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This supplementary material presents additional simulation results and technical theorems to prove the main results.

S1 Non-asymptotic inequality of the IPW estimator in the spec-

tral norm

In this section, we will derive the concentration inequality of the IPW estimator. More
. . : ~IPW .
specifically, we are interested in the rate of convergence of ||[£  —3X||. Recall the definition

of the IPW estimator

~IPW
b

=8 x

1
Ealgjykgp )

which is given in (2.5). The random variables @;, (67, .. .,0,) used above are assumed to

) Yip

satisfy Assumption [1} [2, and [3] For notational convenience, we write the IPW estimator by

s Also, we omit the superscript in 67, 7" and K*.

*To whom all correspondence should be addressed.
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Theorem S1. Fort > 1V logn, it holds with probability at least 1 — 3e™" that

Wﬁrgx(t + log p) Wr(fgx(t + log p) }

t+1
(¢ +Togn) ™

I£ — 2|, < Ctr(2) max{K?, 1} max {\/

where C > 0 is some numerical constant and

My ko1 £
@ = max 072
k1,k2,01,82 Ty 0y Thoty

Our proof is based on the idea of Lounici (2014), but improve it to address the general
missing dependency.
We begin with the following decomposition:

I£ — =l < [|diag(E ~ E)[|2 + [|OD(E — 2)||5

where diag(A) is a diagonal matrix with diagonals inherited from A, and OD(A) = A —

diag(A). We deal with each of them separately.

S1.1 Off-diagonal part

To use Bernstein inequality of bounded matrices later, we consider an event A; = {||X;||3 <
U} where U = C - tr(X)(K? + 1)(t + logn) for some numerical constant C' > 0. We claim

the following:
Fact S1. P(N?;A;) > 1 —e " for any ¢t > 0.

Define a matrix Z; with zero diagonals

z. = op | | Rt ’
T ] <oy
3 N 1 n 1 n
and Z; = Z;14,. On the event N, A;, we can get OD(X %) = - > (Z,—EZ;) = = > (Z; —
=1 n =1

~ 1 n
EZ)——=> EZ;14e and thus

n ;=1

n

~ 1 . N 1 —
I0D(E = =)l < 1= 3 "(Z ~EZ)ll2 + ||~ Y EZiLucllo (51)

i=1 i=1
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For the latter term, we get

1 n
— Y EZ]I
I S EZLy 2

2 = |[EZily;

= max |]E9TZ191Af

0eSy—1

IN

max E|07 Z,0|14 (S2)

0eS,—1

E(07Z,10)%El 4
9161‘15%}—(1\/ (0 10) AT

= max E(@TZ10)2 : P(Aﬁ) = tQ

0eSp—1

IN

Next, note that Z; — EZ; is bounded conditioning on the set A, which is stated and proved

more specifically in (F1) of Fact . Hence, we can use Bernstein inequality for the former,

n

1 3 .
and get the upper bound of ||— > (Z; — EZ;)||2. The following result is from Proposition 2
n

i=1

of [Lounici| (2014). For ¢ > 0, with probability at least 1 — e~*, we have (conditioning on the

l e~ ~ - t+1 t+1
HEEX&—E&mg§%mm{%ﬂ—iggﬂﬂ%U;%%£}Eh, (S3)

i=1

set A)

1 n - ~ ~ ~
where 022 = ”ﬁ STE(Z; —EZ)?||2 = |E(Z1 — EZy)? 2.
=1
Combining , , and , we have
P([OD(E = Z)|]a > t1 +t5) < P(||OD(E — X)||2 > t1 + t2]A) + P(A%)
12, -~ ~
< P(|[=>(Zi —EZ)||2
=1
1 n
i=1
12, - ~
< P(||ﬁ > (Zi —EZi)||a > t1]A) + P(A°)
=1
< 2e 7t

The remaining part is to prove the boundedness of Z;—EZ; and calculate constants appearing

in t; and t,.

Fact S2. The following statements hold in deterministic sense.
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(F1) Conditioning on the set A = N7, {||X;||3 < U}, we get

HZI _E21H2 S 277'(2) U

max " ?

2
where 7Tr(ng2x = MaXg g 1/7Tkg.

(F2) max E(072,0)? < CK*mi(tr(X))? where

0eSy—1

Tk kol £
Wr(rgx —  max 1/2€162
k17k27elzzg ﬂ-k'lflﬂ-kgéz

(F3) 0% = ||E(Z1 — EZ,)?||; < CK*mis(tr(X))? where

3) Tkes
= max
8,k ThsTys

7l

max

One can easily check that T > max{m(fglx, wﬁf&x}. Thus, some calculations lead to

(4) (4)
max t l max t 1
t+to SCtr(E)max{Kz,l}max{\/W (t+ ng),(t—i—logn)ﬂ— (t+ ng)}
n n

)

for some C' > 0if t > 1V logn.

S1.2 Diagonal part

Remark that the Orlicz norm used in|Lounici| (2014)) and 1;-norm in this paper are equivalent,

up to a constant factor. Moreover, they both satisfies

1 Xl < Xl 11Xl < 201Xl 13,
Using these facts, we get

1 X5 < 201Xl [3, < 201 Xall}, < 200K

By Proposition 1 of |Lounici| (2014)), we get with probability at least 1 —e™*

noX2 CowK?, [t t
@_Ekk’g&( —v-).
N Tk n n
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This implies that with probability at most pe™

noX2 o t t
max @—Zkk >CK2maxﬁ( —\/—)
k nmg k Tk n n

Putting t < ¢ 4 log p, we get

- t+logp t+1
p [y|diag(2—2)\|2>CK2ma %{,/ T logp P ng}] <et
kT n n

S1.3 Proof of Fact

Proof. ||X;]|3 — E||X;||3 is sub-exponential satisfying its 1)s-norm bounded by

1613 - BB < S X + ()

P2

< ?:1 20’ij2 + tI‘(E)
= tr(X)(2K*+1)

By Proposition 1 of [Lounici| (2014),
P[|IX|2 > tr(2){1 + C(2K? + 1)(ﬂVt)}} <et, t>0.
Putting ¢ <t + logn for n > 2, we get
P([1Xi]2 > tr(Z){1+ C2K2 +1)(t + logn)}] <et/n, t>0.

