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This supplement collects the proofs of the theoretical results in the article.

S1 Convergence of the Bivariate Sequential Tail Em-

pirical Process

S1.1 Convergence of the Simple Bivariate Sequential Tail Em-

pirical Process

In this section, we prove Proposition S1 and S2, which are basic tools in

the proof of Theorem 1. We introduce the following notations. For 1 ≤

i ≤ n and i, n ∈ N, V (n)
X,i and V

(n)
Y,i follows a marginally standard uniform

distribution, with their survival copula given by Cn,i. Let δ(x,y,z) denote the
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probability distribution that is degenerate at (x, y, z) ∈ DT , and define

Zn,i =
1√
k
δ(

(n/k)V
(n)
X,i /c1(i/n),(n/k)V

(n)
Y,i /c2(i/n),i/n

).
Consider the class

F = {fx,y,z := q−1(x, y)1 ([0, x)× [0, y)× [0, z]) | x, y, z ∈ DT}

and equip F with the semi-metric ρ,

ρ (fx,y,z, fu,v,w) =

√
E

(
W (x, y, z)

q(x, y)
− W (u, v, w)

q(u, v)

)2

.

We prove the result for D1 and denote D1 as D. The proof for a general

constant T is similar. Denote ‖Zn,i‖F = supf∈F |Zn,i(f)|. For arbitrary ε >

0, let Nε represent the minimal number of sets in a partition F = ∪Nε
j=1Fε,j,

such that for every n and partitioning set Fε,j,

E
n∑

i=1

sup
f,g∈Fε,j

|Zn,i(f)− Zn,i(g)|2 ≤ ε2.

We denote d = sup[0,1] max(c1(t), c2(t)).

Proposition S1. Under Assumptions 1 - 4, there exists a Gaussian process

W , with covariance structure defined in (3.12), such that

sup
(x,y,z)∈D

∣∣∣∣∣
n∑

i=1

(Zn,i − EZn,i) (fx,y,z)−
W (x, y, z)

q(x, y)

∣∣∣∣∣ P−→ 0. (S1.1)

Moreover, W/q is uniformly continuous concerning the semi-metric ρ.

Proof. We prove (S1.1) by using Einmahl and Segers (2021, Theorem 3). It

means that we only need to verify the following conditions
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(a)
∑n

i=1 E ‖Zn,i‖F 1
{
‖Zn,i‖F > λ

}
→ 0 as n→ ∞, for every λ > 0.

(b) For every finite set of points (x1, y1, z1), . . . , (xm, ym, zm) ∈ D, the se-

quence{(
n∑

i=1

(Zn,i − EZn,i) fx1,y1,z1 , . . . ,

n∑
i=1

(Zn,i − EZn,i) fxm,ym,zm

)}
n∈Z+

converges weakly in Rm.

(c) The bracketing integral
∫ 1

0

√
logNε dε is finite.

For the sake of convenience, we denote

F (0) ={q−1(x, y)1 ([0, x)× [0, y)× [0, z]) | 0 ≤ z ≤ 1, 0 ≤ x, y ≤ 1},

F (1) ={q−1(x, y)1 ([0, x)× [0, y)× [0, z]) | 0 ≤ z ≤ 1, x = ∞, 0 ≤ y ≤ 1},

F (2) ={q−1(x, y)1 ([0, x)× [0, y)× [0, z]) | 0 ≤ z ≤ 1, y = ∞, 0 ≤ x ≤ 1}.

For (a), we observe that ‖Zn,i‖F1
{
‖Zn,i‖F > λ

}
is bounded by

‖Zn,i‖F(0)1
{
‖Zn,i‖F(0) > λ

}
+ ‖Zn,i‖F(1)1

{
‖Zn,i‖F(1) > λ

}
+ ‖Zn,i‖F(2)1

{
‖Zn,i‖F(2) > λ

}
.

On the class F (0), it holds that

Zn,i (fx,y,z) =
k−1/2

q(x, y)
1{

V
(n)
X,i <c1(i/n)kx/n,V

(n)
Y,i <c2(i/n)ky/n,i/n≤z

}

≤ k−1/2
(
(n/k)

(
V

(n)
Y,i /c2(i/n) ∨ V

(n)
X,i /c1(i/n)

))−η
≤ k−1/2

(
(n/k)

(
V

(n)
X,i /c1(i/n)

))−η
.



Yifan Hu and Yanxi Hou

Moreover, it holds that

‖Zn,i‖F(1) = k−1/2
(
(n/k)

(
V

(n)
X,i /c1(i/n)

))−η
, ‖Zn,i‖F(2) = k−1/2

(
(n/k)

(
V

(n)
Y,i /c2(i/n)

))−η
.

Hence,

‖Zn,i‖F1
{
‖Zn,i‖F > λ

}
≤ 2‖Zn,i‖F(1)1

{
‖Zn,i‖F(1) > λ

}
+2‖Zn,i‖F(2)1

{
‖Zn,i‖F(2) > λ

}
.

Without loss of generality, it suffices to show the result for ‖Zn,i‖F(1)1
{
‖Zn,i‖F(1) > λ

}
such that

n∑
i=1

E‖Zn,i‖F(1)1
{
‖Zn,i‖F(1) > λ

}
≤ 1√

k

n∑
i=1

E

(
c1(i/n)k

nV
(n)
X,i

)η

1
{
V

(n)
X,i ≤ k(

√
kλ)−1/ηc1(i/n)/n

}
=

n∑
i=1

kc1(i/n)

n
√
k

∫ (
√
kλ)−1/η

0

x−ηdx

=
1

1− η

n∑
i=1

c1(i/n)

n
k1−1/2ηλ1−1/η

→ 0.

To prove (b), we apply the Lindeberg-Feller Theorem. Given that

sup
j∈1,...,m

n∑
i=1

E‖Zn,ifxj ,yj ,zj‖21
{∥∥Zn,ifxj ,yj ,zj

∥∥ > λ
}
≤ 1√

k

n∑
i=1

E ‖Zn,i‖F 1
{
‖Zn,i‖F > λ

}
,

it follows that supj∈1,...,m
∑n

i=1 E‖Zn,ifxj ,yj ,zj‖21
{∥∥Zn,ifxj ,yj ,zj

∥∥ > λ
}

→ 0

for every λ > 0. Then, it suffices to verify the convergence of the asymptotic

covariance. Suppose u = dmax(a, b). Notice that

t Cn,i

(
c1(i/n)a

t
,
c2(i/n)b

t

)
= utCn,i

(
c1(i/n)a/u

t
,
c2(i/n)b/u

t

)
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= R

(
c1(i/n)a, c2(i/n)b,

i

n

)
+ d(a ∨ b)O(t−α).

