

Supplementary Materials for “Bi-optimal Quantile-based Test Planning for Accelerated Degradation Tests Based on a Wiener Process”

Ya-Shan Cheng¹ and Chien-Yu Peng^{2*}

¹Graduate Institute of Statistics, National Central University

²Institute of Statistical Science, Academia Sinica

February 11, 2026

1 Technical Derivations and Auxiliary Results

1.1 Fisher Information Matrix of the Accelerated Degradation Model Based on a Wiener Process

The single degradation path \mathbf{Y}_{ik} follows an m -variate normal distribution, i.e.,

$$\mathbf{Y}_{ik} \sim \mathcal{N}_m(g_1(\mathbf{X}'_k \boldsymbol{\beta}) \mathbf{t}_{i,k}, g_2(\mathbf{Z}'_k \boldsymbol{\gamma}) \mathbf{Q}_{i,k}), \quad i = 1, \dots, n_k, \quad k = 1, \dots, l,$$

where $\mathbf{t}_{i,k} = (t_{i,1,k}, \dots, t_{i,m-1,k}, t_{m,k})'$ and $\mathbf{Q}_{i,k} = [\min\{t_{i,j_1,k}, t_{i,j_2,k}\}]_{1 \leq j_1, j_2 \leq m}$. The log-likelihood function is given by

$$\mathcal{L}(\boldsymbol{\theta}) = -\frac{m}{2} \left(\ln(2\pi) + \ln(g_2(\mathbf{Z}'_k \boldsymbol{\gamma})) \right) - \frac{1}{2} \ln |\mathbf{Q}_{i,k}| - \frac{(\mathbf{y}_{i,k} - g_1(\mathbf{X}'_k \boldsymbol{\beta}) \mathbf{t}_{i,k})' \mathbf{Q}_{i,k}^{-1} (\mathbf{y}_{i,k} - g_1(\mathbf{X}'_k \boldsymbol{\beta}) \mathbf{t}_{i,k})}{2g_2(\mathbf{Z}'_k \boldsymbol{\gamma})}.$$

The first and second derivatives of $\mathcal{L}(\boldsymbol{\theta})$ are

$$\begin{aligned} \frac{\partial \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\beta}} &= \frac{\mathbf{t}'_{i,k} \mathbf{Q}_{i,k}^{-1} \mathbf{y}_{i,k} - g_1(\mathbf{X}'_k \boldsymbol{\beta}) \mathbf{t}'_{i,k} \mathbf{Q}_{i,k}^{-1} \mathbf{t}_{i,k}}{g_2(\mathbf{Z}'_k \boldsymbol{\gamma})} \frac{\partial g_1(\mathbf{X}'_k \boldsymbol{\beta})}{\partial \mathbf{X}'_k \boldsymbol{\beta}} \mathbf{X}_k, \\ \frac{\partial^2 \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}'} &= \left\{ \frac{\mathbf{t}'_{i,k} \mathbf{Q}_{i,k}^{-1} \mathbf{y}_{i,k} - g_1(\mathbf{X}'_k \boldsymbol{\beta}) \mathbf{t}'_{i,k} \mathbf{Q}_{i,k}^{-1} \mathbf{t}_{i,k}}{g_2(\mathbf{Z}'_k \boldsymbol{\gamma})} \frac{\partial^2 g_1(\mathbf{X}'_k \boldsymbol{\beta})}{\partial (\mathbf{X}'_k \boldsymbol{\beta})^2} - \frac{\mathbf{t}'_{i,k} \mathbf{Q}_{i,k}^{-1} \mathbf{t}_{i,k}}{g_2(\mathbf{Z}'_k \boldsymbol{\gamma})} \left(\frac{\partial g_1(\mathbf{X}'_k \boldsymbol{\beta})}{\partial \mathbf{X}'_k \boldsymbol{\beta}} \right)^2 \right\} \mathbf{X}_k \mathbf{X}'_k, \\ \frac{\partial^2 \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\gamma}'} &= \frac{g_1(\mathbf{X}'_k \boldsymbol{\beta}) \mathbf{t}'_{i,k} \mathbf{Q}_{i,k}^{-1} \mathbf{t}_{i,k} - \mathbf{t}'_{i,k} \mathbf{Q}_{i,k}^{-1} \mathbf{y}_{i,k}}{(g_2(\mathbf{Z}'_k \boldsymbol{\gamma}))^2} \frac{\partial g_1(\mathbf{X}'_k \boldsymbol{\beta})}{\partial \mathbf{X}'_k \boldsymbol{\beta}} \frac{\partial g_2(\mathbf{Z}'_k \boldsymbol{\gamma})}{\partial \mathbf{Z}'_k \boldsymbol{\gamma}} \mathbf{X}_k \mathbf{Z}'_k, \\ \frac{\partial \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\gamma}} &= \left\{ \frac{(\mathbf{y}_{i,k} - g_1(\mathbf{X}'_k \boldsymbol{\beta}) \mathbf{t}_{i,k})' \mathbf{Q}_{i,k}^{-1} (\mathbf{y}_{i,k} - g_1(\mathbf{X}'_k \boldsymbol{\beta}) \mathbf{t}_{i,k})}{2(g_2(\mathbf{Z}'_k \boldsymbol{\gamma}))^2} - \frac{m}{2g_2(\mathbf{Z}'_k \boldsymbol{\gamma})} \right\} \frac{\partial g_2(\mathbf{Z}'_k \boldsymbol{\gamma})}{\partial \mathbf{Z}'_k \boldsymbol{\gamma}} \mathbf{Z}_k, \\ \frac{\partial^2 \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\gamma} \partial \boldsymbol{\beta}'} &= \frac{g_1(\mathbf{X}'_k \boldsymbol{\beta}) \mathbf{t}'_{i,k} \mathbf{Q}_{i,k}^{-1} \mathbf{t}_{i,k} - \mathbf{t}'_{i,k} \mathbf{Q}_{i,k}^{-1} \mathbf{y}_{i,k}}{(g_2(\mathbf{Z}'_k \boldsymbol{\gamma}))^2} \frac{\partial g_1(\mathbf{X}'_k \boldsymbol{\beta})}{\partial \mathbf{X}'_k \boldsymbol{\beta}} \frac{\partial g_2(\mathbf{Z}'_k \boldsymbol{\gamma})}{\partial \mathbf{Z}'_k \boldsymbol{\gamma}} \mathbf{Z}_k \mathbf{X}'_k, \end{aligned}$$

