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Supplementary Material

This supplement collects the proofs of the theoretical results in the article.

S1 Convergence of the Bivariate Sequential Tail Em-

pirical Process

S1.1 Convergence of the Simple Bivariate Sequential Tail Em-

pirical Process

In this section, we prove Proposition @ and @, which are basic tools in
the proof of Theorem m We introduce the following notations. For 1 <
i <nandin¢cN, V)({fi) and V)SZ) follows a marginally standard uniform

distribution, with their survival copula given by C,, ;. Let d(,..) denote the
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probability distribution that is degenerate at (x,y, z) € Dr, and define

Tni = ——5
mi = 7O (VA fex ), (0 RV fer(ifm) i)

Consider the class

F=A{foy: = q¢ ' (z,y)1([0,2) x [0,y) x [0,2]) | z,y,2 € Dy}

and equip F with the semi-metric p,

P (Faer Fuo) = \/E (W@”’y’z) - WW’“’“’))Q.

q(z,y) q(u,v)

We prove the result for D; and denote Dy as ID. The proof for a general
constant 7" is similar. Denote || Z, ;| » = supsc# | Zni(f)|. For arbitrary e >
0, let N. represent the minimal number of sets in a partition F = Uﬁvzel]:m,

such that for every n and partitioning set F. ;,

n

ES" sup [Zui(f) — Zualg)* < <

i=1 f’gefs,j

We denote d = supy, ;; max(cy(t), ca(t)).

Proposition S1. Under Assumptz'ons@ - , there exists a Gaussian process

W, with covariance structure defined in (), such that

n

sup Zn,i_EZn,i) f:(;, z)
(2,5,2) €D ;( as) q(z,y)

Wiw.y.2)| p (S1.1)

Moreover, W/q is uniformly continuous concerning the semi-metric p.

Proof. We prove () by using Einmahl and Segerg (2021, Theorem 3). It

means that we only need to verify the following conditions
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(a) Yr  E | Znill 1 {HZme > )\} — 0 as n — oo, for every A > 0.

(b) For every finite set of points (x1,y1,21),- -, (Tm, Ym, 2m) € D, the se-

quence
{ (Z (Zn,i - EZn,i) fxl,y1,zn R Z (Zn,i - EZn,i) fazm,ym,zm> }
i=1 i=1 nezZ+

converges weakly in R™.
(c) The bracketing integral fol Vl1og N. de is finite.
For the sake of convenience, we denote

={q " (2,9)1([0,2) x [0,5) x [0,2]) | 0< 2 < L0 <,y < 1},

={q (2, 9)1([0,2) x [0,5) x [0,2]) |0< 2 < Lo =00,0<y <1},

={q (=, 9)1([0,2) x [0,5) x [0,2]) [0 < 2 < L,y =00,0 <z <1},
For (a), we observe that ||Z,;||#1 {||Z.| » > A} is bounded by
1Znill 701 {1 Znill 7o) > A} + 1 Znill 70 1 {1 Znill ) > A} + 1 Z0ill z@01 {1 Znill 0y > A} -

On the class F©, it holds that

Zni(foy:) = " 1/2) [V <crimpka/n V) <cali/mpkyfnifnzs}
<k (k) (Vi featifm) v Vi ferifm)) )
<k (n/k) (Vi e i/m)) )
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Moreover, it holds that

-n

n . N — n .
|Z0allor = K7 (/) (Vi fer(ilm) ) s Wil = 772 (/) (A2 featifm) ) )
Hence,
1Znill 71 {1 Znill x> A} < 201 Znill 70 L {1 Zoill poy > A} 201 Znsill 71 {1 Znill gy > A} -

Without loss of generality, it suffices to show the result for || Z, ;|| 7 1 {[| Zp [l 7y > A}

such that
- 1 < c1(i/n)k !
> Bl Zuill rw 1 {1 Znill zy > A} < Vi ZE (W) 1{@@ < k(\/byl/ncl(z-/n)/n}

=1
k (VRN
—Z ci(i/n) / vy
=1

_ 1 Z C1 (’L/TL) k1—1/277>\1—1/77
l=nz= n

— 0.

To prove (b), we apply the Lindeberg-Feller Theorem. Given that

.....

-----

for every A > 0. Then, it suffices to verify the convergence of the asymptotic

covariance. Suppose u = d max(a, b). Notice that

oy (m(iin)a Cz(it/n)b) _wc,, <cl(i/n)a/u CQ(i/n)b/u)

’ t ’ t
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R (cl(z/n)a ea(i/n)b, —) +d(aV D)OE™).

