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This supplementary material presents additional simulation results and technical theorems to prove the main results.

S1 Non-asymptotic inequality of the IPW estimator in the spec-

tral norm

In this section, we will derive the concentration inequality of the IPW estimator. More

specifically, we are interested in the rate of convergence of ||Σ̂
IPW
−Σ||2. Recall the definition

of the IPW estimator

Σ̂
IPW

= S ∗

[
1

πxxjk
, 1 ≤ j, k ≤ p

]
,

which is given in (2.5). The random variables xi, (δxi1, . . . , δ
x
ip) used above are assumed to

satisfy Assumption 1, 2, and 3. For notational convenience, we write the IPW estimator by

Σ̂. Also, we omit the superscript in δxij, π
xx
ij··· and Kx.

∗To whom all correspondence should be addressed.
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Theorem S1. For t > 1 ∨ log n, it holds with probability at least 1− 3e−t that

||Σ̂−Σ||2 ≤ Ctr(Σ) max{K2, 1}max

{√
π

(4)
max(t+ log p)

n
, (t+ log n)

π
(4)
max(t+ log p)

n

}
,

where C > 0 is some numerical constant and

π(4)
max = max

k1,k2,`1,`2

πk1k2`1`2
πk1`1πk2`2

.

Our proof is based on the idea of Lounici (2014), but improve it to address the general

missing dependency.

We begin with the following decomposition:

||Σ̂−Σ||2 ≤ ||diag(Σ̂−Σ)||2 + ||OD(Σ̂−Σ)||2

where diag(A) is a diagonal matrix with diagonals inherited from A, and OD(A) = A −

diag(A). We deal with each of them separately.

S1.1 Off-diagonal part

To use Bernstein inequality of bounded matrices later, we consider an event Ai = {||Xi||22 ≤

U} where U = C · tr(Σ)(K2 + 1)(t + log n) for some numerical constant C > 0. We claim

the following:

Fact S1. P(∩ni=1Ai) ≥ 1− e−t for any t > 0.

Define a matrix Zi with zero diagonals

Zi = OD

[X̃ikX̃i`

πk`

]
1≤k,`≤p

 ,

and Z̃i = ZiIAi . On the event ∩ni=1Ai, we can get OD(Σ̂−Σ) =
1

n

n∑
i=1

(Zi−EZi) =
1

n

n∑
i=1

(Z̃i−

EZ̃i)−
1

n

n∑
i=1

EZiIAci and thus

||OD(Σ̂−Σ)||2 ≤ ||
1

n

n∑
i=1

(Z̃i − EZ̃i)||2 + || 1
n

n∑
i=1

EZiIAci ||2. (S1)
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For the latter term, we get

|| 1
n

n∑
i=1

EZiIAci ||2 = ||EZ1IAc1||2

= max
θ∈Sp−1

|Eθ>Z1θIAc1|

≤ max
θ∈Sp−1

E|θ>Z1θ|IAc1

≤ max
θ∈Sp−1

√
E(θ>Z1θ)2EIAc1

=
√

max
θ∈Sp−1

E(θ>Z1θ)2 · P(Ac1) ≡ t2

(S2)

Next, note that Z̃1 − EZ̃1 is bounded conditioning on the set A, which is stated and proved

more specifically in (F1) of Fact S2. Hence, we can use Bernstein inequality for the former,

and get the upper bound of || 1
n

n∑
i=1

(Z̃i − EZ̃i)||2. The following result is from Proposition 2

of Lounici (2014). For t > 0, with probability at least 1− e−t, we have (conditioning on the

set A)

|| 1
n

n∑
i=1

(Z̃i − EZ̃i)||2 ≤ 2 max

{
σZ̃

√
t+ log p

n
, 2π(2)

maxU
t+ log p

n

}
≡ t1, (S3)

where σ2
Z̃

= || 1
n

n∑
i=1

E(Z̃i − EZ̃i)2||2 = ||E(Z̃1 − EZ̃1)2||2.

Combining (S1), (S2), and (S3), we have

P(||OD(Σ̂−Σ)||2 > t1 + t2) ≤ P(||OD(Σ̂−Σ)||2 > t1 + t2|A) + P(Ac)

≤ P(|| 1
n

n∑
i=1

(Z̃i − EZ̃i)||2

+|| 1
n

n∑
i=1

EZiIAci ||2 > t1 + t2|A) + P(Ac)

≤ P(|| 1
n

n∑
i=1

(Z̃i − EZ̃i)||2 > t1|A) + P(Ac)

≤ 2e−t.

The remaining part is to prove the boundedness of Z̃i−EZ̃i and calculate constants appearing

in t1 and t2.

Fact S2. The following statements hold in deterministic sense.
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(F1) Conditioning on the set A = ∩ni=1{||Xi||22 ≤ U}, we get

||Z̃1 − EZ̃1||2 ≤ 2π(2)
maxU,

where π
(2)
max = maxk,` 1/πk`.

(F2) max
θ∈Sp−1

E(θ>Z1θ)
2 ≤ CK4π

(4)
max(tr(Σ))2 where

π(4)
max = max

k1,k2,`1,`2

πk1k2`1`2
πk1`1πk2`2

(F3) σ2
Z̃

= ||E(Z̃1 − EZ̃1)2||2 ≤ CK4π
(3)
max(tr(Σ))2 where

π(3)
max = max

s,k,`

πk`s
πksπ`s

One can easily check that π
(4)
max ≥ max{π(2)

max, π
(3)
max}. Thus, some calculations lead to

t1 + t2 ≤ Ctr(Σ) max{K2, 1}max

{√
π

(4)
max(t+ log p)

n
, (t+ log n)

π
(4)
max(t+ log p)

n

}
,

for some C > 0 if t > 1 ∨ log n.

S1.2 Diagonal part

Remark that the Orlicz norm used in Lounici (2014) and ψ2-norm in this paper are equivalent,

up to a constant factor. Moreover, they both satisfies

||X̃ik||ψ2 ≤ ||Xik||ψ2 , ||X̃2
ik||ψ1 ≤ 2||X̃ik||2ψ2

.

Using these facts, we get

||X̃2
ik||ψ1 ≤ 2||X̃ik||2ψ2

≤ 2||Xik||2ψ2
≤ 2σkkK

2.

By Proposition 1 of Lounici (2014), we get with probability at least 1− e−t

∣∣∣∑n
i=1 X̃

2
ik

nπk
− Σkk

∣∣∣ ≤ CσkkK
2

πk

(√ t

n
∨ t

n

)
.
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This implies that with probability at most pe−t

max
k

∣∣∣∑n
i=1 X̃

2
ik

nπk
− Σkk

∣∣∣ > CK2 max
k

σkk
πk

(√ t

n
∨ t

n

)
Putting t← t+ log p, we get

P

[
||diag(Σ̂−Σ)||2 > CK2 max

k

σkk
πk

{√
t+ log p

n
,
t+ log p

n

}]
≤ e−t

S1.3 Proof of Fact S1

Proof. ||Xi||22 − E||Xi||22 is sub-exponential satisfying its ψ2-norm bounded by

∣∣∣∣∣∣||Xi||22 − E||Xi||22
∣∣∣∣∣∣
ψ2

≤
∑p

j=1 ||X2
ij||ψ2 + tr(Σ)

≤
∑p

j=1 2σjjK
2 + tr(Σ)

= tr(Σ)(2K2 + 1)

By Proposition 1 of Lounici (2014),

P
[
||Xi||22 > tr(Σ)

{
1 + C(2K2 + 1)(

√
t ∨ t)

}]
≤ e−t, t > 0.

Putting t← t+ log n for n > 2, we get

P
[
||Xi||22 > tr(Σ)

{
1 + C(2K2 + 1)(t+ log n)

}]
≤ e−t/n, t > 0.