*Corresponding author, E-mail: chienyu@stat.sinica.edu.tw

$$\begin{aligned} \frac{\partial^2 \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\gamma} \partial \boldsymbol{\gamma}'} &= \left\{ \left(\frac{(\mathbf{y}_{i,k} - g_1(\mathbf{X}'_k \boldsymbol{\beta}) \mathbf{t}_{i,k})' \mathbf{Q}_{i,k}^{-1} (\mathbf{y}_{i,k} - g_1(\mathbf{X}'_k \boldsymbol{\beta}) \mathbf{t}_{i,k})}{2(g_2(\mathbf{Z}'_k \boldsymbol{\gamma}))^2} - \frac{m}{2g_2(\mathbf{Z}'_k \boldsymbol{\gamma})} \right) \frac{\partial^2 g_2(\mathbf{Z}'_k \boldsymbol{\gamma})}{\partial (\mathbf{Z}'_k \boldsymbol{\gamma})^2} \right. \\ &\quad \left. + \left(\frac{m}{2(g_2(\mathbf{Z}'_k \boldsymbol{\gamma}))^2} - \frac{(\mathbf{y}_{i,k} - g_1(\mathbf{X}'_k \boldsymbol{\beta}) \mathbf{t}_{i,k})' \mathbf{Q}_{i,k}^{-1} (\mathbf{y}_{i,k} - g_1(\mathbf{X}'_k \boldsymbol{\beta}) \mathbf{t}_{i,k})}{(g_2(\mathbf{Z}'_k \boldsymbol{\gamma}))^3} \right) \left(\frac{\partial g_2(\mathbf{Z}'_k \boldsymbol{\gamma})}{\partial \mathbf{Z}'_k \boldsymbol{\gamma}} \right)^2 \right\} \mathbf{Z}_k \mathbf{Z}'_k. \end{aligned}$$

Since $\mathbf{t}'_{i,k} \mathbf{Q}_{i,k}^{-1} \mathbf{t}_{i,k} = t_{m,k}$ and

$$(\mathbf{Y}_{i,k} - g_1(\mathbf{X}'_k \boldsymbol{\beta}) \mathbf{t}_{i,k})' \mathbf{Q}_{i,k}^{-1} (\mathbf{Y}_{i,k} - g_1(\mathbf{X}'_k \boldsymbol{\beta}) \mathbf{t}_{i,k}) / g_2(\mathbf{Z}'_k \boldsymbol{\gamma}) \sim \chi_m^2,$$

the elements of $(N_1 + N_2) \times (N_1 + N_2)$ FIM, $\mathcal{I}_{i,k}(\boldsymbol{\theta})$, for \mathbf{Y}_{ik} are simplified as

$$\begin{aligned} \mathbb{E} \left(-\frac{\partial^2 \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}'} \right) &= \frac{t_{m,k}}{g_2(\mathbf{Z}'_k \boldsymbol{\gamma})} \left(\frac{\partial g_1(\mathbf{X}'_k \boldsymbol{\beta})}{\partial \mathbf{X}'_k \boldsymbol{\beta}} \right)^2 \mathbf{X}_k \mathbf{X}'_k, \quad \mathbb{E} \left(-\frac{\partial^2 \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\gamma}'} \right) = \mathbf{0}_{N_1 \times N_2}, \\ \mathbb{E} \left(-\frac{\partial^2 \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\gamma} \partial \boldsymbol{\beta}'} \right) &= \mathbf{0}_{N_2 \times N_1}, \quad \mathbb{E} \left(-\frac{\partial^2 \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\gamma} \partial \boldsymbol{\gamma}'} \right) = \frac{m}{2(g_2(\mathbf{Z}'_k \boldsymbol{\gamma}))^2} \left(\frac{\partial g_2(\mathbf{Z}'_k \boldsymbol{\gamma})}{\partial \mathbf{Z}'_k \boldsymbol{\gamma}} \right)^2 \mathbf{Z}_k \mathbf{Z}'_k, \end{aligned}$$

where $\mathbf{0}_{N_1 \times N_2}$ denotes a $N_1 \times N_2$ matrix of zeros. Consequently, the overall FIM, $\mathcal{I}_n(\boldsymbol{\theta})$, is a block diagonal matrix, i.e.,

$$\mathcal{I}_n(\boldsymbol{\theta}) = \sum_{k=1}^l \sum_{i=1}^{n_k} \mathcal{I}_{i,k}(\boldsymbol{\theta}) = n((t_m \mathbf{B}) \oplus (m \mathbf{G}/2)),$$

where “ \oplus ” denotes the direct sum,

$$\mathbf{B} = \sum_{k=1}^l \frac{p_k \psi_k}{g_2(\mathbf{Z}'_k \boldsymbol{\gamma})} \left(\frac{\partial g_1(\mathbf{X}'_k \boldsymbol{\beta})}{\partial \mathbf{X}'_k \boldsymbol{\beta}} \right)^2 \mathbf{X}_k \mathbf{X}'_k \text{ and } \mathbf{G} = \sum_{k=1}^l \frac{p_k}{(g_2(\mathbf{Z}'_k \boldsymbol{\gamma}))^2} \left(\frac{\partial g_2(\mathbf{Z}'_k \boldsymbol{\gamma})}{\partial \mathbf{Z}'_k \boldsymbol{\gamma}} \right)^2 \mathbf{Z}_k \mathbf{Z}'_k.$$

1.2 Proof of Theorem 2.1

Proof. Let

$$G(\boldsymbol{\xi}) = -n^{N_0} t_m^{N_1} m^{N_2} + \mu_0(C_{op} t_m + C_{mea} m n + C_{it} n - 1) + \mu_1(l - n) - \mu_2 t_m + \mu_3(1 - m), \quad (\text{S.1})$$

where $\mu_0, \mu_1, \mu_2, \mu_3 \geq 0$. The Karush-Kuhn-Tucker (KKT) conditions of (S.1) are

$$\frac{\partial G(\boldsymbol{\xi})}{\partial n} = 0 \Leftrightarrow -N_0 n^{N_0-1} t_m^{N_1} m^{N_2} + \mu_0(C_{it} + C_{mea} m) - \mu_1 = 0, \quad (\text{S.2})$$

$$\frac{\partial G(\boldsymbol{\xi})}{\partial t_m} = 0 \Leftrightarrow -N_1 n^{N_0} t_m^{N_1-1} m^{N_2} + \mu_0 C_{op} - \mu_2 = 0, \quad (\text{S.3})$$

$$\frac{\partial G(\boldsymbol{\xi})}{\partial m} = 0 \Leftrightarrow -N_2 n^{N_0} t_m^{N_1} m^{N_2-1} + \mu_0 C_{mea} n - \mu_3 = 0, \quad (\text{S.4})$$

$$\mu_0(C_{op} t_m + C_{mea} m n + C_{it} n - 1) = \mu_1(l - n) = -\mu_2 t_m = \mu_3(1 - m) = 0, \quad (\text{S.5})$$

$$\mu_0, \mu_1, \mu_2, \mu_3 \geq 0.$$

When $t_m = 0$ or $\mu_0 = 0$, there is no solution for n , t_m , and m in (S.2)–(S.4). Hence, we have $\mu_0 > 0$ and $\mu_2 = 0$ by the complementary slackness in (S.5). According to the distinctions between n , m , μ_1 , μ_3 , there are four cases as follows.