Note that we can find another constant C” > 0 such that tr(2){1+C(2K*+1)(t+logn)} <
C" - tr(X)(K? +1)(t +logn) = U. By the union argument, we conclude P [ U, Ai] <e

for t > 0. O
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S1.4 Proof of (F1) of Fact

Ylkyu]
Tk 11<kpe<p
Vi — Zy = Wi = 0, we begin with

Proof. Define V; = { and W, = diag(V}), and thus Z; = V; — Wj holds. Since

1Z1llz < (Wl
Y11.Y100,0,
= max —— Iy,
0ESp—1 | e Tke
Y2 Y
< max ) [35 =5 5260007 (S4)

0eSyp—1 k0 Ty k0

IA

2
max Tk [0 YAYE S 6267
0eSp—1 k4 k4

2
= o |Y1]3

where we used the Cauchy-Schwartz inequality and 7'('1(32”( = maxy 1/mge. Moreover, we know

that

Vil < IIX4; < 0,

where the last inequality holds conditional on the event A. Combining these with , we

can get || Z1||» < medU. Then, since ||[EZy||» < E||Z1]]2 < E[|Z1||a, we get

120 —=EZi|la < |Z1]l2 + [[EZ |2 < | Z1]]2 + Bl Z1|l2 < 27U
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S1.5 Proof of (F2) of Fact

Proof. We can get
AN
E(ATZ,60)> =E < S M)
1<k#L<p Tkt

— ]E Z }/lkl }/1& 6161 951 }/lkz}/lfzekQQZQ
(k17k2)7é(217£2) 7Tklfl ﬂ-k‘QZQ
- Z )/1k1}/1519k10€1 Ylkziflfzekzefz _E Z Y121<:1Y121§2913191%2

k1,k2,01,02 k11 Tkoty k1,k2 Ty They

Tk koty L2
< Z —E(XllelkzXlﬁX1€2)0k19k20€1952
k1,ka, 01,02 Tk Tkoto

7rk1€1 Wkgfg k1=k27Z1,£2

2
T
. \/ > (M) (EXu Xy X1, X1, 50 602,02,02.62
k1,k2,01,02

Sﬁr(égx\/ S (EX g Xk X1, X10,)%,
k1,k2,01,02

where we used Cauchy-Schwartz inequality in the second inequality. In the third inequality,

s
we define 7y = MAaXE, ko b1 .0 Shklits Applying Cauchy-Schwartz inequality twice, we

Tyt koo

get

EX 1 Xip X1e, X1, < \/Eka X2, EX?, X2, < (EX%, EXA EXL, EXL)Y"
Thus, we get for any § € SP~1
E(0T Z,0) < 74 (Z M)
Finally, using equation (2.1) in Lounici (2014), we get
]Eka < CHXlkHw < CK4akk7 (S5)

which concludes the proof.
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S1.6 Proof of (F3) of Fact

Proof. We observe that

IE(Zy — EZy)?||s < ||E(Z1)]s

since B(Z,)2—E(Z,—EZ,)? = (EZ,)? 3= 0. Moreover, we get ||E(Z;)?|]2 = S8 0T E(Z,)%014, =
IE(Z1)?|2-

Also, recall the relationship Z; = Vi — Wi, which implies with the triangular inequality
that [|E(Z1)%||2 = [[EV? + EW? — EVilWy — EWi VA2 < [[EVE[]2 + |[EWE]]2 + 2[[EVIWA ]2
Note that

||E‘/1W1||2 = max |E0T‘/1W10|
963p71

< max /E(@TV2O)EG W20)

0eSy—1

< VIEVE[LI[EW].

2
Therefore, we get ||E(Z)?||2 < <\/||EV12||2 + \/||EW12||2> . We now calculate the last two
terms.

First, we calculate ||[EW2||s.
[EW)2)l = D EYi6i/mi = ) EXi6;/m = max EXy /.
K K

Secondly, we compute ||E(V7)?||o.

INEAIN G
IE(V1)?], = max > ek Lk EY/ R

0€Sp-1pps  ThsTis

Tkts

EXZ X1, X100x00

= max » .
0€Sp—1 5 ke ThsTs

2
< max Y43 (E Thts XIQSXMXM) S 6262
k0

TksT s

= x> /2 (EXZ X0 X1)’
s kL
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. . 3 Tke
where we used Cauchy-Schwartz inequality and m(na)LX = maxXs ¢ * . Due to
ThsTs

EX2 X1 X1 < \/EXHEX2 X2, < \/ EX4\/EXHEXY,

we conclude that

E(V:)]2 < (Z\/ﬁ>

Finally, combining all of these with equation , we get

2
IE(Z1 —EZ1)?||> < ( Wmaxz VEX] + . /maXEX /Wk)
2
< 0K4< 9 (D) + \/m) |

which concludes the proof because maxy 1/m;, < 2 and MAX Ok < tr(X). O

S2 Miscellaneous results

Without the loss of generality, assume that variables in A come before those in A°, or
we rearrange them to do so. In all the following proofs, we denote block matrices of A
decomposed by the subset A by A a4, Aasc, Asca, Ageac, respectively.

S2.1 Proof of Proposition

Let us review the three conditions used in Theorem 3.4 of Lee et al.| (2015) and apply them

to our problem in ({2.7)).

RSC condiction
The first condition is the restricted strong convexity (RSC).

Assumption S1 (RSC). Let C' C R? be some known convex set containing 6. The loss
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function ¢ is RSC when dm, L > 0 such that

(1) t'V20(0)t > mt't, Yo CnNM, YteCNM—-CNM

(2) [V*0(0) = V*U(0")|2 < L||0 — 07||,, VO €C

The RSC condition is a relaxed version of strong convexity, which is a commonly used
assumption for guaranteeing the properties of given loss functions.

In our specified problem, V2¢(0) = fJLPD. Thus, the RSC condition (2) is satisfied with L
with any positive value. Moreover, for ¢;-norm, the model space is M = {6 € R? : 0 4o = 0}
where A C [p] is the support of the true parameter. We note that

~LPD ~IPW N
min t'S t=adain(Z g ) Fu(l—a) > min{ A\ (S 4 ), 1}
teRP:||t||2=1,t 4c=0

: . . SIPW . . aIPw
Using Weyl’s inequality, ||X 44 =2 44ll2 < 0.5 Amin (2 44) implies that Apin(Z 44 ) > 0.5 Amin (X 44)-

Now, we set m = min{0.5 \min(X.44), 1t}

RE condition

The second condition is the irrepresentibility (IR) condition. Let us define a few notions to

introduce IR condition. The support function on a convex subset C' C RP is defined as:
ho(x) = sup{z'y :y € C}.

We say the penalty function p is geometrically decomposable in terms of D, I, E C RP if it is

decomposed as a sum of support functions:
p(0) = hp(0) + hi(0) + hp(0),

where D is a convex bounded set, I is a convex bounded set which contains a relative
neighborhood of the origin (i.e. 0 € relint(£)) and E is a subspace. Now, we can define our

second condition, IR condition.
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Assumption S2 (IR). 37 € (0,1) such that

sup V [PML{QPM(PMQPM)TPMZ — z}] <1-7
2€0hp (M)

where Q = V2((6%) = f)LPD, Py is the projection matrix to B,
Ohp(M) = U Ohp(u)
vo(x) = inf{\: x € \C}
V(w) = imf{yi(y) + Lo (u—y)} = inf r(u )
We can easily check that p is geometrically decomposed with the terms of
E=TR?
D={6:0| <1,04 =0}, span(D)=M

I=10:0|l <1,04=0}, span(l)= M~

hp(8) = [|0.ll1,  11(0) = |04

1-

Then, the RE condition becomes equivalent to:

~LPD  ~LPD

371 € (0,1) st B aea(Eaa) o <1—7 (S6)
which is the classical irrepresentability, proposed in [Zhao and Yu (2006).