Note that we can find another constant C ′ > 0 such that tr(Σ)
{

1+C(2K2 +1)(t+log n)
}
≤

C ′ · tr(Σ)(K2 + 1)(t + log n) ≡ U . By the union argument, we conclude P
[
∪ni=1 Ai

]
≤ e−t,

for t > 0.
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S1.4 Proof of (F1) of Fact S2

Proof. Define V1 =

[
Y1kY1`

πk`

]
1≤k,`≤p

and W1 = diag(V1), and thus Z1 = V1−W1 holds. Since

V1 − Z1 = W1 < 0, we begin with

||Z1||2 ≤ ||V1||2

= max
θ∈Sp−1

∣∣∣∣∣∑k,` Y1kY1`θkθ`
πk`

· IA1

∣∣∣∣∣
≤ max

θ∈Sp−1

√∑
k,`

Y 2
1kY

2
1`

π2
k`

∑
k,`

θ2
kθ

2
`

≤ max
θ∈Sp−1

π
(2)
max

√∑
k,`

Y 2
1kY

2
1`

∑
k,`

θ2
kθ

2
`

= π
(2)
max||Y1||22

(S4)

where we used the Cauchy-Schwartz inequality and π
(2)
max = maxk,` 1/πk`. Moreover, we know

that

||Y1||22 ≤ ||X1||22 ≤ U,

where the last inequality holds conditional on the event A. Combining these with (S4), we

can get ||Z̃1||2 ≤ π
(2)
maxU . Then, since ||EZ̃1||2 ≤ E||Z̃1||2 ≤ E||Z1||2, we get

||Z̃1 − EZ̃1||2 ≤ ||Z̃1||2 + ||EZ̃1||2 ≤ ||Z1||2 + E||Z1||2 ≤ 2π(2)
maxU
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S1.5 Proof of (F2) of Fact S2

Proof. We can get

E(θ>Z1θ)
2 = E

( ∑
1≤k 6=`≤p

Y1kY1`θkθ`
πk`

)2

= E
∑

(k1,k2)6=(`1,`2)

Y1k1Y1`1θk1θ`1
πk1`1

Y1k2Y1`2θk2θ`2
πk2`2

= E
∑

k1,k2,`1,`2

Y1k1Y1`1θk1θ`1
πk1`1

Y1k2Y1`2θk2θ`2
πk2`2

− E
∑
k1,k2

Y 2
1k1
Y 2

1k2
θ2
k1
θ2
k2

πk1πk2

≤
∑

k1,k2,`1,`2

πk1k2`1`2
πk1`1πk2`2

E(X1k1X1k2X1`1X1`2)θk1θk2θ`1θ`2

≤

√ ∑
k1,k2,`1,`2

(
πk1k2`1`2
πk1`1πk2`2

)2

(EX1k1X1k2X1`1X1`2)
2 ∑
k1,k2,`1,`2

θ2
k1
θ2
k2
θ2
`1
θ2
`2

≤ π
(4)
max

√ ∑
k1,k2,`1,`2

(EX1k1X1k2X1`1X1`2)
2,

where we used Cauchy-Schwartz inequality in the second inequality. In the third inequality,

we define π
(4)
max = maxk1,k2,`1,`2

πk1k2`1`2
πk1`1πk2`2

. Applying Cauchy-Schwartz inequality twice, we

get

EX1k1X1k2X1`1X1`2 ≤
√
EX2

1k1
X2

1k2
EX2

1`1
X2

1`2
≤
(
EX4

1k1
EX4

1k2
EX4

1`1
EX4

1`2

)1/4
.

Thus, we get for any θ ∈ Sp−1

E(θ>Z1θ)
2 ≤ π(4)

max

(∑
k

√
EX4

1k

)2

.

Finally, using equation (2.1) in Lounici (2014), we get

EX4
1k ≤ C||X1k||4ψ2

≤ CK4σ2
kk, (S5)

which concludes the proof.
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S1.6 Proof of (F3) of Fact S2

Proof. We observe that

||E(Z̃1 − EZ̃1)2||2 ≤ ||E(Z̃1)2||2

since E(Z̃1)2−E(Z̃1−EZ̃1)2 = (EZ̃1)2 < 0. Moreover, we get ||E(Z̃1)2||2 = max
θ∈Sp−1

θ>E(Z1)2θIA1 =

||E(Z1)2||2.

Also, recall the relationship Z1 = V1 −W1, which implies with the triangular inequality

that ||E(Z1)2||2 = ||EV 2
1 + EW 2

1 − EV1W1 − EW1V1||2 ≤ ||EV 2
1 ||2 + ||EW 2

1 ||2 + 2||EV1W1||2.

Note that

||EV1W1||2 = max
θ∈Sp−1

|Eθ>V1W1θ|

≤ max
θ∈Sp−1

√
E(θ>V 2

1 θ)E(θ>W 2
1 θ)

≤
√
||EV 2

1 ||2||EW 2
1 ||2.

Therefore, we get ||E(Z1)2||2 ≤
(√
||EV 2

1 ||2 +
√
||EW 2

1 ||2
)2

. We now calculate the last two

terms.

First, we calculate ||EW 2
1 ||2.

||E(W1)2||2 =
∑
k

EY 4
1kθ

2
k/π

2
k =

∑
k

EX4
1kθ

2
k/πk = max

k
EX4

1k/πk.

Secondly, we compute ||E(V1)2||2.

||E(V1)2||2 = max
θ∈Sp−1

∑
k,`,s

EY1kY1`Y
2

1s

πksπ`s
θkθ`

= max
θ∈Sp−1

∑
s

∑
k,`

πk`s
πksπ`s

EX2
1sX1kX1`θkθ`

≤ max
θ∈Sp−1

∑
s

√∑
k,`

(
E
πk`s
πksπ`s

X2
1sX1kX1`

)2∑
k,`

θ2
kθ

2
`

= π
(3)
max

∑
s

√∑
k,`

(EX2
1sX1kX1`)

2
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where we used Cauchy-Schwartz inequality and π
(3)
max = maxs,k,`

πk`s
πksπ`s

. Due to

EX2
1sX1kX1` ≤

√
EX4

1sEX2
1kX

2
1` ≤

√
EX4

1s

√
EX4

1kEX4
1`,

we conclude that

||E(V1)2||2 ≤ π(3)
max

(∑
k

√
EX4

1k

)2

.

Finally, combining all of these with equation (S5), we get

||E(Z̃1 − EZ̃1)2||2 ≤
(√

π
(3)
max

∑
k

√
EX4

1k +
√

max
k

EX4
1k/πk

)2

≤ CK4

(√
π

(3)
maxtr(Σ) +

√
max
k
σ2
kk/πk

)2

.

which concludes the proof because maxk 1/πk ≤ π
(3)
max and max

k
σkk ≤ tr(Σ).

S2 Miscellaneous results

Without the loss of generality, assume that variables in A come before those in Ac, or

we rearrange them to do so. In all the following proofs, we denote block matrices of A

decomposed by the subset A by AAA,AAAc ,AAcA,AAcAc , respectively.

S2.1 Proof of Proposition 1

Let us review the three conditions used in Theorem 3.4 of Lee et al. (2015) and apply them

to our problem in (2.7).

RSC condiction

The first condition is the restricted strong convexity (RSC).

Assumption S1 (RSC). Let C ⊂ Rp be some known convex set containing θ∗. The loss
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function ` is RSC when ∃m,L > 0 such that

(1) tT∇2`(θ)t ≥ mtT t, ∀θ ∈ C ∩M, ∀t ∈ C ∩M − C ∩M

(2) ‖∇2`(θ)−∇2`(θ∗)‖2 ≤ L‖θ − θ∗‖2, ∀θ ∈ C

The RSC condition is a relaxed version of strong convexity, which is a commonly used

assumption for guaranteeing the properties of given loss functions.

In our specified problem,∇2`(θ) = Σ̂
LPD

. Thus, the RSC condition (2) is satisfied with L

with any positive value. Moreover, for `1-norm, the model space is M = {θ ∈ Rp : θAc = 0}

where A ⊂ [p] is the support of the true parameter. We note that

min
t∈Rp:‖t‖2=1,tAc=0

t>Σ̂
LPD
t = αλmin(Σ̂

IPW

AA ) + µ(1− α) ≥ min{λmin(Σ̂
IPW

AA ), µ}.

Using Weyl’s inequality, ||Σ̂
IPW

AA −ΣAA||2 ≤ 0.5λmin(ΣAA) implies that λmin(Σ̂
IPW

AA ) ≥ 0.5λmin(ΣAA).

Now, we set m = min{0.5λmin(ΣAA), µ}.

RE condition

The second condition is the irrepresentibility (IR) condition. Let us define a few notions to

introduce IR condition. The support function on a convex subset C ⊂ Rp is defined as:

hC(x) = sup{x>y : y ∈ C}.

We say the penalty function ρ is geometrically decomposable in terms of D, I, E ⊂ Rp if it is

decomposed as a sum of support functions:

ρ(θ) = hD(θ) + hI(θ) + hE⊥(θ),

where D is a convex bounded set, I is a convex bounded set which contains a relative

neighborhood of the origin (i.e. 0 ∈ relint(E)) and E is a subspace. Now, we can define our

second condition, IR condition.
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Assumption S2 (IR). ∃τ ∈ (0, 1) such that

sup
z∈∂hD(M)

V
[
PM⊥{QPM(PMQPM)†PMz − z}

]
≤ 1− τ

where Q = ∇2`(θ∗) = Σ̂
LPD

, PB is the projection matrix to B,

∂hD(M) =
⋃
u∈M

∂hD(u)

γC(x) = inf{λ : x ∈ λC}

V (u) = inf{γI(y) + 1E⊥(u− y)} = inf
t∈E⊥

γI(u− t),

We can easily check that ρ is geometrically decomposed with the terms of

E = Rp

D = {θ : ‖θ‖∞ ≤ 1,θAc = 0}, span(D) = M

I = {θ : ‖θ‖∞ ≤ 1,θA = 0}, span(I) = M⊥

hD(θ) = ‖θA‖1, hI(θ) = ‖θAc‖1.

