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Supplementary Material

This supplement contains some lemmas that we will need to use in our proofs, as well as the proofs of the asymptotic

properties introduced in Section 3.

S1 Technical Lemma

Lemma 1 (Adapted from Vershynin (2018)). Let W1, ..., W, be mean-zero, sub-Gaussian
random variables. There exist positive constants cy,co > 0, independent of the indices a and

b, such that for any 1 < a,b <p and all t > 0,

P{|W,Wy| >t} < cre™.
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Furthermore, if these random variables are independent, there exist positive constants ¢y, co > 0
such that
IP’{|1 i V[Q‘ >t} < cre Pt
P

The first inequality follows from the fact that each product W, W, is sub-exponential (Lemma
2.7.7 in Vershynin (2018)), while the second is a direct application of the concentration bound
for sub-Gaussian variables (Theorem 2.6.3 in Vershynin (2018)).

Alternatively, if Wy, ..., W, are independent, mean-zero, sub-exponential random vari-
ables, then, adapted from Corollary 2.8.3 in Vershynin (2018), there exist positive constants

c1,co > 0 such that for allt > 0,

p
T p—

=1
S2 Proof of Proposition 1

Denote Ha = ]EXiay Xa = Z?:l Xiaa Xz'a = Xia_Xaa Xk,h = % Zle XiaXiby Yk,h = ﬁ 2?:k+1 XiaXibu

Xk,h = %Zle XiaXibu and ?k,h = ﬁ Z?:k:—&-l XiaXib~ Note that Xia = Xw — Wg + Mg — Xa.

To streamline notation in subsequent proofs, we use X;, to denote X;, — jt, and X, to denote

X4 — g Thus,

XiaXiv = XiaXip — Xia Xy — XoXip + XoXp. (S2.1)
We decompose vy, as Vg, = Uk1,n + Uk2,n — Vg3, Where

Vki,h = [th - ?’%hf’ Uk2,h = [

1 k n

v = LS R
won = g, XX+ 5, 2
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Then, d; can be decomposed as follows:

n—2

1 kin —k

dh_n—BZ ( n )Ukh

k=2
n—2 n—2 n—2

1 kin —k 1 k(n—k 1 kin—k

= Z ( )’Um ht ( )UkZ,h - ( )’Uk:s,h
n—3 -3 n—3 n

k=2 k=2 k=2

=dip+dap —dsp.
For Proposition 1(a): Considering the positions (a,b) satisfying X1 . = Yaoap = s
First, it is evident that vy, 5, = [th —)L/k,h] ? = [(th — ) — (Ykh — Eab)} ?. Then we calculate

1 - 1
S R S R N —
[ (X =Xa) + =37

v 2
— (Vih = S)?|

L. |

= —— X2 - -

[k:—l R
k

1 L 1 oo 2 L
— ) (XiuXp)?+ ——— (XiaXi)? — S Y XiaXip
2 = 2, CREDP

2 "o 1 1
_ 5 X, X, 22]
(n—k)y bi;l b+<k:—1+n—k;—1> ab

R e Ty

Recall that j(k,h = %Zle X;0X s, and {/k,h = ﬁ Yo i X0 X, thus we have[ﬁ(j(m —

Z0Lb)2 + n—i—l (Yk,h - Eab)ﬂ - [ﬁ Zle (XiaXib - Eab)Q + (n_lk)2 Z?:k+1 (XiaXib - Eab)ﬂ -

Vg2, — Ug3 p. Summarizing we have

- - 2 1 = 1
—[(Xip — Sray) — (Ven — Saa [—X S ——— (¥, —za]
Uk,h [( k,h 1ab) — (Yen 2, b)] + k—l( kh 1,ab) +n—k—1( k,h 2.ab)
_ [Li()’(. Xy — 5y b)2+; i (XX — Yo.u)?].
(k;)z — a (2 et (n o l{;)z Z:k+1 a 7 et