Proof of (S6).
Ohp(0) ={ycD:y'0="hp0)}
={yeD:y'0=164}
= sgn(0)

Ohp(M) = {sgn(@) : 0 € M}
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P =
0 O
(PuQPy) =

Py {QPy(PyQPy) Pyz — 2} =

0 0
5 PML —
0 L4
B T
Quq O
0 0

(QaQ44)'Q%s O

0 0

0 0 [(QuaQ4)'Q%4

Qe A(QUsRQ 1) Qo uz1 — 22

sup,con, ) V| PuiAQPu(PyQPy) Py z — z}

= SUDconp,(m) V

= Supg, cplal V

0
Qaca(QAQ 44) Qluz1 — 22

0

_QACA(QZAQAA)TQZASgH(O 1)

= SUDg, crlAI ”QACA(QZAQAA)TQTAASgn(GI)||oo

0

0

Z1

0

Z2
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Since @ 44 is invertible due to Assumption |4 we have

sup ||QACA(QZAQAA)TQZASgH(Gl)||oo
01 cRIA|

= sup [|Q e 4Quus8n(01)
0, €RIAl

=1QaaQull 0

BG condition

The last condition is the bounded gradient (BG) condition. Let us first define related

constants. The compatibility constant, denoted by x,, between p and fy-norm on M is

defined by

k, =sup{p(0)|0 € B, N M},
0

where Bj is the fy-unit ball. The compatibility constant between the irrepresentable term

and p* is given as

Kic = Sup V[PML{QPM(PMQPM)TPMZ s

p*(z)<1

We can state the third condition with the constants x, and xic, which decides a suitable

range of a tuning parameter \.

Assumption S3 (BG).

Ak m? k, T\ ° T
—p"(VUO*)) <A< — (2 - _ .
T p ( ( )) 2L ( ’{p + RIC 2) '%p* R1C

Now, we check the preliminaries for the BG condition. In our case, p is the ¢;-norm, x, =
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V|A| and k,» = 1. As for kic:

Kic = Ssup \% PML{QPM(PMQPM)TPMZ—Z}]

p*(2)<1

= sup [ QaQ2uz1 — 22|
||Z||oo§1

= 1Q 44Q Ul + 1

Recall the BG condition for A:

dkic . m? Kp T 2 7
—p"(V — | 2k, + = .
P (VL(07)) < A < 5T ( Kp Py

With the IR condition, we have kic < 2 — 7. Also, since L can be of any value, the right
side of the BG condition holds. So, the following is sufficient for the BG condition:

42 =7) 00071 < A

Conclusion

Under the three conditions above, Lee et al| (2015) concluded the following results for the

solution.
1. The minimizer is unique.

2. ly consistency: [|@ — 0|5 < 2 <;{p 4+ I&) A

4 Kic

3. Model selection consistency : 6c M.

In our problem ([2.7)), the ¢5 consistency is

18" = 87, < 2 } <M+ z VIl ) A

min{0-5)\min<2A¢4)7 1% 4 ”QAC.AQ;\}L\HOO +1
2 T
< 1 —) VA,
- min{0-5>\min<2.4¢4)nu} ( M 4 ‘A’

~LPD
and the model selection consistency is B 4. = 0.




S2. MISCELLANEOUS RESULTS

S2.2 Proof of Proposition
Proof. Let agmax = MaX; ajj, Ggmin = Min; a;;.
(e — )\min(A))‘ )A - MI)

max w—= )\min<A)
= (6 — Ami (A))maxi# |aij| V max; [ai; — pf

max

foua

- )\min(A)
maXi;ﬁj ‘aij’ \ |ad,max - ,u‘ % |&d,min - /L‘
- € — AInin A
( (A)) = o (A)

Qoff max V |ad,max — ,U/‘ V |ad,min — N|
m—= )‘min(A)

sider two disjoint cases: Case (1) (g max—0d.min)/2 > Goftmax and Case (ii) (g max—0dmin)/2 <

We now denote aofmax = max;; |a;;|, ¥(p) = , and con-

Qoff max- FOTr each case, we divide up the value of p into multiple cases, which is summarized

in Figure
Case (i) Case (i)-2 Case (i)-1
i p
@d,max+ad,min
2
Case (ii)
Case (ii)-4 Case (ii)-3 ! Case (ii)-2 Case (ii)-1
i i i p

I 1 !
Ad max — Qoff ad,max+ad,min Ad max — Qoff
2

Figure S1: Summary of cases used in the proof. Case (i) (top) and Case (ii) (bottom).

Case (i) (ad,max - ad,min)/2 > Aoff,max

For this case, we consider two sub-cases based on the value of p.
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Case (i)'I: B> (ad,max + ad,min)/z

Under Case (i)-1, we have |agmax — | < |@amin — 1| Moreover, note that by Case (i)

Qd max + Ad min o Ad max — Ad,min

2 - 2

+ Qd min > QAd min + Qoff,max

and thus t — agmin > Gofimax- Combining these two, we can simplify ¥ by

|ad min — ,u| K — Ad min )\min(A) — Ad,min
\I} Iu — 2 = : — : +1 S7
) = N (A) ~ 5wl A) i~ el A) 57)

From the last expression, we can see that U is increasing in p because Ggmin > Amin(A).
Thus, the minimum value under the case considered is

(ad,max - ad,min)/2
(ad,rnax + ad,min)/Q - )\min<A) ’

where the right-hand side is achieved by plugging-in p = w into .

min {\IJ(H’) Y > (ad,max + ad,min)/2} 2

Case (i)'2: 14 S (ad,max + CLd,min)/z

Under Case (1)-2, we have |agmax — #| > |@dmin — pt|- Moreover, note that by Case (i)

Ad max — Qdmin o QA d,max + Qd,min
Qoff, max < 9 = Qdmax — 9

and thus agmax — [t > Goffmax- Combining these two, we can simplify ¥ by

|ad max ~ ,u| Ad max — M Ad max — )\min(A)
W) = 14 . — ~ 1 S8
) = = NnlA) ~ 5= (&)~ i~ hunl(A) (59

The last expression tells us that U is decreasing in g because gmax > Amin(A). Then, we

get

(ad,max - CLd,min)/Q
(ad,max + ad,min)/Q - /\min(A) '

Combining the two results from Case (i)-1,2, we conclude that if (¢gmax — Gdmin)/2 >

min {\I[(/“L) S S (ad,max + ad,min>/2} =

Qoff max, then the minimum value of ¥ is

. (ad max — Ad min)/2
min ¥ = : :
pipe (M) (ad,max + ad,min)/Q - /\min<A)
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at p = (ad,max + ad,min)/z‘

Case (ii): (@d,max — @d,min)/2 < Goff,max

Similarly to before, we consider sub-cases based on the value of p.

Case (ii)-1: p > aq min + Goff,max

Note that agmin + Goffmax > (Gd.max + @dmin)/2 under Case (ii). Then, we have |agmax — 1| <

|@dmin — ft| = 1 — @gmin. Moreover, by Case (ii)-1, |agmin — f| = 1t — Qdmin > Goff, max-

Thus, we can simplify ¥ by

‘ad,min - ,u’ B — ad,min >\min<A) - CLd,min
W(p) = - -

B M= )\min(A> B w—= )\min(A) B o — )\min(A) +1. (89)

Case (ii)'z' (ad,max + ad,min)/2 < p < ad,min + Goff,max

In Case (ii)-2, we still have |@gmax — pt| < |@Gamin — pt| = p — Ggmin as in Case (ii)-1, but

|ad,min - ,ul = Wt — ad min > Qoff, max holds.