Then, the RE condition becomes equivalent to:

∃τ ∈ (0, 1) s.t. ‖Σ̂
LPD

AcA(Σ̂
LPD

AA )−1‖∞ ≤ 1− τ (S6)

which is the classical irrepresentability, proposed in Zhao and Yu (2006).

Proof of (S6).

∂hD(θ) = {y ∈ D : y>θ = hD(θ)}

= {y ∈ D : y>θ = ‖θA‖1}

= sgn(θ)

∂hD(M) = {sgn(θ) : θ ∈M}
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PM =

I|A| 0

0 0

 , PM⊥ =

0 0

0 Ip−|A|



(PMQPM)† =

QAA 0

0 0


†

=

(Q∗AAQAA)†Q∗AA 0

0 0



PM⊥{QPM(PMQPM)†PMz − z} =

 0 0

QAcA 0


(Q∗AAQAA)†Q∗AA 0

0 0


z1

0

−
 0

z2



=

 0

QAcA(Q∗AAQAA)†Q∗AAz1 − z2



supz∈∂hD(M) V
[
PM⊥{QPM(PMQPM)†PMz − z}

]
= supz∈∂hD(M) V


 0

QAcA(Q∗AAQAA)†Q∗AAz1 − z2




= supθ1∈R|A| V


 0

QAcA(Q∗AAQAA)†Q∗AAsgn(θ1)




= supθ1∈R|A| ‖QAcA(Q∗AAQAA)†Q∗AAsgn(θ1)‖∞
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Since QAA is invertible due to Assumption 4, we have

sup
θ1∈R|A|

‖QAcA(Q∗AAQAA)†Q∗AAsgn(θ1)‖∞

= sup
θ1∈R|A|

‖QAcAQ−1
AAsgn(θ1)‖∞

=‖QAcAQ−1
AA‖∞

BG condition

The last condition is the bounded gradient (BG) condition. Let us first define related

constants. The compatibility constant, denoted by κρ, between ρ and `2-norm on M is

defined by

κρ = sup
θ
{ρ(θ)|θ ∈ B2 ∩M},

where B2 is the `2-unit ball. The compatibility constant between the irrepresentable term

and ρ∗ is given as

κIC = sup
ρ∗(z)≤1

V
[
PM⊥{QPM(PMQPM)†PMz− z}

]
.

We can state the third condition with the constants κρ and κIC, which decides a suitable

range of a tuning parameter λ.

Assumption S3 (BG).

4κIC

τ
ρ∗(∇`(θ∗)) < λ <

m2

2L

(
2κρ +

κρ
κIC

τ

2

)−2
τ

κρ∗κIC

.

Now, we check the preliminaries for the BG condition. In our case, ρ is the `1-norm, κρ =
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|A| and κρ∗ = 1. As for κIC:

κIC = sup
ρ∗(z)≤1

V
[
PM⊥{QPM(PMQPM)†PMz− z}

]
= sup
‖z‖∞≤1

‖QAcAQ−1
AAz1 − z2‖∞

= ‖QAcAQ−1
AA‖∞ + 1

Recall the BG condition for λ:

4κIC

τ
ρ∗(∇`(θ∗)) < λ <

m2

2L

(
2κρ +

κρ
κIC

τ

2

)−2
τ

κρ∗κIC

.

With the IR condition, we have κIC ≤ 2 − τ . Also, since L can be of any value, the right

side of the BG condition holds. So, the following is sufficient for the BG condition:

4(2− τ)

τ
‖∇`(θ∗)‖∞ < λ.

Conclusion

Under the three conditions above, Lee et al. (2015) concluded the following results for the

solution.

1. The minimizer is unique.

2. `2 consistency: ‖θ̂ − θ∗‖2 ≤ 2
m

(
κρ + τ

4

κρ
κIC

)
λ

3. Model selection consistency : θ̂ ∈M .

In our problem (2.7), the `2 consistency is

‖β̂
LPD
− β∗‖2 ≤

2

min{0.5λmin(ΣAA), µ}

(√
|A|+ τ

4

√
|A|

‖QAcAQ−1
AA‖∞ + 1

)
λ

≤ 2

min{0.5λmin(ΣAA), µ}

(
1 +

τ

4

)√
|A|λ,

and the model selection consistency is β̂
LPD

Ac = 0.
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S2.2 Proof of Proposition 2

Proof. Let ad,max = maxj ajj, ad,min = minj ajj.

∣∣∣∣∣∣Φµ,α∗ −A
∣∣∣∣∣∣

max
=

(ε− λmin(A))
∣∣∣∣∣∣A− µI

∣∣∣∣∣∣
max

µ− λmin(A)

= (ε− λmin(A))
maxi 6=j |aij| ∨maxi |aii − µ|

µ− λmin(A)

= (ε− λmin(A))
maxi 6=j |aij| ∨ |ad,max − µ| ∨ |ad,min − µ|

µ− λmin(A)

We now denote aoff,max = maxi 6=j |aij|, Ψ(µ) =
aoff,max ∨ |ad,max − µ| ∨ |ad,min − µ|

µ− λmin(A)
, and con-

sider two disjoint cases: Case (i) (ad,max−ad,min)/2 > aoff,max and Case (ii) (ad,max−ad,min)/2 ≤

aoff,max. For each case, we divide up the value of µ into multiple cases, which is summarized

in Figure S1.

µ

ad,max+ad,min

2

Case (i)-2 Case (i)-1

µ

ad,max+ad,min

2
ad,max − aoff ad,max − aoff

Case (ii)-1Case (ii)-2Case (ii)-3Case (ii)-4

Case (i)

Case (ii)

Figure S1: Summary of cases used in the proof. Case (i) (top) and Case (ii) (bottom).

Case (i): (ad,max − ad,min)/2 > aoff,max

For this case, we consider two sub-cases based on the value of µ.
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Case (i)-1: µ > (ad,max + ad,min)/2

Under Case (i)-1, we have |ad,max − µ| < |ad,min − µ|. Moreover, note that by Case (i)

ad,max + ad,min

2
=
ad,max − ad,min

2
+ ad,min > ad,min + aoff,max

and thus µ− ad,min > aoff,max. Combining these two, we can simplify Ψ by

Ψ(µ) =
|ad,min − µ|
µ− λmin(A)

=
µ− ad,min

µ− λmin(A)
=
λmin(A)− ad,min

µ− λmin(A)
+ 1. (S7)

From the last expression, we can see that Ψ is increasing in µ because ad,min > λmin(A).

Thus, the minimum value under the case considered is

min
{

Ψ(µ) : µ > (ad,max + ad,min)/2
}
≥ (ad,max − ad,min)/2

(ad,max + ad,min)/2− λmin(A)
,

where the right-hand side is achieved by plugging-in µ =
ad,max + ad,min

2
into (S7).

Case (i)-2: µ ≤ (ad,max + ad,min)/2

Under Case (i)-2, we have |ad,max − µ| ≥ |ad,min − µ|. Moreover, note that by Case (i)

aoff,max <
ad,max − ad,min

2
= ad,max −

ad,max + ad,min

2

and thus ad,max − µ > aoff,max. Combining these two, we can simplify Ψ by

Ψ(µ) =
|ad,max − µ|
µ− λmin(A)

=
ad,max − µ
µ− λmin(A)

=
ad,max − λmin(A)

µ− λmin(A)
− 1. (S8)

The last expression tells us that Ψ is decreasing in µ because ad,max > λmin(A). Then, we

get

min
{

Ψ(µ) : µ ≤ (ad,max + ad,min)/2
}

=
(ad,max − ad,min)/2

(ad,max + ad,min)/2− λmin(A)
.

Combining the two results from Case (i)-1,2, we conclude that if (ad,max − ad,min)/2 >

aoff,max, then the minimum value of Ψ is

min
µ:µ≥ε

Ψ(µ) =
(ad,max − ad,min)/2

(ad,max + ad,min)/2− λmin(A)
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at µ = (ad,max + ad,min)/2.

Case (ii): (ad,max − ad,min)/2 ≤ aoff,max

Similarly to before, we consider sub-cases based on the value of µ.

Case (ii)-1: µ > ad,min + aoff,max

Note that ad,min + aoff,max ≥ (ad,max + ad,min)/2 under Case (ii). Then, we have |ad,max−µ| <

|ad,min − µ| = µ− ad,min. Moreover, by Case (ii)-1, |ad,min − µ| = µ− ad,min > aoff,max.

Thus, we can simplify Ψ by

Ψ(µ) =
|ad,min − µ|
µ− λmin(A)

=
µ− ad,min

µ− λmin(A)
=
λmin(A)− ad,min

µ− λmin(A)
+ 1. (S9)

Case (ii)-2: (ad,max + ad,min)/2 < µ ≤ ad,min + aoff,max

In Case (ii)-2, we still have |ad,max − µ| < |ad,min − µ| = µ − ad,min as in Case (ii)-1, but

|ad,min − µ| = µ− ad,min ≥ aoff,max holds.

