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1 Technical Derivations and Auxiliary Results

1.1 Fisher Information Matrix of the Accelerated Degradation

Model Based on a Wiener Process

The single degradation path Yj, follows an m-variate normal distribution, i.e.,
Ek ~ Nm(gl(X];B)tz7k7gQ(Z]::’Y)QZ,k)a 1= 17 ceey N, k= 17 CIICI) l7

where ¢, = (titk, - tim—1ktmi) and Qiy = [min{t;j, x,tijktli<jijo<m. The log-

likelihood function is given by

(Yir — gl(X];/Bﬂi,k)/Q;]i (Wi — 91( X B)tik)

£(0) = =2 (1n(2m) + m(aa(Z;7)) — 3 0] Qusl -

29:(Z,7y)
The first and second derivatives of L£(0) are
0L(0) _ t;in_,klyi,k — gl(Xi;ﬁ)tQ,in_,iiti,k 391(X1;5)X
op 92(Z;.y) 0x,8 "
0°L0) [ tQuYik — (X Bt Qiitin 9g1(X,8) i Qiptin (391(X1;ﬁ)>2 X X'
; 7 , 5 7 7 k<M
oBIBs 92(Zy) 0 (Xkﬁ) 92(Z,y) 0X, 3
0?L(0) gl(X];/g)t;sz_kltzk - t;sz_;iyzk d91(X.8) 092(Z,~) '
/ - 7 2 7 ’ Xka7
0By (92(Z;)) X, 0Z,~y
0LO) | (i — 1(XiB)tis) Qi (yire — 91( X, B8)ti) m 002(Zv) ,
- ’ - ’ / ks
Oy 2(92(Zyv))? 202(27) | 9Zyy
°L0) (X B, Q;ptin — t,.Q;yYik 991 (X,8) 995(Z,) 7 X
- ! ! ! k 7
0vyop’ (92(Z7))? 0X,8  0Z;~y ’
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9°L(0) (Yir — gl(Xl;/g)ti,k)/Qi_Ji(yi,k — 91 (X;.8)ti) _.m 0°92(Z;y)
Oy0y' 2(92(Z,7))? 20:(Z,y) ) AZyv)?

+ ( m (yi,k - gl(Xi;,B)ti,k)/Qi_,kl (ym — gl(X;CIB)ti,k)) <8g2<Zl;7) ) 2} Zk;Z;;.

2(92(Z}7))? (92(Z7))? 0Z,~

Since tgka;,J‘:tivk =t and
(Vi — 01(XB)tin) Qi (Yis — 1( X, B)tik) [ 92( Z1y) ~ Xoos

the elements of (Ny + Na) x (Ny + No) FIM, Z, 1(0), for Yj;, are simplified as

B (_PLO)Y _ tur (00(XiB)\ ¢ 5 (_TLON _,
(360) - (350 w5 5(552) 0

0808 ) g:(Zyy) \ 0X,B 980y

a?c(e)> < a?c(e)> m (392(2,;7))2 ,
E(-25) Copn, E- - : , Z.Z,,
< 0v9B’ N vy ) 2p(ZA)? \ 0Z~y Kk

where Op, xn, denotes a Ny x Ny matrix of zeros. Consequently, the overall FIM, Z,,(0), is
a block diagonal matrix, i.e.,

l ng

7,(0) =Y Y Tix(0) = n((tnB) ® (mG/2)),

k=1 i=1
where “@®” denotes the direct sum,
l

’ 2 l / 2
PRk (391(Xkﬂ)) ' Dk (392(Z;€’7)> /
B = - ; XX, and G = : ; yAWAR

; 92(Zyy) X0 o ; (92(Z,7))? 0z o

1.2 Proof of Theorem 2.1

Proof. Let

G(&) = —n™othimN2 1o(Coptin + Crneamn + Cyn — 1) 4+ py (I — n) — poty, + ps(1 — m),

(S.1)

where g, pi1, o, 13 > 0. The Karush-Kuhn-Tucker (KKT) conditions of (S.1) are
agff) =0 —Non™m™ 4 19(Ciy + Cieam) — i1 = 0, (S.2)
angq =0 & — NN N 4o Cy — iy = 0, (83)
%r(n&) =0 —Non™tm™N "1 4 1oCrpean — pz = 0, (5.4)
to(Coptim + Crneamn + Cyn — 1) = p1 (I —n) = —pioty, = pz(1 —m) =0, (S.5)
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o, M, fo, p3 > 0.