Case (ii)'3. ad,max — @off,max <p S (ad,max + ad,min)/2

From g < (@dmax + Gdmin)/2, We have |agmax — | > |@dmin — 1. Moreover, since agmax —

Qoff max < W, |ad,max - ,ul = Admax — M < Qoff, max-

Case (ii)'4 14 S ad max — Goff, max

Note that agmax — Goffmax < (@d.max + Gd.min)/2 under Case (ii). Thus, we have |agmax — 1| >

|ad,min - ,ul Since H S Ad max — Qoff,max, |ad,max - ,u| = Qdmax — M 2 Qoff,max -
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Combining the four cases, we can summarize that

(
M — Ad min ..
———— for Case (ii)-1
H—= )‘min(A> ( )
W(p) = q —dofbmax ¢ Cage (ii)-2,3
i Auin(A) -2
\ %, for Case (ii)-4

We note that this function decreases until (@ < @g min + @off max and increases after that point,

which implies jt = @4 min + Qoff max give the minimum value

Qoff, max

min ¥ = .
i€ <,u) Qd min + Qoff,max — A111111(14)

S3 Proof of the main theorems

S3.1 Proof of Theorem (1

The proof of Theorem [I] is based on Theorem [S2], [S3] which are stated below.

~IPW
Theorem S2. Let Assumptz’on @ @ |2| hold. Let us focus on the case of the estimator X

~IPW , , . ~IPW
such that X 4 4 is non-singular and the smallest eigenvalue satisfies Amin(X ) < 0. For any

W > €, we construct the LPD estimator (Dma*(fllpw) with o = (u—¢€) /(1 — /\min(fllPW)).

Then, the LPD estimator satisfies the irrepresentability condition for some constant T €

(0,1), if the events hold true

(S10)

~IPW ~IPW
[B0Y -]+ [ -5
oo

‘
o — €

X —-X < T
K 2 ||EAAHOO

The proof is pended until Supplementary Materials [S3.2] The other case when the smallest

eigenvalue is positive is addressed by the following theorem.
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Theorem S3. Let Assumption [1, [4 [3, [A(b) hold where T € (0,1) is the constant from

~IPW ~IPW
Assumption (b) Let us focus on the case of the estimator % such that 3 4, 1s non-

~IPW
singular and the smallest eigenvalue satisfies Amin(X ) > 0. Then, the LPD estimator

~IPW o ~IPW _ . . »
Q0 (X ), which is reduced to 3 with o = 1, satisfies the irrepresentability condition

for some constant 7 € (0,1), if the event holds true

~IPW ~IPW
HEAA—EAAH HEACA S s

<=3 (s11)
The proof is pended until Supplementary Materials [S3.4]

Proof of Theorem[1. We calculate the probability of the event E that the LPD estimator

~IPW
satisfies the irrepresentability condition as follows. Let the event A = {Ann(X ) > 0}.

) =P (E|A)P(A)+P(E|A°) P (A°)
>P ( holdS’A) A)+P ( holds!Ac) P (A°) (. Theorem [S2]
> P ((S10) holds|4) P P ((S10) holds|A®) P (A°) (.- (S10) = (S11))

= P ((S10) holds).
- oIPW

Note that for X =X — X, we have
. . . _ (I 0 .
Bl [Pl =22 =22 <2[#]

o0

Then, using p/(pn — €) < 2 for p > 2e, a sufficient condition for (S10)) is
T

S| < e
H 2~ 4|24

Theorem |S1| states that for any v > 0, if n > wﬁéﬁx(u +1)%1log®(p V n), then it holds with

probability at least 1 — 3/p“

- (4) 4
1S~ 2y < Ctr(8) max{ (K%)2, 1}Va 1 1 %Togp
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Hence, if the following condition is satisfied

Ctr(2) max{(K*)*, 1}Vu+1 Wmaxnlogp - 4\\2;4!!

then we can guarantee P ((S10]) holds) > 1 — 3/p", where the above gives another sample

size condition:

n/(x fﬁgxlogp)>40{ r() max{(K")?, HW}

7/ HEAAH

Finally, we deal with (C3) of Proposition . By Weyl’s inequality, the condition is
. o QIPW .
satisfied if ||X 4 — Baallz < 0.5 nin(X44) holds. Following the proof of Theorem [l we
can have a similar probabilistic argument for the event {||EAA 3aall2 < 0.5 min (Eaa) }-
That is, ||§in§:v — X aallz £ 0.5 in(X44) with probability greater than 1 — 3/p* for u > 0

if the sample size satisfies

(u+ 1)31og*(JA| V n),

" 2
n > C{tr(EAA) max{(K*)%, 1}vu+ 1} . n>cnt

max A 1Og |A| 1/>‘min(2AA> max, A

( ) CCI T
for some ¢ > 0. Here, m ;. 4 = maxg, k, 1, te4 klkzglb/( Wy Ty, )

S3.2 Proof of Theorem

It should be noted that the proof of the theorem only depends on the distances between
~IPW
b and ¥ (or their block matrices), but not any other characteristic of the IPW estimate

or the population covariance matrix.

We define the matrix norms that appear in the following proof.
m= =0l =B aaZill

~IPW ~IPW
o1 = HE EAAH , 0y = HE — XA

Gy = Hilpw = ZH .
2

‘ o0

We first introduce the lemma to ease calculation.
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~LPD ~IPW
Lemma S1. Let ¥  =@,,(X ). Assume

(1-— Oz),uH(AIPW _

moy < 1 and I ) 1Hoo < 1. (512)

Then, we have

< 02 + M2
o 1-— 7]151 — Oé_l(l — a)um

~LPD  ~LPD, —
|ZaaE)

The proof is given in Supplementary Materials[S3.3] Using Lemma[S1]and the irrpresentabil-

ity condition for 3 (i.e. 7o < 1 — 7) together, we get

(S13)

~LPD ,~LPD, _1 mos +1—7
HZACA<2AA ) H

< .
o 1—=md —a (1 —a)unp
It remains to claim the right-hand side of the above is strictly less than 1, which is equivalent

to show

61+ 0 <7/m —a (1 —a)u.

~IPW ~ IPW)

Plugging-in o* = (. —€)/(pt — Amin(X ) and using Apin (X > —03 + Amin(%) derived

by Weyl’s inequality, we get a sufficient condition for (S13])

(X —
51 -+ (52 + ,U(Sg < i + M(Amln( AA) 6). (814)
pp—e " m - e

Remark that the right-hand side term is greater than 0 if min{u, Apin(Za4)} > €.

We remain to show (S12)) holds with high probability when plugging-in o* = (u—e¢)/(u—

~IPW
Amin(X ), but instead, we will calculate the probability of another sufficient condition

(S15|) described in the following lemma. One can easily check that (S15]) is implied by (S14))

because /(1 —€) > 1 and 7 < 1, which concludes the proof.

Lemma S2. Consider the class of covariance matrices such that 1/m — € + Amin(2.44) > 0.

0P

~IPW
Let us focus on the case of the estimator X with Amin(X ) < 0. If we choose > ¢,

then

() —
:u53 < 1/7]1 + ,U()\mm( .AA) 6)’ (815)

0+ <
[— € [— €
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implies .

The proof of the lemma is given in Supplementary Materials [S3.3]

S3.3 Proof of lemmas used in Theorem

Proof of Lemma[S1. We introduce three inequalities and suspend their proofs.