Case (ii)-3: ad,max − aoff,max < µ ≤ (ad,max + ad,min)/2

From µ ≤ (ad,max + ad,min)/2, we have |ad,max − µ| ≥ |ad,min − µ|. Moreover, since ad,max −

aoff,max < µ, |ad,max − µ| = ad,max − µ < aoff,max.

Case (ii)-4: µ ≤ ad,max − aoff,max

Note that ad,max− aoff,max ≤ (ad,max + ad,min)/2 under Case (ii). Thus, we have |ad,max−µ| ≥

|ad,min − µ|. Since µ ≤ ad,max − aoff,max, |ad,max − µ| = ad,max − µ ≥ aoff,max.
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Combining the four cases, we can summarize that

Ψ(µ) =



µ− ad,min

µ− λmin(A)
, for Case (ii)-1

aoff,max

µ− λmin(A)
, for Case (ii)-2,3

ad,max − µ
µ− λmin(A)

, for Case (ii)-4

We note that this function decreases until µ < ad,min +aoff,max and increases after that point,

which implies µ = ad,min + aoff,max give the minimum value

min
µ:µ≥ε

Ψ(µ) =
aoff,max

ad,min + aoff,max − λmin(A)
.

S3 Proof of the main theorems

S3.1 Proof of Theorem 1

The proof of Theorem 1 is based on Theorem S2, S3, which are stated below.

Theorem S2. Let Assumption 1, 2, 3, 4 hold. Let us focus on the case of the estimator Σ̂
IPW

such that Σ̂
IPW

AA is non-singular and the smallest eigenvalue satisfies λmin(Σ̂
IPW

) ≤ 0. For any

µ > ε, we construct the LPD estimator Φµ,α∗(Σ̂
IPW

) with α∗ = (µ − ε)/(µ − λmin(Σ̂
IPW

)).

Then, the LPD estimator satisfies the irrepresentability condition for some constant τ̃ ∈

(0, 1), if the events hold true∥∥∥Σ̂IPW

AA −ΣAA

∥∥∥
∞

+
∥∥∥Σ̂IPW

AcA −ΣAcA

∥∥∥
∞

+
µ

µ− ε

∥∥∥Σ̂IPW
−Σ

∥∥∥
2
≤ τ∥∥Σ−1

AA
∥∥
∞
, (S10)

The proof is pended until Supplementary Materials S3.2. The other case when the smallest

eigenvalue is positive is addressed by the following theorem.
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Theorem S3. Let Assumption 1, 2, 3, 4(b) hold where τ ∈ (0, 1) is the constant from

Assumption 4(b). Let us focus on the case of the estimator Σ̂
IPW

such that Σ̂
IPW

AA is non-

singular and the smallest eigenvalue satisfies λmin(Σ̂
IPW

) > 0. Then, the LPD estimator

Φµ,α∗(Σ̂
IPW

), which is reduced to Σ̂
IPW

with α∗ = 1, satisfies the irrepresentability condition

for some constant τ̃ ∈ (0, 1), if the event holds true

∥∥∥Σ̂IPW

AA −ΣAA

∥∥∥
∞

+
∥∥∥Σ̂IPW

AcA −ΣAcA

∥∥∥
∞
≤ τ/

∥∥Σ−1
AA
∥∥
∞ . (S11)

The proof is pended until Supplementary Materials S3.4.

Proof of Theorem 1. We calculate the probability of the event E that the LPD estimator

satisfies the irrepresentability condition as follows. Let the event A = {λmin(Σ̂
IPW

) > 0}.

P (E) = P
(
E
∣∣A)P (A) + P

(
E
∣∣Ac)P (Ac)

≥ P
(
(S11) holds

∣∣A)P (A) + P
(
(S10) holds

∣∣Ac)P (Ac) (∵ Theorem S2, S3)

≥ P
(
(S10) holds

∣∣A)P (A) + P
(
(S10) holds

∣∣Ac)P (Ac) (∵ (S10)⇒ (S11))

= P ((S10) holds) .

Note that for Σ̃ = Σ̂
IPW
−Σ, we have

∥∥∥Σ̃AA∥∥∥
∞

+
∥∥∥Σ̃AcA∥∥∥

∞
≤ 2

∥∥∥Σ̃∥∥∥
∞,A

= 2

∥∥∥∥∥∥∥∥Σ̃
I 0

0 0


∥∥∥∥∥∥∥∥
∞

≤ 2
∥∥∥Σ̃∥∥∥

∞
≤ 2

∥∥∥Σ̃∥∥∥
2
.

Then, using µ/(µ− ε) ≤ 2 for µ ≥ 2ε, a sufficient condition for (S10) is

∥∥∥Σ̃∥∥∥
2
≤ τ

4
∥∥Σ−1
AA
∥∥
∞
.

Theorem S1 states that for any u > 0, if n > π
(4)
max(u + 1)3 log3(p ∨ n), then it holds with

probability at least 1− 3/pu

||Σ̂
IPW
−Σ||2 ≤ Ctr(Σ) max{(Kx)2, 1}

√
u+ 1

√
π

(4)
max log p

n
.
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Hence, if the following condition is satisfied

Ctr(Σ) max{(Kx)2, 1}
√
u+ 1

√
π

(4)
max log p

n
≤ τ

4
∥∥Σ−1
AA
∥∥
∞
,

then we can guarantee P ((S10) holds) ≥ 1 − 3/pu, where the above gives another sample

size condition:

n/(π(4)
max log p) ≥ 4C

{
tr(Σ) max{(Kx)2, 1}

√
u+ 1

τ/
∥∥Σ−1
AA
∥∥
∞

}2

.

Finally, we deal with (C3) of Proposition 1. By Weyl’s inequality, the condition is

satisfied if ||Σ̂
IPW

AA − ΣAA||2 ≤ 0.5λmin(ΣAA) holds. Following the proof of Theorem 1, we

can have a similar probabilistic argument for the event {||Σ̂
IPW

AA −ΣAA||2 ≤ 0.5λmin(ΣAA)}.

That is, ||Σ̂
IPW

AA −ΣAA||2 ≤ 0.5λmin(ΣAA) with probability greater than 1− 3/pu for u > 0

if the sample size satisfies

n

π
(4)
max,A log |A|

≥ c

{
tr(ΣAA) max{(Kx)2, 1}

√
u+ 1

1/λmin(ΣAA)

}2

, n > c π
(4)
max,A(u+ 1)3 log3(|A| ∨ n),

for some c > 0. Here, π
(4)
max,A = maxk1,k2,`1,`2∈A π

xx
k1k2`1`2

/(πxxk1`1π
xx
k2`2

).

S3.2 Proof of Theorem S2

It should be noted that the proof of the theorem only depends on the distances between

Σ̂
IPW

and Σ (or their block matrices), but not any other characteristic of the IPW estimate

or the population covariance matrix.

We define the matrix norms that appear in the following proof.

η1 =
∥∥Σ−1
AA
∥∥
∞ , η2 =

∥∥ΣAcAΣ−1
AA
∥∥
∞

δ1 =
∥∥∥Σ̂IPW

AA −ΣAA

∥∥∥
∞
, δ2 =

∥∥∥Σ̂IPW

AcA −ΣAcA

∥∥∥
∞
, δ3 =

∥∥∥Σ̂IPW
−Σ

∥∥∥
2
.

We first introduce the lemma to ease calculation.
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Lemma S1. Let Σ̂
LPD

= Φµ,α(Σ̂
IPW

). Assume

η1δ1 < 1 and
(1− α)µ

α
‖
(
Σ̂

IPW

AA
)−1‖∞ < 1. (S12)

Then, we have ∥∥∥Σ̂LPD

AcA
(
Σ̂

LPD

AA
)−1
∥∥∥
∞
≤ η1δ2 + η2

1− η1δ1 − α−1(1− α)µη1

.

The proof is given in Supplementary Materials S3.3. Using Lemma S1 and the irrpresentabil-

ity condition for Σ (i.e. η2 < 1− τ) together, we get∥∥∥Σ̂LPD

AcA
(
Σ̂

LPD

AA
)−1
∥∥∥
∞
<

η1δ2 + 1− τ
1− η1δ1 − α−1(1− α)µη1

. (S13)

It remains to claim the right-hand side of the above is strictly less than 1, which is equivalent

to show

δ1 + δ2 < τ/η1 − α−1(1− α)µ.

Plugging-in α∗ = (µ− ε)/(µ− λmin(Σ̂
IPW

)) and using λmin(Σ̂
IPW

) ≥ −δ3 + λmin(Σ) derived

by Weyl’s inequality, we get a sufficient condition for (S13)

δ1 + δ2 +
µδ3

µ− ε
<

τ

η1

+
µ(λmin(ΣAA)− ε)

µ− ε
. (S14)

Remark that the right-hand side term is greater than 0 if min{µ, λmin(ΣAA)} > ε.