We sketch the convergence of the asymptotic covariance by verifying when

0<z,y<1,0<z<1that as n — oo,

2o 1V < cali/m)ka n, W < califm)kysfn | — G (Ansliin) bunesln) )

cov o :
i1 V(1 Vo)
Lnze] 1{ < c1(i/n)kxay/n, VY < cz(i/n)l{:yQ/n} — Chny (mcil(i/"), ky?cil(i/”)>
7,—1 V(3 V )"
_ 1 Ln(Z1Z/\Z2)J QC ' k(xy A xo)er(i/n) k(yr Aya)ea(i/n) L0 E
n(xy Vy )" (xe V ys)1 4 B n ’ n n

=1
1 [n(z1Az22)]

- > R {al/mnw)a/mmn ). )

n(xy Vyp)"(xo V ya)"

ofE)o()

1
= R/ A\ R VAN , A 1).
(1 V y1) (2 V yo)" (1 Ao, y1 Aya, 21 A 29) + 0(1)

For (c), we provide a detailed proof in Lemma @ O

We next prove for sufficiently small € > 0, there exists a covering where

the number of sets is bounded by 7. It follows that the bracketing integral
fol V1og N, de is finite.

Lemma S1. Let e >0, a = 2027 /(16d), and § = 1 — (2/10d). Denote

the covering

[loga/log 8] [loga/logf] [loga/log @]
F=rFlureul U U U FlmpuFei)urmi |,

m=0 1=0 §=0
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where
FUa)={foy- EFla ANy <a,z€]0,1]},
Fa)={foy- EFla<z,y<1l, orz=00,a<y<1, ory=o00,a<z<1,2€(0,a]},
FUl,5) = {f%y,z EF|0T <2 <b y=oc0,6 Szgﬁj},
FAHm,j) = { foy: € F |0 <y <™ w =00, <2<},

Flym,j) = {foy. €EF 0T <z <0 ,0™ <y< o™ ¢t <2<},

Under Assumptions B—, it holds that for every n > 0,

E sup |Zni(f) = Zni(g)|" < &,
-1 Doep

for partitioning sets p € P. := {F(I,m,5), F (I, ), F*(m, ), F'(a), F*(a),l,m,j €

N}.

Proof. For F*(a), it holds that

n

E Zni(f) = Zni(9))?
; fgselj}f()( () = Zni9))

<4) E Z2
SE s Z20)

nV)(gl o nv{ nViim o nViim
< Z E - 1 —~<ap,+E|—2— 1 ———<a
k; key(i/n) key(i/n) kco(i/n) kco(i/n)

4 n akci(i/n)/n —2n akca(i/n)/n —2n
=—Z/ (o) aes [ ()
k<= Jo key(i/n) 0 keco(i/n)

4ar=21 I ey (i/n) 4 eo(i/n
_ 07 S i) + ealif)

1—-2n — n

< g2
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For F2(a), without loss of generality, we assume x # oo and derive that

n

- 4
B sup (Zulf) = Zus9)’ < 7 DB sup o 1{V{) < rifnlka/n.ifn <z} <2
o feer FE e |

For F(I,m,j), it holds that

n

E  sup  (Zni(f) = Zni(9))

i=1 f.9€F(l,m,j)

2
< E su Zni(f)— inf  Z,;
; (fe]—" zEn]) i(f) feF(m.j) (f)>
(n) (n)
nVy nVy,
X, el Y,z)<9 ESH}
n

1 11\, amt+1\ ="
SE;E<(95 v gm 1{—k61(i/n>< el

(n) (n) : 2
. (91 V em)*n 1 & < 91+1’ & < 9m+1, v < pitt
kei(i/n) kco(i/n) n

< nzef E ( (61 v o) { W R em}
keq(i/n) " keo(i/n)
nv{ nVii" ’
—(0'vem) "1 {k—x <o < 9m+1}>
c1(i/n) kco(i/n)

|no7 | (n) (n) 2
2 _ nVy nVo.
“ E el Vg™ n 1 ¢ 9l+1 i em—l—l
DY (( ) {k:cl(z'/n) <O Tt/ S

i=|nfitl]|4+1
= Il + ]2.

Without loss of generality, we prove the case when [ < m and £ < 1 for the

convergence of Iy,

i Wil g | (L1
p— key(i/n) " kea(i/n) gni+1) gl

(n) (n) (n) (n
1 —nVXZ <0 —nVYZ <™ —1 —an@ <0 —nVY’ <oy | L
key(i/n) ) keq(i/n) kco(i/n) ot

?T‘Il\;)

+

" keo(i/n



Yifan Hu and Yanxi Hou

( » (kcl(n/n)el /{;CQ(H/n)em) 021771 (%—1>2

Z(kcl i/n) /«;251 /1) g >_ G, (kcl(i/n) gt Ke2(i/n) g

n ’ n

ko (1 22k o

(nem (1) +—m“—9>>
1 2 .

(4 (m—l) +8(1—0)) 67

2

g

M%

IA
o
||Mq> : m

IN
S8

IN

It holds for Iy when [ < m that

107n]
I, <

o

; n n
i=[03+1n]+1

For the classes F'(I,7) and F?(m, j), the proofs are similar to that of

F(l,m,j), and we obtain that

E sup  (Zui(f) = Zni(9))* < €%
F9€F1(1.9)

E sup (Zn,z<f> - Zn,z(g))2 S 62-
f.g€F2(m,j)

Hence, the proof is completed. O

We then establish the conditional weak convergence for the bootstrap

process.