Hence we can assume that X, = g4 = 0 in this proof, that is, X;,X; is a zero-mean

sub-exponential random variable for any 1 < a,b < p.
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Observing the inclusion {d, > 7} C {d1 > 37} U {day, > 37}, it’s sufficient to calculate
P{dl,h > %7’} and IP’{th > %7’} Hereafter in the proof, ¢ and ¢;(i = 1,2,...) indicate some

positive constants that may change from line to line. The first term can be handled as follows:

[\

1 <=<k(n—k)

= - 1
[Xk,h — Yk,h}2 > —T}

1
]P){dljh > 57’} = ]P){n 5

n

e
[|

2

3
k(n—k) = - 1
P{H > o)

2

IN
i

1T
NN

nt

< [P{‘j{k,ﬂ > % m} +]P’{‘?k7h| > % M}}

=2

o

Consider the components in (52.1). We use Lemma 1 to calculate the following probabilities

k
1 1 nrt —cok min{ nT 1 nr__1
]P’{ NTX X > - —} < 2 T8k (n=E) SV TR ) $2.2
’k; 3 S\ 2k(n — k) S =€ (52.2)

Similarly, it follows from Lemma 1

1 y - 1 nr
P{|E ;Xi“Xb’ ~ 8\ 2k(n - k)}

1 < 1 ntT 1 1 « 1 nrT 1 (S2.3)
SP{'E;X"“‘ > (5V 2 = k))z} +P{|E;X"b| > (5\ 20 = k))2}
<ere M SVICT 4 cge IV G

Using similar arguments, we obtain that

k
1 — 1 nTt —eokt /AT _ 1 /T
P{ 7 XoXip| > 5 —} < RSV 2k(n—F) CaTr g/ H(n—F)
|k; > 5\ 2k s S s

k
1 S 1 nr —eonl T
IP{— X, %> - —}< g/ T
|k; b|>8\/2k(n—k) =ae

Combining (52.2)-(52.4), we obtain the upper bound

(S2.4)
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and similarly for li/k’h

P{‘Yk,h} > % ﬁ} < Cle*CQ(TL*k) min{ 16k?7:7k)’\/ 2’“(21’9)}4—036 ca(n—k) /2k(7:: B tese —C61 4 /m
n —

Therefore, we have P{d;, > 27} < ¢yn[e=2V7 + e~e3Vn7],

Similarly, the second term can be estimated as follows:

n—2

kin—k 1 - g 1
P{das > 57} = P{— 52 <n it vl > 57
= (k(n 1 -, 1 ey 1
; { k—le’h+n—k—1Yk’h}>§T}
= N n(k —1)r - nin—k—1)r
Skzz [P{‘Xk’h|> 4k(n—k)}+]P{‘Yk’h|> dk(n — k) }]

<cmn [e‘”‘ﬁ + 6_03”‘5} )
Summarizing we have p? - P{d, > 7} < c;p?n[e” V7 + e~V 4 e=™VT] In particular, if
p*n = 0(e°VT) holds we have p? - P{d), > 7} — 0.
For Proposition 1(b): Considering the positions (a,b) satisfying ‘Emb — Zg,ab| > C\/E
for some constant ¢. Observing the inclusion {d, < 7} C {d1, < 37} U {d;, > 27}, one
can see that it is sufficient to calculate P{dLh < 37’} and P{d;;,h > 27'}. The second term is

estimated as follows:

Pldys > 27} = B{— > LELTE > (k) + L _; (%)) = 27}
< k P{ k(nn— k) [%i (¥iuX) + - E o zk; (XiaX)’] > 27}
<SPS > S} ey 5 (k> M)
<5 [e{l il > S e > M)
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Consider the components in (S2.1). We use Lemma 1 to calculate the following probability

1 [n(k—1)1 eyl [T
IP’{ XXy > = —} < eV
[XioXa| > 7 k(n—k) J = 4°

Similarly, it follows from Assumption 1(a) and Lemma 1

1 |n(k—1)T n(k—1)r

P{ [ X0 %] >

—Czl n(k—1)T —6471/1 n(k—1)T
Scle 4 k(n—k) + cze 4 k(n—k) .