We sketch the convergence of the asymptotic covariance by verifying when

0 < x, y < 1, 0 ≤ z ≤ 1 that as n→ ∞,

cov

⌊nz1⌋∑
i=1

1
{
V

(n)
X,i < c1(i/n)kx1/n, V

(n)
Y,i < c2(i/n)ky1/n

}
− Cn,i

(
kx1c1(i/n)

n
, ky1c2(i/n)

n

)
√
k(x1 ∨ y1)η

,

⌊nz2⌋∑
i=1

1
{
V

(n)
X,i < c1(i/n)kx2/n, V

(n)
Y,i < c2(i/n)ky2/n

}
− Cn,i

(
kx2c1(i/n)

n
, ky2c2(i/n)

n

)
√
k(x2 ∨ y2)η


=

1

n(x1 ∨ y1)η(x2 ∨ y2)η

⌊n(z1∧z2)⌋∑
i=1

n

k
Cn,i

(
k(x1 ∧ x2)c1(i/n)

n
,
k(y1 ∧ y2)c2(i/n)

n

)
+O

(
k

n

)

=
1

n(x1 ∨ y1)η(x2 ∨ y2)η

⌊n(z1∧z2)⌋∑
i=1

R

(
c1(i/n)(x1 ∧ x2), c2(i/n)(y1 ∧ y2),

i

n

)
+O

(
kα

nα

)
+O

(
k

n

)
=

1

(x1 ∨ y1)η(x2 ∨ y2)η
R′(x1 ∧ x2, y1 ∧ y2, z1 ∧ z2) + o(1).

For (c), we provide a detailed proof in Lemma S1.

We next prove for sufficiently small ε > 0, there exists a covering where

the number of sets is bounded by ε−7. It follows that the bracketing integral∫ 1

0

√
logNε dε is finite.

Lemma S1. Let ε > 0, a = ε2/(1−2η)/(16d), and θ = 1− (ε2/10d). Denote

the covering

F = F1(a)∪F2(a)∪

⌈log a/ log θ⌉⋃
m=0

⌈log a/ log θ⌉⋃
l=0

⌈log a/ log θ⌉⋃
j=0

F(l,m, j) ∪ F1(l, j) ∪ F2(m, j)

 ,
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where

F1(a) = {fx,y,z ∈ F | x ∧ y ≤ a, z ∈ [0, 1]} ,

F2(a) = {fx,y,z ∈ F | a < x, y ≤ 1, or x = ∞, a < y ≤ 1, or y = ∞, a < x ≤ 1, z ∈ [0, a]} ,

F1(l, j) =
{
fx,y,z ∈ F | θl+1 ≤ x ≤ θl, y = ∞, θj+1 ≤ z ≤ θj

}
,

F2(m, j) =
{
fx,y,z ∈ F | θm+1 ≤ y ≤ θm, x = ∞, θj+1 ≤ z ≤ θj

}
,

F(l,m, j) =
{
fx,y,z ∈ F | θl+1 ≤ x ≤ θl, θm+1 ≤ y ≤ θm, θj+1 ≤ z ≤ θj

}
.

Under Assumptions 1-4, it holds that for every n > 0,
n∑

i=1

E sup
f,g∈p

|Zn,i(f)− Zn,i(g)|2 ≤ ε2,

for partitioning sets p ∈ Pε := {F(l,m, j),F1(l, j),F2(m, j),F1(a),F2(a), l,m, j ∈

N}.

Proof. For F1(a), it holds that
n∑

i=1

E sup
f,g∈F1(a)

(Zn,i(f)− Zn,i(g))
2

≤ 4
n∑

i=1

E sup
f∈F1(a)

Z2
n,i(f)

≤ 4

k

n∑
i=1

E

(
nV

(n)
X,i

kc1(i/n)

)−2η
1

{
nV

(n)
X,i

kc1(i/n)
< a

}
+ E

(
nV

(n)
Y,i

kc2(i/n)

)−2η
1

{
nV

(n)
Y,i

kc2(i/n)
< a

}

=
4

k

n∑
i=1

∫ akc1(i/n)/n

0

(
nx

kc1(i/n)

)−2η
dx+

∫ akc2(i/n)/n

0

(
ny

kc2(i/n)

)−2η
dy

=
4a1−2η

1− 2η

n∑
i=1

c1(i/n) + c2(i/n)

n

≤ ε2.
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For F2(a), without loss of generality, we assume x 6= ∞ and derive that
n∑

i=1

E sup
f,g∈F2(a)

(Zn,i(f)− Zn,i(g))
2 ≤ 4

k

n∑
i=1

E sup
a<x≤1
z∈[0,a]

a−2η1
{
V

(n)
X,i < c1(i/n)kx/n, i/n ≤ z

}
≤ ε2.

For F(l,m, j), it holds that
n∑

i=1

E sup
f,g∈F(l,m,j)

(Zn,i(f)− Zn,i(g))
2

≤
n∑

i=1

E

(
sup

f∈F(l,m,j)

Zn,i(f)− inf
f∈F(l,m,j)

Zn,i(f)

)2

≤ 1

k

n∑
i=1

E

((
θl+1 ∨ θm+1

)−η
1

{
nV

(n)
X,i

kc1(i/n)
< θl,

nV
(n)
Y,i

kc2(i/n)
< θm,

i

n
≤ θj

}

−
(
θl ∨ θm

)−η
1

{
nV

(n)
X,i

kc1(i/n)
< θl+1,

nV
(n)
Y,i

kc2(i/n)
< θm+1,

i

n
≤ θj+1

})2

≤ 2

k

⌊nθj⌋∑
i=1

E

((
θl+1 ∨ θm+1

)−η
1

{
nV

(n)
X,i

kc1(i/n)
< θl,

nV
(n)
Y,i

kc2(i/n)
< θm

}

−
(
θl ∨ θm

)−η
1

{
nV

(n)
X,i

kc1(i/n)
< θl+1,

nV
(n)
Y,i

kc2(i/n)
< θm+1

})2

+
2

k

⌊nθj⌋∑
i=⌊nθj+1⌋+1

E

((
θl ∨ θm

)−η
1

{
nV

(n)
X,i

kc1(i/n)
< θl+1,

nV
(n)
Y,i

kc2(i/n)
< θm+1

})2

:= I1 + I2.

Without loss of generality, we prove the case when l ≤ m and ε < 1 for the

convergence of I1,

I1 ≤
2

k

⌊nθj⌋∑
i=1

E

(
1

{
nV

(n)
X,i

kc1(i/n)
< θl,

nV
(n)
Y,i

kc2(i/n)
< θm

}(
1

θη(l+1)
− 1

θηl

)

+

(
1

{
nV

(n)
X,i

kc1(i/n)
< θl,

nV
(n)
Y,i

kc2(i/n)
< θm

}
− 1

{
nV

(n)
X,i

kc1(i/n)
< θl+1,

nV
(n)
Y,i

kc2(i/n)
< θm+1

})
1

θηl

)2
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≤ 4

k

⌊nθj⌋∑
i=1

(
Cn,i

(
kc1(i/n)

n
θl,

kc2(i/n)

n
θm
)

1

θ2ηl

(
1

θη
− 1

)2

+

[
Cn,i

(
kc1(i/n)

n
θl,

kc2(i/n)

n
θm
)
− Cn,i

(
kc1(i/n)

n
θl+1,

kc2(i/n)

n
θm+1

)]
1

θ2ηl

)

≤ 4

k

⌊nθj⌋∑
i=1

c1(i, n)

(
k

n

θl

θ2ηl

(
1

θη
− 1

)2

+
2k

n

θl

θ2ηl
(1− θ)

)

≤ d

(
4

(
1

θ1/2
− 1

)2

+ 8(1− θ)

)
θj

≤ ε2.