SIPW ~IPW

1
1244 (B i) oo
o < —~IPW . _ ) (S16)

1—a (1 —a)ull(Zas) oo

(=), alPW, 1
if T”(EAA ) e <1,

~LPD , ~LPD _1”

130 (Zan )

~IPW , ~IPW, _| - S+ 6 _
IERAE) T - BaaBille = BERES i <, (s17)
~IPW, 1 n .
(Zas) Mo < 1——717161’ if moy <1, (S18)

Combining the triangular inequality with (S16)), we get

~IPW , ~IPW, _1 _ _

iLPD ELPD -1 < || AcA( AA) - Ef\%étz,adat||<><>+ ||EACAEA14HOO

|| .AC.A( .AA) HOO = 1 ~IPW, _1 :
l—a (1 —a)ull(Zaa)

This completes the proof if (S17)), (S18) are combined with the upper bound.

We now prove the above inequalities. The proofs of (S17)) and (S18) are from that of
Lemma A2 by [Mai et al|(2012), but we show them here for completeness. Using the basic

property of operator norms,

~TPW, _1 _ . ~IPW ~TPW, _1
1(Zaa) = Bl = 122000 —Ba)(Baa ) s

_ aIPwW SIPW,
<2l - 112 = Baalloe - 1(Zaa) e

. ~IPW
< 1ZBallee X 1844 — Baalls
~IPW, _1 _ _
X (1(Zaa ) = Baullee + 1254)-
Arranging the inequality, we get

IPW

~IPW
-1 ~1 1= 02240 — Baall
[(Zaa) —Zoaulls <

— ~IPW ’
1= Bl s — Baalleo
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~IPW
since |2 U]leellZ 44 — Zaalloe < 1 by the assumption. Then, by the triangular inequality,

~IPW, 1 ~IPW ~ _
1(Zas) Toe < 1(Zan)" = ikl + IZ 240
1B — Sl o
AA||oo _
S A4 Af}pw + ||2A}4||007
1= 23l 1Z g — Baalles
which achieves (S18)). Next, we also exploit the basic properties of norms to get
~IPW , ~IPW _
1Zaea(Ban ) = BueaZallloo
~IPW ~IPW,_  ~IPW, 1
= (Zea = ZaeaZ2hZaa ) (Zan ) oo
~IPW B ~IPW,_ , ~IPW, 1
= (S en — Baca + ZaeaSuZBan — BaeaB2 4T ) (Zan ) o
~IPW ~IPW
<1k — S+ BaeaZi i (Saa — S ) el (Ea) e
~IPW B ~IPW ~IPW
< (IBaea = Zaealloo + 1B aaZ2lloelEan = Baalloo) 1 (Ean )™ oo
By using (S18) in the last inequality, we obtain (S17)). To prove (S16)), we observe
~LPD , ~LPD ~IPW , ~IPW
1B (Zan) oo = lloZ 4ea (@S, + (1= a)ul) oo
~IPW , ~IPW B ~IPW, 1.
= [|X 4ea (EAA) (I—i—a Ha _@)M(EAA) ) Hloo
~IPW , ~IPW, _1 B ~IPW, 1.
B aea(Ean) Mool @+ (1= a)pu(Zs ) ) e
~IPW , ~IPW, _1 ~IPW 1
B aea(Ean) oo (1= a7 A= )l (Zn ) llsc)
where the last inequality depends on that for any operator norm || - || and a matrix U,
[0+ U) ) < e, U] < 1,
1- U]

To use it, we need the following condition

~IPW
o (1= ol (Bax ) e < 1
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Proof of Lemma[S3. Putting o* = (u—¢€)/(pn — )\min(ilpw)), we want to show

1—a")p, &IPW, 1 14 ~IPW ~IPW
E &) e = e ET DI ED) e <1 (520

Remark that by Weyl’s inequality

~IPW

>\min<2 ) Z - HEIPW - EH + )\min(z)a
2

and recall (S19)

~IPW

H(EAA )~

< il '
00 L —mdy

Some basic algebra with these two leads to a sufficient condition of (S20)):
H SIPW

v ) _
2 -1 N()‘mm(z) 5)
R ] o I Lot

~IPW
[P ==+

S3.4 Proof of Theorem

Proof. If the smallest eigenvalue of the IPW estimator is positive, the LPD estimator of it
is the IPW estimator, i.e. o* = 1. By following the same proof of Lemma [S1], we have

)
< 7712——{_772 if moy < 1.
00 1 —7’]151

~IPW ,~IPW, _
HZACA(EAA )

where we use the same definitions of the matrix norms:
m= =04 = BaeaZiull,

S L T S

.

~IPW
Using 7o < 1 — 7, it is sufficient for the irrepresentability condition of ¥ to show

7]1(52"‘1-7’

< 1.
L —md

The above is equivalent to §; + dy < 7/m;.
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S3.5 Proof of Theorem [2|

Proof. Using y; = ] 3" + ¢; in calculating PV we can obtain

vipssT P = 5 - Y

_ (iLPD B V) 5w

where V' € RP*P and w € RP have its element respectively by

n
v =07ty zradol /rY, 1< gk <p,
i=1

n

w; =n"t Y wedhol [niY, 1< j<p
i=1

where 7% = P(6{ = 6f; = 1). Hence, the norm of the gradient is

(&)

~LP

(7)1l + ol

. oLPD
IVeBE" 7 6™l

IN

+ [|w]|
o0

= max
1<G<P e

~LPD
< B = Ve Brax + 1wl

where the first inequality is from the triangular inequality, the next equality holds because

By =0 for k € A, and the last inequality is obvious from definitions g}, = max 37| and
<j<p

| Blloo,4a = max Y |bji| for any matrix B = (b;i)pxp. Note that ||B|loc,.4 is & semi-norm
’ ]-SjgpkeA ’

on RP*P given a non-empty set A (i.e. ||B|lco,4 = 0 does not imply B = 0). Finally, using

SR 7 oz*(f)lpw —¥)+(1—ao*)(ul —X) — (V — X) and the triangular inequality, we

get

. oLPD ~IPW .
Ve =" )l < (IIEJ = Bloc,a + (1 = a)[[ul = Efos,4 s
521

HIZ = Voot ) B + 0]
We use Lemma 1 of Park et al. (2023) to the terms above except the second. Let us

define a function f by

2logp +log |B
n.p.5) = 5jy B2 B8y

n
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: y xy
o = max,; 0;;, and probabilities 7% = min 7% 1% = min 7. 75 = min e
max J3 Y33 p m1n VA 1<j<pkeA jk > "'min 1<5,k<p ]k > ' min 1<5<p

Then, we can easily get the followings: for some numerical constants ¢y, o, c3, Cy, Cy, C3 > 0

such that
oIPW Ci(K* 2Umax
Pos (18 - Sl > D e i, )} < 9, (522)
\V4 ﬂ—min,A
n 1

)

if >
2logp +log|A| = et 4

C Km 2 max
HxOV—m&AzﬁLﬁg—#an>§Wn (S23)

min
n 1

Ty

if >
2logp +log |A| = com

C3/OmaxOcc KT K¢
PMQWMZ e fmnMOSWn (524)

and

n 1
if > w7~ Moreover, we get the concentration of the second term: for some
310gp C3T min
Cy, C4 >0

Ps ((1 —o*)||pl — XB|,a > Cutr(X) max{(K$)2, 1}

x (1 + %) e f (10, D, [1])> <3/p,

(S25)

if n > 0471(1%( log®(p V n). The proof of 1) is pended until the end of the proof.