And using similar arguments, we obtain for

p{ XX > M}Sqe—@i T =
4\l k(n—k)

S 1 [n(k—171 —eonl, /POE=DT
IP{ X% > = —} < etV
XXl >\ oy S S

Combining (52.5)-(S2.7), we obtain the upper bound

]P{|XZ(ZXzb‘ > %} < 616_62% o + Cge_cwiv 7“((6:13;7
n E—

y y nn—k—1)r _eo L [nn=k=—1)7 _ 1 /nn—k-1)T
R e R

k(n — k)

Therefore, we have

]P){d;g,h > 27} < ¢yn? [e’”ﬁ + e’cwﬁ]

Then we estimate the term P{dljh < 37’}. A straightforward calculation gives

ko (S ab — Sow), k< ko,

%(El,ab - Z2,ab)7 k > /{50.

Let Ak,h = )L(k’h — }L/k,h — E(Xk,h — Yk,h); Bk,h = ]E'(Xk,h — Y]ﬁh). One can observe that

n—ko k’o

)
n n

| Br.n| > min{ . ‘El,h — E2,ab‘ = 00‘21,(11; — Yoab

ez < > GG sl G e

(52.5)

(S2.7)
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where ¢y = min{%, 2=k} and

n—2

k(n —k)

k(n — k’) > 02 ) n(Zl,ab — Egﬂb)z '
n? -

2 1
(Ben)™ > ¢ n(S1ap — Toa)” - 3 0 5

n
k=2 k=2

Consequently, by Assumption 1(b) (with a sufficiently large constant ¢) we obtain the estimate

k(n —k) 2
3 B
! 2(n — 3) ~ n (Ba)
Then we can obtain that
n—2
1 kin—k
Pldiy < 37} = B{— =) g+ B < 3}
k=2
n—2 n—2
2 k(n— k) 1 k(n— k) )
s P{n -3 Z n AenBrn < 37 = n—3 Z n (Bk’h) }
k=2 k=2
n—2 n—2
2 k(n — k) 1 k(n —k) 9
< _ >
- P{n — 3| n Ak’th’h} — 2(n—3) ‘ n (Br.) }}
k=2 k=2
kin—k c
<n- P{}¥Ak,h‘ > “(B1ap — ZQ,ab)Q} =n-P{[Aps| > co},
| By u
where ¢ = ﬁk(:—ik)(zlvab — Yo.a)?. Since |Bgp| < [X1.a — X2.ap|, under Assumption 1(b) we
have
n? n
> ———— Y — 2ogp| > C—-——/nT.
¢ k:(n—k)‘ ob = Yo Crn—m VT

Observing the decomposition (52.1), the term Ay can be written as

k k
_ _ _ _ 1 - 1 =
Apn = (Xen —EXpn) = (Yin = EVin) = 2> XX — 2> Xa X,
=1 =1

n—k n—k

1 _ 1 _

XXy + —— XipXq.
+ n—=~k ; b n—k ; b

Considering the components of this decomposition, we use Lemma 1 to calculate the following

probabilities

P{‘kah — EXin| > gcﬁ} < g kmin{et o} P{|Yk,h —EYu| > g¢} < ¢reen—k)min{o%0}

(52.8)
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Similarly, we can obtain that

k k
P{‘% ZXmXb‘ > g¢} < ek 4 cgemn?, P{‘% ZXH,XG‘ > gqﬁ} < ek 4 cgemn?,
i=1 i=1

n—k

1 < & —co(n— —C4M

P{\n_k > XiaXo| > gaﬁ} < e 2N g ggem e,
i=1

n—k

1 7 C

]P){ ‘ n — k Z XibXa‘ > 6¢} S 016_02(71—1‘3)(1) + 036—047“;5'
=1

(52.9)

Combining (52.8) and (S2.9), we can obtain that

]P){dlyh S 37'} S n- ]P){|Ak7h’ Z C¢}

< Cln[e—Ckain{¢27¢} + e—CS(N_k) min{¢2,¢} + 6—C4k¢ + e—CS(N—kMJ + 6—06n¢]

< Cln[efczmin{ﬂ-,\/ﬁ} + 6763\/%}.

