c

|a4|
D
}

≤ P
{∥∥W 1

2

k0∑
i=1

σ̃(i)

∥∥2

2
≥ c

a4
D
}
+ P

{∥∥W 1
2

k∑
t=k0+1

σ̃(t)

∥∥2

2
≥ c

a4
D
}

≤ c1p
2[e−c2 min{τ,

√
nτ} + e−c3

√
nτ ],

(S3.17)
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For the terms H5 and H6, similarly we can obtain the results

P
{∣∣H5

∣∣ ≥ cD
}
≤ c1p

2
[
e−c2 min{τ,

√
nτ} + e−c3

√
nτ
]

P
{∣∣H6

∣∣ ≥ cD
}
≤ c1p

2
[
e−c2 min{τ,

√
nτ} + e−c3

√
nτ
]
.

(S3.18)

Combining (S3.15)-(S3.18), we can conclude that

P
{
|A(k)− A(k0)| ≥ cD

}
≤ c1p

2
[
e−c2 min{τ,

√
nτ} + e−c3

√
nτ + ne−c4

√
τ + ne−c5n

√
τ
]
. (S3.19)

Combining (S3.13), (S3.14) and (S3.19), we have

P
{ ⋃

k≥(1+ϵ)k0

(
TW (k) ≥ TW (k0)

)}
≤

∑
k≥(1+ϵ)k0

P
{
TW (k) ≥ TW (k0)

}
≤c1p

2n
[
e−c2τ + e−c3

√
nτ + ne−c4

√
τ + ne−c5n

√
τ
]
.

In particular, if p2n2 = o(ec
√
τ ) holds, P

{∣∣ k̂0
k0

− 1
∣∣ ≥ ϵ

}
→ 0. This completes the proof of

Theorem 1.
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