We remain to show (S12) holds with high probability when plugging-in α∗ = (µ−ε)/(µ−

λmin(Σ̂
IPW

)), but instead, we will calculate the probability of another sufficient condition

(S15) described in the following lemma. One can easily check that (S15) is implied by (S14)

because µ/(µ− ε) > 1 and τ < 1, which concludes the proof.

Lemma S2. Consider the class of covariance matrices such that 1/η1− ε+ λmin(ΣAA) > 0.

Let us focus on the case of the estimator Σ̂
IPW

with λmin(Σ̂
IPW

) < 0. If we choose µ > ε,

then

δ1 +
µδ3

µ− ε
≤ 1/η1 +

µ(λmin(ΣAA)− ε)
µ− ε

, (S15)



Seongoh Park AND Seong Jin Lee AND Nguyen Thi Hai Yen AND Nguyen Phuoc Long AND Johan Lim

implies (S12).

The proof of the lemma is given in Supplementary Materials S3.3.

S3.3 Proof of lemmas used in Theorem S2

Proof of Lemma S1. We introduce three inequalities and suspend their proofs.

‖Σ̂
LPD

AcA
(
Σ̂

LPD

AA
)−1‖∞ ≤

‖Σ̂
IPW

AcA
(
Σ̂

IPW

AA
)−1‖∞

1− α−1(1− α)µ‖
(
Σ̂

IPW

AA
)−1‖∞

, (S16)

if
(1− α)µ

α
‖
(
Σ̂

IPW

AA
)−1‖∞ < 1,

‖Σ̂
IPW

AcA
(
Σ̂

IPW

AA
)−1 −ΣAcAΣ−1

AA‖∞ ≤ η1 (η2δ1 + δ2)

1− η1δ1

, if η1δ1 < 1, (S17)

‖
(
Σ̂

IPW

AA
)−1‖∞ ≤ η1

1− η1δ1

, if η1δ1 < 1, (S18)

Combining the triangular inequality with (S16), we get

‖Σ̂
LPD

AcA
(
Σ̂

LPD

AA
)−1‖∞ ≤

‖Σ̂
IPW

AcA
(
Σ̂

IPW

AA
)−1 −ΣAcAΣ−1

AA‖∞ + ‖ΣAcAΣ−1
AA‖∞

1− α−1(1− α)µ‖
(
Σ̂

IPW

AA
)−1‖∞

.

This completes the proof if (S17), (S18) are combined with the upper bound.

We now prove the above inequalities. The proofs of (S17) and (S18) are from that of

Lemma A2 by Mai et al. (2012), but we show them here for completeness. Using the basic

property of operator norms,

‖
(
Σ̂

IPW

AA
)−1 −Σ−1

AA‖∞ = ‖Σ−1
AA(Σ̂

IPW

AA −ΣAA)
(
Σ̂

IPW

AA
)−1‖∞

≤ ‖Σ−1
AA‖∞ · ‖Σ̂

IPW

AA −ΣAA‖∞ · ‖
(
Σ̂

IPW

AA
)−1‖∞

≤ ‖Σ−1
AA‖∞ × ‖Σ̂

IPW

AA −ΣAA‖∞

×
(
‖
(
Σ̂

IPW

AA
)−1 −Σ−1

AA‖∞ + ‖Σ−1
AA‖∞

)
.

Arranging the inequality, we get

‖
(
Σ̂

IPW

AA
)−1 −Σ−1

AA‖∞ ≤
‖Σ−1
AA‖2

∞‖Σ̂
IPW

AA −ΣAA‖∞
1− ‖Σ−1

AA‖∞‖Σ̂
IPW

AA −ΣAA‖∞
,
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since ‖Σ−1
AA‖∞‖Σ̂

IPW

AA −ΣAA‖∞ < 1 by the assumption. Then, by the triangular inequality,

‖
(
Σ̂

IPW

AA
)−1‖∞ ≤ ‖

(
Σ̂

IPW

AA
)−1 −Σ−1

AA‖∞ + ‖Σ−1
AA‖∞

≤ ‖Σ−1
AA‖2

∞‖Σ̂
IPW

AA −ΣAA‖∞
1− ‖Σ−1

AA‖∞‖Σ̂
IPW

AA −ΣAA‖∞
+ ‖Σ−1

AA‖∞,
(S19)

which achieves (S18). Next, we also exploit the basic properties of norms to get

‖Σ̂
IPW

AcA
(
Σ̂

IPW

AA
)−1 −ΣAcAΣ−1

AA‖∞

= ‖(Σ̂
IPW

AcA −ΣAcAΣ−1
AAΣ̂

IPW

AA )
(
Σ̂

IPW

AA
)−1‖∞

= ‖(Σ̂
IPW

AcA −ΣAcA + ΣAcAΣ−1
AAΣAA −ΣAcAΣ−1

AAΣ̂
IPW

AA )
(
Σ̂

IPW

AA
)−1‖∞

≤ ‖Σ̂
IPW

AcA −ΣAcA + ΣAcAΣ−1
AA(ΣAA − Σ̂

IPW

AA )‖∞‖(
(
Σ̂

IPW

AA
)−1‖∞

≤
(
‖Σ̂

IPW

AcA −ΣAcA‖∞ + ‖ΣAcAΣ−1
AA‖∞‖Σ̂

IPW

AA −ΣAA‖∞
)
‖
(
Σ̂

IPW

AA
)−1‖∞.

By using (S18) in the last inequality, we obtain (S17). To prove (S16), we observe

‖Σ̂
LPD

AcA
(
Σ̂

LPD

AA
)−1‖∞ = ‖αΣ̂

IPW

AcA(αΣ̂
IPW

AA + (1− α)µI)−1‖∞

= ‖Σ̂
IPW

AcA
(
Σ̂

IPW

AA
)−1

(I + α−1(1− α)µ
(
Σ̂

IPW

AA
)−1

)−1‖∞

≤ ‖Σ̂
IPW

AcA
(
Σ̂

IPW

AA
)−1‖∞‖(I + α−1(1− α)µ

(
Σ̂

IPW

AA
)−1

)−1‖∞

≤ ‖Σ̂
IPW

AcA
(
Σ̂

IPW

AA
)−1‖∞

(
1− α−1(1− α)µ‖

(
Σ̂

IPW

AA
)−1‖∞

)−1

where the last inequality depends on that for any operator norm ‖ · ‖ and a matrix U ,

‖(I +U)−1‖ ≤ 1

1− ‖U‖
, if ‖U‖ < 1.

To use it, we need the following condition

α−1(1− α)µ‖
(
Σ̂

IPW

AA
)−1‖∞ < 1.
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Proof of Lemma S2. Putting α∗ = (µ− ε)/(µ− λmin(Σ̂
IPW

)), we want to show

(1− α∗)µ
α∗

‖
(
Σ̂

IPW

AA
)−1‖∞ =

µ

µ− ε
(ε− λmin(Σ̂

IPW
))‖
(
Σ̂

IPW

AA
)−1‖∞ < 1. (S20)

Remark that by Weyl’s inequality

λmin(Σ̂
IPW

) ≥ −
∥∥∥Σ̂IPW

−Σ
∥∥∥

2
+ λmin(Σ),

and recall (S19) ∥∥∥(Σ̂
IPW

AA )−1
∥∥∥
∞
≤ η1

1− η1δ1

.

Some basic algebra with these two leads to a sufficient condition of (S20):

∥∥∥Σ̂IPW

AA −ΣAA

∥∥∥
∞

+
µ
∥∥∥Σ̂IPW

−Σ
∥∥∥

2

µ− ε
≤ 1/

∥∥Σ−1
AA
∥∥
∞ +

µ(λmin(Σ)− ε)
µ− ε

.

S3.4 Proof of Theorem S3

Proof. If the smallest eigenvalue of the IPW estimator is positive, the LPD estimator of it

is the IPW estimator, i.e. α∗ = 1. By following the same proof of Lemma S1, we have∥∥∥Σ̂IPW

AcA
(
Σ̂

IPW

AA
)−1
∥∥∥
∞
≤ η1δ2 + η2

1− η1δ1

, if η1δ1 < 1.

where we use the same definitions of the matrix norms:

η1 =
∥∥Σ−1
AA
∥∥
∞ , η2 =

∥∥ΣAcAΣ−1
AA
∥∥
∞

δ1 =
∥∥∥Σ̂IPW

AA −ΣAA

∥∥∥
∞
, δ2 =

∥∥∥Σ̂IPW

AcA −ΣAcA

∥∥∥
∞
.

Using η2 < 1− τ , it is sufficient for the irrepresentability condition of Σ̂
IPW

to show

η1δ2 + 1− τ
1− η1δ1

< 1.