(a) $n = l, m > 1, \mu_1 \geq 0$, and $\mu_3 = 0$:

Substituting $n = l$ and $\mu_2 = \mu_3 = 0$ into (S.3) and (S.4) gives $\tilde{m}(t_m) = N_2 C_{op} t_m / (N_1 l C_{mea})$.

Since $\mu_0 > 0$, substituting $\tilde{m}(t_m)$, and $n = l$ into (S.5), we have

$$\begin{aligned} \tilde{t}_m &= \frac{N_1(1 - lC_{it})}{(N_1 + N_2)C_{op}} > 0 \Leftrightarrow C_{it} < 1/l \text{ and} \\ \tilde{m}(\tilde{t}_m) &= \frac{N_2(1 - lC_{it})}{(N_1 + N_2)lC_{mea}} > 1 \Leftrightarrow C_{it} + \frac{(N_1 + N_2)C_{mea}}{N_2} < \frac{1}{l}. \end{aligned}$$

Again, substituting \tilde{t}_m , $\tilde{m}(\tilde{t}_m)$, $\mu_2 = 0$, and $n = l$ into (S.3), we get

$$\begin{aligned} \tilde{\mu}_0(\tilde{t}_m, \tilde{m}(\tilde{t}_m)) &= \frac{N_1 l^{N_0}}{C_{op}} \left(\frac{N_1(1 - lC_{it})}{(N_1 + N_2)C_{op}} \right)^{N_1-1} \left(\frac{N_2(1 - lC_{it})}{(N_1 + N_2)lC_{mea}} \right)^{N_2} \propto (1 - lC_{it})^{N_1+N_2-1} > 0 \\ &\Leftrightarrow C_{it} < 1/l \text{ or } \{C_{it} \geq 1/l \text{ and } (N_1 + N_2 - 1)/2 \in \mathbb{N} \cup \{0\}\}. \end{aligned}$$

In addition, substituting \tilde{t}_m , $\tilde{m}(\tilde{t}_m)$, $\tilde{\mu}_0(\tilde{t}_m, \tilde{m}(\tilde{t}_m))$, and $n = l$ into (S.2), we have

$$\tilde{\mu}_1 = \frac{\tilde{\mu}_0(\tilde{t}_m, \tilde{m}(\tilde{t}_m)) (N_1 l C_{it} + N_2 - N_0(1 - lC_{it}))}{l(N_1 + N_2)} \geq 0 \Leftrightarrow C_{it} \geq \frac{N_0 - N_2}{l(N_0 + N_1)}.$$

(b) $n > l, m > 1, \mu_1 = 0$, and $\mu_3 = 0$:

Substituting $\mu_1 = \mu_2 = \mu_3 = 0$ into (S.2), (S.3), and (S.4) gives

$$\tilde{m} = \frac{N_2 C_{it}}{(N_0 - N_2) C_{mea}} \quad \text{and} \quad \tilde{n}(t_m) = \frac{(N_0 - N_2) C_{op} t_m}{N_1 C_{it}}.$$

Again, substituting \tilde{m} and $\tilde{n}(t_m)$ into (S.5), we obtain $\tilde{t}_m = N_1 / ((N_0 + N_1) C_{op}) > 0$.

Hence, we have

$$\begin{aligned} \tilde{m} > 1 &\Leftrightarrow N_0 > N_2 \text{ and } \frac{C_{it}}{C_{mea}} > \frac{N_0 - N_2}{N_2}, \\ \tilde{n}(\tilde{t}_m) &= \frac{N_0 - N_2}{(N_0 + N_1) C_{it}} > l \Leftrightarrow N_0 > N_2 \text{ and } C_{it} < \frac{N_0 - N_2}{l(N_0 + N_1)}. \end{aligned}$$

Substituting $\tilde{n}(\tilde{t}_m)$, \tilde{t}_m , \tilde{m} , and $\mu_2 = 0$ into (S.3), we have

$$\tilde{\mu}_0(\tilde{n}(\tilde{t}_m), \tilde{t}_m, \tilde{m}) \propto (N_0 - N_2)^{N_0 - N_2} > 0 \Leftrightarrow N_0 > N_2 \text{ or } \{N_0 \leq N_2 \text{ and } (N_2 - N_0)/2 \in \mathbb{N} \cup \{0\}\},$$

where $\lim_{x \rightarrow 0^+} x^x = 1$.

(c) $n > l, m = 1, \mu_1 = 0$, and $\mu_3 \geq 0$:

Substituting $m = 1$ and $\mu_1 = 0$ into (S.2) and (S.3) gives $\tilde{n}(t_m) = N_0 C_{op} t_m / (N_1(C_{it} + C_{mea}))$.

Since $\mu_0 > 0$, substituting $\tilde{n}(t_m)$ and $m = 1$ into (S.5), we have

$$\tilde{t}_m = \frac{N_1}{(N_0 + N_1)C_{op}} > 0 \text{ and } \tilde{n}(\tilde{t}_m) = \frac{N_0}{(N_0 + N_1)(C_{it} + C_{mea})} > l \Leftrightarrow C_{it} + C_{mea} < \frac{N_0}{l(N_0 + N_1)}.$$

Again, substituting $\tilde{t}_m, \tilde{n}(\tilde{t}_m), \mu_2 = 0$ and $m = 1$ into (S.3), we get

$$\tilde{\mu}_0 = \frac{N_1}{C_{op}} \left(\frac{N_0}{(N_0 + N_1)(C_{it} + C_{mea})} \right)^{N_0} \left(\frac{N_1}{(N_0 + N_1)C_{op}} \right)^{N_1-1} > 0.$$