It holds for I2 when l ≤ m that

I2 ≤
2

k

⌊θjn⌋∑
i=⌊θj+1n⌋+1

(
Cn,i

(
kc1(i/n)

n
θl+1,

kc2(i/n)

n
θm+1

)
1

θ2ηl

)
≤ d (1− θ) θ(1−2η)l+j+1 ≤ ε2.

For the classes F1(l, j) and F2(m, j), the proofs are similar to that of

F(l,m, j), and we obtain that

E sup
f,g∈F1(l,j)

(Zn,i(f)− Zn,i(g))
2 ≤ ε2,

E sup
f,g∈F2(m,j)

(Zn,i(f)− Zn,i(g))
2 ≤ ε2.

Hence, the proof is completed.

We then establish the conditional weak convergence for the bootstrap

process.

Proposition S2. Under Assumptions 1, 2, 4 and 5, there exists a Gaussian
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process W̃ (x, y, z) with covariance defined in (3.12) that

sup
h∈BL1(l∞(D))

∣∣∣∣∣Eξ

(
h

(
n∑

i=1

(ξi − 1)Zn,if

))
− E

(
h

(
W̃

q

))∣∣∣∣∣ P−→ 0.

Proof. Firstly, we prove that under Assumptions 1, 2, 4 and 5, there exists

a Gaussian process W̃ (x, y, z) with covariance defined in (3.12) such that

sup
(x,y,z)∈D

∣∣∣∣∣
n∑

i=1

(ξi − 1)Zn,ifx,y,z −
W̃ (x, y, z)

q(x, y)

∣∣∣∣∣ P−→ 0.

Denote for i = 1, . . . , n,

Z̃n,i = k−1/2(ξi − 1)δ(
(n/k)V

(n)
X,i /c1(i/n),(n/k)V

(n)
Y,i /c2(i/n),i/n

).

We verify the three conditions of Einmahl and Segers (2021, Theorem 3)

for Z̃n,i. Firstly, we have

n∑
i=1

E
∥∥∥Z̃n,i

∥∥∥
F
1
{∥∥∥Z̃n,i

∥∥∥
F
> λ

}
=

n∑
i=1

E|ξi − 1| ‖Zn,i‖F 1
{
|ξi − 1| ‖Zn,i‖F > λ

}
≤ 1

1− η

n∑
i=1

c1(i/n)

n
k1−1/2ηλ1−1/ηE

[
|ξi − 1|1/η1(ξi 6= 1)

]
→ 0.

Proofs for the finite-dimensional convergence and finite bracketing integral

follow a similar approach in Proposition S1 and Lemma S1, respectively, so

we omitted them here. Then, we complete the first step of our proof.

For the second step, we prove the conditional weak convergence. For

arbitrary δ > 0, recall the partition Pδ for F proposed in Lemma S1 and
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denote the number of partitioning sets as Nδ. We pick a unique element

from each partitioning set of Pδ, and define

δ-net := {(x1, y1, z1), . . . , (xNδ
, yNδ

, zNδ
)}.

Denote Mδ as a function on D that it maps each (x, y, z) to a (u, v, w) such

that (x, y, z) and (u, v, w) belong to the same partitioning set of Pδ. Then,

it holds that

sup
h∈BL1(l∞(D))

∣∣∣∣∣Eξh

(
n∑

i=1

(ξi − 1)Zn,if

)
− E

(
h

(
W̃

q

))∣∣∣∣∣
≤ sup

h∈BL1(l∞(D))

∣∣∣∣∣Eξh

(
n∑

i=1

(ξi − 1)Zn,i(f ◦Mδ)

)
− E

(
h

(
W̃

q
◦Mδ

))∣∣∣∣∣
+ sup

h∈BL1(ℓ∞(D))

∣∣∣∣∣E
(
h

(
W̃

q
◦Mδ

))
− E

(
h

(
W

q

))∣∣∣∣∣
+ sup

h∈BL1(ℓ∞(D))

∣∣∣∣∣Eξh

(
n∑

i=1

(ξi − 1)Zn,i(f ◦Mδ)

)
− Eξh

(
n∑

i=1

(ξi − 1)Zn,if

)∣∣∣∣∣
=:I1(δ) + I2(δ) + I3(δ).

By Kosorok (2003, Lemma 3), we derive I1(δ) = oP(1) as n→ ∞ for every

δ > 0. By the continuity of W/q, we obtain limδ↓0 I2(δ) = 0. Moreover, we

have that

I3(δ) ≤ sup
h∈BL1(ℓ∞(D))

Eξ

∣∣∣∣∣h
(

n∑
i=1

(ξi − 1)Zn,if ◦Mδ

)
− h

(
n∑

i=1

(ξi − 1)Zn,if

)∣∣∣∣∣
≤Eξ

 sup
(x1,y1,z1)∈p
(x2,y2,z2)∈p

p∈Pδ

∣∣∣∣∣
n∑

i=1

(ξi − 1)Zn,ifx1,y1,z1 −
n∑

i=1

(ξi − 1)Zn,ifx2,y2,z2

∣∣∣∣∣
 .
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By van der Vaart and Wellner (1996, Theorem 1.5.6), for ε, ϵ > 0, there

exists a δ > 0, such that

lim sup
n→∞

P

 sup
(x1,y1,z1)∈p
(x2,y2,z2)∈p
p∈Pδ′ ,0≤δ′≤δ

∣∣∣∣∣
n∑

i=1

(ξi − 1)Zn,ifx1,y1,z1 −
n∑

i=1

(ξi − 1)Zn,ifx2,y2,z2

∣∣∣∣∣ ≥ ε

 ≤ ϵ.

Thus, we derive that for arbitrary ε > 0, there exists a δ > 0 such that

lim
n→∞

P

(
sup

0≤δ′≤δ
I3(δ

′) > ε

)
= 0.

Finally, the proof is completed by

I1(δ ∧ n−1) + I2(δ ∧ n−1) + I3(δ ∧ n−1) = oP(1), as n→ ∞.