When t,,, = 0 or ug = 0, there is no solution for n, t,,, and m in (S.2)—(S.4). Hence, we have
to > 0 and ps = 0 by the complementary slackness in (S.5). According to the distinctions

between n, m, uy, p3, there are four cases as follows.

(&) n=1,m>1,pu1 >0, and puz = 0:
Substituting n = [ and pus = pg = 0 into (S.3) and (S.4) gives m(tn) = NoCoptim/(N11Chneq)-
Since o > 0, substituting m(¢,,), and n = [ into (S.5), we have

o= T g 0y, < 1/1 and
(N1 + No)Cp ¢ <1/Lan

—~ No(1—1Cy)

m(tm) _ (N1+N2)Cmea

>1< 0 <
(Nl + NQ)lOmea t+ NQ

~|

—~

Again, substituting ¢,,, m(tm), 2 = 0, and n = [ into (S.3), we get
~ _— NyM N —1C) N\ Ny(1 -1

Cop \ (N1 + N3)C,, (N1 + No)ICoea

4 Cit < 1/l or {Czt Z 1/l and (Nl +N2 — 1)/2 e NU {0}}

No
) o (1 —1C) M+t >

In addition, substituting ¢, m(tm), Ao(tm, M (tn)), and n = [ into (S.2), we have

_ oty () (NUCy + Ny — No(1 — 1Cy)) Ny — N,

_ >S0e 0y > 02
= (N, + No) = L= Ny + Ny)

(b) n>1,m > 1, =0, and uz = 0:
Substituting 1y = ue = ps = 0 into (S.2), (S.3), and (S.4) gives

N NoCy ~ (No — N2)Coptim
m = and 7n(t,,) = )
(No — N2)Chnea (tm) N.Cy

Again, substituting 7 and 7(t,,) into (S.5), we obtain t,, = Ny/((No 4+ N1)C,,) > 0.
Hence, we have
C; Ny — N.

o No 2

Cmea N2 7

L~ No — N, No — Ns
tm) = ————— >0 Ny > N dCy < ————
n( ) (NQ‘{‘Nl)Cn 0 2 an t

m>1< Ny > Ny and

Substituting 7n(t,,), tm, m, and ps = 0 into (S.3), we have

[%(ﬁ(tm)7tm,m) X (NO—NQ)NO_N2 >0« Ny > Nyor {NO < N, and (NQ_NO)/Z € NU{O}},

where lim,_,g+ 2% = 1.



(¢c) n>1,m=1,u; =0, and p3z > 0:
Substituting m = 1 and p; = 0into (S.2) and (S.3) gives n(t,) = NoCoptim/(N1(Cit + Criea))-
Since po > 0, substituting 7n(t,,) and m = 1 into (S.5), we have

— ]\]1 o~
ty, = —-———>0and n(t,,) =
(No + N1)Cop (tm)

NO N()
> Cy4+Cheq < ————-
(N0+N1)(Cit+cmea) ! l<N0+N1)

Again, substituting t,,, fi(t,,), g2 = 0 and m = 1 into (S.3), we get

~_£< N() )No( Nl )N1—1>0
0= Cop \(No + N1)(Cit + Conea) (No + N1)Cop |
In addition, substituting ﬁ(t:;), o, and m = 1 into (S.4), we have

,[; _ /Ib ( NOCmea
’ N0+N1 Cit+0mea

Ci < NO_NQ.

— Ny | > 0% Ny > Ny and
2)_ 0 2 an C(mea_ N2

(d) n=1I1,m=1,u; >0, and puz > 0:

Since po > 0, substituting n = [ and m = 1 into (S.5), we have
tm = (1 = 1Cys — ICrnea)/Cop > 0 & Cit + Creq < 1/1.

