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1 Technical Derivations and Auxiliary Results

1.1 Fisher Information Matrix of the Accelerated Degradation

Model Based on a Wiener Process

The single degradation path Yik follows an m-variate normal distribution, i.e.,

Yik ∼ Nm(g1(X
′

kβ)ti,k, g2(Z
′

kγ)Qi,k), i = 1, . . . , nk, k = 1, . . . , l,

where ti,k = (ti,1,k, . . . , ti,m−1,k, tm,k)
′ and Qi,k = [min{ti,j1,k, ti,j2,k}]1≤j1,j2≤m. The log-

likelihood function is given by

L(θ) = −m
2

(
ln(2π) + ln(g2(Z

′

kγ))
)
− 1

2
ln |Qi,k| −

(yi,k − g1(X
′

kβ)ti,k)
′Q−1

i,k (yi,k − g1(X
′

kβ)ti,k)

2g2(Z
′
kγ)

.

The first and second derivatives of L(θ) are
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∂2L(θ)
∂γ∂γ ′ =

{(
(yi,k − g1(X

′

kβ)ti,k)
′Q−1

i,k (yi,k − g1(X
′

kβ)ti,k)

2(g2(Z
′
kγ))

2
− m

2g2(Z
′
kγ)

)
∂2g2(Z

′

kγ)

∂(Z
′
kγ)

2

+

(
m

2(g2(Z
′
kγ))

2
−

(yi,k − g1(X
′

kβ)ti,k)
′Q−1

i,k (yi,k − g1(X
′

kβ)ti,k)

(g2(Z
′
kγ))

3

)(
∂g2(Z

′

kγ)

∂Z
′
kγ

)2
}
ZkZ

′

k.

Since t′i,kQ
−1
i,k ti,k = tm,k and

(Yi,k − g1(X
′

kβ)ti,k)
′Q−1

i,k (Yi,k − g1(X
′

kβ)ti,k)/g2(Z
′

kγ) ∼ χ2
m,

the elements of (N1 +N2)× (N1 +N2) FIM, Ii,k(θ), for Yik are simplified as

E
(
−∂

2L(θ)
∂β∂β′

)
=

tm,k

g2(Z
′
kγ)

(
∂g1(X

′

kβ)

∂X
′
kβ

)2

XkX
′

k, E
(
−∂

2L(θ)
∂β∂γ ′

)
= 0N1×N2 ,

E
(
−∂

2L(θ)
∂γ∂β′

)
= 0N2×N1 , E

(
−∂

2L(θ)
∂γ∂γ ′

)
=

m

2(g2(Z
′
kγ))

2

(
∂g2(Z

′

kγ)

∂Z
′
kγ

)2

ZkZ
′

k,

where 0N1×N2 denotes a N1 ×N2 matrix of zeros. Consequently, the overall FIM, In(θ), is

a block diagonal matrix, i.e.,

In(θ) =
l∑

k=1

nk∑
i=1

Ii,k(θ) = n((tmB)⊕ (mG/2)),

where “⊕” denotes the direct sum,

B =
l∑

k=1

pkψk

g2(Z
′
kγ)

(
∂g1(X

′

kβ)

∂X
′
kβ

)2

XkX
′

k and G =
l∑

k=1

pk
(g2(Z

′
kγ))

2

(
∂g2(Z

′

kγ)

∂Z
′
kγ

)2

ZkZ
′

k.

1.2 Proof of Theorem 2.1

Proof. Let

G(ξ) = −nN0tN1
m mN2 + µ0(Coptm + Cmeamn+ Citn− 1) + µ1(l − n)− µ2tm + µ3(1−m),

(S.1)

where µ0, µ1, µ2, µ3 ≥ 0. The Karush-Kuhn-Tucker (KKT) conditions of (S.1) are

∂G(ξ)

∂n
= 0 ⇔ −N0n

N0−1tN1
m mN2 + µ0(Cit + Cmeam)− µ1 = 0, (S.2)

∂G(ξ)

∂tm
= 0 ⇔ −N1n

N0tN1−1
m mN2 + µ0Cop − µ2 = 0, (S.3)

∂G(ξ)

∂m
= 0 ⇔ −N2n

N0tN1
m mN2−1 + µ0Cmean− µ3 = 0, (S.4)

µ0(Coptm + Cmeamn+ Citn− 1) = µ1(l − n) = −µ2tm = µ3(1−m) = 0, (S.5)
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µ0, µ1, µ2, µ3 ≥ 0.