S1.2 Proof of Theorem 1

Proof of the unconditional weak convergence in Theorem 1. We start the proof

by noting that

sup
(x,y,z)∈D

∣∣∣∣√kFn(x, y, z)−
W (x, y, z)

q(x, y)

∣∣∣∣
≤ sup

(x,y,z)∈D

1

q(x, y)

∣∣∣√k(R̃′(x, y, z)− ER̃′(x, y, z))−W (x, y, z)
∣∣∣

+ sup
(x,y,z)∈D

1

q(x, y)

∣∣∣∣∣√kER̃′(x, y, z)−
n∑

i=1

EZn,ifx,y,z

∣∣∣∣∣
+ sup

(x,y,z)∈D

1

q(x, y)

∣∣∣∣∣
n∑

i=1

EZn,ifx,y,z −
√
k

∫ z

0

R(x, y; t) dt

∣∣∣∣∣
=:J1 + J2 + J3.
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First, we prove that as n→ ∞, J1
P−→ 0, that is,

sup
(x,y,z)∈D

1

q(x, y)

∣∣∣√k(R̃′(x, y, z)− ER̃′(x, y, z))−W (x, y, z)
∣∣∣ P−→ 0. (S1.2)

Assumption 1 implies that there exist real number τ > 0 such that for

all 0 ≤ x ≤ 1, n ∈ N, 1 ≤ i ≤ n, and j = 1, 2,

kx

n
cj

(
i

n

)[
1− τ

b
Aj

{ n

kx

}]
< 1−F (j)

n,i

(
Uj

( n
kx

)
,∞
)
<
kx

n
cj

(
i

n

)[
1 +

τ

b
Aj

{ n

kx

}]
.

For j = 1, 2, let

δj,n = sup
0<t≤1

τ

b
Aj

( n
kt

)
=
τ

b
Aj

(n
k

)
.

Without loss of generality, we show that the supermum of (S1.2) is bounded

above by oP(1). The proof that the infimum is bounded below by oP(1) is

similar. It holds that as n→ ∞,

sup
(x,y,z)∈D

1

q(x, y)

(√
k
(
R̃′(x, y, z)− ER̃′(x, y, z)

)
−W (x, y, z)

)
≤ sup

(x,y,z)∈D

1

q(x, y)

n∑
i=1

(Zn,i − EZn,i)
(
fx(1+δ1,n),y(1+δ2,n),z

)
−W (x(1 + δ1,n), y(1 + δ2,n), z)

+ sup
(x,y,z)∈D

1

q(x, y)

n∑
i=1

EZn,ifx(1+δ1,n),y(1+δ2,n),z − EZn,ifx(1−δ1,n),y(1−δ2,n),z

+ sup
(x,y,z)∈D

1

q(x, y)
(W (x(1 + δ1,n), y(1 + δ2,n), z)−W (x, y, z))

=:I1 + I2 + I3.

By Proposition S1, we have I1
P−→ 0 as n → ∞. By the uniform conti-

nuity of W/q, we have I3
P−→ 0. For I2, since cj is bounded on [0, 1], it holds
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that

I2 ≤ sup
(x,y,z)∈D

1

q(x, y)

∣∣∣∣∣∣ 1√
k

⌊nz⌋∑
i=1

Cn,i

(
kxc1(i/n)(1 + δ1,n)

n
,
kyc2(i/n)(1 + δ2,n)

n

)

−Cn,i

(
kxc1(i/n)(1− δ1,n)

n
,
kyc2(i/n)(1− δ2,n)

n

)∣∣∣∣
≤2

√
kd(δ1,n + δ2,n)

=o(1).

Thus, the proof of (S1.2) is completed. The proof for J2
P−→ 0 is similar to

that of I2, by noting that

J2 ≤ sup
(x,y,z)∈D

1

q(x, y)

∣∣∣∣∣∣ 1√
k

⌊nz⌋∑
i=1

Cn,i

(
kxc1(i/n)(1 + δ1,n)

n
,
kyc2(i/n)(1 + δ2,n)

n

)

−Cn,i

(
kxc1(i/n)(1− δ1,n)

n
,
kyc2(i/n)(1− δ2,n)

n

)∣∣∣∣ .
Finally, we show that as n → ∞, J3 −→ 0. Hence, we have verified the

case when 0 ≤ x, y ≤ 1 and z ∈ [0, 1]. The proofs for 0 ≤ x ≤ 1, y = ∞,

z ∈ [0, 1] and 0 ≤ y ≤ 1, x = ∞, z ∈ [0, 1] are similar. It holds for θi

determined by the mean value theorem that

sup
0≤x,y≤1
z∈[0,1]

1

q(x, y)

∣∣∣∣∣
n∑

i=1

EZn,ifx,y,z −
√
kR′(x, y, z)

∣∣∣∣∣
= sup

0≤x,y≤1
z∈[0,1]

√
k

q(x, y)

∣∣∣∣∣∣
⌊nz⌋∑
i=1

1

n

n

k
Cn,i

(
kc1(i/n)x

n
,
kc2(i/n)y

n

)
−R′(x, y, z)

∣∣∣∣∣∣
= sup

0≤x,y≤1
z∈[0,1]

√
k

q(x, y)

∣∣∣∣∣∣
⌊nz⌋∑
i=1

1

n
R

(
c1

(
i

n

)
x, c2

(
i

n

)
y,
i

n

)
−R′

(
x, y,

bnzc
n

)∣∣∣∣∣∣
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+O

(√
k

n

)
+O

(
kα+1/2

nα

)

= sup
0≤x,y≤1
z∈[0,1]

√
k/n

q(x, y)

⌊nz⌋∑
i=1

∣∣∣∣R(c1( in
)
x, c2

(
i

n

)
y,
i

n

)
−R

(
c1

(
θi
n

)
x, c2

(
θi
n

)
y,
θi
n

)∣∣∣∣
+O

(√
k

n

)
+O

(
kα+1/2

nα

)
≤ sup

0≤x,y≤1

n∑
i=1

√
k/n

q(x, y)

(
x

∣∣∣∣c1( in
)
− c1

(
θi
n

)∣∣∣∣) ∨
(
y

∣∣∣∣c2( in
)
− c2

(
θi
n

)∣∣∣∣)

+ sup
0≤x,y≤1
z∈[0,1]

√
k/n

q(x, y)

⌊nz⌋∑
i=1

∣∣∣∣R(c1( in
)
x, c2

(
i

n

)
y,
i

n

)
−R

(
c1

(
i

n

)
x, c2

(
i

n

)
y,
θi
n

)∣∣∣∣
+O

(√
k

n

)
+O

(
kα+1/2

nα

)
.

For 0 ≤ y < x ≤ 1, it holds that

1

q(x, y)
|R (x, y, i/n)−R (x, y, θi/n)| = x1−η

∣∣R (1, x−1y, i/n)−R
(
1, x−1y, θi/n

)∣∣
≤ sup

y∈[0,1]
|R (1, y, i/n)−R (1, y, θi/n)| .

Thus,

sup
0≤x,y≤1
z∈[0,1]

√
k/n

q(x, y)

⌊nz⌋∑
i=1

∣∣∣∣R(c1( in
)
x, c2

(
i

n

)
y,
i

n

)
−R

(
c1

(
i

n

)
x, c2

(
i

n

)
y,
θi
n

)∣∣∣∣
≤ sup

0≤x,y≤1
z∈[0,1]

√
k

n

⌊nz⌋∑
i=1

q(c1(i/n)x/d, c2(i/n)y/d)d

q(x, y)q(c1(i/n)x/d, c2(i/n)y/d)

×
∣∣∣∣R(c1( in

)
x

d
, c2

(
i

n

)
x

d
,
i

n

)
−R

(
c1

(
i

n

)
x

d
, c2

(
i

n

)
y

d
,
θi
n

)∣∣∣∣
≤d sup

0≤x≤1

√
k

n

n∑
i=1

∣∣∣∣R(1, x, in
)
−R

(
1, x,

θi
n

)∣∣∣∣+ ∣∣∣∣R(x, 1, in
)
−R

(
x, 1,

θi
n

)∣∣∣∣→ 0.
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Combine the results above and we complete the proof.