Substituting ¢, n =1, m = 1, and us = 0 into (S.3) gives

o~ NN 11, —1C, \ !
C(op C(op

S Cy+ Crea < 1/1or {Cyy + Crpeq > 1/l and (N7 — 1)/2 €e NU{0}}.

Again, substituting t,,, io(t,), n = I, and m = 1 into (S.2) and (S.4) gives

NG Co) No(l—ICh —1C N
Ml(tm):( 10( éj:; ) No( Cotp ))ZNO 1tmN 'S
& Ci+ Creq > Z(NON+NI) and
e e T
& Cut 2002 1

From cases (a)—(d), the KKT conditions can respectively be summarized as follows.

(a) Since {Cy > 1/l and (Ny + Ny — 1)/2 € NU{0}} for fig(tm, m(tm)) > 0 contradicts
Cy < 1/1 for tm > 0, only two conditions Cj + (N7 + N2)Chrea/No < 1/l and Cy >
(No — Na)/(I(Ny + Ny)) if and only if £ = (z,?,;, m(t];)).
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(b) Since {Ny < N, and (Ny — Ny)/2 € NU {0}} for fig(72(tm), tm, ) > 0 contradicts
the positive experimental cost Cy; < (Ng — No)/(I(Ng + Np)), only three conditions
Ny > NQ, Cit/Cmea > (NQ — NQ)/NQ and Cit < (No — NQ)/(Z(NO + Nl)) if and only if
&0 = (A(E), ).

((_3) Ny > NQ, Cit/Cmea < (NO — Ng)/NQ and Cit + Cmea < No/(l(NO -+ N1>) if and only if
&0 = (A(l), 1),

(d) Since {Cy + Cnea > 1/1 and (Ny — 1)/2 € N U {0}} for g(t,,) > 0 contradicts
Cit + Cinea < 1/1 for ty > 0, only three conditions Cjy + Criee < 1/, Cip + Crpea >
No/(I(No + N)) and Cy, + (Ny + No)Chuea/No > 1/1 if and only if £ = (z,%;, 1).

The results can be divided into two cases Ny > Ny and Ny < Ny immediately. [

1.3 Proof of Corollary 2.1

Proof. The results are easy to show according to the definition of occurrence probability.

]
1.4 Proof of Corollary 2.2
Proof. (ii) By Theorem 2.1(i)-(2), we have
Ny Ny No — Ny
Coptmp = ——, Cpeampnp = ——, and Cynp = —,
PP Ny + Ny PP No+ Ny TP N+
as desired. The remaining cases (i) and (iii) are easy to verify. O

1.5 Proof of Theorem 3.1

Proof. For the D(¢*)-optimal test plan &pg+) (= £th* = &p), the intersection of necessary
and sufficient conditions in both V; and D-optimality criteria should be satisfied at each

interior or boundary case.

(i) For npg) =1, since Cy + Crea < Cit + (N1 + N2)Chrica/N2, by Theorem 2.1(i)-(1)
(or (ii)-(1)), the condition Cj + Cirea < 1/1 holds directly. Using the optimal total
termination time in Theorem 2.1(i)-(1) (or (ii)-(1)) and Theorem 2.2(i), we have

Ny(1=1Cq) (1= 1C3)(v/IC0Crmeati(q) — Cop)
(Nl + NQ)Cop Oop(lcmead(q) - Cop) 7

tm,D = tm,qu



indicating the DQ-equation (11). From mp = my, , we obtain the same results.
Substituting the D@Q-equation into the necessary and sufficient conditions in Theorem

2.2(i) gives

(1—21Cy)?C,y _ N2C,, N,
< Cp>— 3.6
BCmeaC2 = N2UChea "= 12N, + Ny) (5.6)
N2C, IC,...C,
2o P & Cy + (Ny + No)Chea/No < 1/1. (S.7)