Proposition S2. Under Assumptions H, E, and B, there exists a Gaussian

)

1

9217[

)

Z <C’ . <k01(1/”) git+1 kC2(i/”)8m+1> 211) <d(1-0) pll—=2mi+j+l ~ 2
n,i ) §2n — ’
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process W (x,y, z) with covariance defined in () that
sup B [n zn:(g-—nz Fl)-E(n w 2o
heBL1 (1(D)) ¢ p ' m q .

Proof. Firstly, we prove that under Assumptions m, E, H and B, there exists

a Gaussian process W (z,y, z) with covariance defined in () such that

n ~

w
Sup (52 - 1) Zn,if:):,y,z - M 3} 0.
(y.2)eD |5 q(r,y)
Denote for . =1,...,n,

7 k2
i = k(& 1)5(<n/k>v§72/c1(z‘/nx(n/k)v;?/w(z‘/n)n‘/n)'

We verify the three conditions of Einmahl and Segerg (2021, Theorem 3)

for Zm Firstly, we have

> k|
i=1

Zn,i

112, > 4} = Bl 111201 {1 = 1012001 > )

n

(/1) o1y y1-img [1e, _ 111 (e
Z . El-1/20)\1-1/nR [’& 1| 171(51#1)]

=1

<

1
1—mn

0.

1

Proofs for the finite-dimensional convergence and finite bracketing integral
follow a similar approach in Proposition @ and Lemma @, respectively, so
we omitted them here. Then, we complete the first step of our proof.

For the second step, we prove the conditional weak convergence. For

arbitrary o > 0, recall the partition Pjs for F proposed in Lemma @ and
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denote the number of partitioning sets as Ns. We pick a unique element
from each partitioning set of Py, and define
d-net := {(z1,y1,21), - -, (Tng, Ungs 205) -

Denote Mj as a function on D that it maps each (x,y, 2) to a (u, v, w) such
that (z,y, 2) and (u,v,w) belong to the same partitioning set of Ps. Then,

it holds that

y i
resintiemn | (Z;(& ) UZMf) U (7>>'

< sup |Ech (n (& = 1) Zpi(f o M5)> _E (h (% ° M5>> ‘
h

 heBLy (1> (D))

+ sup E
heBL1 (£ (D))
h

+  sup  |Eg (Z(&—l)zn,xfoMs) — E¢h (Z(@—l)zn,if)

heBL1 (£ (D))

By Kosorok (2003, Lemma 3), we derive I;(6) = op(1) as n — oo for every
d > 0. By the continuity of W/q, we obtain limso I2(d) = 0. Moreover, we

have that

I;6) < sup Eg

heBL1 (£ (D)) Py Py

h (Z(& —1)Z,ifo M5> —h (Z(fz — 1)Zn,if> |

n n

Z<§Z - 1)Zn,if901,y1,21 - Z(gl - 1)Zn,ifr27y2,22

i=1 =1

<E¢ sup
(%1,91,21)€p
(z2,y2,22)€p

PEPs
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By pan der Vaart and Wellner (1996, Theorem 1.5.6), for €,¢ > 0, there

exists a 0 > 0, such that

n n
limsup P | sup D> (&= D Zniforgnz — D (& = DZnifrsan| =€ | <.
n—oo (I17y17Z1)Ep i=1 i=1
(w2,y2,22)€p

pEPs,0<6'<6

Thus, we derive that for arbitrary € > 0, there exists a 6 > 0 such that

lim P ( sup I3(¢") > 5) =0.

n—oo OS(S,SCS

Finally, the proof is completed by

LEAR )+ LA™ + 36 An) =0p(l), asn — oo. O

S1.2 Proof of Theorem E

Proof of the unconditional weak convergence in Theorem H We start the proof

by noting that

%4
sup | VEF,(z,y,2) — Wiz,y.2)
(z,y,2)€D q(:v, y)
< sup ‘\/_ RI x y Y, 2 ) ER/(.%,:U, Z)) — W(:U,y,z))
(z,y,2)€D q(z,y)
1
+ sup \/_ER (x,y,2 EZifoy-
(zy,2)eD (T, Y) Z v,
1 n
—+ sup EZn,ifr, 2z \/E/ R<x7 Y; t) dt
(25,2)eD 4(Z; Y) Zl y ;

:ZJ1 + Jz + J3.
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First, we prove that as n — oo, J; i 0, that is,

sup ‘\/_ (z,y,2) — ER(2,y,2)) — W(z,y,2)| = 0. (S1.2)
(z,y,2)€ED q
Assumption El implies that there exist real number 7 > 0 such that for

all0<rxr<1,neN, 1<i<n,and j=1,2,

we(n) Bt <m0 () ) < e () g ()