When tm = 0 or µ0 = 0, there is no solution for n, tm, and m in (S.2)–(S.4). Hence, we have

µ0 > 0 and µ2 = 0 by the complementary slackness in (S.5). According to the distinctions

between n, m, µ1, µ3, there are four cases as follows.

(a) n = l,m > 1, µ1 ≥ 0, and µ3 = 0:

Substituting n = l and µ2 = µ3 = 0 into (S.3) and (S.4) gives m̃(tm) = N2Coptm/(N1lCmea).

Since µ0 > 0, substituting m̃(tm), and n = l into (S.5), we have

t̃m =
N1(1− lCit)

(N1 +N2)Cop

> 0 ⇔ Cit < 1/l and

m̃(t̃m) =
N2(1− lCit)

(N1 +N2)lCmea

> 1 ⇔ Cit +
(N1 +N2)Cmea

N2

<
1

l
.

Again, substituting t̃m, m̃(t̃m), µ2 = 0, and n = l into (S.3), we get

µ̃0(t̃m, m̃(t̃m)) =
N1l

N0

Cop

(
N1(1− lCit)

(N1 +N2)Cop

)N1−1(
N2(1− lCit)

(N1 +N2)lCmea

)N2

∝ (1− lCit)
N1+N2−1 > 0

⇔ Cit < 1/l or {Cit ≥ 1/l and (N1 +N2 − 1)/2 ∈ N ∪ {0}}.

In addition, substituting t̃m, m̃(t̃m), µ̃0(t̃m, m̃(t̃m)), and n = l into (S.2), we have

µ̃1 =
µ̃0(t̃m, m̃(t̃m)) (N1lCit +N2 −N0(1− lCit))

l(N1 +N2)
≥ 0 ⇔ Cit ≥

N0 −N2

l(N0 +N1)
.

(b) n > l,m > 1, µ1 = 0, and µ3 = 0:

Substituting µ1 = µ2 = µ3 = 0 into (S.2), (S.3), and (S.4) gives

m̃ =
N2Cit

(N0 −N2)Cmea

and ñ(tm) =
(N0 −N2)Coptm

N1Cit

.

Again, substituting m̃ and ñ(tm) into (S.5), we obtain t̃m = N1/((N0 +N1)Cop) > 0.

Hence, we have

m̃ > 1 ⇔ N0 > N2 and Cit

Cmea

>
N0 −N2

N2

,

ñ(t̃m) =
N0 −N2

(N0 +N1)Cit

> l ⇔ N0 > N2 and Cit <
N0 −N2

l(N0 +N1)
.

Substituting ñ(t̃m), t̃m, m̃, and µ2 = 0 into (S.3), we have

µ̃0(ñ(t̃m), t̃m, m̃) ∝ (N0−N2)
N0−N2 > 0 ⇔ N0 > N2 or {N0 ≤ N2 and (N2−N0)/2 ∈ N∪{0}},

where limx→0+ x
x = 1.
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(c) n > l,m = 1, µ1 = 0, and µ3 ≥ 0:

Substitutingm = 1 and µ1 = 0 into (S.2) and (S.3) gives ñ(tm) = N0Coptm/(N1(Cit + Cmea)).

Since µ0 > 0, substituting ñ(tm) and m = 1 into (S.5), we have

t̃m =
N1

(N0 +N1)Cop

> 0 and ñ(t̃m) =
N0

(N0 +N1)(Cit + Cmea)
> l ⇔ Cit+Cmea <

N0

l(N0 +N1)
.

Again, substituting t̃m, ñ(t̃m), µ2 = 0 and m = 1 into (S.3), we get

µ̃0 =
N1

Cop

(
N0

(N0 +N1)(Cit + Cmea)

)N0
(

N1

(N0 +N1)Cop

)N1−1

> 0.