In addition, substituting $\tilde{t}_m, \tilde{n}(\tilde{t}_m), \tilde{\mu}_0$, and $m = 1$ into (S.4), we have

$$\tilde{\mu}_3 = \frac{\tilde{\mu}_0}{N_0 + N_1} \left(\frac{N_0 C_{mea}}{C_{it} + C_{mea}} - N_2 \right) \geq 0 \Leftrightarrow N_0 > N_2 \text{ and } \frac{C_{it}}{C_{mea}} \leq \frac{N_0 - N_2}{N_2}.$$

(d) $n = l, m = 1, \mu_1 \geq 0$, and $\mu_3 \geq 0$:

Since $\mu_0 > 0$, substituting $n = l$ and $m = 1$ into (S.5), we have

$$\tilde{t}_m = (1 - lC_{it} - lC_{mea})/C_{op} > 0 \Leftrightarrow C_{it} + C_{mea} < 1/l.$$

Substituting $\tilde{t}_m, n = l, m = 1$, and $\mu_2 = 0$ into (S.3) gives

$$\begin{aligned} \tilde{\mu}_0(\tilde{t}_m) &= \frac{N_1 l^{N_0}}{C_{op}} \left(\frac{1 - lC_{it} - lC_{mea}}{C_{op}} \right)^{N_1-1} > 0 \\ &\Leftrightarrow C_{it} + C_{mea} < 1/l \text{ or } \{C_{it} + C_{mea} \geq 1/l \text{ and } (N_1 - 1)/2 \in \mathbb{N} \cup \{0\}\}. \end{aligned}$$

Again, substituting $\tilde{t}_m, \tilde{\mu}_0(\tilde{t}_m), n = l$, and $m = 1$ into (S.2) and (S.4) gives

$$\begin{aligned} \tilde{\mu}_1(\tilde{t}_m) &= \left(\frac{N_1 l(C_{it} + C_{mea})}{C_{op}} - \frac{N_0(1 - lC_{it} - lC_{mea})}{C_{op}} \right) l^{N_0-1} \tilde{t}_m^{N_1-1} \geq 0 \\ &\Leftrightarrow C_{it} + C_{mea} \geq \frac{N_0}{l(N_0 + N_1)} \text{ and} \\ \tilde{\mu}_3(\tilde{t}_m) &= \left(\frac{N_1 l C_{mea}}{C_{op}} - \frac{N_2(1 - lC_{it} - lC_{mea})}{C_{op}} \right) l^{N_0} \tilde{t}_m^{N_1-1} \geq 0 \\ &\Leftrightarrow C_{it} + \frac{N_1 + N_2}{N_2} C_{mea} \geq \frac{1}{l}. \end{aligned}$$

From cases (a)–(d), the KKT conditions can respectively be summarized as follows.

(a) Since $\{C_{it} \geq 1/l \text{ and } (N_1 + N_2 - 1)/2 \in \mathbb{N} \cup \{0\}\}$ for $\tilde{\mu}_0(\tilde{t}_m, \tilde{m}(\tilde{t}_m)) > 0$ contradicts $C_{it} < 1/l$ for $\tilde{t}_m > 0$, only two conditions $C_{it} + (N_1 + N_2)C_{mea}/N_2 < 1/l$ and $C_{it} \geq (N_0 - N_2)/(l(N_0 + N_1))$ if and only if $\xi_D = (l, \tilde{t}_m, \tilde{m}(\tilde{t}_m))$.

(b) Since $\{N_0 \leq N_2 \text{ and } (N_2 - N_0)/2 \in \mathbb{N} \cup \{0\}\}$ for $\tilde{\mu}_0(\tilde{n}(\tilde{t}_m), \tilde{t}_m, \tilde{m}) > 0$ contradicts the positive experimental cost $C_{it} < (N_0 - N_2)/(l(N_0 + N_1))$, only three conditions $N_0 > N_2$, $C_{it}/C_{mea} > (N_0 - N_2)/N_2$ and $C_{it} < (N_0 - N_2)/(l(N_0 + N_1))$ if and only if $\xi_D = (\tilde{n}(\tilde{t}_m), \tilde{t}_m, \tilde{m})$.

(c) $N_0 > N_2$, $C_{it}/C_{mea} \leq (N_0 - N_2)/N_2$ and $C_{it} + C_{mea} < N_0/(l(N_0 + N_1))$ if and only if $\xi_D = (\tilde{n}(\tilde{t}_m), \tilde{t}_m, 1)$.

(d) Since $\{C_{it} + C_{mea} \geq 1/l \text{ and } (N_1 - 1)/2 \in \mathbb{N} \cup \{0\}\}$ for $\tilde{\mu}_0(\tilde{t}_m) > 0$ contradicts $C_{it} + C_{mea} < 1/l$ for $\tilde{t}_m > 0$, only three conditions $C_{it} + C_{mea} < 1/l$, $C_{it} + C_{mea} \geq N_0/(l(N_0 + N_1))$ and $C_{it} + (N_1 + N_2)C_{mea}/N_2 \geq 1/l$ if and only if $\xi_D = (l, \tilde{t}_m, 1)$.

The results can be divided into two cases $N_0 > N_2$ and $N_0 \leq N_2$ immediately. \square

1.3 Proof of Corollary 2.1

Proof. The results are easy to show according to the definition of occurrence probability. \square

1.4 Proof of Corollary 2.2

Proof. (ii) By Theorem 2.1(i)-(2), we have

$$C_{op}t_{m,D} = \frac{N_1}{N_0 + N_1}, \quad C_{mea}m_Dn_D = \frac{N_2}{N_0 + N_1}, \quad \text{and} \quad C_{it}n_D = \frac{N_0 - N_2}{N_0 + N_1},$$

as desired. The remaining cases (i) and (iii) are easy to verify. \square

1.5 Proof of Theorem 3.1

Proof. For the $D(q^*)$ -optimal test plan $\xi_{D(q^*)} (= \xi_{V_{t_q^*}} = \xi_D)$, the intersection of necessary and sufficient conditions in both V_{t_q} and D -optimality criteria should be satisfied at each interior or boundary case.