Proof of the conditional weak convergence in Theorem 1. The proof is com-

pleted by using Proposition S2 and Lemma C.4 in Bücher and Dette (2013),

if we can show that

sup
(x,y,z)∈D

∣∣∣∣∣Fb
n(x, y, z)−

n∑
i=1

(ξi − 1)Zn,ifx,y,z

∣∣∣∣∣ P−→ 0.

We now verify the case when (x, y, z) ∈ [0, 1]3 for the above result. Note

that ∣∣∣∣∣Fξ
n(x, y, z)−

n∑
i=1

(ξi − 1)Zn,ifx,y,z

∣∣∣∣∣
=

1

q(x, y)

∣∣∣∣∣∣ 1√
k

⌊nz⌋∑
i=1

(ξi − 1)
(
1
{
X

(n)
i > U1(n/kx), Yi > U2(n/ky)

}
−1
{
V

(n)
X,i < c1(i/n)kx/n, V

(n)
Y,i < c2(i/n)ky/n

})∣∣∣
≤ 1

q(x, y)
sup

(1−δ1,n)x≤u≤(1+δ1,n)x,
(1−δ2,n)y≤v≤(1+δ2,n)y.

∣∣∣q(u, v)Z̃n,ifu,v,z − q(x, y)Z̃n,ifx,y,z

∣∣∣
≤ sup

(1−δ1,n)x≤u≤(1+δ1,n)x,
(1−δ2,n)y≤v≤(1+δ2,n)y.

∣∣∣Z̃n,ifu,v,z − Z̃n,ifx,y,z

∣∣∣
+ sup

(1−δ1,n)x≤u≤(1+δ1,n)x,
(1−δ2,n)y≤v≤(1+δ2,n)y.

∣∣∣∣q(u, v)q(x, y)
− 1

∣∣∣∣ ∣∣∣Z̃n,ifu,v,z

∣∣∣
=I1 + I2.

It is straightforward to see that I1
P−→ 0 by uniform equicontinuity of Z̃n,i,

while I2
P−→ 0 by the fact that

∣∣∣Z̃n,ifu,v,z

∣∣∣ is OP(1) for (u, v, z) ∈ D, and the
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fact that

sup
(1−δ1,n)x≤u≤(1+δ1,n)x,
(1−δ2,n)y≤v≤(1+δ2,n)y.

∣∣∣∣q(u, v)q(x, y)
− 1

∣∣∣∣ ≲ δ1,n ∨ δ2,n = o
(
k−1/2

)
.

Remark S1. For the conditional weak convergence, it is worth noting that

Assumption 3 is not necessary for the proof. Recall the relation

√
kFn(x, y, z) =

√
k

q(x, y)

∣∣∣R̃′(x, y, z)− E(R̃′(x, y, z)) + E(R̃′(x, y, z))−R′(x, y, z)
∣∣∣ .

In the proof, we bound the asymptotic bias
√
kE(R̃′(x, y, z)) − R′(x, y, z)

by

sup
(x,y,z)∈DT

√
k

q(x, y)

∣∣∣∣∣∣
⌊nz⌋∑
i=1

1

n

n

k
Cn,i

(
kc1(i/n)x

n
,
kc2(i/n)y

n

)
−R′(x, y, z)

∣∣∣∣∣∣ .
Assumption 3 is utilized to demonstrate that the above term converges to

0 as n→ ∞. Since the bootstrap estimator is based on the process

√
kFb

n(x, y, z) =
1√

kq(x, y)

⌊nz⌋∑
i=1

(ξbi − 1)1
{
X

(n)
i > U1(n/kx), Y

(n)
i > U2(n/ky)

}
the bias item vanishes in the proof.

S2 Derivatives of the Functional Mappings

We provide the derivatives of Φ and Ψ. These derivatives are crucial in

the proof of the weak convergence of the three estimators. Generally, if

a statistic is a functional of the B-STEP and the functional is Hadamard
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differentiable, the asymptotic properties of the statistic can be derived from

the weak convergence of the B-STEP using the functional delta method.

The concept of Hadamard differentiability is introduced in Chapter 3.9 of

van der Vaart and Wellner (1996). To proceed, we denote the following two

classes:

CR := {θ ∈ ℓ∞ (DT ) | θ continuous with θ(·, 0, ·) = θ(0, ·, ·) = 0} ,

CH,T := {θ ∈ ℓ∞ ([0, T ]) | θ continuous with θ(0) = 0} .

Proposition S3. Under Assumptions 1 and 2, Φ is Hadamard differentiable

at R′/q tangentially to CR, whose derivative is the Lipschitz continuous

functional,

Φ′R′/q(θ)(x, y, z) = q(x, y)θ(x, y, z)

−R′1(x, y, z)q1(x)θ (x,∞, 1)−R′2(x, y, z)q2(y)θ (∞, y, 1) .

Proposition S4. Ψ is Hadamard-differentiable at Π(x) = x/q1(x) tangen-

tially to CH,3/2 whose derivative is the Lipschitz continuous functional,

Ψ′Π(θ)(x) =

∫ 1

0

θ(t)q1(t)
dt

t
− θ(1).

Denote the identity map on R+ as idR+ . In this section, the derivatives

g′f of g are derived at one fixed element f . For a clear representation, we

denote g′ as g′f and omit the specific function f at subscript. We consider
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the following function classes in this section:

B1([0, T ]) := {f : [0, T ] 7→ [0,∞) | f is a bounded non-decreasing function with f(0+) = 0},

B←1 ([0, T ]) := {f : [0,∞) 7→ [0, T ] | f is the generalized inverse function of a h ∈ B1([0, T ])},

B2(DT ) := {f : DT 7→ R+ | f is bounded and f(·,∞, 1) ∈ B1([0, T ]), f(∞, ·, 1) ∈ B1([0, T ])}.

In this section, we still prove the result for D, and the proof for a general

T follows similarly. Throughout this section, we will repeatedly apply the

chain rule (van der Vaart and Wellner, 1996, Lemma 3.9.3).

Proof of Proposition S3. We prove the derivative by decomposing the map

into four parts.

Step 1: For θ ∈ B2(D), define ϕ1 as

ϕ1 :θ(x, y, z) 7→ q(x, y)θ(x, y, z),

Denote the function g ∈ CR and a series of functions gt satisfying gt → g

uniformly as t → 0. Moreover, assume R′(x, y, z)/q(x, y) + tgt(x, y, z) ∈

B2(D) for every t > 0. Then it holds that

lim
t→0

sup
(x,y,z)∈D

∣∣t−1 (R(x, y, z) + tq(x, y)gt(x, y, z)−R(x, y, z))− q(x, y)g(x, y, z)
∣∣ = 0.