N2Crea ~ (1 —1Ci — 1Cyeq)?
The inequality (S.6) is a new lower bound of Cj; for 2C;; + Chreq < 1/1. From (S.6),
applying Cy; > Ny /(1(2N1 + Ny)) for 2C;; + Chpea < 1/1, we have Cheq < No/(1(2N1 +
N3)). Therefore, it is easy to show that Cy + (Ni 4+ No)Chiea/No < 20y + Chieas
implying that the condition Cj 4+ (N1 + N2)Cirea/N2 < 1/1 holds. Combining with
the inequality (S.7) for 1/1 < 2Cj;+ Chyeq, the condition Cy 4 (N1 + No)Chea /No < 1/1
is a common condition for both optimality criteria. For Ny > Ny, comparing the two

lower bounds of Cj; gives

Ny < Ny —
[(2Ny + N2) = I(No + Nl)

< Ng > Ny + No. (88)

Consequently, the results can be divided into two cases with the common condition
Cit+ (N1+ N2)Chriea/No < 1/1 and the D@Q-equation by (S.8). Supplementary Figures
1-3 (for [ = 1), with the “pale-green” area, are plotted for Ny > N; + N, and
Ny < N1 + Ns, respectively.

(ii) By solving mp = my, , we have

= ki(a(q)) + ka2(a(q)) + wel — ky(a(q))
& =2k (alq)) + 3\/k1 a(q))? — ka(a(q))2co, (S.9)
where
3N,
o= —2 42
CT (No— Ma)
_ 27C mead(q)
k — 2 Tmea\i/ _
1(a(e) = 5L =
~ 3 3Cmead<Q) 27Cmead(q)
k = — - 2 .
Z(O{(Q)) 2\/ CitCop ( Oitcop 3

Substituting k;(&(q)) and ks(@(q)) into (S.9), a cubic equation of &(q) is given by
19683C},.,0(q)* — 2187C3CopC2 .o (g 4 16)a(q)* + 81CHC2 Crnea(ch + 16)*d(q)
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= (€ = 8)*(cg + 64)CLLCy,

= 0. (S.10)
Since the discriminant (defined in Supplementary Lemma 1 of Cheng and Peng, 2024)
of (S.10) is proportional to ¢§C;CS,Cy,., and positive, there is only one positive real

root

alq) — (2o = Na)N3CuCo
(NO - N2)3Cmea

(S.11)

by using Supplementary Lemma 2(ii) in Cheng and Peng (2024). Substituting mp

in Theorem 2.1(i)-(2) into t,, p = t;nv,,, we have

NQCitCop N2Citcop + &( ) _ NZCitCop
Nl (N07N2)Cmeu (NO*N2)Cmea q (NofNQ)Cmea

(NO + Nl)cop Copd(q)
Simplifying the above equation, we get

(Ng — N?)NoCyCyp

YD = RN~ Mo)Coe (812)

Moreover, under the condition Ny > N, for (S.12), we have a(q) > 0 < Ny > Nj.
Similarly, substituting mp in Theorem 2.1(i)-(2) into np = ny, , we obtain the same
equation (S.12). To achieve D(g*)-optimality, the equalities (S.11) and (S.12) should
be the same, i.e.,

(2No = No)NZCiCop _ (NE = N2)N>CisCop
(NO - N2)3Cmea N12(N0 - NZ)Omea

<:>N0:0, OI‘NQ+N1:N2, OI"N():N1+N2.

Since Ny > Ny and Ny, N1, N; € N, we have Ny = N; + Ny, implying the DQ-
equation (12). Substituting Ng = Nj+ N, into the necessary and sufficient conditions
in Theorem 2.1(i)-(2) and Theorem 2.2(ii), we have

(2C’Lt + Omea)cmeacop < (2N1 + N2)N220itcop = Cmea N2

< —
Cz2t Nfcmea C@ N1’
(1 B 2[02‘,5)20013 > (2N1 + NQ)NSCitCop o O, < Nl
ZSCZ'QtCmea Ngcmea " l(QNl + NQ) '

Furthermore, it is easy to verify that 2Cy+Chrea < (24 No/N7)Ciy < 1/1. The feasible

region for [ = 1 can be referred to Supplementary Figure 1 (the “khaki” area).