For 7 =1,2, let

n T n
e g 2 () =54 2)
e v k) T

Without loss of generality, we show that the supermum of () is bounded

above by op(1). The proof that the infimum is bounded below by op(1) is

similar. It holds that as n — oo,

(xiuf))em e (\/E (R’(x, y,2) —ER(z,y, z)) — W(x,y, z))

< sup Z (Zn,i - EZn,%’) (fx(1+61,n),y(1+62,n),2) - W(:E(l + 51,71)7 y(l + 52771)’ Z)
(z,y,2)€ED Q(‘T y) i=1

1
+ sup
(z,y,2)€D q( y

1
+ sup
(z,y,2)€D Q(xu y)

Z EZn zfa:(l—f—dl n),y(1+82 ),z EZn,ifx(l—(SLn),y(1—527,1),2'

(W(z(1 4 010),y(1 +02.0), 2) = Wz, y, 2))
:2[1 —+ [2 -+ Ig.

By Proposition @, we have [, Pi0asn — oo By the uniform conti-

nuity of W/q, we have I3 P, 0. For I,, since ¢; is bounded on [0, 1], it holds
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that
[nz| . .

L< sw 1 ZO’ILZ (kxcl(z/n)(1+517n)7 k;ycz(z/n)(1+527n))

(z.9,2)eD 4(T, \/_ n n

o kxei(i/n)(1 —01,) kyca(i/n)(1 — da,)

n,1 n ) n
<VEd(81 + 62.)

=o(1).

Thus, the proof of () is completed. The proof for Js 2y 0 is similar to

that of Iy, by noting that

1 [nz] kxei(i/n)(1 4 01,) kyca(i/n)(1+ da,n)
s o e | 3 G (e, B )
—Cp,s </€a:cl(i/n31(1 — 517n)7 kyCQ(i/nzfl — 52771)) ‘ .

Finally, we show that as n — oo, J3 — 0. Hence, we have verified the
case when 0 < z,y < 1 and z € [0,1]. The proofs for 0 <z <1,y = 00
€[0,]]and 0 <y <1, x = o0, z € [0,1] are similar. It holds for 6,

determined by the mean value theorem that

1 n
sup EZn,ifm, 2 \/%R/ T, Y,z
OSx[,yg]l q(z,y) ZZI ! ( )

z€|0,1

[nz]

vk In_, (ke(i/n)z kes(i/n)y
- __Onz ’ _R/ y Yo
N G a R
z€|0,1 -

[nz] . , ,
1
= sup \/E —R (cl (£> Z,Co (i) Y, i) - R/ (xay7 anJ)
0<ay<1 4(2,Y) Zm n n n) " n n

z€[0,1]
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a+1/2
+0 <@> +0 (k )
n n
= o e e () me () v - oo () mee(3) %) \
z€[0,1]
a+1/2
+0 <@> +0 (k )
n n
< sup \/E/n T | L — @ V{yl|c L — C3 @
0<ey<t = q(2,y) n n n n
+ sup MZ R &1 i €, Co i y7i - R C1 i X, Co i Yy, &
o<zy<1 ¢(T,y) — n n n n n n

z€[0,1]

o) co (=),

For 0 <y < x <1, it holds that

=1

1
oy B/ = R ey 0/m)| =R (La~ . ifn) — R (L, 6/n)
y€[0,1]
Thus,
S (o () ()0 ()+9)
o<zy<1 ¢(T,Yy) — n n n n n n
z€[0,1] =
< sup vk 3 a(cr(i/n)z/d, es(i/m)y/d)d
e q(z,y)q(cr(i/n)x/d, ca(i/n)y/d)
z€|0,
1\ x 1\ x i 1\ x 1\ y 0
(e () 7o () 0) -7 (e () 5o () 25)

S|~ N~

Vi< 0 0
<d sup —Z R(l,x,—) —R(l,x,—)‘+‘R(x,1,
< P n n
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Combine the results above and we complete the proof. [

Proof of the conditional weak convergence in Theorem B The proof is com-
pleted by using Proposition @ and Lemma C.4 in Biicher and Dette (2013),
if we can show that

Poo.

n
b E
IF J,' Y, 2 n,if:t,y,z

i=1

sup
(z,y,2)€D

We now verify the case when (z,y,z) € [0,1]* for the above result. Note

that
Fi(l’, Y, Z) - Z (5@ - 1) Zn,ifa:,y,z
i=1
1|1 -
———— | =Y (& 1) (1{X" > Ui(n/ka), Yi > Ualn/ky) §
-1 {V)((Z) < c(i/n)kx/n, VXSZ) < cﬂz/n)ky/n})‘
1 N
S sup Q(u U) nzfuvz_q xay)Zn,ifx, 2
Q(ma y) (1-61,n)z<u<(1461 1)z, ( Y
(1*52,n)y§0§(1+52,n)y~
< sup ) ~n,ifu,v,z - Zn,ifm,y,z
(1=61 n)x<u<(1401,n)z,
(1 52 n)y<v<(1+62 n)y
+ sup a(u.v) 1‘ ‘Zn,ifu,v,z
(1-61,n)z<u< (1401 n)x, Q(x7y)

(1=062,n)y<v<(1402,n)y-

:Il + .[2.