Combining these results, it holds with probability greater than 1 —9/p

~LPD _
IVeBE" 7, p" V)l < L+ f(n,p, A),

it n > cmax { logp/mii T log®(p v n)} for some numerical constant ¢ > 0. The factor

L > 0 is a function of parameters given by

L o< Pra max{(Kf”) } 7Tmanxtr( ) (1 + %)

max { /G KK, e (K72}

zy
min

+

T
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1P

To derive the constant L, we used T > 1 [T a- Note that if Ay (3 ) > 0, the second

term in (S21)) no longer exists since a* = 0. Then, we only need to combine (S22), (523)),

(S24)), which leads to another L’ > 0 smaller than L. The constant given in the statement

of the theorem is deriven considering it.

Now, we prove (S25]), which depends on the following lemma.

~IPW
Lemma S3. Assume € is smaller than the smallest eigenvalue of 3. For a* = I(Apin(X ) >

0) + (1t — )/ (1t — (S NI i (E 1) < 0), we have

. ~IPW
l—ao" <X —X2/p
Proof. By definition of o*, we have

~IPW ~IPW ~IPW

l—a"= (6 - Amin(E ))/(PJ - )\min(z ))I()‘min(z ) < O)

Now, we observe
~IPW ~IPW

€— )\min(%lpw) I()\min(ilpw) <0) < (€= Amin(Z )+
= Amin () 8 PW
< Quin(3) = Aumin( )+
- 1
IPW
1% =Xl
B H
where we use Weyl’s inequality in the last inequality. O

By applying Lemma [S3] we get
. ~IPW I — 3|0, ~IPW Y|00,4
(1= )l - Zls < (B - 2=t 2™ (14 et g

From Theorem , if the sample size condition n > Wﬁﬁx(a +1)%log®(p v n) is satisfied, it

holds with probability at least 1 — 3/p* that

I

@)
O max 1 1
15"~ sy, gctr(z)max{(m){u\/” (atDlogp

n

(S27)
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where C > 0 is some numerical constant. This concludes that if n > 167 log®(p V n)

Psa <(1 — a)||ul — Xl|oo.a > Ctr(X) max{(K*)? 1}

% (1 + HEHOO,A) /2W$g;logp> S 3/p

7

S4 Additional details/results of simulation study

S4.1 The corrected cross-validation

For the cross-validation, we split data into K folds. Let ,@ () be the solution of any penalized
regression estimated with tuning parameter at A and with all samples but in the k-th fold.

Given a set A of candidates, we aim to find the best one that minimizes the prediction error

on the k-th fold:

K
Sopt = argmin 3 (B,(A) () B (\) — 208, (V).
k=1

AEA

Here, we define

_pw ,uozf)ipw + (1 —a)I, for cases of LPD, NCL
(e )+ =
. |lalPW
min ‘Ek — E‘ , for cases of CoCo,
>0 max

~IPW
and ¥,  is the IPW estimate calculated over samples in the k-th fold, and p, is similarly

defined.

S4.2 Method comparison

We focus on comparing a list of variants of LPD. For spectral norm and /,,-norm, any value

over some lower bound, say p,, will do, so we suggest trying & - pyr, £ =1, 3,5, to see how
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much their performances are different. Considering these variants, we name our proposals by

LPD-norm-k where norm € {S,F,I,E} and k € {1, 3,5}, resulting 8 estimators (LPD-S-1,

LPD-S-3, LPD-S-5, LPD-F-1, LPD-I-1, LPD-I-3, LPD-I-5, LPD-E-1).

p = 200, s = 0.05
PE MSE pAUC Fq TP FP
TL 1.915 (0.609) 3.656 (1.145) 0.953 (0.031) 0.439 (0.071) 9.680 (0.513) 25.560 (7.484)
NL 3.694 (1.034) 6.160 (1.638) 0.879 (0.063) 0.396 (0.069) 8.620 (1.086) 25.720 (7.420)
CoCo 3.385 (0.927) 6.441 (1.772) 0.830 (0.065) 0.400 (0.076) 8.440 (1.163) 24.460 (6.102)
NCL 5.158 (1.222) 6.292 (1.601) 0.508 (0.075) 0.453 (0.093) 8.140 (1.309) 19.060 (10.442)
LPD-E-1 3.290 (0.840) 6.308 (1.659) 0.879 (0.054) 0.369 (0.070) 8.780 (0.996) 29.840 (7.313)
LPD-F-1 3.608 (0.927) 6.534 (1.708) 0.881 (0.053) 0.350 (0.063) 8.880 (0.982) 32.920 (7.948)
LPD-L-1 3.311 (0.867) 6.262 (1.640) 0.879 (0.053) 0.370 (0.066) 8.800 (1.050) 29.640 (7.551)
LPD-L-3 3.242 (0.844) 6.131 (1.548) 0.878 (0.056) 0.377 (0.062) 8.780 (1.036) 28.320 (5.223)
LPD-L-5 3.260 (0.806) 6.182 (1.515) 0.880 (0.054) 0.376 (0.066) 8.820 (1.004) 28.780 (6.075)
LPD-S-1 3.256 (0.828) 6.181 (1.572) 0.879 (0.055) 0.376 (0.067) 8.780 (0.996) 28.680 (6.149)
LPD-S-3 3.251 (0.817) 6.165 (1.530) 0.878 (0.054) 0.376 (0.064) 8.800 (1.050) 28.680 (5.527)
LPD-S-5 3.300 (0.839) 6.282 (1.578) 0.878 (0.055) 0.363 (0.067) 8.780 (0.996) 30.560 (7.654)
p = 500, s = 0.05
PE MSE pAUC Fq TP FP

TL 6.039 (1.193) 11.825 (2.347) 0.809 (0.048) 0.420 (0.050) 22.980 (1.286) 62.980 (16.109)
NL 17.374 (4.272) 27.698 (3.981) 0.535 (0.081) 0.278 (0.055) 12.240 (2.966) 50.440 (9.311)
CoCo 16.370 (2.833) 31.179 (4.848) 0.596 (0.046) 0.276 (0.051) 11.880 (2.847) 49.060 (9.421)
NCL 28.492 (7.734) 27.538 (3.863) 0.504 (0.061) 0.212 (0.055) 14.560 (5.035) 106.460 (55.869)
LPD-E-1 18.634 (3.463) 29.315 (4.630) 0.703 (0.057) 0.247 (0.044) 14.760 (2.959) 80.900 (19.125)
LPD-F-1 26.511 (6.173) 31.870 (5.696) 0.702 (0.054) 0.238 (0.045) 14.920 (2.687) 88.020 (25.206)
LPD-L-1 14.017 (2.209) 26.636 (3.549) 0.703 (0.056) 0.250 (0.045) 14.580 (2.829) 78.020 (17.977)
LPD-L-3 14.030 (2.391) 26.661 (4.044) 0.704 (0.054) 0.251 (0.044) 14.560 (2.865) 77.400 (17.331)
LPD-L-5 13.869 (2.186) 26.393 (3.570) 0.704 (0.055) 0.252 (0.043) 14.540 (2.887) 76.380 (14.380)
LPD-S-1 13.923 (2.078) 26.499 (3.362) 0.704 (0.055) 0.251 (0.042) 14.440 (2.786) 76.700 (17.765)
LPD-S-3 13.853 (2.097) 26.377 (3.434) 0.703 (0.053) 0.253 (0.043) 14.520 (2.880) 75.660 (15.904)
LPD-S-5 14.129 (2.182) 26.761 (3.763) 0.703 (0.055) 0.251 (0.047) 14.600 (2.871) 78.200 (21.832)