(iii) For mp(e) =1 and No > N, solving np = ny,_, we get

N _ Copt0z(0) = VCo(Cop +000) oy _ (NG = ND)Coy
(No + N)(Cit + Conea) a=(0)(Ci + Crea) V=N
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Since a(q) > 0, we have Ny > N;. From ¢, p = tm,v;,» We obtain the same results.
Substituting the D@-equation (13) into the necessary and sufficient conditions in
Theorem 2.2(iii) gives
(2U(Cit + Cnea) = 1) Cop _ (N§ = N))Cop _ (2Cit + Cinea) CrmeaCop
(1 =1Cy — 12Chea)? N? - C2 '
Applying the condition Cy + [Cpeq < No/(I(Ng + Ni)) for the first inequality of
(S.13), we have
(2UCit + Crnea) — 1) Copy  (NE — NE)C,p

1—1Cy — Cpea)? N?

(
~ Cop(No = U(Cit + Crnea) (No + N1))((1 = ICit = IConea) No + L(Cit + Crnea) N1) ~0
N NE(1 —1Cs — ICpeq)? ’

(S.13)

and vice versa. For the second inequality of (S.13), we obtain the new lower bound
of C'mea/Cit, i.e.,

(20115 + Cmea)CmeaCop > (]V()2 - N12>Cop PN Cmea > NO - Nl
C2 ~ N? Cy — N

The new inequality is equivalent to 2C; + Crea < (Cit + Criea) (No + N1)/Np. This

indicates that the condition 2Cj + Cpeq < 1/1 holds automatically. Consequently,
comparing the two lower bounds of C,,.,/Cy gives the key condition: for Ny > N,
and Ny > No,

No—Ni N
Ny No — N»

<:>N0 > Ni + Ns. (814)

The results can be divided into two cases with the common condition Cy + Chuea <
No/(I(Ng + N7)) and the D@Q-equation by using (S.14). The feasible region for [ = 1

can be referred to Supplementary Figure 2 (the “pink” area).

For npg+) = I, mpg+) = 1, all need to do is to find intersection of the feasible regions
for both V;, and D-optimal test plans. According to Theorem 2.2(iv), the results can

be divided into two cases as follows.

(a) Since Cy+Cheq < 2C5+ Cheq, the condition Cyy+ Chreq < 1/1 holds by Theorem
2.2(iv)-(a). The common conditions are 2C;; + Cpeq < 1/1 < 2(Cyt + Chpeq) and
(14). For Ny < Ny + N,, we have three disjoint sets:

(1) N(] < Ny + NQ, Ny < Ng and N < N()I
Since N1 < Ny, we have 2(Cy + Chiea) > (No + N1)(Cip + Criea)/No. Tt
means that the condition 2(Cy + Chheq) > 1/1 holds.
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(2) No < Ny, Ny < Ny:
Since Ny < Ny, we have 2(Cy + Chiea) < (No + N1)(Cit + Criea)/No. Tt
means that the condition Cj + Cheq > No/(I(No + Ny)) is satisfied.
(3) No < Na, Ny < Ny:
For N; < Ny and Cy + (N7 + N2)Chnea /N2 > 1/1, we have 2(Cyy + Chpea) >
(Cit + (N1 + No)Crrea/No) + Ciyp > 1/1+ Cy > 1/1.
For the last case (4), recalling the intersection point P = ((Ng — No)/(I(Ng +
N1)), No/(L(No+ Ny))) in Figure 1(a) of Theorem 2.1, it can be verified that the
point P is located on 2C;; 4+ Ceq = 1/1 when Ny = N1+ N,. This means that the
point P satisfies 2C;; + Cpeq < 1/1 for Ny < Ny + Ny and 2Cy; + Chpeq > 1/1 for
No > N1+ Ns. When Ny > N1+ No, we have 2(Ciy+ Crea) > 2C5 + Crnea > 1/1.
Using Ciy < (No — Na2)/(I(No + N1)) and Creq = Na/(I(No + Ny)) for the

intersection point P, we have

Ny — N- Ny — N- N. Ny — N-
Cit S 0 2 - 0 2 2 S 0 2C'meaa
(N, + VY Ny I(No+ Ny Ny

which is equivalent to (Ng + N1)(Cit + Chnea) /No < Cit + (N1 + No)Chpea /No. 1t
means that the condition Cj 4+ (N7 + N2)Cirea/No > 1/1 holds. Supplementary

Figures 1-3 (for [ = 1), with the “light-blue” area labeled as (a), are plotted for
the case 2C;; + Cheq < 1/1.