Thus, ϕ1 is Hadamard differentiable at R′/q tangentially to CR, with deriva-

tive

ϕ′1 : g(x, y, z) 7→ q(x, y)g(x, y, z),
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where q ·g is continuous and satisfies q(0, ·)g(0, ·, ·) = 0 and q(·, 0)g(·, 0, ·) =

0.

Step 2: For θ ∈ B2(D), define ϕ2 as

ϕ2 :θ(x, y, z) 7→ (θ(x, y, z), θ(x,∞, 1), θ(∞, y, 1)).

This map is Hadamard differentiable at R′ tangentially to CR, with deriva-

tive

ϕ′2 : g(x, y, z) 7→ (g(x, y, z), g(x,∞, 1), g(∞, y, 1)),

where g(x,∞, 1), g(∞, y, 1) ∈ CH,1.

Step 3: For (θ, ϑ1, ϑ2) ∈ (B2(D)× B1([0, 1])× B1([0, 1])), define ϕ3 as

ϕ3 :(θ(x, y, z), ϑ1(x), ϑ2(y)) 7→ (θ(x, y, z), ϑ←1 (x), ϑ←2 (y)).

By Schmidt and Stadtmuller (2006, Theorem 5), ϕ3 is Hadamard differen-

tiable at (R′, idR+ , idR+) tangentially to CR × CH,1 × CH,1, with derivative

ϕ′3 : (g(x, y, z), f1(x), f2(y)) 7→ (g(x, y, z),−f1(x),−f2(y)).

Step 4: For (θ, ϑ1, ϑ2) ∈ (B2(D)×B←1 ([0, 1])×B←1 ([0, 1])), define ϕ4 as

ϕ4 :(θ(x, y, z), ϑ1(x), ϑ2(y)) 7→



θ(ϑ1(x), ϑ2(y), z), 0 ≤ x, y ≤ ∞, 0 ≤ z ≤ 1,

θ(ϑ1(x),∞, z), 0 ≤ x ≤ ∞, y = ∞, 0 ≤ z ≤ 1,

θ(∞, ϑ2(y), z), 0 ≤ y ≤ ∞, x = ∞, 0 ≤ z ≤ 1.
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This map is Hadamard differentiable at (R′, idR+ , idR+) tangentially to CR×

CH,1 × CH,1, with derivative

ϕ′4 : (g(x, y, z), f1(x), f2(y)) 7→ g(x, y, z)+R′1(x, y, z)f1(x)+R
′
2(x, y, z)f2(y).

To calculate the derivative, suppose a function (g, f1, f2) ∈ CR ×CH,1 ×

CH,1, and (gt, f1t, f2t) → (g, f1, f2) as t → 0. Also, suppose for every t > 0,

R′ + tgt ∈ B2(D), idR+ + tf1t ∈ B←1 ([0, 1]), and idR+ + tf2t ∈ B←1 ([0, 1]). It

holds that

t−1 (ϕ4(R
′ + tgt, idR+ + tf1t, idR+ + tf2t)− ϕ4(R

′, idR+ , idR+))

=t−1 (ϕ4(R
′, idR+ + tf1t, idR+ + tf2t)− ϕ4(R

′, idR+ , idR+))

+ ϕ4(gt, idR+ + tf1t, idR+ + tf2t)

=:I1 + I2.

Note that idR++tfjt → idR+ for j = 1, 2, and gt → g as t→ 0. Moreover, by

the uniform continuity of g, it follows that limt→0 I2 = [(x, y) 7→ g(x, y, z)].

For I1, we split the set D by

D :={(x, y, z) | 0 < x ≤ 1, 0 < y ≤ 1, 0 ≤ z ≤ 1}

∪ {(x, y, z) | x = 0, 0 < y ≤ 1, 0 ≤ z ≤ 1}

∪ {(x, y, z) | y = 0, 0 < x ≤ 1, 0 ≤ z ≤ 1}

∪ {(x, y, z) | x = 0, y = 0, 0 ≤ z ≤ 1}
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∪ {(x, y, z) | x = ∞, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}

∪ {(x, y, z) | y = ∞, 0 ≤ x ≤ 1, 0 ≤ z ≤ 1}.

We first verify the result on {(x, y, z) | 0 < x ≤ 1, 0 < y ≤ 1, 0 ≤ z ≤ 1}. It

holds for xt and yt determined by the mean value theorem that

I1(x, y, z)−R′1(x, y, z)f1t(x)−R′2(x, y, z)f2t(y)

= (R′1(xt, y + tf2t(y), z)−R′1(x, y, z))f1t(x) + (R′2(x, yt, z)−R′2(x, y, z))f2t(y)

=: J1 + J2.

It suffices to prove J1 → 0 and J2 → 0 as t → 0, uniformly on {(x, y, z) |

0 < x ≤ 1, 0 < y ≤ 1, 0 ≤ z ≤ 1}. Without loss of generality, we verify the

result for J1. For a sufficiency small t, we have that |f1t(x)| ≤ 2ε for all

x ≤ δ. Moreover, it holds for any (x, y, z) ∈ (0, 1]3 that

R′1(x, y, z) =

∫ z

0

∂R

∂x
(c1(s)x, c2(s)y, s)c1(s) ds ≤ sup

z∈[0,1]
c1(z).

Then, |J1| is bounded by 2dε on (0, δ]× (0, 1]× [0, 1]. Besides, it holds that

sup
(x,y,z)∈[δ,1]×(0,1]×[0,1]

|J1|

≤ d

∫ z

0

sup
(x,y,s)∈[δ,1]×(0,1]×[0,1]

∣∣∣∣∂R∂x (xt, y + tf2t(y), s)−
∂R

∂x
(x, y, s)

∣∣∣∣ ds
≤ d sup

(x,y,z)∈[δ,1]×(0,1]×[0,1]

∣∣∣∣∂R∂x (xt, y + tf2t(y), z)−
∂R

∂x
(x, y, z)

∣∣∣∣ .
Since the derivative ∂R/∂x is uniformly continuous on [δ, 1]× [0, 1]× [0, 1],
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we derive that limt→0 sup(x,y,z)∈[δ,1]×(0,1]×[0,1] |J1| = 0. Thus, we have verified

the desired result.

We next verify the result on {(x, y, z) | x = 0, 0 < y ≤ 1, 0 ≤ z ≤ 1}.

The arguments are similar for {(x, y, z) | y = 0, 0 < x ≤ 1, 0 ≤ z ≤ 1}

and {(x, y, z) | x = 0, y = 0, 0 ≤ z ≤ 1}. Notice that R′1(0, y, z) = 0 and

R′2(0, y, z) = 0. Additionally, we derive that as t→ ∞,

|I1(0, y, z)| =
1

t
|R′(tf1t(0), y + tf2t(y), z)−R′(0, y, z)|

=
1

t
|R′(tf1t(0), y + tf2t(y), z)−R′(0, y + tf2t(y), z)|

=
1

t

∣∣∣∣∫ z

0

R(c1(s)tf1t(0), c2(s)(y + tf2t(y)))−R(0, c2(s)(y + tf2t(y))) ds

∣∣∣∣
≤
∫ z

0

c1(s)f1t(0) ds

→ 0.