In addition, substituting t̃m, ñ(t̃m), µ̃0, and m = 1 into (S.4), we have

µ̃3 =
µ̃0

N0 +N1

(
N0Cmea

Cit + Cmea

−N2

)
≥ 0 ⇔ N0 > N2 and Cit

Cmea

≤ N0 −N2

N2

.

(d) n = l,m = 1, µ1 ≥ 0, and µ3 ≥ 0:

Since µ0 > 0, substituting n = l and m = 1 into (S.5), we have

t̃m = (1− lCit − lCmea)/Cop > 0 ⇔ Cit + Cmea < 1/l.

Substituting t̃m, n = l, m = 1, and µ2 = 0 into (S.3) gives

µ̃0(t̃m) =
N1l

N0

Cop

(
1− lCit − lCmea

Cop

)N1−1

> 0

⇔ Cit + Cmea < 1/l or {Cit + Cmea ≥ 1/l and (N1 − 1)/2 ∈ N ∪ {0}}.

Again, substituting t̃m, µ̃0(t̃m), n = l, and m = 1 into (S.2) and (S.4) gives

µ̃1(t̃m) =

(
N1l(Cit + Cmea)

Cop

− N0(1− lCit − lCmea)

Cop

)
lN0−1t̃m

N1−1 ≥ 0

⇔ Cit + Cmea ≥
N0

l(N0 +N1)
and

µ̃3(t̃m) =

(
N1lCmea

Cop

− N2(1− lCit − lCmea)

Cop

)
lN0 t̃m

N1−1 ≥ 0

⇔ Cit +
N1 +N2

N2

Cmea ≥
1

l
.

From cases (a)–(d), the KKT conditions can respectively be summarized as follows.

(ā) Since {Cit ≥ 1/l and (N1 +N2 − 1)/2 ∈ N ∪ {0}} for µ̃0(t̃m, m̃(t̃m)) > 0 contradicts

Cit < 1/l for t̃m > 0, only two conditions Cit + (N1 +N2)Cmea/N2 < 1/l and Cit ≥

(N0 −N2)/(l(N0 +N1)) if and only if ξD =
(
l, t̃m, m̃(t̃m)

)
.
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(b̄) Since {N0 ≤ N2 and (N2 − N0)/2 ∈ N ∪ {0}} for µ̃0(ñ(t̃m), t̃m, m̃) > 0 contradicts

the positive experimental cost Cit < (N0 −N2)/(l(N0 +N1)), only three conditions

N0 > N2, Cit/Cmea > (N0 −N2)/N2 and Cit < (N0 −N2)/(l(N0 +N1)) if and only if

ξD =
(
ñ(t̃m), t̃m, m̃

)
.

(c̄) N0 > N2, Cit/Cmea ≤ (N0 −N2)/N2 and Cit +Cmea < N0/(l(N0 +N1)) if and only if

ξD =
(
ñ(t̃m), t̃m, 1

)
.

(d̄) Since {Cit + Cmea ≥ 1/l and (N1 − 1)/2 ∈ N ∪ {0}} for µ̃0(t̃m) > 0 contradicts

Cit + Cmea < 1/l for t̃m > 0, only three conditions Cit + Cmea < 1/l, Cit + Cmea ≥

N0/(l(N0 +N1)) and Cit + (N1 +N2)Cmea/N2 ≥ 1/l if and only if ξD =
(
l, t̃m, 1

)
.

The results can be divided into two cases N0 > N2 and N0 ≤ N2 immediately.

1.3 Proof of Corollary 2.1

Proof. The results are easy to show according to the definition of occurrence probability.

1.4 Proof of Corollary 2.2

Proof. (ii) By Theorem 2.1(i)-(2), we have

Coptm,D =
N1

N0 +N1

, CmeamDnD =
N2

N0 +N1

, and CitnD =
N0 −N2

N0 +N1

,

as desired. The remaining cases (i) and (iii) are easy to verify.

1.5 Proof of Theorem 3.1

Proof. For the D(q∗)-optimal test plan ξD(q∗)(= ξVtq∗
= ξD), the intersection of necessary

and sufficient conditions in both Vtq and D-optimality criteria should be satisfied at each

interior or boundary case.