Table S1: Method comparison for p = 200,500 and s = 0.05,0.1. Each performance measures

over R = 100 repetitions (standard deviation in parenthesis).

are averaged
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p = 200,s = 0.1

PE MSE pAUC 12 TP FP

TL 3.220 (0.763) 6.251 (1.483) 0.916 (0.034) 0.532 (0.066) 19.600 (0.606) 35.220 (9.790)
NL 11.020 (3.241) 15.799 (3.181) 0.755 (0.061) 0.434 (0.059) 14.240 (2.273) 31.440 (5.444)
CoCo 9.878 (2.507) 17.890 (4.268) 0.715 (0.053) 0.431 (0.068) 13.640 (2.145) 29.980 (7.150)
NCL 17.212 (3.866) 17.602 (2.613) 0.614 (0.045) 0.386 (0.100) 14.280 (2.241) 46.520 (27.309)
LPD-E-1 9.085 (1.956) 17.196 (3.661) 0.765 (0.054) 0.406 (0.056) 14.880 (2.086) 38.960 (9.167)
LPD-F-1 10.020 (2.320) 17.907 (3.941) 0.765 (0.054) 0.394 (0.054) 14.900 (2.082) 41.260 (8.689)
LPD-L-1 8.914 (2.040) 16.123 (3.352) 0.764 (0.054) 0.414 (0.056) 14.700 (2.053) 36.660 (7.176)
LPD-L-3 8.868 (1.969) 16.161 (3.436) 0.768 (0.054) 0.415 (0.055) 14.780 (2.122) 36.660 (6.394)
LPD-L-5 8.916 (2.131) 16.137 (3.395) 0.765 (0.055) 0.414 (0.056) 14.780 (2.141) 36.800 (6.958)
LPD-S-1 8.819 (2.044) 16.157 (3.432) 0.765 (0.055) 0.413 (0.052) 14.740 (2.058) 36.780 (6.538)
LPD-S-3 8.840 (2.057) 16.113 (3.424) 0.764 (0.053) 0.414 (0.056) 14.700 (2.112) 36.500 (6.519)
LPD-S-5 9.045 (2.218) 16.381 (3.655) 0.764 (0.056) 0.411 (0.059) 14.760 (2.036) 37.660 (8.277)

p =500,s=0.1

PE MSE pAUC Fq TP FP

TL 14.102 (2.010) 27.752 (4.021) 0.684 (0.045) 0.474 (0.048) 43.740 (2.284) 92.480 (21.073)
NL 48.511 (11.754) 75.830 (9.527) 0.392 (0.062) 0.272 (0.056) 16.840 (3.966) 56.320 (7.377)
CoCo 47.069 (8.296) 90.279 (15.734) 0.547 (0.032) 0.254 (0.048) 15.180 (3.336) 53.820 (8.075)
NCL 76.743 (26.682) 64.362 (9.807) 0.492 (0.038) 0.245 (0.038) 25.380 (7.545) 130.100 (42.421)
LPD-E-1 59.310 (12.606) 81.429 (11.177) 0.606 (0.045) 0.260 (0.047) 20.820 (4.341) 89.180 (17.235)
LPD-F-1 93.961 (23.197) 91.393 (14.167) 0.606 (0.044) 0.252 (0.044) 21.160 (4.560) 96.360 (18.729)
LPD-L-1 37.572 (5.268) 72.016 (9.589) 0.601 (0.044) 0.261 (0.044) 20.900 (4.273) 89.580 (15.831)
LPD-L-3 37.343 (5.633) 71.308 (10.009) 0.606 (0.043) 0.263 (0.047) 20.620 (4.125) 86.680 (17.115)
LPD-L-5 37.214 (5.183) 71.073 (9.155) 0.606 (0.044) 0.263 (0.047) 20.800 (4.536) 87.240 (14.981)
LPD-S-1 37.091 (4.728) 70.722 (8.250) 0.603 (0.042) 0.264 (0.046) 20.600 (4.267) 85.180 (16.184)
LPD-S-3 36.894 (4.797) 70.567 (8.786) 0.604 (0.045) 0.264 (0.049) 20.600 (4.290) 85.440 (14.098)
LPD-S-5 36.937 (5.200) 70.630 (9.674) 0.605 (0.046) 0.264 (0.048) 20.420 (4.121) 84.700 (15.538)

Table S2: Method comparison for p = 200,500 and s = 0.05,0.1. Each performance measures are averaged

over R = 100 repetitions (standard deviation in parenthesis).

Among four matrix norms considered here, o-norm (LPD-L) and spectral norm (LPD-
S) perform best, while different p values do not result in any significant changes in practice.
The other two norms do not achieve comparative results when the dimension increases to

p = 500.

S4.3 Missing rate and missing mechanism

We try different missing rates and mechanisms to investigate the robustness of each method

under other scenarios of missing data generation. This is similar to the idea of sensitivity
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analysis in missing data literature (Kolar and Xing), 2012; van Buuren, [2018)). We generate
missing values by the three mechanisms known as missing completely at random (MCAR),
missing at random (MAR), and missing not at random (MNAR). Following Kolar and Xing
(2012), every third variable (j = 1,...,[p/3]) is subject to missing; for MAR case, {3, = 0
if X355 < ®7'(1 —0) and for MNAR case, 673; = 0 if X;3; < ®7'(1 — ). Here, we fix
s =0.05 and p = 200.

Table [S3| confirms that a higher rate of missing in data can lead to worse performance.

Also, the performance gets poorer as the missing mechanism changes from MCAR to MAR,

MNAR, but interestingly, the results on relative performance are not much different.
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6 =0.9,

MAR

PE

MSE

pAUC

F1

TP

FP

TL

NL

CoCo

NCL

LPD-E-1

LPD-F-1

LPD-L-1

LPD-S-1

1.860 (0.536)
3.654 (1.052)
3.229 (0.861)
4.823 (1.126)
3.316 (0.907)
3.451 (0.937)
3.147 (0.836)

3.094 (0.815)

3.558 (1.059)
5.989 (1.528)
6.179 (1.627)
6.149 (1.613)
6.227 (1.672)
6.240 (1.652)
5.934 (1.482)

5.893 (1.484)

0.948 (0.039)
0.866 (0.067)
0.832 (0.064)
0.548 (0.091)
0.879 (0.058)
0.877 (0.059)
0.876 (0.060)

0.877 (0.060)

0.455 (0.063)
0.389 (0.076)
0.387 (0.084)
0.428 (0.113)
0.346 (0.071)
0.343 (0.065)
0.371 (0.065)

0.366 (0.065)

9.700 (0.544)
8.500 (1.074)
8.340 (1.171)
8.080 (1.275)
8.680 (0.935)
8.740 (0.944)
8.520 (1.054)

8.500 (1.015)