Thus, the derivative aligns with the resultR′1(0, y, z)f1(0)+R′2(0, y, z)f2(y) =

0.

Finally, without loss of generality, we verify the case {(x, y, z) | x =

∞, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}. It holds by the uniform convergence of f2t to f2

as t→ 0 that

I1(∞, y, z) = (R′(∞, y + tf2t(y), z)−R′(∞, y, z)) =

∫ z

0

c2(s)f2t(y) ds→ C2(z)f2(y),

which aligns with the definition of the derivative by observing thatR′1(∞, y, z) =

0 and R′2(∞, y, z) = C2(z).
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The proof is finished by the application of the chain rule to Φ = ϕ4 ◦

ϕ3 ◦ ϕ2 ◦ ϕ1.

Proof of Proposition S4. We prove the derivative of the map by decompos-

ing the map into three parts and derive the derivatives for each part.

Step 1: For θ ∈ B1([0, 3/2]), the first map ψ1 is defined as

ψ1 : θ(x) 7→ (q1(x)θ(x), θ(x)),

which is Hadamard differentiable at Π tangentially to CH,3/2. The derivative

is

ψ′1 : g(x) 7→ (q1(x)g(x), g(x)).

Step 2: For (ϑ, θ) ∈ (B1([0, 3/2])×B1([0, 3/2])), the second map ψ2 is

defined as

ψ2 : (ϑ(x), θ(x)) 7→ (ϑ←(1), θ(x)),

which is Hadamard differentiable at (idR+ ,Π) tangentially to CH,3/2×CH,3/2.

The derivative is

ψ′2 : (f(x), g(x)) 7→ (−f(1), g(x)).

Step 3: For (X , θ) ∈ ([0, 3/2]×B1([0, 3/2])), the third map ψ3 is defined

as

ψ3 : (X , θ(x)) 7→
∫ X
0

θ(x)q1(x)
dx

x
.
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We derive that ψ3 is Hadamard differentiable at (1,Π) tangentially to the

set R× CH,3/2, with its derivative as

ψ′3 : (a, g(x)) 7→ a+

∫ 1

0

g(x)xη−1 dx.

Denote (a, g) ∈ R × CH,3/2, and the sequence (at, gt) → (a, g) as t → 0,

satisfying 0 ≤ 1 + tat ≤ 3/2 for every t > 0. Then, it holds for an xt

determined by the mean value theorem that as t→ 0,

1

t

(∫ 1+tat

0

x+ xηtgt(x)
dx

x
−
∫ 1

0

x
dx

x

)
=
1

t

∫ 1+tat

1

1 + xη−1tgt(x) dx+

∫ 1

0

gt(x)x
η−1 dx

=at(1 + xη−1t tgt(xt)) +

∫ 1

0

gt(x)x
η−1 dx

→a+

∫ 1

0

g(x)xη−1 dx.

The proof is finished by the application of the chain rule to Ψ = ψ3 ◦

ψ2 ◦ ψ1.

S3 Convergence of the Estimators

In this appendix, we present the proofs for the asymptotic properties of the

estimators introduced in Section 3. Additional proofs for other theoretical

results in the article are provided in the supplementary material.

The proofs are based on the functional delta method, which is a power-



S3. CONVERGENCE OF THE ESTIMATORS

ful tool for establishing asymptotic distributions of estimators in functional

spaces. Specifically, we utilize a generalized version of the functional delta

method, as presented in Bücher and Dette (2013, Theorem 3.4). This ver-

sion is applicable to metrizable topological vector spaces, as discussed in

van der Vaart and Wellner (1996, Lemma 3.9.3). The key requirement for

the functional delta method is the Lipschitz continuity of the derivative

map, which is satisfied by the maps Φ′R′/q and Ψ′Π in our context.

Proof of Theorem 2. For T > 0, according to the proofs in the supplemen-

tary material, it can be verified that (3.13) holds on D3T/2. By applying

functional delta method to (3.13), we derive the weak convergence of

sup
(x,y,z)∈D̃3T/2

∣∣∣∣√k (Φ(R̃′)(x, y, z)− Φ(R′)(x, y, z)
)
− W (x, y, z)

q(x, y)

∣∣∣∣ P−→ 0,

(S3.3)

whereby noticing the definition of the inverse function, the space D̃3T/2 is

defined as

D̃3T/2 = {(x, y, z) | 0 ≤ z ≤ 1, 0 ≤ x ≤ xn, 0 ≤ y ≤ yn}

∪ {(x, y, z) | 0 ≤ z ≤ 1, x = ∞, 0 ≤ y ≤ yn}

∪ {(x, y, z) | 0 ≤ z ≤ 1, y = ∞, 0 ≤ x ≤ xn} ,

where

xn :=
1

k

n∑
i=1

1

{
X

(n)
i > U1

(
2n

3Tk

)}
, and yn :=

1

k

n∑
i=1

1

{
Y

(n)
i > U2

(
2n

3Tk

)}
.
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Next, by applying ϕ2 ◦ ϕ1 and functional delta method to the empirical

process (3.13), we derive

(xn, yn)
P−→ (3T/2, 3T/2). (S3.4)

Thus, T < xn and T < yn holds with probability tending to 1. Then, the

space D̃3T/2 can be replaced by DT in the result.

We then verify the inverse of
∑n

i=1 1{X
(n)
i > U1 (n/(kx))}/k in (S3.3),

and the argument for the other dimension is the same. By the inequality

1

k

n∑
i=1

1{X(n)
i > Xn−⌊kx⌋,n} ≤ x ≤ T for x ∈ [0, T ],

it follows that 0 ≤ n
k

(
1−G1(Xn−⌊kx⌋,n)

)
≤ T, which holds with probability

tending to 1 for x ∈ [0, T ]. Furthermore, since

1

k

n∑
i=1

1{X(n)
i > Xn−⌊kx⌋−1,n} > x,

Thus, the generalized inverse of
∑n

i=1 1{X
(n)
i > U1(n/(kx))}/k is given by

n
(
1−G1(Xn−⌊kx⌋,n)

)
/k. The unconditional convergence result follows by

observing that on the domain DT ,

Φ(R̃′)(x, y, z) = R̂′(x, y, z) and Φ(R′)(x, y, z) = R′(x, y, z).

Similarly, by applying the functional delta method, we can derive the con-

ditional weak convergence result.
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Proof of Theorem 3. The unconditional weak convergence of the integrated

scedasis functions Ĉb
1 is a direct result of plugging (k1/k,∞, z) into the

process
√
k(R̂b′ − R̂′). For the conditional weak convergence, we denote

C̃b
1(z) :=

1

k1

⌊nz⌋∑
i=1

ξbi1
(
X

(n)
i > U

(1)
b (n/k1)

)
, C̃b

2(z) :=
1

k2

⌊nz⌋∑
i=1

ξbi1
(
Y

(n)
i > U

(2)
b (n/k2)

)
.