The above is equivalent to δ1 + δ2 < τ/η1.
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S3.5 Proof of Theorem 2

Proof. Using yi = x>i β
∗ + εi in calculating ρ̂IPW, we can obtain

∇`(β∗; Σ̂
LPD

, ρ̂IPW) = Σ̂
LPD
β∗ − ρ̂IPW

=
(
Σ̂

LPD
− V

)
β∗ −w

where V ∈ Rp×p and w ∈ Rp have its element respectively by

vjk = n−1
n∑
i=1

xijxikδ
x
ijδ

y
i /π

xy
j , 1 ≤ j, k ≤ p,

wj = n−1
n∑
i=1

xijεiδ
x
ijδ

y
i /π

xy
j , 1 ≤ j ≤ p

where πxyj = P(δy1 = δx1j = 1). Hence, the norm of the gradient is

‖∇`(β∗; Σ̂
LPD

, ρ̂IPW)‖∞ ≤
∥∥∥(Σ̂

LPD
− V

)
β∗
∥∥∥
∞

+ ‖w‖∞

= max
1≤j≤p

∑
k∈A

∣∣∣∣(Σ̂
LPD
− V

)
jk

∣∣∣∣ |β∗k|+ ‖w‖∞
≤ ‖Σ̂

LPD
− V ‖∞,A β∗max + ‖w‖∞

where the first inequality is from the triangular inequality, the next equality holds because

β∗k = 0 for k ∈ Ac, and the last inequality is obvious from definitions β∗max = max
1≤j≤p

|β∗j | and

‖B‖∞,A = max
1≤j≤p

∑
k∈A
|bjk| for any matrix B = (bjk)p×p. Note that ‖B‖∞,A is a semi-norm

on Rp×p given a non-empty set A (i.e. ‖B‖∞,A = 0 does not imply B = 0). Finally, using

Σ̂
LPD
−V = α∗(Σ̂

IPW
−Σ) + (1−α∗)(µI−Σ)− (V −Σ) and the triangular inequality, we

get

‖∇`(β∗; Σ̂
LPD

, ρ̂IPW)‖∞ ≤
(
‖Σ̂

IPW
−Σ‖∞,A + (1− α∗)‖µI−Σ‖∞,A

+‖Σ− V ‖∞,A
)
β∗max + ‖w‖∞.

(S21)

We use Lemma 1 of Park et al. (2023) to the terms above except the second. Let us

define a function f by

f(n, p,B) = |B|
√

2 log p+ log |B|
2n

, B ⊂ [p],



Seongoh Park AND Seong Jin Lee AND Nguyen Thi Hai Yen AND Nguyen Phuoc Long AND Johan Lim

σmax = maxjj σjj, and probabilities πxxmin,A = min
1≤j≤p,k∈A

πxxjk , π
xx
min = min

1≤j,k≤p
πxxjk , π

xy
min = min

1≤j≤p
πxyj .

Then, we can easily get the followings: for some numerical constants c1, c2, c3, C1, C2, C3 > 0

such that

Pδ,x

(
‖Σ̂

IPW
−Σ‖∞,A ≥

C1(Kx)2σmax√
πxxmin,A

f(n, p,A)

)
≤ 2/p, (S22)

if
n

2 log p+ log |A|
>

1

c1πxxmin,A
,

Pδ,x

(
‖V −Σ‖∞,A ≥

C2(Kx)2σmax√
πxymin

f(n, p,A)

)
≤ 2/p, (S23)

if
n

2 log p+ log |A|
>

1

c2π
xy
min

, and

Pδ,x

(
‖w‖∞ ≥

C3
√
σmaxσεεK

xKε√
πxymin

f(n, p, [1])

)
≤ 2/p, (S24)

if
n

3 log p
>

1

c3π
xy
min

. Moreover, we get the concentration of the second term: for some

c4, C4 > 0

Pδ,x

(
(1− α∗)‖µI−Σ‖∞,A ≥ C4tr(Σ) max{(Kx)2, 1}

×
(

1 +
‖Σ‖∞,A

µ

)√
π

(4)
maxf(n, p, [1])

)
≤ 3/p,

(S25)

if n > c4π
(4)
max log3(p ∨ n). The proof of (S25) is pended until the end of the proof.

Combining these results, it holds with probability greater than 1− 9/p

‖∇`(β∗; Σ̂
LPD

, ρ̂IPW)‖∞ ≤ L · f(n, p,A),

if n > cmax
{

log p/πxymin, π
(4)
max log3(p ∨ n)

}
for some numerical constant c > 0. The factor

L > 0 is a function of parameters given by

L ∝ β∗max max{(Kx)2, 1}
√
π

(4)
maxtr(Σ)

(
1 +
‖Σ‖∞,A

µ

)
+

max
{√

σmaxσεεK
xKε, σmax(Kx)2

}
√
πxymin

.
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To derive the constant L, we used π
(4)
max ≥ 1/πxxmin,A. Note that if λmin(Σ̂

IPW
) > 0, the second

term in (S21) no longer exists since α∗ = 0. Then, we only need to combine (S22), (S23),

(S24), which leads to another L′ > 0 smaller than L. The constant given in the statement

of the theorem is deriven considering it.

Now, we prove (S25), which depends on the following lemma.

Lemma S3. Assume ε is smaller than the smallest eigenvalue of Σ. For α∗ = I(λmin(Σ̂
IPW

) >

0) + (µ− ε)/(µ− λmin(Σ̂
IPW

))I(λmin(Σ̂
IPW

) ≤ 0), we have

1− α∗ ≤ ‖Σ̂
IPW
−Σ‖2/µ

Proof. By definition of α∗, we have

1− α∗ = (ε− λmin(Σ̂
IPW

))/(µ− λmin(Σ̂
IPW

))I(λmin(Σ̂
IPW

) ≤ 0).

Now, we observe

ε− λmin(Σ̂
IPW

)

µ− λmin(Σ̂
IPW

)
I(λmin(Σ̂

IPW
) ≤ 0) ≤ (ε− λmin(Σ̂

IPW
))+

µ

≤ (λmin(Σ)− λmin(Σ̂
IPW

))+

µ

≤ ‖Σ̂
IPW
−Σ‖2

µ

where we use Weyl’s inequality in the last inequality.

By applying Lemma S3, we get

(1−α∗)‖µI−Σ‖∞,A ≤ ‖Σ̂
IPW
−Σ‖2

‖µI−Σ‖∞,A
µ

≤ ‖Σ̂
IPW
−Σ‖2

(
1 +
‖Σ‖∞,A

µ

)
, (S26)

From Theorem S1, if the sample size condition n > π
(4)
max(α + 1)3 log3(p ∨ n) is satisfied, it

holds with probability at least 1− 3/pα that

||Σ̂
IPW
−Σ||2 ≤ Ctr(Σ) max{(Kx)2, 1}

√
π

(4)
max(α + 1) log p

n
, (S27)
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where C > 0 is some numerical constant. This concludes that if n > 16π
(4)
max log3(p ∨ n)

Pδ,x

(
(1− α∗)‖µI−Σ‖∞,A ≥ Ctr(Σ) max{(Kx)2, 1}

×
(

1 +
‖Σ‖∞,A

µ

)√
2π

(4)
max log p
n

)
≤ 3/p.

S4 Additional details/results of simulation study

S4.1 The corrected cross-validation

For the cross-validation, we split data into K folds. Let β̂k(λ) be the solution of any penalized

regression estimated with tuning parameter at λ and with all samples but in the k-th fold.

Given a set Λ of candidates, we aim to find the best one that minimizes the prediction error

on the k-th fold:

λ̂opt = arg min
λ∈Λ

K∑
k=1

(β̂k(λ))>(Σ̂
IPW

k )+β̂k(λ)− 2ρ̂kβ̂k(λ).

Here, we define

(Σ̂
IPW

k )+ =


µαΣ̂

IPW

k + (1− α)I, for cases of LPD, NCL

min
Σ�0

∥∥∥Σ̂IPW

k −Σ
∥∥∥

max
, for cases of CoCo,

and Σ̂
IPW

k is the IPW estimate calculated over samples in the k-th fold, and ρ̂k is similarly

defined.