(i) For nD(q∗) = l, since Cit + Cmea < Cit + (N1 + N2)Cmea/N2, by Theorem 2.1(i)-(1)

(or (ii)-(1)), the condition Cit + Cmea < 1/l holds directly. Using the optimal total

termination time in Theorem 2.1(i)-(1) (or (ii)-(1)) and Theorem 2.2(i), we have

tm,D = tm,Vtq
⇔ N1(1− lCit)

(N1 +N2)Cop

=
(1− lCit)(

√
lCopCmeaα̃(q)− Cop)

Cop(lCmeaα̃(q)− Cop)
,

5



indicating the DQ-equation (11). From mD = mVtq
, we obtain the same results.

Substituting the DQ-equation into the necessary and sufficient conditions in Theorem

2.2(i) gives

(1− 2lCit)
2Cop

l3CmeaC2
it

≤ N2
2Cop

N2
1 lCmea

⇔ Cit ≥
N1

l(2N1 +N2)
, (S.6)

N2
2Cop

N2
1 lCmea

>
lCmeaCop

(1− lCit − lCmea)2
⇔ Cit + (N1 +N2)Cmea/N2 < 1/l. (S.7)

The inequality (S.6) is a new lower bound of Cit for 2Cit + Cmea < 1/l. From (S.6),

applying Cit ≥ N1/(l(2N1+N2)) for 2Cit+Cmea < 1/l, we have Cmea < N2/(l(2N1+

N2)). Therefore, it is easy to show that Cit + (N1 + N2)Cmea/N2 < 2Cit + Cmea,

implying that the condition Cit + (N1 + N2)Cmea/N2 < 1/l holds. Combining with

the inequality (S.7) for 1/l ≤ 2Cit+Cmea, the condition Cit+(N1+N2)Cmea/N2 < 1/l

is a common condition for both optimality criteria. For N0 > N2, comparing the two

lower bounds of Cit gives

N1

l(2N1 +N2)
≤ N0 −N2

l(N0 +N1)
⇔ N0 ≥ N1 +N2. (S.8)

Consequently, the results can be divided into two cases with the common condition

Cit+(N1+N2)Cmea/N2 < 1/l and the DQ-equation by (S.8). Supplementary Figures

1–3 (for l = 1), with the “pale-green” area, are plotted for N0 ≥ N1 + N2 and

N0 < N1 +N2, respectively.

(ii) By solving mD = mVtq
, we have

c0 =
3
√
k1(α̃(q)) + k2(α̃(q)) +

3
√
k1(α̃(q))− k2(α̃(q))

⇔ c30 = 2k1(α̃(q)) + 3 3
√
k1(α̃(q))2 − k2(α̃(q))2c0, (S.9)

where

c0 =
3N2

(N0 −N2)
+ 2,

k1(α̃(q)) =
27Cmeaα̃(q)

2CitCop

− 8,

k2(α̃(q)) =
3

2

√
3Cmeaα̃(q)

CitCop

(
27Cmeaα̃(q)

CitCop

− 32

)
.

Substituting k1(α̃(q)) and k2(α̃(q)) into (S.9), a cubic equation of α̃(q) is given by

19683C3
meaα̃(q)

3 − 2187CitCopC
2
mea(c

3
0 + 16)α̃(q)2 + 81C2

itC
2
opCmea(c

3
0 + 16)2α̃(q)
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− (c30 − 8)2(c30 + 64)C3
itC

3
op = 0. (S.10)

Since the discriminant (defined in Supplementary Lemma 1 of Cheng and Peng, 2024)

of (S.10) is proportional to c60C6
itC

6
opC

6
mea and positive, there is only one positive real

root

α̃(q) =
(2N0 −N2)N

2
2CitCop

(N0 −N2)3Cmea

(S.11)

by using Supplementary Lemma 2(ii) in Cheng and Peng (2024). Substituting mD

in Theorem 2.1(i)-(2) into tm,D = tm,Vtq
, we have

N1

(N0 +N1)Cop

=

√
N2CitCop

(N0−N2)Cmea

(
N2CitCop

(N0−N2)Cmea
+ α̃(q)

)
− N2CitCop

(N0−N2)Cmea

Copα̃(q)
.