Firstly, by plugging (k1/k,∞, z) into the process
√
k(R̂b′ − R̂′), we obtain

that as n→ ∞,

sup
h∈BL1(l∞([0,1]))

∣∣∣Eξ

(
h
(
s1k1(C̃

b
1 − Ĉ1)/

√
k
))

− E (h (s1WR(k1/k,∞, ·)))
∣∣∣ P−→ 0.

Since k/k1 → s1 as n→ ∞, it follows by the uniform continuity of WR that

as n→ ∞,

sup
h∈BL1(l∞([0,1]))

|E (h (s1WR(k1/k,∞, ·)))− E (h (s1WR(1/s1,∞, ·)))| = o(1).

Moreover, it holds that as n→ ∞,

sup
h∈BL1(l∞([0,1]))

∣∣∣Eξ

((
h
(
s1k1(C̃

b
1 − Ĉ1)/

√
k
))

− h
(√

k(C̃b
1 − Ĉ1)

))∣∣∣
≤ |s1 − k/k1|

∣∣∣∣∣Eξ

(
sup
z∈[0,1]

∣∣∣(k1(C̃b
1(z)− Ĉ1(z))/

√
k
)∣∣∣)∣∣∣∣∣ = oP(1).

Next, we take a map ω : θ(z) 7→ θ(z)/θ(1) for a non-decreasing function

θ ∈ ℓ∞([0, 1]) with θ(1) > ε > 0 and θ(0+) = 0. It holds for the function C1

that ω(C1) = C1, and for the function Ĉ1 that ω(Ĉ1) = Ĉ1. The Hadamard

derivative of ω at C1 tangentially to CH,1 is g(z) 7→ g(z)−C1(z)g(1). Notice
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that

s1WR(1/s1,∞, z)− C1(z)s1WR(1/s1,∞, z)

=s1W (s−11 ,∞, z)− s1C1(z)W (s−11 ,∞, 1)− C1(z)(s1W (s−11 ,∞, 1)− s1W (s−11 ,∞, 1))

=W
(1)
C (z).

The proof is thus finished by the functional delta method.

Proof of Theorem 4. The unconditional result can be proved By Corollary

3 of Einmahl et al. (2014). We then verify the conditional weak convergence

of the bootstrap estimator. Denote

Fb
1n(x) :=

1

k1xη

n∑
i=1

(ξbi − 1)1
{
X

(n)
i > U1(n/k1x)

}
, WH1(x) := x−ηs1W (x/s1,∞, 1).

First, plug (k1/(kx),∞, 1) into the process Fb
n for x ∈ [0, 2]. We derive

that as n→ ∞,

sup
h∈BL1(l∞([0,2]))

∣∣Eξ

(
h
(
Fb
1n

))
− E (h (WH1))

∣∣ P−→ 0.

Define xn(x) := n(1−G1(U1(n/k1)x
−γ1))/k1 for x ∈ [0, 3/2]. By Corol-

lary 3 in Einmahl et al. (2014), it holds that as n→ ∞,

sup
x∈[0,3/2]

|xn(x)/x− 1| = O(|B1(n/k)|).

Thus, by the uniform continuity of WH1 , it holds that as n→ ∞,

sup
x∈[0,3/2]

|WH1(xn(x))−WH1(x)|
P−→ 0.
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Also, it holds that as n→ ∞,

sup
h∈BL1(l∞([0,3/2]))

∣∣Eξ

(
h
(
(xηn/q1)(Fb

1n ◦ xn)
))

− Eξ

(
h
(
Fb
1n ◦ xn

))∣∣
≤ sup

x∈[0,3/2]

∣∣∣∣(xn(x)x

)η

− 1

∣∣∣∣Eξ

(
sup

x∈[0,3/2]

∣∣Fb
1n(xn(x))

∣∣) = oP(1).

Thus, we derive the conditional weak convergence for the process

Fb
1n(x)−F1n(x) =

xηn(x)

q1(x)
Fb
1n◦xn(x) =

1

k1q1(x)

n∑
i=1

(ξbi − 1)1
{
X

(n)
i > x−γ1U1(n/k1)

}
.

Since q1(3/2)F1n(3/2)
P−→ 3/2 and

1

k1

n∑
i=1

1
{
X

(n)
i > ((Xn−k1,n/U1(n/k1))

−1/γ1)−γ1U1(n/k1)
}
= 1,

(Xn−k1,n/U1(n/k1))
−1/γ1 < 3/2 holds with probability tending to 1. Then,

it follows that

(q1F1n)
← (1) = (Xn−k1,n/U1(n/k1))

−1/γ1 .

Finally, the proof is completed by Proposition S4, functional delta method,

and continuous mapping theorem.

S4 Proof of Proposition 1

Proposition S5. Under Assumptions 1-5, as n → ∞ and B → ∞, we

have

(a) P(k (γ̂1 − γ̂2 − γ1 + γ2)
2 ≥ û10(1− α)) → α;
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(b) P(supz∈[0,1]
√
k |T20(z)− C1(z) + C2(z)| ≥ û

(KS)
20 (1− α)) → α;

(c) P(k
∫ 1

0
(T20(z)− C1(z) + C2(z))

2 dz ≥ û
(CVM)
20 (1− α)) → α.

Proof. We prove the result for Proposition S5(a); the argument for the other

two statistics is similar. First, by the continuous mapping theorem, we have

sup
h∈BL1(R)

∣∣Eξ[h(T
b
H10)]− E(h((Γ1 − Γ2)

2))
∣∣ P−→ 0 as n→ ∞.

Since k(γ̂1 − γ̂2 − γ1 + γ2)
2 is a random variable on R,

P (T b
H10 ∈ · | {X(n)

i , Y
(n)
i }i=1,...,N)

satisfies Condition 2.1 of Bücher and Kojadinovic (2019), and the distribu-

tion of (Γ1−Γ2)
2 is continuous, the result follows from Bücher and Kojadi-

novic (2019, Lemma 4.2).

Proof of Proposition 1. The argument under H10 and H20 follows immedi-

tately from Proposition S5. We next prove the statement for Proposition

1(b). By consistency of the Hill estimators, γ̂j
P−→ γj j = 1, 2, we have

TH10

k
= (γ̂1 − γ̂2)

2 P−→ δ2. (S4.5)

Thus, for an ε > 0, we have for a sufficiently large n,

P
(
TH10 ≥ kδ2/2

)
≥ 1− ε/2.

On the other hand, Proposition S5(a) also yields that k(γ̂1− γ̂2− (γ1−

γ2))
2 converges in distribution and that the bootstrap consistently estimates
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its (1−α)-quantile. By the asymptotic tightness of û10(1−α), for any ε > 0,

there exists a constant M such that for sufficiently large n and B,

P
(
û10(1− α) ≤M

)
≥ 1− ε/2. (S4.6)

Finally, take n so large that kδ2/2 > M . Then, we have

P
(
TH10 ≥ û10(1− α)

)
≥ P

(
TH10 ≥ kδ2/2, û10(1− α) ≤M

)
≥ 1− ε.

Since ε > 0 is arbitrary, we obtain

P
(
TH10 ≥ û10(1− α)

)
→ 1.

The argument for testing H20 proceeds analogously and is omitted.
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