(b) From Theorem 2.1(i)-(4) and (ii)-(2), the results can be divided into two cases
with the common condition 1/l < Cjy + (N7 + N3)Ciea/No. Supplementary
Figures 1-3 (for [ = 1), with the “light-blue” area labeled as (b), are plotted for
the case Cy 4+ Crea < 1/1 < 2C3 + Cpeq and 1/1 < Cyy + (N7 + No)Clrea/No.
(1) This is the case Ny > Ny + Ny and Cj + Crea > No/(I(No + N1)). (2) For
No < Ny + Ny and Ny > Ny, the intersection point for 2Cy; + Chreq = 1/1 and
Cit + (N1 4+ N2)Cea /N2 = 1/1is Q = (N1/({(2N1 + N2)), N2/ (1(2N1 + N2))).
Using Cyy < Ny /(1(2N7+ N3)) and Chreq > No/(1(2N7 + N3)) for the intersection
point Q, we have
Ny Ne-Ni N NN

QN +No) = N, 12N, +Ny) = N

which is equivalent to (Nog + N1)(Cit + Chea)/No > 2Ci + Crreq. This means

that the condition Cj + Chrea > No/(I(Ng + N1)) is satisfied.

Cmea Z l Cita

This completes the proof. [



1.6 Proof of Proposition 1

Proof. To ensure &(q) < oo, the denominator of (18) is not equal to zero (i.e., ¢ #
® (p~' — 2p)), which means that there is a vertical asymptote at ¢ = ®(p~* —2p). In addi-
tion, the first derivative of &(q) is proportional to —h,/(1 — h,)? with h, = (p2 — ®~(q)p™") /2
and is zero at ¢ = ® (p!). Since the sign of —h,/(1 — h,)? is the same as h,(h, — 1), we

have
—d&dEJQ) <0e0<h<le®(p'-2)<qg<®(p') and
d(()[i(qCI)>O<:>hq<Oorhq>1<:>Q<(I)(p1_2/)) orq>2(p7').

Hence, it is easy to check that lim, ,oa(q) = lim, ., a(q) = 2n*/0? > 0 = a(P(p™)),
indicating that there is an absolute minimum at ¢ = ®(p~!) with &(®(p~')) = 0. Moreover,
the second derivative of &(q) is given by
d*a(q)
d¢?

which is a cubic polynomial of ®~!(g). Since the discriminant of the cubic equation (defined

o p? (071())” + 20(p* — 1) (271(q)) " + (1 — 46727 (q) + 2p(p* +1),  (S.15)

in Supplementary Lemma 1 of Cheng and Peng, 2024) for (S.15) is A = 4p°(16p°% + 51p* +
12p% + 2) > 0, there is one negative real root zy defined in Proposition 1(i) by Vieta’s
formula. Thus, there is an inflection point at ¢ = ®(z), i.e., da(q)/dg* > 0 for ®(z) <
q < 1 and d*a(q)/d¢> < 0 for 0 < ¢ < ®(2). Now, we claim that the inflection point is
on the left-hand side of the vertical asymptote, i.e., zg < p~! — 2p. It can be verified that
29 < p~' — 2p is equivalent to {’/(—21 —/2Tp*A) /2 + {’/(—21 +1/2Tp*A) /2 > p(4p® — 1),

where z; is defined in Proposition 1(i). By using Cauchy-Schwarz inequality, we have

{’/(—z1 —\/2TptA) /2 + {/(—z1 + /2702 A) /2 — p(4p* — 1) > 2(p + 2p%) — p(4p* — 1) > 0.