Summarizing we have p? - ]P’{dh < 7'} < clpzn[e_c2 min{r, 7} 4 o=CsVnT | pe—caVT 4 ne‘cmﬁ}.

In particular, if p>n? = o(e®V7) holds we have p? - P{dh < 7'} — 0.

S3 Proof of Theorem 1

Recalling the definition of the statistic Ty (k) given in (1) and the change point estimator kg

defined in (3), it follows that
P{}% —1| > e} <P{ko > (1+e)ko} +P{ko < (1 — €)ko }.
0

To establish that this probability converges to zero asymptotically, we bound the two terms

on the right-hand side. For brevity, we focus on the first term, as the second can be analyzed
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analogously. Specifically, it suffices to show that

P{ U Twk)=Twlk)}< > P{Tw(k) = Twlk)}.

kE>(1+¢€)ko k>(1+€)ko

Denote 6 ;) = o) — Eoy) = (6”)].:1 ..... P and o = vech(X; — ¥y) = (ah)lghgp@;l), where

o) = vech((X; — p)(X; — p)"). We will make use of the decomposition

Tw (k) = ZZ ZZ [ G — () + (Eow) — Eam)]TW[(&(w —6w) + (Eoq) — EU(U)]

% (i#)=1 (GAD)=k+1

= A(k) + B(k) + C(k) + D(k),

where W =T +66", T = (’Y(a,b)) € R x P , 0= ((5 )) c RZEY and

Ak) = ZZZZ 5o —6() W (6w — ),

z;ét 1(j7£l) k+1

B(k) = ZZZZ Eow —Eoq) W(ew - 6(),

z;ét) 1 (j#A)=k+1

C(k) = ZZZZ Eo) — Eo()) W (50 — 6q),

z;ét) 1 (j#)=k+1

D(k) = Z Z Z Z (Eo ) — Eo;)) W (Eoq — Eoy).

(z;ét) 1 (j#)=k+1

Starting to study the constant terms D(k) and D(ko). Notice that

VeCh(El), 1 < ]{70,
Eo) =

vech(3s), @ > ko.
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We calculate that

= D(ko) — D(k) = o n_ko ZZ ZZ (Eos) — Eo;) W (Eoq — Eog)

(z;ét 1 (j#)=ko+1

Z Z Z Z EO’ ]EO'(] W(EO’(t) — EO’(Z))
(i#£t)=1 (j#l)=k+1
ko ko n

:O'TWO'— ZZZZUTWJ

(i#t)=1 (j#)=k+1

]{50 2 T
:(1 — ((k?))g )a’ Wo.

Observing the inclusion

we now investigate the other terms A(k) — A(ko), B(k) — B(ko),C(k) — C(ko). By calculating

this, we can obtain the decomposition

B(k) — B(kg) = B1 + By + B3

where
ko1 1, & ~T B ko 1 =\ 1
hi= (k?(k? -1 /f_o) ;a(i)wa’ b= _(k(n —k) n- ko) Z.:%l ToWe,
By = (2 Z
= Geon”

i=ko+1

The term B; can be handled as follows

ko
P{IB| =D} =P{| > 6(,Wo| = choo Wa
i=1
ko

<p{|w? >_aol.[Wiell, > chol|WEer |}

<P{ 3"l Z% > 2y e }+]P’{\ZZ<S%}>ck:0|Z§a] L

jeJ1 i=1 jeS1 jE€Jo 1=1 JjE€J2
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where J; and J; represent the sets of subscripts for which v, and §, are non-zero, respectively.