Simplifying the above equation, we get

α̃(q) =
(N2

0 −N2
1 )N2CitCop

N2
1 (N0 −N2)Cmea

. (S.12)

Moreover, under the condition N0 > N2 for (S.12), we have α̃(q) > 0 ⇔ N0 > N1.

Similarly, substituting mD in Theorem 2.1(i)-(2) into nD = nVtq
, we obtain the same

equation (S.12). To achieve D(q∗)-optimality, the equalities (S.11) and (S.12) should

be the same, i.e.,

(2N0 −N2)N
2
2CitCop

(N0 −N2)3Cmea

=
(N2

0 −N2
1 )N2CitCop

N2
1 (N0 −N2)Cmea

⇔ N0 = 0, or N0 +N1 = N2, or N0 = N1 +N2.

Since N0 > N2 and N0, N1, N2 ∈ N, we have N0 = N1 + N2, implying the DQ-

equation (12). Substituting N0 = N1+N2 into the necessary and sufficient conditions

in Theorem 2.1(i)-(2) and Theorem 2.2(ii), we have

(2Cit + Cmea)CmeaCop

C2
it

<
(2N1 +N2)N

2
2CitCop

N3
1Cmea

⇔ Cmea

Cit

<
N2

N1

,

(1− 2lCit)
2Cop

l3C2
itCmea

>
(2N1 +N2)N

2
2CitCop

N3
1Cmea

⇔ Cit <
N1

l(2N1 +N2)
.

Furthermore, it is easy to verify that 2Cit+Cmea < (2+N2/N1)Cit < 1/l. The feasible

region for l = 1 can be referred to Supplementary Figure 1 (the “khaki” area).

(iii) For mD(q∗) = 1 and N0 > N2, solving nD = nVtq
, we get

N0

(N0 +N1)(Cit + Cmea)
=
Cop + αΞ(θ)−

√
Cop(Cop + αΞ(θ))

αΞ(θ)(Cit + Cmea)
⇔ α̃(q) =

(N2
0 −N2

1 )Cop

N2
1

.
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Since α̃(q) > 0, we have N0 > N1. From tm,D = tm,Vtq
, we obtain the same results.

Substituting the DQ-equation (13) into the necessary and sufficient conditions in

Theorem 2.2(iii) gives

(2l(Cit + Cmea)− 1)Cop

(1− lCit − l2Cmea)2
<

(N2
0 −N2

1 )Cop

N2
1

≤ (2Cit + Cmea)CmeaCop

C2
it

. (S.13)

Applying the condition Cit + lCmea < N0/(l(N0 + N1)) for the first inequality of

(S.13), we have

(2l(Cit + Cmea)− 1)Cop

(1− lCit − lCmea)2
− (N2

0 −N2
1 )Cop

N2
1

= −Cop(N0 − l(Cit + Cmea)(N0 +N1))((1− lCit − lCmea)N0 + l(Cit + Cmea)N1)

N2
1 (1− lCit − lCmea)2

< 0,

and vice versa. For the second inequality of (S.13), we obtain the new lower bound

of Cmea/Cit, i.e.,

(2Cit + Cmea)CmeaCop

C2
it

≥ (N2
0 −N2

1 )Cop

N2
1

⇔ Cmea

Cit

≥ N0 −N1

N1

.

The new inequality is equivalent to 2Cit + Cmea ≤ (Cit + Cmea)(N0 + N1)/N0. This

indicates that the condition 2Cit + Cmea < 1/l holds automatically. Consequently,

comparing the two lower bounds of Cmea/Cit gives the key condition: for N0 > N1

and N0 > N2,

N0 −N1

N1

>
N2

N0 −N2

⇔ N0 > N1 +N2. (S.14)

The results can be divided into two cases with the common condition Cit + Cmea <

N0/(l(N0 +N1)) and the DQ-equation by using (S.14). The feasible region for l = 1

can be referred to Supplementary Figure 2 (the “pink” area).