S4.2 Method comparison

We focus on comparing a list of variants of LPD. For spectral norm and `∞-norm, any value

over some lower bound, say µlb, will do, so we suggest trying k · µlwr, k = 1, 3, 5, to see how
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much their performances are different. Considering these variants, we name our proposals by

LPD-norm-k where norm ∈ {S,F, I,E} and k ∈ {1, 3, 5}, resulting 8 estimators (LPD-S-1,

LPD-S-3, LPD-S-5, LPD-F-1, LPD-I-1, LPD-I-3, LPD-I-5, LPD-E-1).

p = 200, s = 0.05

PE MSE pAUC F1 TP FP

TL 1.915 (0.609) 3.656 (1.145) 0.953 (0.031) 0.439 (0.071) 9.680 (0.513) 25.560 (7.484)

NL 3.694 (1.034) 6.160 (1.638) 0.879 (0.063) 0.396 (0.069) 8.620 (1.086) 25.720 (7.420)

CoCo 3.385 (0.927) 6.441 (1.772) 0.830 (0.065) 0.400 (0.076) 8.440 (1.163) 24.460 (6.102)

NCL 5.158 (1.222) 6.292 (1.601) 0.508 (0.075) 0.453 (0.093) 8.140 (1.309) 19.060 (10.442)

LPD-E-1 3.290 (0.840) 6.308 (1.659) 0.879 (0.054) 0.369 (0.070) 8.780 (0.996) 29.840 (7.313)

LPD-F-1 3.608 (0.927) 6.534 (1.708) 0.881 (0.053) 0.350 (0.063) 8.880 (0.982) 32.920 (7.948)

LPD-L-1 3.311 (0.867) 6.262 (1.640) 0.879 (0.053) 0.370 (0.066) 8.800 (1.050) 29.640 (7.551)

LPD-L-3 3.242 (0.844) 6.131 (1.548) 0.878 (0.056) 0.377 (0.062) 8.780 (1.036) 28.320 (5.223)

LPD-L-5 3.260 (0.806) 6.182 (1.515) 0.880 (0.054) 0.376 (0.066) 8.820 (1.004) 28.780 (6.075)

LPD-S-1 3.256 (0.828) 6.181 (1.572) 0.879 (0.055) 0.376 (0.067) 8.780 (0.996) 28.680 (6.149)

LPD-S-3 3.251 (0.817) 6.165 (1.530) 0.878 (0.054) 0.376 (0.064) 8.800 (1.050) 28.680 (5.527)

LPD-S-5 3.300 (0.839) 6.282 (1.578) 0.878 (0.055) 0.363 (0.067) 8.780 (0.996) 30.560 (7.654)

p = 500, s = 0.05

PE MSE pAUC F1 TP FP

TL 6.039 (1.193) 11.825 (2.347) 0.809 (0.048) 0.420 (0.050) 22.980 (1.286) 62.980 (16.109)

NL 17.374 (4.272) 27.698 (3.981) 0.535 (0.081) 0.278 (0.055) 12.240 (2.966) 50.440 (9.311)

CoCo 16.370 (2.833) 31.179 (4.848) 0.596 (0.046) 0.276 (0.051) 11.880 (2.847) 49.060 (9.421)

NCL 28.492 (7.734) 27.538 (3.863) 0.504 (0.061) 0.212 (0.055) 14.560 (5.035) 106.460 (55.869)

LPD-E-1 18.634 (3.463) 29.315 (4.630) 0.703 (0.057) 0.247 (0.044) 14.760 (2.959) 80.900 (19.125)

LPD-F-1 26.511 (6.173) 31.870 (5.696) 0.702 (0.054) 0.238 (0.045) 14.920 (2.687) 88.020 (25.206)

LPD-L-1 14.017 (2.209) 26.636 (3.549) 0.703 (0.056) 0.250 (0.045) 14.580 (2.829) 78.020 (17.977)

LPD-L-3 14.030 (2.391) 26.661 (4.044) 0.704 (0.054) 0.251 (0.044) 14.560 (2.865) 77.400 (17.331)

LPD-L-5 13.869 (2.186) 26.393 (3.570) 0.704 (0.055) 0.252 (0.043) 14.540 (2.887) 76.380 (14.380)

LPD-S-1 13.923 (2.078) 26.499 (3.362) 0.704 (0.055) 0.251 (0.042) 14.440 (2.786) 76.700 (17.765)

LPD-S-3 13.853 (2.097) 26.377 (3.434) 0.703 (0.053) 0.253 (0.043) 14.520 (2.880) 75.660 (15.904)

LPD-S-5 14.129 (2.182) 26.761 (3.763) 0.703 (0.055) 0.251 (0.047) 14.600 (2.871) 78.200 (21.832)

Table S1: Method comparison for p = 200, 500 and s = 0.05, 0.1. Each performance measures are averaged

over R = 100 repetitions (standard deviation in parenthesis).
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p = 200, s = 0.1

PE MSE pAUC F1 TP FP

TL 3.220 (0.763) 6.251 (1.483) 0.916 (0.034) 0.532 (0.066) 19.600 (0.606) 35.220 (9.790)

NL 11.020 (3.241) 15.799 (3.181) 0.755 (0.061) 0.434 (0.059) 14.240 (2.273) 31.440 (5.444)

CoCo 9.878 (2.507) 17.890 (4.268) 0.715 (0.053) 0.431 (0.068) 13.640 (2.145) 29.980 (7.150)

NCL 17.212 (3.866) 17.602 (2.613) 0.614 (0.045) 0.386 (0.100) 14.280 (2.241) 46.520 (27.309)

LPD-E-1 9.085 (1.956) 17.196 (3.661) 0.765 (0.054) 0.406 (0.056) 14.880 (2.086) 38.960 (9.167)

LPD-F-1 10.020 (2.320) 17.907 (3.941) 0.765 (0.054) 0.394 (0.054) 14.900 (2.082) 41.260 (8.689)

LPD-L-1 8.914 (2.040) 16.123 (3.352) 0.764 (0.054) 0.414 (0.056) 14.700 (2.053) 36.660 (7.176)

LPD-L-3 8.868 (1.969) 16.161 (3.436) 0.768 (0.054) 0.415 (0.055) 14.780 (2.122) 36.660 (6.394)

LPD-L-5 8.916 (2.131) 16.137 (3.395) 0.765 (0.055) 0.414 (0.056) 14.780 (2.141) 36.800 (6.958)

LPD-S-1 8.819 (2.044) 16.157 (3.432) 0.765 (0.055) 0.413 (0.052) 14.740 (2.058) 36.780 (6.538)

LPD-S-3 8.840 (2.057) 16.113 (3.424) 0.764 (0.053) 0.414 (0.056) 14.700 (2.112) 36.500 (6.519)

LPD-S-5 9.045 (2.218) 16.381 (3.655) 0.764 (0.056) 0.411 (0.059) 14.760 (2.036) 37.660 (8.277)

p = 500, s = 0.1

PE MSE pAUC F1 TP FP

TL 14.102 (2.010) 27.752 (4.021) 0.684 (0.045) 0.474 (0.048) 43.740 (2.284) 92.480 (21.073)

NL 48.511 (11.754) 75.830 (9.527) 0.392 (0.062) 0.272 (0.056) 16.840 (3.966) 56.320 (7.377)

CoCo 47.069 (8.296) 90.279 (15.734) 0.547 (0.032) 0.254 (0.048) 15.180 (3.336) 53.820 (8.075)

NCL 76.743 (26.682) 64.362 (9.807) 0.492 (0.038) 0.245 (0.038) 25.380 (7.545) 130.100 (42.421)

LPD-E-1 59.310 (12.606) 81.429 (11.177) 0.606 (0.045) 0.260 (0.047) 20.820 (4.341) 89.180 (17.235)

LPD-F-1 93.961 (23.197) 91.393 (14.167) 0.606 (0.044) 0.252 (0.044) 21.160 (4.560) 96.360 (18.729)

LPD-L-1 37.572 (5.268) 72.016 (9.589) 0.601 (0.044) 0.261 (0.044) 20.900 (4.273) 89.580 (15.831)

LPD-L-3 37.343 (5.633) 71.308 (10.009) 0.606 (0.043) 0.263 (0.047) 20.620 (4.125) 86.680 (17.115)

LPD-L-5 37.214 (5.183) 71.073 (9.155) 0.606 (0.044) 0.263 (0.047) 20.800 (4.536) 87.240 (14.981)

LPD-S-1 37.091 (4.728) 70.722 (8.250) 0.603 (0.042) 0.264 (0.046) 20.600 (4.267) 85.180 (16.184)

LPD-S-3 36.894 (4.797) 70.567 (8.786) 0.604 (0.045) 0.264 (0.049) 20.600 (4.290) 85.440 (14.098)

LPD-S-5 36.937 (5.200) 70.630 (9.674) 0.605 (0.046) 0.264 (0.048) 20.420 (4.121) 84.700 (15.538)

Table S2: Method comparison for p = 200, 500 and s = 0.05, 0.1. Each performance measures are averaged

over R = 100 repetitions (standard deviation in parenthesis).

Among four matrix norms considered here, `∞-norm (LPD-L) and spectral norm (LPD-

S) perform best, while different µ values do not result in any significant changes in practice.

The other two norms do not achieve comparative results when the dimension increases to

p = 500.

S4.3 Missing rate and missing mechanism

We try different missing rates and mechanisms to investigate the robustness of each method

under other scenarios of missing data generation. This is similar to the idea of sensitivity
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analysis in missing data literature (Kolar and Xing, 2012; van Buuren, 2018). We generate

missing values by the three mechanisms known as missing completely at random (MCAR),

missing at random (MAR), and missing not at random (MNAR). Following Kolar and Xing

(2012), every third variable (j = 1, . . . , bp/3c) is subject to missing; for MAR case, δxi,3j = 0

if Xi,3j−2 < Φ−1(1 − θ) and for MNAR case, δxi,3j = 0 if Xi,3j < Φ−1(1 − θ). Here, we fix

s = 0.05 and p = 200.