(i) For $n_{D(q^*)} = l$, since $C_{it} + C_{mea} < C_{it} + (N_1 + N_2)C_{mea}/N_2$, by Theorem 2.1(i)-(1) (or (ii)-(1)), the condition $C_{it} + C_{mea} < 1/l$ holds directly. Using the optimal total termination time in Theorem 2.1(i)-(1) (or (ii)-(1)) and Theorem 2.2(i), we have

$$t_{m,D} = t_{m,V_{t_q}} \Leftrightarrow \frac{N_1(1 - lC_{it})}{(N_1 + N_2)C_{op}} = \frac{(1 - lC_{it})(\sqrt{lC_{op}C_{mea}\tilde{\alpha}(q)} - C_{op})}{C_{op}(lC_{mea}\tilde{\alpha}(q) - C_{op})},$$

indicating the DQ -equation (11). From $m_D = m_{V_{t_q}}$, we obtain the same results. Substituting the DQ -equation into the necessary and sufficient conditions in Theorem 2.2(i) gives

$$\frac{(1 - 2lC_{it})^2 C_{op}}{l^3 C_{mea} C_{it}^2} \leq \frac{N_2^2 C_{op}}{N_1^2 l C_{mea}} \Leftrightarrow C_{it} \geq \frac{N_1}{l(2N_1 + N_2)}, \quad (\text{S.6})$$

$$\frac{N_2^2 C_{op}}{N_1^2 l C_{mea}} > \frac{l C_{mea} C_{op}}{(1 - lC_{it} - lC_{mea})^2} \Leftrightarrow C_{it} + (N_1 + N_2)C_{mea}/N_2 < 1/l. \quad (\text{S.7})$$

The inequality (S.6) is a new lower bound of C_{it} for $2C_{it} + C_{mea} < 1/l$. From (S.6), applying $C_{it} \geq N_1/(l(2N_1 + N_2))$ for $2C_{it} + C_{mea} < 1/l$, we have $C_{mea} < N_2/(l(2N_1 + N_2))$. Therefore, it is easy to show that $C_{it} + (N_1 + N_2)C_{mea}/N_2 < 2C_{it} + C_{mea}$, implying that the condition $C_{it} + (N_1 + N_2)C_{mea}/N_2 < 1/l$ holds. Combining with the inequality (S.7) for $1/l \leq 2C_{it} + C_{mea}$, the condition $C_{it} + (N_1 + N_2)C_{mea}/N_2 < 1/l$ is a common condition for both optimality criteria. For $N_0 > N_2$, comparing the two lower bounds of C_{it} gives

$$\frac{N_1}{l(2N_1 + N_2)} \leq \frac{N_0 - N_2}{l(N_0 + N_1)} \Leftrightarrow N_0 \geq N_1 + N_2. \quad (\text{S.8})$$

Consequently, the results can be divided into two cases with the common condition $C_{it} + (N_1 + N_2)C_{mea}/N_2 < 1/l$ and the DQ -equation by (S.8). Supplementary Figures 1–3 (for $l = 1$), with the “pale-green” area, are plotted for $N_0 \geq N_1 + N_2$ and $N_0 < N_1 + N_2$, respectively.

(ii) By solving $m_D = m_{V_{t_q}}$, we have

$$\begin{aligned} c_0 &= \sqrt[3]{k_1(\tilde{\alpha}(q)) + k_2(\tilde{\alpha}(q))} + \sqrt[3]{k_1(\tilde{\alpha}(q)) - k_2(\tilde{\alpha}(q))} \\ \Leftrightarrow c_0^3 &= 2k_1(\tilde{\alpha}(q)) + 3\sqrt[3]{k_1(\tilde{\alpha}(q))^2 - k_2(\tilde{\alpha}(q))^2}c_0, \end{aligned} \quad (\text{S.9})$$

where

$$\begin{aligned} c_0 &= \frac{3N_2}{(N_0 - N_2)} + 2, \\ k_1(\tilde{\alpha}(q)) &= \frac{27C_{mea}\tilde{\alpha}(q)}{2C_{it}C_{op}} - 8, \\ k_2(\tilde{\alpha}(q)) &= \frac{3}{2}\sqrt{\frac{3C_{mea}\tilde{\alpha}(q)}{C_{it}C_{op}} \left(\frac{27C_{mea}\tilde{\alpha}(q)}{C_{it}C_{op}} - 32 \right)}. \end{aligned}$$

Substituting $k_1(\tilde{\alpha}(q))$ and $k_2(\tilde{\alpha}(q))$ into (S.9), a cubic equation of $\tilde{\alpha}(q)$ is given by

$$19683C_{mea}^3\tilde{\alpha}(q)^3 - 2187C_{it}C_{op}C_{mea}^2(c_0^3 + 16)\tilde{\alpha}(q)^2 + 81C_{it}^2C_{op}^2C_{mea}(c_0^3 + 16)^2\tilde{\alpha}(q)$$

$$-(c_0^3 - 8)^2(c_0^3 + 64)C_{it}^3C_{op}^3 = 0. \quad (\text{S.10})$$

Since the discriminant (defined in Supplementary Lemma 1 of Cheng and Peng, 2024) of (S.10) is proportional to $c_0^6C_{it}^6C_{op}^6C_{mea}^6$ and positive, there is only one positive real root

$$\tilde{\alpha}(q) = \frac{(2N_0 - N_2)N_2^2C_{it}C_{op}}{(N_0 - N_2)^3C_{mea}} \quad (\text{S.11})$$

by using Supplementary Lemma 2(ii) in Cheng and Peng (2024). Substituting m_D in Theorem 2.1(i)-(2) into $t_{m,D} = t_{m,V_{t_q}}$, we have

$$\frac{N_1}{(N_0 + N_1)C_{op}} = \frac{\sqrt{\frac{N_2C_{it}C_{op}}{(N_0 - N_2)C_{mea}} \left(\frac{N_2C_{it}C_{op}}{(N_0 - N_2)C_{mea}} + \tilde{\alpha}(q) \right)} - \frac{N_2C_{it}C_{op}}{(N_0 - N_2)C_{mea}}}{C_{op}\tilde{\alpha}(q)}.$$

Simplifying the above equation, we get

$$\tilde{\alpha}(q) = \frac{(N_0^2 - N_1^2)N_2C_{it}C_{op}}{N_1^2(N_0 - N_2)C_{mea}}. \quad (\text{S.12})$$

Moreover, under the condition $N_0 > N_2$ for (S.12), we have $\tilde{\alpha}(q) > 0 \Leftrightarrow N_0 > N_1$. Similarly, substituting m_D in Theorem 2.1(i)-(2) into $n_D = n_{V_{t_q}}$, we obtain the same equation (S.12). To achieve $D(q^*)$ -optimality, the equalities (S.11) and (S.12) should be the same, i.e.,

$$\frac{(2N_0 - N_2)N_2^2C_{it}C_{op}}{(N_0 - N_2)^3C_{mea}} = \frac{(N_0^2 - N_1^2)N_2C_{it}C_{op}}{N_1^2(N_0 - N_2)C_{mea}} \Leftrightarrow N_0 = 0, \text{ or } N_0 + N_1 = N_2, \text{ or } N_0 = N_1 + N_2.$$