The proof is complete. [

1.7 Derivation of (20)

Let the 1Q function &(gq) be defined on the interested interval (19), i.e.,

1 -1 5 ’ — 2
a:(2(p7" =2p), @ (p7")) = (0,00) : a(q) = 20% <2p21— i qug)l(q» |

The inverse function of @(q) can be solved as follows. Let u = 2n?/(0o?c), then

a(q)=ceq=0> (p—1 - j%) . (S.16)
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Substituting (S.16) into the interested interval (19), we have

-1 _ a2 -1 1
® (p 2p)<c1>(p li\/a)<<b(p )@1>1iﬁ>0.

Since 1—1\/6 >1foru<1or 1—1\/6 < 0 for u > 1, the inverse function of &(q) is expressed

as (20).

1.8 Proof of Theorem 4.1

Proof. For the Wiener process, we have Ny = Ny + N,. Substituting Ny = Ny + Ny into
Theorem 3.1, the necessary and sufficient conditions for £p,+) can be simplified. By using
(20), the corresponding bi-optimal quantile for interior and boundary cases can be obtained

directly. [
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N2Cit =N1Cea
Ci=Ny/(2N;+Ny)
Cit+(N1+Np)Crea/No =1
Cit+Cmea=(N1+N2)/(2N1 +N)
2Cjt+Crea=1

(a) Cit*Cmea=1

No(@) =

Ni+Np [Mp(@)=1

2N, +N,

(b)
Np(q) =1
Mp(q) =1

C mea

No(q) > 1

N, | Mo =1 P

2N, +N, |

p(@)>1| No(@)=1
Mp(q)>1| Mp(g)>1

1
0 N;/(2N;+N,) 1
Cit

Figure 1: No=N; + Ny (I =1)
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Cmea

Cc mea

Ny
No+N;y 2N;+N;
1 1 1 1
—— (No=N1)Cit =N1Crea — N2Cit=(No=N2)Crea
— Cit=(No-N2)/(No+Ny) —— Ci=N4/(2N1+N,)
— Ci+(N1+N2)Crea/N2=1 — Ci+(N1+N2)Cpea/N2=1
—— Cit+Cea =No/(No+N1) —— Cit+Crmea=No/(No+N1)
(@) —— 2C4+Cpea=1 — 2Cj4+Cpea=1
No() = Cit+Cmea=1 Cit+Cmea=1
o@) =1 (@)
Mo(y) =1
Mp(q) =1
[
2 ®)
O Np(q) =1
Noge)>1 ® oy =1
No—Ni |mpgy=1 Np(g)=1 N
No+Ny Mo() =1 2_ _|no@)>1
No+N1 |mp(q)=1 Q | Ng
N 2N, +N,
Mori: ] Mo~ Ms
o+Ny T
No+Ny No(ey =1
No() =1 m';((z.)) s
m A >1
0 | D(q) 0 ‘
0 (No=N2)/(No+Ny) 1 0 (No=N2)/(No+Ny) 1
Cit Cit
(a) No >N1+N2 (b) maX{Nl,N2}<N0 §N1+N2
Figure 2: max{Ny, No} < Ng # N1+ Ny (I =1)
N;-N,
2N
1 L 1
— Ci*Crea=1/2 — Ci=N1/(2N1+Ny)
—— Ci=N1/(2N;+N,) — Cit+(N1+N3)Cea/N2=1
— Ciu+(N1+N;)Crea/N,=1 — 2C;+Cpea=1
—— 2Cit+Cpea=1 Cit+Cmea=1
Cit*Cmea=1
()
@ No(y) =
No(g) =1 N2 mp(@)=1
Mp(q) =1 N;+N, (b)
o Np(g) =1
05 1 o : ma) =1 g
o) =1 © e
N, Mo () =1 Q v
2Ny Q N
2
[ 2N +N,
Mo(y) =1
No(q) =1 Mo(q) > 1
Mp(q) >1
0 ‘ 0
0 N1/(2N;+Ny) 1 0 N1/(2N;+Ny) 1
Cit Cit
(a) No < N1, No < N; (b) Ny < Ny, N1 < Ny

Figure 3: Ny < max{Ny, No} (I =1)
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