Table S3 confirms that a higher rate of missing in data can lead to worse performance.

Also, the performance gets poorer as the missing mechanism changes from MCAR to MAR,

MNAR, but interestingly, the results on relative performance are not much different.
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θ = 0.9, MAR

PE MSE pAUC F1 TP FP

TL 1.860 (0.536) 3.558 (1.059) 0.948 (0.039) 0.455 (0.063) 9.700 (0.544) 23.640 (5.784)

NL 3.654 (1.052) 5.989 (1.528) 0.866 (0.067) 0.389 (0.076) 8.500 (1.074) 26.220 (7.731)

CoCo 3.229 (0.861) 6.179 (1.627) 0.832 (0.064) 0.387 (0.084) 8.340 (1.171) 25.980 (8.482)

NCL 4.823 (1.126) 6.149 (1.613) 0.548 (0.091) 0.428 (0.113) 8.080 (1.275) 23.260 (17.444)

LPD-E-1 3.316 (0.907) 6.227 (1.672) 0.879 (0.058) 0.346 (0.071) 8.680 (0.935) 32.940 (9.182)

LPD-F-1 3.451 (0.937) 6.240 (1.652) 0.877 (0.059) 0.343 (0.065) 8.740 (0.944) 33.660 (9.164)

LPD-L-1 3.147 (0.836) 5.934 (1.482) 0.876 (0.060) 0.371 (0.065) 8.520 (1.054) 28.240 (6.962)

LPD-S-1 3.094 (0.815) 5.893 (1.484) 0.877 (0.060) 0.366 (0.065) 8.500 (1.015) 28.760 (6.133)

θ = 0.7, MAR

PE MSE pAUC F1 TP FP

TL 1.828 (0.490) 3.512 (0.991) 0.956 (0.037) 0.438 (0.076) 9.740 (0.600) 26.040 (7.982)

NL 9.796 (2.676) 8.887 (1.463) 0.718 (0.100) 0.290 (0.073) 5.600 (1.400) 24.060 (9.646)

CoCo 6.027 (1.422) 10.851 (2.433) 0.666 (0.096) 0.303 (0.075) 5.480 (1.344) 21.080 (5.606)

NCL 6.813 (1.513) 10.039 (1.974) 0.466 (0.081) 0.312 (0.091) 4.980 (1.363) 17.500 (5.694)

LPD-E-1 7.048 (3.141) 11.014 (3.025) 0.743 (0.093) 0.253 (0.060) 6.400 (1.539) 34.400 (7.910)

LPD-F-1 21.120 (34.859) 14.843 (8.075) 0.746 (0.096) 0.235 (0.078) 6.140 (2.204) 36.020 (9.079)

LPD-L-1 5.344 (1.177) 9.132 (1.592) 0.744 (0.096) 0.285 (0.061) 6.540 (1.216) 29.960 (5.577)

LPD-S-1 5.238 (1.050) 9.163 (1.526) 0.742 (0.093) 0.283 (0.060) 6.520 (1.233) 30.180 (6.521)

θ = 0.9, MNAR

PE MSE pAUC F1 TP FP

TL 1.937 (0.558) 3.697 (1.087) 0.951 (0.033) 0.430 (0.073) 9.700 (0.463) 26.700 (8.122)

NL 3.952 (1.097) 6.682 (1.552) 0.857 (0.063) 0.369 (0.077) 8.080 (1.412) 26.500 (7.492)

CoCo 3.698 (1.010) 7.055 (1.988) 0.817 (0.066) 0.361 (0.075) 8.060 (1.219) 27.820 (8.578)

NCL 5.062 (1.149) 6.917 (1.581) 0.584 (0.070) 0.372 (0.109) 7.720 (1.325) 28.600 (19.799)

LPD-E-1 3.624 (0.817) 6.807 (1.588) 0.852 (0.063) 0.341 (0.065) 8.200 (1.229) 30.840 (7.980)

LPD-F-1 3.679 (0.758) 6.784 (1.474) 0.851 (0.064) 0.336 (0.050) 8.320 (1.186) 31.680 (6.485)

LPD-L-1 3.470 (0.893) 6.602 (1.685) 0.850 (0.064) 0.351 (0.064) 8.220 (1.217) 29.360 (7.331)

LPD-S-1 3.478 (0.786) 6.586 (1.509) 0.851 (0.061) 0.353 (0.066) 8.220 (1.282) 29.300 (8.117)

θ = 0.7, MNAR

PE MSE pAUC F1 TP FP

TL 1.927 (0.536) 3.708 (1.036) 0.945 (0.039) 0.426 (0.064) 9.700 (0.505) 27.000 (8.732)

NL 10.107 (3.407) 9.440 (1.697) 0.688 (0.080) 0.286 (0.089) 5.280 (1.371) 22.620 (6.648)

CoCo 6.750 (2.215) 12.217 (4.246) 0.660 (0.072) 0.286 (0.082) 5.080 (1.226) 21.100 (5.486)

NCL 7.116 (1.667) 10.195 (2.007) 0.472 (0.073) 0.306 (0.093) 4.820 (1.466) 17.400 (7.741)

LPD-E-1 6.930 (2.367) 10.865 (2.421) 0.759 (0.082) 0.251 (0.064) 6.320 (1.362) 35.020 (7.878)

LPD-F-1 10.617 (5.046) 13.477 (4.554) 0.759 (0.084) 0.234 (0.067) 6.500 (1.821) 39.740 (11.940)

LPD-L-1 5.384 (1.176) 9.481 (1.686) 0.756 (0.083) 0.255 (0.063) 6.320 (1.504) 33.760 (7.224)

LPD-S-1 5.351 (1.223) 9.491 (1.843) 0.760 (0.082) 0.260 (0.066) 6.300 (1.432) 32.740 (6.452)

Table S3: Sensitivity analysis for θ = 0.7, 0.9 and different missing mechanisms. Each performance measures

are averaged over R = 100 repetitions (standard deviation in parenthesis).

S4.4 Timing

For both LPD and CoCo, the first step is to modify the estimate of covariance matrix to be

PD, and the second step is to solve the penalized regression (e.g. (2.7) for LPD) with the
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modified estimate. We separately measure the time elapsed for the steps, positive definite

modification (PD) and lasso regression (Lasso), which is shown in Table S4. We use `∞-norm

for LPD since the other norms take roughly the same amount of time. In this experiment,

we fix the tuning parameter λ at the middle of endpoints of search grids.

In step “Lasso”, both methods solve a strictly convex quadratic programming problem,

which is very fast. It took less than a second for both methods and does not have much

difference between the two methods. However, in step “PD”, CoCo takes much longer than

LPD, for example, around 50 seconds when p = 1000 compared to 0.128 seconds for LPD.

Thus, “PD” step is dominant in the whole process of CoCo, while it does not scale up the

total time of LPD.

Method Step p =200 p =500 p =1000

CoCo Lasso 0.146 0.507 0.538

CoCo PD 0.174 3.849 49.587

LPD Lasso 0.103 0.382 0.515

LPD PD 0.004 0.033 0.128

Table S4: The elapsed times (unit: second) for (1) lasso estimation at a fixed tuning parameter (Lasso) and

(2) positive definite modification (PD). We average over 100 independent datasets generated under n = 200,

s = 0.05, and p varying over 200, 500, 1000.

S4.5 Empirical analysis of the rate of convergence

We investigate the empirical scaling of the estimation error, as suggested by one of the

reviewers. We calculate the mean squared error (MSE) ||β̂ − β∗||22 while varying the sample

size and the dimension: n, p = 100, 200, . . . , 500. We also consider different covariance

structures: the compound symmetry Σ = ρ11> + (1 − ρ)I, the autoregressive structure

Σ = (ρ|i−j|)1≤i,j≤p, and the independent structure Σ = I. Here, we fix ρ = 0.5. We generate
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10% missing values under the MCAR mechanism. The regression coefficient β∗ is set to have

ones in the first 10 entries and zeros elsewhere.

Figure S2 shows the results where the logarithm of MSE (y-axis) is plotted against

log(
√

log p/n) (x-axis). Regardless of the models (“CoCo”, “LPD”, and “TL”), the error

curves align together for different dimensions, meaning that the logarithm of MSE scales with

log(
√

log p/n) up to an additive constant independent of n and p. This implies the conver-

gence rate of LPD does not depend on the trace term, and thus is close to Op(
√

log p/n).

In other words, the proposed method does not require as many samples as claimed in our

theory for accurate estimation.
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Figure S2: Estimation error against the aimed rate based on 30 replications. “CoCo” is CoColasso by Datta

and Zou (2017), “LPD” is the proposed method, and “TL” is the lasso using the complete data.
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