Since $N_0 > N_2$ and $N_0, N_1, N_2 \in \mathbb{N}$, we have $N_0 = N_1 + N_2$, implying the DQ -equation (12). Substituting $N_0 = N_1 + N_2$ into the necessary and sufficient conditions in Theorem 2.1(i)-(2) and Theorem 2.2(ii), we have

$$\begin{aligned} \frac{(2C_{it} + C_{mea})C_{mea}C_{op}}{C_{it}^2} &< \frac{(2N_1 + N_2)N_2^2C_{it}C_{op}}{N_1^3C_{mea}} \Leftrightarrow \frac{C_{mea}}{C_{it}} < \frac{N_2}{N_1}, \\ \frac{(1 - 2lC_{it})^2C_{op}}{l^3C_{it}^2C_{mea}} &> \frac{(2N_1 + N_2)N_2^2C_{it}C_{op}}{N_1^3C_{mea}} \Leftrightarrow C_{it} < \frac{N_1}{l(2N_1 + N_2)}. \end{aligned}$$

Furthermore, it is easy to verify that $2C_{it} + C_{mea} < (2 + N_2/N_1)C_{it} < 1/l$. The feasible region for $l = 1$ can be referred to Supplementary Figure 1 (the “khaki” area).

(iii) For $m_{D(q^*)} = 1$ and $N_0 > N_2$, solving $n_D = n_{V_{t_q}}$, we get

$$\frac{N_0}{(N_0 + N_1)(C_{it} + C_{mea})} = \frac{C_{op} + \alpha_{\Xi}(\boldsymbol{\theta}) - \sqrt{C_{op}(C_{op} + \alpha_{\Xi}(\boldsymbol{\theta}))}}{\alpha_{\Xi}(\boldsymbol{\theta})(C_{it} + C_{mea})} \Leftrightarrow \tilde{\alpha}(q) = \frac{(N_0^2 - N_1^2)C_{op}}{N_1^2}.$$

Since $\tilde{\alpha}(q) > 0$, we have $N_0 > N_1$. From $t_{m,D} = t_{m,V_{t_q}}$, we obtain the same results. Substituting the DQ -equation (13) into the necessary and sufficient conditions in Theorem 2.2(iii) gives

$$\frac{(2l(C_{it} + C_{mea}) - 1)C_{op}}{(1 - lC_{it} - l^2C_{mea})^2} < \frac{(N_0^2 - N_1^2)C_{op}}{N_1^2} \leq \frac{(2C_{it} + C_{mea})C_{mea}C_{op}}{C_{it}^2}. \quad (\text{S.13})$$

Applying the condition $C_{it} + lC_{mea} < N_0/(l(N_0 + N_1))$ for the first inequality of (S.13), we have

$$\begin{aligned} & \frac{(2l(C_{it} + C_{mea}) - 1)C_{op}}{(1 - lC_{it} - lC_{mea})^2} - \frac{(N_0^2 - N_1^2)C_{op}}{N_1^2} \\ &= -\frac{C_{op}(N_0 - l(C_{it} + C_{mea})(N_0 + N_1))((1 - lC_{it} - lC_{mea})N_0 + l(C_{it} + C_{mea})N_1)}{N_1^2(1 - lC_{it} - lC_{mea})^2} < 0, \end{aligned}$$

and vice versa. For the second inequality of (S.13), we obtain the new lower bound of C_{mea}/C_{it} , i.e.,

$$\frac{(2C_{it} + C_{mea})C_{mea}C_{op}}{C_{it}^2} \geq \frac{(N_0^2 - N_1^2)C_{op}}{N_1^2} \Leftrightarrow \frac{C_{mea}}{C_{it}} \geq \frac{N_0 - N_1}{N_1}.$$

The new inequality is equivalent to $2C_{it} + C_{mea} \leq (C_{it} + C_{mea})(N_0 + N_1)/N_0$. This indicates that the condition $2C_{it} + C_{mea} < 1/l$ holds automatically. Consequently, comparing the two lower bounds of C_{mea}/C_{it} gives the key condition: for $N_0 > N_1$ and $N_0 > N_2$,

$$\frac{N_0 - N_1}{N_1} > \frac{N_2}{N_0 - N_2} \Leftrightarrow N_0 > N_1 + N_2. \quad (\text{S.14})$$

The results can be divided into two cases with the common condition $C_{it} + C_{mea} < N_0/(l(N_0 + N_1))$ and the DQ -equation by using (S.14). The feasible region for $l = 1$ can be referred to Supplementary Figure 2 (the “pink” area).

(iv) For $n_{D(q^*)} = l, m_{D(q^*)} = 1$, all need to do is to find intersection of the feasible regions for both V_{t_q} and D -optimal test plans. According to Theorem 2.2(iv), the results can be divided into two cases as follows.

(a) Since $C_{it} + C_{mea} < 2C_{it} + C_{mea}$, the condition $C_{it} + C_{mea} < 1/l$ holds by Theorem 2.2(iv)-(a). The common conditions are $2C_{it} + C_{mea} < 1/l \leq 2(C_{it} + C_{mea})$ and (14). For $N_0 < N_1 + N_2$, we have three disjoint sets:

(1) $N_0 < N_1 + N_2, N_2 < N_0$ and $N_1 < N_0$:

Since $N_1 < N_0$, we have $2(C_{it} + C_{mea}) > (N_0 + N_1)(C_{it} + C_{mea})/N_0$. It means that the condition $2(C_{it} + C_{mea}) > 1/l$ holds.

(2) $N_0 \leq N_1, N_2 < N_1$:

Since $N_0 \leq N_1$, we have $2(C_{it} + C_{mea}) \leq (N_0 + N_1)(C_{it} + C_{mea})/N_0$. It means that the condition $C_{it} + C_{mea} \geq N_0/(l(N_0 + N_1))$ is satisfied.

(3) $N_0 \leq N_2, N_1 < N_2$:

For $N_1 < N_2$ and $C_{it} + (N_1 + N_2)C_{mea}/N_2 \geq 1/l$, we have $2(C_{it} + C_{mea}) > (C_{it} + (N_1 + N_2)C_{mea}/N_2) + C_{it} \geq 1/l + C_{it} > 1/l$.