23.640 (5.784)
26.220 (7.731)
25.980 (8.482)
23.260 (17.444)
32.940 (9.182)
33.660 (9.164)
28.240 (6.962)

28.760 (6.133)

0 =0.7,

MAR

PE

MSE

pAUC

Fp

TP

FP

TL

NL

CoCo

NCL

LPD-E-1

LPD-F-1

LPD-L-1

LPD-S-1

1.828 (0.490)
9.796 (2.676)
6.027 (1.422)
6.813 (1.513)
7.048 (3.141)
21.120 (34.859)
5.344 (1.177)

5.238 (1.050)

3.512 (0.991)
8.887 (1.463)
10.851 (2.433)
10.039 (1.974)
11.014 (3.025)
14.843 (8.075)
9.132 (1.592)

9.163 (1.526)

0.956 (0.037)
0.718 (0.100)
0.666 (0.096)
0.466 (0.081)
0.743 (0.093)
0.746 (0.096)
0.744 (0.096)

0.742 (0.093)

0.438 (0.076)
0.290 (0.073)
0.303 (0.075)
0.312 (0.091)
0.253 (0.060)
0.235 (0.078)
0.285 (0.061)

0.283 (0.060)

9.740 (0.600)
5.600 (1.400)
5.480 (1.344)
4.980 (1.363)
6.400 (1.539)
6.140 (2.204)
6.540 (1.216)

6.520 (1.233)

26.040 (7.982)
24.060 (9.646)
21.080 (5.606)
17.500 (5.694)
34.400 (7.910)
36.020 (9.079)
29.960 (5.577)

30.180 (6.521)

6 =0.9,

MNAR

PE

MSE

pAUC

F1

TP

FP

TL

NL

CoCo

NCL

LPD-E-1

LPD-F-1

LPD-L-1

LPD-S-1

1.937 (0.558)
3.952 (1.097)
3.698 (1.010)
5.062 (1.149)
3.624 (0.817)
3.679 (0.758)
3.470 (0.893)

3.478 (0.786)

3.697 (1.087)
6.682 (1.552)
7.055 (1.988)
6.917 (1.581)
6.807 (1.588)
6.784 (1.474)
6.602 (1.685)

6.586 (1.509)

0.951 (0.033)
0.857 (0.063)
0.817 (0.066)
0.584 (0.070)
0.852 (0.063)
0.851 (0.064)
0.850 (0.064)

0.851 (0.061)

0.430 (0.073)
0.369 (0.077)
0.361 (0.075)
0.372 (0.109)
0.341 (0.065)
0.336 (0.050)
0.351 (0.064)

0.353 (0.066)

9.700 (0.463)
8.080 (1.412)
8.060 (1.219)
7.720 (1.325)
8.200 (1.229)
8.320 (1.186)
8.220 (1.217)

8.220 (1.282)

26.700 (8.122)
26.500 (7.492)
27.820 (8.578)
28.600 (19.799)
30.840 (7.980)
31.680 (6.485)
29.360 (7.331)

29.300 (8.117)

6 =0.7,

MNAR

PE

MSE

pAUC

Fp

TP

FP

TL

NL

CoCo

NCL

LPD-E-1

LPD-F-1

LPD-L-1

LPD-S-1

1.927 (0.536)
10.107 (3.407)
6.750 (2.215)
7.116 (1.667)
6.930 (2.367)
10.617 (5.046)
5.384 (1.176)

5.351 (1.223)

3.708 (1.036)
9.440 (1.697)
12.217 (4.246)
10.195 (2.007)
10.865 (2.421)
13.477 (4.554)
9.481 (1.686)

9.491 (1.843)

0.945 (0.039)
0.688 (0.080)
0.660 (0.072)
0.472 (0.073)
0.759 (0.082)
0.759 (0.084)

0.756 (0.083)

0.760 (0.082)

0.426 (0.064)
0.286 (0.089)
0.286 (0.082)
0.306 (0.093)
0.251 (0.064)
0.234 (0.067)
0.255 (0.063)

0.260 (0.066)

9.700 (0.505)
5.280 (1.371)
5.080 (1.226)
4.820 (1.466)
6.320 (1.362)
6.500 (1.821)
6.320 (1.504)

6.300 (1.432)

27.000 (8.732)
22.620 (6.648)
21.100 (5.486)
17.400 (7.741)
35.020 (7.878)
39.740 (11.940)
33.760 (7.224)

32.740 (6.452)

Table S3: Sensitivity analysis for # = 0.7,0.9 and different missing mechanisms. Each performance measures

are averaged over R = 100 repetitions (standard deviation in parenthesis).

S4.4 Timing

For both LPD and CoCo, the first step is to modify the estimate of covariance matrix to be

PD, and the second step is to solve the penalized regression (e.g. (2.7)) for LPD) with the
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modified estimate. We separately measure the time elapsed for the steps, positive definite
modification (PD) and lasso regression (Lasso), which is shown in Table[S4 We use {o-norm
for LPD since the other norms take roughly the same amount of time. In this experiment,
we fix the tuning parameter A at the middle of endpoints of search grids.

In step “Lasso”, both methods solve a strictly convex quadratic programming problem,
which is very fast. It took less than a second for both methods and does not have much
difference between the two methods. However, in step “PD”, CoCo takes much longer than
LPD, for example, around 50 seconds when p = 1000 compared to 0.128 seconds for LPD.
Thus, “PD” step is dominant in the whole process of CoCo, while it does not scale up the

total time of LPD.

Method Step | p =200 | p =500 | p=1000

CoCo Lasso 0.146 0.507 0.538

CoCo PD 0.174 3.849 49.587

LPD Lasso 0.103 0.382 0.515

LPD PD 0.004 0.033 0.128

Table S4: The elapsed times (unit: second) for (1) lasso estimation at a fixed tuning parameter (Lasso) and
(2) positive definite modification (PD). We average over 100 independent datasets generated under n = 200,

s = 0.05, and p varying over 200, 500, 1000.

S4.5 Empirical analysis of the rate of convergence

We investigate the empirical scaling of the estimation error, as suggested by one of the
reviewers. We calculate the mean squared error (MSE) ||3 — 8*||2 while varying the sample
size and the dimension: n,p = 100,200,...,500. We also consider different covariance
structures: the compound symmetry ¥ = pl1T + (1 — p)I, the autoregressive structure

3 = (pl"=),<; j<p, and the independent structure 3 = I. Here, we fix p = 0.5. We generate
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10% missing values under the MCAR mechanism. The regression coefficient 8* is set to have
ones in the first 10 entries and zeros elsewhere.

Figure shows the results where the logarithm of MSE (y-axis) is plotted against
log(m) (z-axis). Regardless of the models (“CoCo”, “LPD”, and “TL”), the error
curves align together for different dimensions, meaning that the logarithm of MSE scales with
log(\/m) up to an additive constant independent of n and p. This implies the conver-
gence rate of LPD does not depend on the trace term, and thus is close to OP(M).
In other words, the proposed method does not require as many samples as claimed in our

theory for accurate estimation.

p — 100 — 200 — 300 — 400 — 500
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Figure S2: Estimation error against the aimed rate based on 30 replications. “CoCo” is CoColasso by |[Datta

(2017), “LPD” is the proposed method, and “TL” is the lasso using the complete data.
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