It is straightforward to see that I, 5o by uniform equicontinuity of Zm-,

while I, 2 0 by the fact that is Op(1) for (u,v,z) € D, and the

Zn,ifu,v,z
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fact that

q(u,v)
q(z,y)

sup
(1_51,n)mgug(1+61,n)zv
(1=02,n)y<v<(1402,n)y.

—1‘ Sél,n\/ézn:O(k‘il/Q). ]

Remark S1. For the conditional weak convergence, it is worth noting that

Assumption B is not necessary for the proof. Recall the relation

N

\/EIFn(x,y, z) = W ‘R'(a:,y, z) — E(R’(m, y,2)) + E(R'(:L‘,y, 2)) — R'(z,y,2)|.

In the proof, we bound the asymptotic bias VAE(R'(z,y, 2)) — R'(z,y, 2)

by

sup -z
(z,y,2)€Dp q(x,y) —'n k

?

[nz] : ‘
VEk 3 1 e (kcl(;/n)x ’“2(;/”)3/) - R(z,y,2)|.

Assumption B is utilized to demonstrate that the above term converges to

0 as n — oo. Since the bootstrap estimator is based on the process

[nz]
VEE, (2,y,2) = m >~ (6 = DX > Uiln/ka), Y > Ualn/ky) |

the bias item vanishes in the proof.

S2 Derivatives of the Functional Mappings

We provide the derivatives of & and W. These derivatives are crucial in
the proof of the weak convergence of the three estimators. Generally, if

a statistic is a functional of the B-STEP and the functional is Hadamard
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differentiable, the asymptotic properties of the statistic can be derived from
the weak convergence of the B-STEP using the functional delta method.
The concept of Hadamard differentiability is introduced in Chapter 3.9 of
van der Vaart and Wellner (1996). To proceed, we denote the following two

classes:
Cr:={0 € £ (Dr) | 6 continuous with 6(-,0,-) = 6(0,-,-) =0},
Cur :={0¢€(>*(0,T]) | 8 continuous with §(0) =0}.
Proposition S3. Under Assumptions@ and @, ® is Hadamard differentiable

at R'/q tangentially to Cr, whose derivative is the Lipschitz continuous

functional,
(I)/R’/q(e)(ita Y, Z) = Q(‘ra y)9<x7 Y, Z)
- Rll('rv Y, Z)ql(l‘)e (l‘7 00, 1) - RIQ(xv Y, Z)QQ(y)H (OO, Y, 1) :

Proposition S4. V is Hadamard-differentiable at TI(x) = x/q1(x) tangen-

tially to Cy3/2 whose derivative is the Lipschitz continuous functional,

W(O)) = [ oa®F - 00)

Denote the identity map on R™ as idg+. In this section, the derivatives
g} of g are derived at one fixed element f. For a clear representation, we

denote ¢' as g} and omit the specific function f at subscript. We consider
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the following function classes in this section:

Bi([0,T]) :=={f :[0,T] — [0,00) | f is a bounded non-decreasing function with f(0+) = 0},
By ([0,7]) :={f :]0,00) — [0,T] | f is the generalized inverse function of a h € B,(]0,7])},

By(Dr) :={f :Dr— R, | fis bounded and f(-,00,1) € B1([0,T7]), f(o0,-,1) € B1([0,T))}.

In this section, we still prove the result for D, and the proof for a general
T follows similarly. Throughout this section, we will repeatedly apply the

chain rule (van der Vaart and Wellner, 1996, Lemma 3.9.3).

Proof of Proposition @ We prove the derivative by decomposing the map
into four parts.

Step 1: For 6 € By(D), define ¢, as

¢l :9(377 Y, Z) = Q(x, y)e(ﬂf, Y, Z)a

Denote the function g € Cr and a series of functions g, satisfying g, — ¢
uniformly as ¢ — 0. Moreover, assume R'(x,y,2)/q(z,y) + tg:(x,y,2) €

By(D) for every ¢t > 0. Then it holds that

lim sup [t (R(z,y,2) + tq(z, y)g(z, y, 2) — R(z,y, 2)) — q(z,y)g(z, y, 2)| = 0.
t=0 (z,y,2)€D

Thus, ¢, is Hadamard differentiable at R’ /q tangentially to Cr, with deriva-
tive

¢ 2 9(x,y,2) = qlz,y)g(x,y, 2),
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where ¢- g is continuous and satisfies ¢(0, -)g(0, -, -) = 0 and ¢(+,0)g(+, 0, )

0.
Step 2: For 6 € By(D), define ¢, as

G2 :0(x,y, 2) — (0(x,y, 2),0(x,00,1),0(c0,y,1)).