For the last case (4), recalling the intersection point $P = ((N_0 - N_2)/(l(N_0 + N_1)), N_2/(l(N_0 + N_1)))$ in Figure 1(a) of Theorem 2.1, it can be verified that the point P is located on $2C_{it} + C_{mea} = 1/l$ when $N_0 = N_1 + N_2$. This means that the point P satisfies $2C_{it} + C_{mea} < 1/l$ for $N_0 < N_1 + N_2$ and $2C_{it} + C_{mea} > 1/l$ for $N_0 > N_1 + N_2$. When $N_0 \geq N_1 + N_2$, we have $2(C_{it} + C_{mea}) > 2C_{it} + C_{mea} \geq 1/l$. Using $C_{it} \leq (N_0 - N_2)/(l(N_0 + N_1))$ and $C_{mea} \geq N_2/(l(N_0 + N_1))$ for the intersection point P, we have

$$C_{it} \leq \frac{N_0 - N_2}{l(N_0 + N_1)} = \frac{N_0 - N_2}{N_2} \frac{N_2}{l(N_0 + N_1)} \leq \frac{N_0 - N_2}{N_2} C_{mea},$$

which is equivalent to $(N_0 + N_1)(C_{it} + C_{mea})/N_0 \leq C_{it} + (N_1 + N_2)C_{mea}/N_2$. It means that the condition $C_{it} + (N_1 + N_2)C_{mea}/N_2 \geq 1/l$ holds. Supplementary Figures 1–3 (for $l = 1$), with the “light-blue” area labeled as (a), are plotted for the case $2C_{it} + C_{mea} < 1/l$.

(b) From Theorem 2.1(i)-(4) and (ii)-(2), the results can be divided into two cases with the common condition $1/l \leq C_{it} + (N_1 + N_2)C_{mea}/N_2$. Supplementary Figures 1–3 (for $l = 1$), with the “light-blue” area labeled as (b), are plotted for the case $C_{it} + C_{mea} < 1/l \leq 2C_{it} + C_{mea}$ and $1/l \leq C_{it} + (N_1 + N_2)C_{mea}/N_2$. (1) This is the case $N_0 > N_1 + N_2$ and $C_{it} + C_{mea} \geq N_0/(l(N_0 + N_1))$. (2) For $N_0 \leq N_1 + N_2$ and $N_0 > N_2$, the intersection point for $2C_{it} + C_{mea} = 1/l$ and $C_{it} + (N_1 + N_2)C_{mea}/N_2 = 1/l$ is $Q = (N_1/(l(2N_1 + N_2)), N_2/(l(2N_1 + N_2)))$. Using $C_{it} \leq N_1/(l(2N_1 + N_2))$ and $C_{mea} \geq N_2/(l(2N_1 + N_2))$ for the intersection point Q, we have

$$C_{mea} \geq \frac{N_2}{l(2N_1 + N_2)} \geq \frac{N_0 - N_1}{N_1} \frac{N_1}{l(2N_1 + N_2)} \geq \frac{N_0 - N_1}{N_1} C_{it},$$

which is equivalent to $(N_0 + N_1)(C_{it} + C_{mea})/N_0 \geq 2C_{it} + C_{mea}$. This means that the condition $C_{it} + C_{mea} \geq N_0/(l(N_0 + N_1))$ is satisfied.

This completes the proof. □

1.6 Proof of Proposition 1

Proof. To ensure $\tilde{\alpha}(q) < \infty$, the denominator of (18) is not equal to zero (i.e., $q \neq \Phi(\rho^{-1} - 2\rho)$), which means that there is a vertical asymptote at $q = \Phi(\rho^{-1} - 2\rho)$. In addition, the first derivative of $\tilde{\alpha}(q)$ is proportional to $-h_q/(1 - h_q)^3$ with $h_q = (\rho^{-2} - \Phi^{-1}(q)\rho^{-1})/2$ and is zero at $q = \Phi(\rho^{-1})$. Since the sign of $-h_q/(1 - h_q)^3$ is the same as $h_q(h_q - 1)$, we have

$$\begin{aligned}\frac{d\tilde{\alpha}(q)}{dq} < 0 &\Leftrightarrow 0 < h_q < 1 \Leftrightarrow \Phi(\rho^{-1} - 2\rho) < q < \Phi(\rho^{-1}) \text{ and} \\ \frac{d\tilde{\alpha}(q)}{dq} > 0 &\Leftrightarrow h_q < 0 \text{ or } h_q > 1 \Leftrightarrow q < \Phi(\rho^{-1} - 2\rho) \text{ or } q > \Phi(\rho^{-1}).\end{aligned}$$

Hence, it is easy to check that $\lim_{q \rightarrow 0} \tilde{\alpha}(q) = \lim_{q \rightarrow 1} \tilde{\alpha}(q) = 2\eta^2/\sigma^2 > 0 = \tilde{\alpha}(\Phi(\rho^{-1}))$, indicating that there is an absolute minimum at $q = \Phi(\rho^{-1})$ with $\tilde{\alpha}(\Phi(\rho^{-1})) = 0$. Moreover, the second derivative of $\tilde{\alpha}(q)$ is given by

$$\frac{d^2\tilde{\alpha}(q)}{dq^2} \propto \rho^2 (\Phi^{-1}(q))^3 + 2\rho(\rho^2 - 1) (\Phi^{-1}(q))^2 + (1 - 4\rho^2)\Phi^{-1}(q) + 2\rho(\rho^2 + 1), \quad (\text{S.15})$$

which is a cubic polynomial of $\Phi^{-1}(q)$. Since the discriminant of the cubic equation (defined in Supplementary Lemma 1 of Cheng and Peng, 2024) for (S.15) is $\Delta = 4\rho^6(16\rho^6 + 51\rho^4 + 12\rho^2 + 2) > 0$, there is one negative real root z_0 defined in Proposition 1(i) by Vieta's formula. Thus, there is an inflection point at $q = \Phi(z_0)$, i.e., $d^2\tilde{\alpha}(q)/dq^2 > 0$ for $\Phi(z_0) < q < 1$ and $d^2\tilde{\alpha}(q)/dq^2 < 0$ for $0 < q < \Phi(z_0)$. Now, we claim that the inflection point is on the left-hand side of the vertical asymptote, i.e., $z_0 < \rho^{-1} - 2\rho$. It can be verified that $z_0 < \rho^{-1} - 2\rho$ is equivalent to $\sqrt[3]{(-z_1 - \sqrt{27\rho^4\Delta})/2} + \sqrt[3]{(-z_1 + \sqrt{27\rho^4\Delta})/2} > \rho(4\rho^2 - 1)$, where z_1 is defined in Proposition 1(i). By using Cauchy-Schwarz inequality, we have

$$\sqrt[3]{(-z_1 - \sqrt{27\rho^4\Delta})/2} + \sqrt[3]{(-z_1 + \sqrt{27\rho^4\Delta})/2} - \rho(4\rho^2 - 1) \geq 2(\rho + 2\rho^3) - \rho(4\rho^2 - 1) > 0.$$