Note that for each j there exist a position (a,b) such that &;; can be written as
Gij = (XiaXio — EXiaXit) — XiaXp — Xp Xa + Xo Xy

Consider this decomposition. We can use Lemma 1 to handle the first term as follows:

ko
IP’{ Z%‘(Z%‘)Q > ckg ZVJUJZ'}
je i=1 jen
1 &
< B{|- Yl > dlos)
j€N 0 =1
1 & 1
S]PJ{|k—O Z (XiaXib — EXiaXz’b>| > C|O'j|} +P{‘k—OZXmXb‘ > C|0-j’}
i=1 =1

1 ko B _
+[p>{|k_OZXibXa| > c\aj\} +]P°{}XaXb\ > CIUj\}
=1

_ i 2 . _ ] _ .
SE :01[6 czkolnln{aj,\oj|}+6 cskoloj| te C4n|0]|]'

JjEJ1

For the second term, note that ¢; and o; share the same sign, and thus we can similarly proceed

as follows:
k:o ,‘u'()
{2 0i6] = ckol Y- aj0 } <B{Y 15D 0u] 2 ek Y [o)]]os}
jeds i=1 jEJ jeds =1 jeds
1, &
< Zp{k—‘ > il > C\"j’}
j€Ja 0 =1

_ i 2 . _ . _ .
< § :cl[e czko min{os [0} +e c3koloj| +e C47L‘0'J|].
JEJ2

Under Assumption 1(b), we have

P{|B,| > cD} < eypPle 2mininvith 4 gmesvnT], (S3.10)
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For the term Bs, it is similar to By to obtain the result as follows

P{|Bo| = cD} =P{| > &, Wol| = ca(k,ko)o  Wo |
i=ko+1

<P{IW? 3 ol |Wiel, > catk ko)W o]}
i=ko+1

. (k, k)2 2 a(k,kg) a(k,kg)
—cQ(n—kO)mln{ﬁa — 9 Th—k lojl —cga(k,ko)|oj| el L
< E cile (n—ko) mko +e Tte BRI

je€J1UJ2

where a(k, ko) = (k(’“';(iz:]’:;iké’oa)_)liz)_‘ (kljiq)_ko) Lemma 1 give the last inequality, and we have

P{|Bs| > ¢D} < c1p*le™® min{r/nt} 4 g=esvinT), (S3.11)
For the term B3 similarly, we have

k
P{|Bs| = D} =P{| > 6]W6| = calk. k)a TWé |,

i=ko+1

where a(k, ko) = (k(k_l)_k];‘ékfl_)l))(”_k) and similarly we can obtain the result

P{|Bs| > cD} < c1p*[e® min{7,V/nT}h 4 6_63ﬁ}. (S3.12)
Combining (53.10)-(S3.12), we can conclude that
P{|B(k) — B(ko)| > c¢D} < cyp?[e > mimrvnTh 4 emesvnT], (S3.13)
The terms C(k) and C(kg) are the same, that is
P{|C (k) — C(ko)| > eD} < ¢;p?[e-c2mintmvnT} 4 gmeavnT] (S3.14)
Finally, we investigate the terms A(k) and A(kg) introducing the decomposition

A(k) — A(ko) = Hi + Hy + Hs + Hy + Hs + Hg,
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where

ko ko
Hl—aIZZa Wa(t), HQ—CLQ ZZ 0'(1 Hg—(ngZO’ WO'

z;ét (i#£t)=ko+1 (i#£t)=k+1
Homad Y ol Wou, Hi=u Y Y alWou H=udl Y oW
i=1t=ko+1 i=ko+1t=k+1 i=1t=k+1
and

1 1 1 1 1 1

ay = 7~ — ) ag = - ) as = - )

P (k) (ko)t 0 (B2 (n—ko)e 0 (n—k)y (n—ko)s

2 2 2 2 2 2

ay = + as = — — . ag =

k(n—k)  (n—ko)a ko(n — ko)  k(n—k)

In order to prove that P{|A(k) — A(ko)| > ¢D} = o(%+), it is sufficient to show that P{|H;| >
cD} = 0(%),2’ =1,...,6 uniformly with respect to (1 + €)ky < k < con.