This map is Hadamard differentiable at R’ tangentially to Cg, with deriva-

tive

¢y g(r,y,2) = (g(,y,2), g(x,00,1), g(c0, 9, 1)),

where g(JT, o0, 1)7 g(OO, Y, 1) S CH,l-
Step 3: For (0,71,1,) € (B2(D) x By(]0,1]) x B1([0,1])), define ¢3 as

@3 :(0(x, y, 2), (), D2(y)) = (0(2,y, 2), 07 (x),95 ().

By Schmidt and Stadtmulley (2006, Theorem 5), ¢3 is Hadamard differen-

tiable at (R',idg+,idg+) tangentially to Cg X Cy1 X Cp 1, with derivative

¢/ : (g(m,y,z),fl(w),fQ(y)) = (g(x,y, 2)7 _fl(x)v _fQ(y))

3 -

Step 4: For (6,91,72) € (B2(D) x Bi ([0, 1]) x By ([0, 1])), define ¢4 as

0(V1(x),92(y),2), 0<z,y<o00,0<2<1,

¢4 :(0(x,y, 2), 01 (x), ¥2(y)) — 0(¥1(x), 00, 2), 0<z<o00,y=00,0<z<1,

\

0(o00, V2(y), 2), 0<y<oo,r=00,0<z<1.



Yifan Hu and Yanxi Hou

This map is Hadamard differentiable at (R’, idg+, idg+) tangentially to Cg X

Cra % Cp,1, with derivative

gbil : (g(x,y, Z)af1($)7f2(y)) = g(ZL‘,y, Z)+R/1(I,y,Z)f1($)+R/2(l',y,Z)f2(y)

To calculate the derivative, suppose a function (g, f1, f2) € Cr X Cp1 X
Cua, and (g, fit, for) = (9, f1, f2) as t — 0. Also, suppose for every ¢ > 0,
R +tg; € By(D), idg+ + tfi; € By ([0,1]), and idg+ + tfor € Bi ([0,1]). Tt

holds that

t_l (¢4(R/ + tgt, idR+ + tflt; id]R+ ‘|‘ tht) - ¢4(R/, idRJr, 1dR+))
=t (pa(R',idg+ + tfrp, idg+ + tfor) — Ga( R, idg+, idg+))
+ ¢a(ge, idg+ + tfre, idp+ + tfar)

:Ifl + [2.

Note that idg+ +tf;; — idg+ for j = 1,2, and g — g ast — 0. Moreover, by
the uniform continuity of g, it follows that lim; .o Ir = [(z,y) — g(x,y, 2)].

For I, we split the set D by

D:={(z,y,2) |0<2<1,0<y<1,0<2z<1}
U{(z,y,2) |lz=0,0<y<1,0<z<1}
U{(z,y,2) |ly=0,0<z<1,0<2<1}

U{(z,y,2) |z =0,y =0,0< 2z <1}
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U{(z,y,2) |t =00,0<y <1,0<2< 1}

U{(z,y,2) |ly=00,0<2<1,0<2< 1}

We first verify the result on {(z,y,2) |0 <2 <1,0<y<1,0<z<1} It

holds for x; and y; determined by the mean value theorem that

Il(‘T?yWZ) (.73 Y,z )flt( ) (l’,y,z)fgt(y)
= (R/1<xt? y+ tf?t(y>7 Z) - Rll(xaya Z))flt(x) + (R/2<x7yt> Z) - R’Q(x,y, Z))f2t(y)

=: Jl + JQ.

It suffices to prove J; — 0 and Jo — 0 as t — 0, uniformly on {(z,y, 2) |
0<z<1,0<y<1,0<z<1}. Without loss of generality, we verify the
result for J;. For a sufficiency small ¢, we have that |fi;(z)| < 2¢ for all
x < §. Moreover, it holds for any (x,y,2) € (0,1]3 that

*OR
Rll(xv Y, Z) = %(01(5)% CQ(S)y7 8)61(8) ds S sup Cl(z)'

0 z€[0,1]

Then, |J;| is bounded by 2de on (0, ] x (0, 1] x [0, 1]. Besides, it holds that

sup |J1]
(z,y,2)€[6,1]%(0,1]x[0,1]
z OR OR
gd/ sup Ty, Yy + L f — —(z,y,s)| ds
0 (2,9,5)€[6,1]x(0,1]x[0 395( ! u(9).9) (9:10( )

OR

8R
Sd sup %(xhy_'—tf%(y)az)_%("anwz) .

(z,y,2)€[6,1]x(0,1] x[0,1]

Since the derivative 0R/0x is uniformly continuous on [0, 1] x [0, 1] x [0, 1],



Yifan Hu and Yanxi Hou

we derive that limy o SUp ., .)e(s5.11x(0,1)x 0,1 [/1| = 0. Thus, we have verified
the desired result.