The proof is complete. \square

1.7 Derivation of (20)

Let the IQ function $\tilde{\alpha}(q)$ be defined on the interested interval (19), i.e.,

$$\tilde{\alpha} : (\Phi(\rho^{-1} - 2\rho), \Phi(\rho^{-1})) \rightarrow (0, \infty) : \tilde{\alpha}(q) = \frac{2\eta^2}{\sigma^2} \left(\frac{1 - \rho\Phi^{-1}(q)}{2\rho^2 - 1 + \rho\Phi^{-1}(q)} \right)^2.$$

The inverse function of $\tilde{\alpha}(q)$ can be solved as follows. Let $u = 2\eta^2/(\sigma^2 c)$, then

$$\tilde{\alpha}(q) = c \Leftrightarrow q = \Phi \left(\rho^{-1} - \frac{2\rho}{1 \pm \sqrt{u}} \right). \quad (\text{S.16})$$

Substituting (S.16) into the interested interval (19), we have

$$\Phi(\rho^{-1} - 2\rho) < \Phi\left(\rho^{-1} - \frac{2\rho}{1 \pm \sqrt{u}}\right) < \Phi(\rho^{-1}) \Leftrightarrow 1 > \frac{1}{1 \pm \sqrt{u}} > 0.$$

Since $\frac{1}{1-\sqrt{u}} > 1$ for $u \leq 1$ or $\frac{1}{1+\sqrt{u}} < 0$ for $u > 1$, the inverse function of $\tilde{\alpha}(q)$ is expressed as (20).

1.8 Proof of Theorem 4.1

Proof. For the Wiener process, we have $N_0 = N_1 + N_2$. Substituting $N_0 = N_1 + N_2$ into Theorem 3.1, the necessary and sufficient conditions for $\xi_{D(q^*)}$ can be simplified. By using (20), the corresponding bi-optimal quantile for interior and boundary cases can be obtained directly. \square

References

- [1] Cheng, Y. S. and Peng, C. Y. (2024), Optimal test planning for heterogeneous Wiener processes. *Naval Research Logistics*, **71**, 509–520.
- [2] Peng, C. Y. and Cheng, Y. S. (2021), Profile optimum planning for degradation analysis. *Naval Research Logistics*, **68**, 951–962.

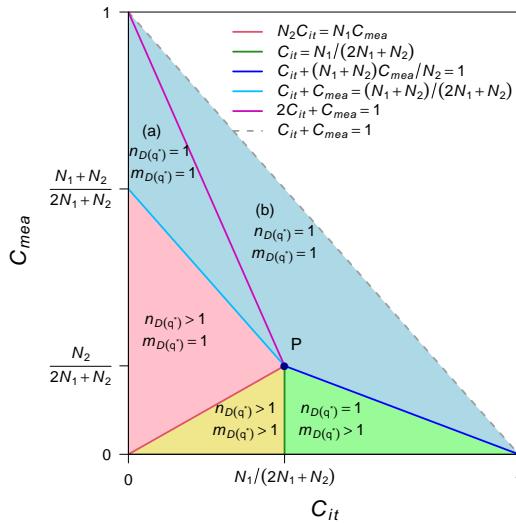


Figure 1: $N_0 = N_1 + N_2$ ($l = 1$)



Figure 2: $\max\{N_1, N_2\} < N_0 \neq N_1 + N_2$ ($l = 1$)

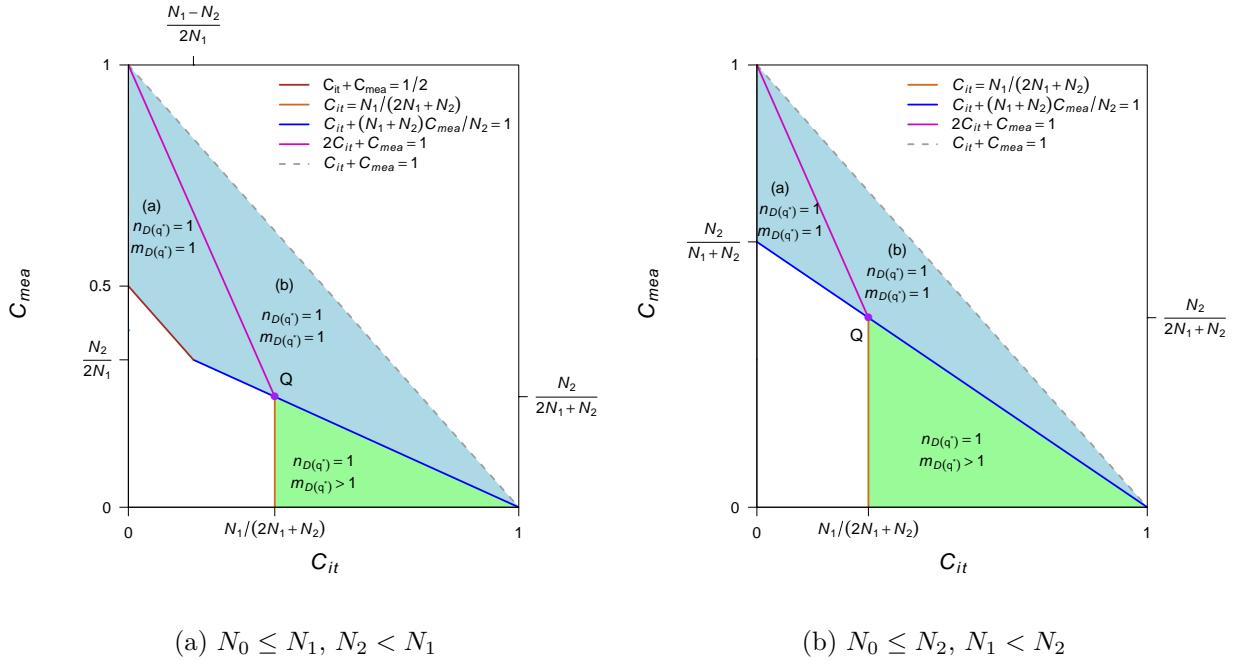


Figure 3: $N_0 \leq \max\{N_1, N_2\}$ ($l = 1$)