(iv) For nD(q∗) = l,mD(q∗) = 1, all need to do is to find intersection of the feasible regions

for both Vtq and D-optimal test plans. According to Theorem 2.2(iv), the results can

be divided into two cases as follows.

(a) Since Cit+Cmea < 2Cit+Cmea, the condition Cit+Cmea < 1/l holds by Theorem

2.2(iv)-(a). The common conditions are 2Cit +Cmea < 1/l ≤ 2(Cit +Cmea) and

(14). For N0 < N1 +N2, we have three disjoint sets:

(1) N0 < N1 +N2, N2 < N0 and N1 < N0:

Since N1 < N0, we have 2(Cit + Cmea) > (N0 + N1)(Cit + Cmea)/N0. It

means that the condition 2(Cit + Cmea) > 1/l holds.

8



(2) N0 ≤ N1, N2 < N1:

Since N0 ≤ N1, we have 2(Cit + Cmea) ≤ (N0 + N1)(Cit + Cmea)/N0. It

means that the condition Cit + Cmea ≥ N0/(l(N0 +N1)) is satisfied.

(3) N0 ≤ N2, N1 < N2:

For N1 < N2 and Cit + (N1 +N2)Cmea/N2 ≥ 1/l, we have 2(Cit + Cmea) >

(Cit + (N1 +N2)Cmea/N2) + Cit ≥ 1/l + Cit > 1/l.

For the last case (4), recalling the intersection point P = ((N0 − N2)/(l(N0 +

N1)), N2/(l(N0+N1))) in Figure 1(a) of Theorem 2.1, it can be verified that the

point P is located on 2Cit+Cmea = 1/l when N0 = N1+N2. This means that the

point P satisfies 2Cit +Cmea < 1/l for N0 < N1 +N2 and 2Cit +Cmea > 1/l for

N0 > N1+N2. When N0 ≥ N1+N2, we have 2(Cit+Cmea) > 2Cit+Cmea ≥ 1/l.

Using Cit ≤ (N0 − N2)/(l(N0 + N1)) and Cmea ≥ N2/(l(N0 + N1)) for the

intersection point P, we have

Cit ≤
N0 −N2

l(N0 +N1)
=
N0 −N2

N2

N2

l(N0 +N1)
≤ N0 −N2

N2

Cmea,

which is equivalent to (N0 +N1)(Cit +Cmea)/N0 ≤ Cit + (N1 +N2)Cmea/N2. It

means that the condition Cit + (N1 +N2)Cmea/N2 ≥ 1/l holds. Supplementary

Figures 1–3 (for l = 1), with the “light-blue” area labeled as (a), are plotted for

the case 2Cit + Cmea < 1/l.

(b) From Theorem 2.1(i)-(4) and (ii)-(2), the results can be divided into two cases

with the common condition 1/l ≤ Cit + (N1 + N2)Cmea/N2. Supplementary

Figures 1–3 (for l = 1), with the “light-blue” area labeled as (b), are plotted for

the case Cit + Cmea < 1/l ≤ 2Cit + Cmea and 1/l ≤ Cit + (N1 + N2)Cmea/N2.

(1) This is the case N0 > N1 +N2 and Cit + Cmea ≥ N0/(l(N0 +N1)). (2) For

N0 ≤ N1 + N2 and N0 > N2, the intersection point for 2Cit + Cmea = 1/l and

Cit + (N1 + N2)Cmea/N2 = 1/l is Q = (N1/(l(2N1 + N2)), N2/(l(2N1 + N2))).

Using Cit ≤ N1/(l(2N1+N2)) and Cmea ≥ N2/(l(2N1+N2)) for the intersection

point Q, we have

Cmea ≥
N2

l(2N1 +N2)
≥ N0 −N1

N1

N1

l(2N1 +N2)
≥ N0 −N1

N1

Cit,

which is equivalent to (N0 + N1)(Cit + Cmea)/N0 ≥ 2Cit + Cmea. This means

that the condition Cit + Cmea ≥ N0/(l(N0 +N1)) is satisfied.