We next verify the result on {(x,y,2) |+ =0,0 <y < 1,0 <z < 1}
The arguments are similar for {(z,y,2) | y = 0,0 < 2 < 1,0 < z < 1}
and {(z,y,z) | 2 =0,y = 0,0 < z < 1}. Notice that R}(0,y,z) = 0 and

R,(0,y,z) = 0. Additionally, we derive that as t — oo,

’[1(07:% Z)‘ = % ‘R/(tflt(())?y + tf2t(y>7 Z) - RI(07y7 Z)‘

= % |R(tf1:(0),y +tfar(y), 2) — R'(0,y + tfar(y), )|

1 /OZ R(c1(s)tf1:(0), ca(s)(y + tfai(y))) — R(0, ca(s)(y + tf(y))) ds

< / ea(s) fu(0) ds

— 0.

Thus, the derivative aligns with the result R} (0, vy, 2) f1(0)+R5(0,y, 2) f2(y) =
0.

Finally, without loss of generality, we verify the case {(z,y,2) | * =
00,0 <y < 1,0 <z < 1}. It holds by the uniform convergence of fo to fo

as t — 0 that

1(00, . 2) = (R0, + tfar(y). 2) — R'(00,9,2)) = / " eals) furl) ds — Ca(2) falw).

which aligns with the definition of the derivative by observing that R (co,y, z) =

0 and R)(00,y,z) = Ca(2).
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The proof is finished by the application of the chain rule to ® = ¢4 o

¢3 0 P © P1. O

Proof of Proposition . We prove the derivative of the map by decompos-
ing the map into three parts and derive the derivatives for each part.

Step 1: For 6 € 5,([0,3/2]), the first map 9, is defined as

U1 0(z) = (qu(2)0(x),0(x)),
which is Hadamard differentiable at II tangentially to Cg 3/2. The derivative
is
U1t g(z) = (a1 (2)g9(x), 9(2)).
Step 2: For (0,60) € (B1([0,3/2]) x B1(]0,3/2])), the second map s is
defined as
by (V(x), 0(x)) = (0 (1),0(x)),

which is Hadamard differentiable at (idg+, IT) tangentially to Cp 3/2 X Cpr3/2.

The derivative is

vy (f(),9(x) = (= (1), g(x)).

Step 3: For (X,0) € ([0,3/2]xB1([0,3/2])), the third map 15 is defined

as

s (0@ = [ o) T
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We derive that 13 is Hadamard differentiable at (1,1I) tangentially to the

set R x Cp3/2, with its derivative as

W (a,9(x) - at /O o(2)a" d.

Denote (a,g) € R x Cp 32, and the sequence (as, 9¢:) — (a,g) as t — 0,
satisfying 0 < 1 + ta; < 3/2 for every ¢t > 0. Then, it holds for an z;

determined by the mean value theorem that as ¢ — 0,

1 Lttar dx U dx
- r+altg(r)— — [ r—
t \Jo x 0o X

1 1+tas 1
=3 / 1+ 2" g, (z) dv + / g(z)2" ! da
1 0

1
=a;(1+ x?fltgt(:ct)) + / gi(x)z"dx
0
1
—>a—|—/ g(x)a" ! da.
0

The proof is finished by the application of the chain rule to ¥ = 93 0

g 0 Y. O

S3 Convergence of the Estimators

In this appendix, we present the proofs for the asymptotic properties of the
estimators introduced in Section B Additional proofs for other theoretical
results in the article are provided in the supplementary material.

The proofs are based on the functional delta method, which is a power-
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ful tool for establishing asymptotic distributions of estimators in functional
spaces. Specifically, we utilize a generalized version of the functional delta
method, as presented in Biicher and Dette (2013, Theorem 3.4). This ver-
sion is applicable to metrizable topological vector spaces, as discussed in
van der Vaart and Wellner (1996, Lemma 3.9.3). The key requirement for
the functional delta method is the Lipschitz continuity of the derivative

map, which is satisfied by the maps @', /q and W{; in our context.

Proof of Theorem @ For T' > 0, according to the proofs in the supplemen-
tary material, it can be verified that () holds on Dsr/,. By applying

functional delta method to (), we derive the weak convergence of

Vi (@) 0.0.2) — (R 50.2)) - L] B

sup
(%,y,2)€D3r /2

(S3.3)
whereby noticing the definition of the inverse function, the space DgT/Q is
defined as

Darys ={(2,4,2) |0<2< 1,0 <z < 2,0 <y <y}

U{(z,9,2) [0<2< 1,2 =00,0 <y <y}
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Next, by applying ¢, o ¢; and functional delta method to the empirical

process (), we derive
(@ Yn) = (3T/2,3T/2). (83.4)

Thus, T' < z, and T < y, holds with probability tending to 1. Then, the

space Dy /2 can be replaced by Dy in the result.