The term H; can be handled as follows:

ko ko

P{| | > cD} <P{> D 60, Wa, lCLl’D}+IP>{|Za( Wo| > ’;1’1)}

i=1 t=1 i=1

For the first term, we can find that

ko ko ko
P{|ZZ% Wé | > ﬁD} —P{|WH 605 = balh ko) [ Wi},
=1 t=1 =1
1_ (ko2

(k)2
laz]

where by (k, ko) =

and similarly we can obtain the result

ko ko
{|ZZU WU't‘ > —’D} < c1p [ —co min{7,/n7} +€—65\/7T7-]

i=1 t=1
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For the second term,
ko
P{|;&<Ti>W&<i>’ > a%D}
ko
<P{Y D5k = chilk ko) D 102 +P{Z S 6,65)% > ik, ko) ( 25 7))

i=1 jeJ; jeJ1 =1 j€EJa JEJ2
ko
by (e, k
<> Y Bflaglz o/ 2B )
i=1 jEJ1UJa 0

ko
<SP - EXiaXa| > ¢ %f%ﬂ}w{mmzc %’Oko)w}

=1 jeJ1UJ2

+P{| X Xa| = ¢ %ﬁ)%)laﬂ} FR{|XX] 2 ¢ %Z)I%)WH

—eny AR | | om0 g 2 1oV v
—c T —C3M\/T
<Z > ale +e U] < ap’nlem VT e

=1 jeJ1UJ2

The penultimate inequality is given by Assumption 1(a) and Lemma 1, hence we have
P{|H,| > cD} < ¢yp?[e2™n{mvnT} p emesVnT 4 pemeaVT 4 pemesnVT, (S3.15)

For the terms H, and Hj, similarly we can obtain the results

P{|H,| > cD} < ¢ p?[e2™n{mvnT} p emesVnT 4 pemeaV™ 4 pemesnVT]

(S3.16)
P{|Hs| > ¢D} < ¢qp?le”2™mmViTh 4 o=Vt | pemeaVT | pemesnVT]
The term H, can be handled as follows:
P{|H,| > cD} = P{|a4z Z W] > eD}
i=1t=ko+1
) ko ) k c
S IP){||V‘”Z&<i>||2HW§ > e, > mD}
=1 t=ko+1 ! (83.17)
ko k
<B{|WS o032 S0} (Wl Y o> S0)
i=1 4 t=ko+1 4

S Clp2[6—cgmin{7',\/ﬁ} _}_6—03\/7?],
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For the terms H; and Hg, similarly we can obtain the results

]P){|H5} Z CD} S Clp2 [6—62 min{r,\/n7} n 6_53\/77}
($3.18)
]P){|H6} > CD} < C1p2 [e—cz min{7,/n7} + 6—03\/777—]

Combining (53.15)-(S3.18), we can conclude that
P{|A(k) — A(ko)| > cD} < cip?[eme™nmlmViTh 4 emesVT 4 eV 4 pememVT] L (S3.19)

Combining (53.13), (S3.14) and (S3.19), we have

P{ U (Twk)=Twlk)}< Y P{Tw(k) > Twlk)}

kE>(1+¢€)ko kE>(1+¢€)ko

<cap*n [e’CQT + e BV eV 4 ne’cf’”ﬁ} )

In particular, if p?>n? = o(e®V7) holds, P{‘ﬁ—g — 1| > e} — 0. This completes the proof of
Theorem 1.
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