This completes the proof.
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1.6 Proof of Proposition 1

Proof. To ensure α̃(q) < ∞, the denominator of (18) is not equal to zero (i.e., q 6=

Φ(ρ−1 − 2ρ)), which means that there is a vertical asymptote at q = Φ(ρ−1− 2ρ). In addi-

tion, the first derivative of α̃(q) is proportional to −hq/(1− hq)
3 with hq = (ρ−2 − Φ−1(q)ρ−1) /2

and is zero at q = Φ(ρ−1). Since the sign of −hq/(1− hq)
3 is the same as hq(hq − 1), we

have
dα̃(q)

dq
< 0 ⇔ 0 < hq < 1 ⇔ Φ

(
ρ−1 − 2ρ

)
< q < Φ

(
ρ−1
)

and

dα̃(q)
dq

> 0 ⇔ hq < 0 or hq > 1 ⇔ q < Φ
(
ρ−1 − 2ρ

)
or q > Φ

(
ρ−1
)
.

Hence, it is easy to check that limq→0 α̃(q) = limq→1 α̃(q) = 2η2/σ2 > 0 = α̃(Φ(ρ−1)),

indicating that there is an absolute minimum at q = Φ(ρ−1) with α̃(Φ(ρ−1)) = 0. Moreover,

the second derivative of α̃(q) is given by

d2α̃(q)

dq2
∝ ρ2

(
Φ−1(q)

)3
+ 2ρ(ρ2 − 1)

(
Φ−1(q)

)2
+ (1− 4ρ2)Φ−1(q) + 2ρ(ρ2 + 1), (S.15)

which is a cubic polynomial of Φ−1(q). Since the discriminant of the cubic equation (defined

in Supplementary Lemma 1 of Cheng and Peng, 2024) for (S.15) is ∆ = 4ρ6(16ρ6 +51ρ4 +

12ρ2 + 2) > 0, there is one negative real root z0 defined in Proposition 1(i) by Vieta’s

formula. Thus, there is an inflection point at q = Φ(z0), i.e., d2α̃(q)/dq2 > 0 for Φ(z0) <

q < 1 and d2α̃(q)/dq2 < 0 for 0 < q < Φ(z0). Now, we claim that the inflection point is

on the left-hand side of the vertical asymptote, i.e., z0 < ρ−1 − 2ρ. It can be verified that

z0 < ρ−1 − 2ρ is equivalent to 3

√
(−z1 −

√
27ρ4∆)/2 + 3

√
(−z1 +

√
27ρ4∆)/2 > ρ(4ρ2 − 1),

where z1 is defined in Proposition 1(i). By using Cauchy-Schwarz inequality, we have

3

√
(−z1 −

√
27ρ4∆)/2 +

3

√
(−z1 +

√
27ρ4∆)/2− ρ(4ρ2 − 1) ≥ 2(ρ+ 2ρ3)− ρ(4ρ2 − 1) > 0.

The proof is complete.

1.7 Derivation of (20)

Let the IQ function α̃(q) be defined on the interested interval (19), i.e.,

α̃ :
(
Φ
(
ρ−1 − 2ρ

)
,Φ
(
ρ−1
))

→ (0,∞) : α̃(q) =
2η2

σ2

(
1− ρΦ−1(q)

2ρ2 − 1 + ρΦ−1(q)

)2

.

The inverse function of α̃(q) can be solved as follows. Let u = 2η2/(σ2c), then

α̃(q) = c⇔ q = Φ

(
ρ−1 − 2ρ

1±
√
u

)
. (S.16)
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Substituting (S.16) into the interested interval (19), we have

Φ
(
ρ−1 − 2ρ

)
< Φ

(
ρ−1 − 2ρ

1±
√
u

)
< Φ

(
ρ−1
)
⇔ 1 >

1

1±
√
u
> 0.

Since 1
1−

√
u
> 1 for u ≤ 1 or 1

1−
√
u
< 0 for u > 1, the inverse function of α̃(q) is expressed

as (20).

1.8 Proof of Theorem 4.1

Proof. For the Wiener process, we have N0 = N1 + N2. Substituting N0 = N1 + N2 into

Theorem 3.1, the necessary and sufficient conditions for ξD(q∗) can be simplified. By using

(20), the corresponding bi-optimal quantile for interior and boundary cases can be obtained

directly.
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