We then verify the inverse of Y | 1{Xi(") > U, (n/(kx))}/k in (),

and the argument for the other dimension is the same. By the inequality
I n
; STUX > Xy oy} S@ < T forx € 10,7,
i=1

it follows that 0 < % (1 — G (X |k Jn)) < T, which holds with probability

tending to 1 for z € [0,7]. Furthermore, since
5N (n)
E Z 1{Xi > ankaJfl,n} >,
i=1

Thus, the generalized inverse of > | l{XZ»(") > Uy(n/(kx))}/k is given by
n (1 — G1(Xn— ko jn)) /k. The unconditional convergence result follows by

observing that on the domain Dy,
O(R)(x,y,2) = R(z,y,2) and O(R)(w,y,2) = R'(z,y,2).

Similarly, by applying the functional delta method, we can derive the con-

ditional weak convergence result. [
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Proof of Theorem B The unconditional weak convergence of the integrated
scedasis functions C? is a direct result of plugging (ki/k,c0,z) into the

process VE(RY — R'). For the conditional weak convergence, we denote

[nz] [nz]
~ 1 n 1 = 1 n 2
) = - ;f &1 (X7 > U0 n/k)) . C3) = }Hj &1 (Y > UP(n/ks) )
Firstly, by plugging (k;/k, 00, z) into the process vk(RY — R'), we obtain

that as n — oo,

w ‘Eg <h (slkl(éf - él)NE)) —E (h(s:Walk1/k, 00,)))| B 0.

heBL; (1>
Since k/ky — s1 as n — oo, it follows by the uniform continuity of Wx that

as n — 00,

- . B (h (s:Wr(k1/k, 00,))) = E (h (s1Wr(1/s1,00,-)))| = o(1).

Moreover, it holds that as n — oo,

sup ; ‘Eg ((h (81k1(C~’f — 01)/\/E>> —h (\/E(CN'{) - él)))‘

heBL1(1>([0,1]

< |s1 — k/ki|

E: ( sup ‘(zﬁ(é{)(g) — él(z>)/\/E) () ' = op(1).

z€[0,1]

Next, we take a map w : 6(z) — 60(z)/60(1) for a non-decreasing function
6 € ([0, 1]) with 6(1) > ¢ > 0 and #(0+) = 0. It holds for the function C;
that w(C) = C4, and for the function C, that w(é’l) = (. The Hadamard

derivative of w at C tangentially to Cp; is g(2) — g(2) —C1(2)g(1). Notice
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that

s1iWg(1/s1,00,2) — C1(2)s1Wr(1/s1, 00, 2)
251W(sf1, 00, z) — lel(z)W(sfl, 00, 1) — Cl(z)(51W(sf1, 00, 1) — 31W(sf1, 00, 1))

W (2).
The proof is thus finished by the functional delta method. ]

Proof of Theorem . The unconditional result can be proved By Corollary
3 of Einmahl et al| (2014). We then verify the conditional weak convergence

of the bootstrap estimator. Denote

n

3 (G- 1)1 {X§"> > Ul(n/k:lx)} . Win(a) = 27", W (z/s1, 00, 1).

=

1
o kll‘n

First, plug (ki /(kz), 00, 1) into the process F® for z € [0,2]. We derive
that as n — oo,

sup  |Ee (B (F%,)) —E(h(Win))| 0.
heBL1(1>(]0,2]))

Define z,,(z) := n(1 — G1(Ur(n/ky)x="))/k; for x € [0,3/2]. By Corol-

lary 3 in Einmahl et al) (2014), it holds that as n — oo,

S |zn(2) /2 — 1] = O(|Bi(n/k)|)-

Thus, by the uniform continuity of Wy, , it holds that as n — oo,

sup  [Wi(2n(z)) — Wi (z)] 2 0.

z€[0,3/2]
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Also, it holds that as n — oo,

sup B (h (@3 /@) (B, 0 2,))) = Be (h (FY, 0 2))]
heBL1(1>([0,3/2]))

G R o

< sup
z€[0,3/2]

x z€[0,3/2]

Thus, we derive the conditional weak convergence for the process

n

73 (7)

q ()

Fi,(1)=Fi,(z) =
Since ¢1(3/2)F1n(3/2) = 3/2 and

i X s/ b)) U/} =1
(Xptyn/Ui(n/k1))~Y" < 3/2 holds with probability tending to 1. Then,

it follows that

(1 F 1) (1) = Xy /Ur(n/ky)) 11,

Finally, the proof is completed by Proposition @, functional delta method,

and continuous mapping theorem. [

S4 Proof of Proposition m

Proposition S5. Under Assumptions H—B, asn — oo and B — oo, we

have

(a) P(k(51 — A2 —m + ) > (1 —a)) — q;
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(b) P(sup.cpoy VE [Tao(2) — Ci(2) + Ca(2)| = aby (1 — @) = a;
(€) Pk [} (Too(2) — Ci(2) + Ca(2))* dz > sy ™ (1 — a)) — a.

Proof. We prove the result for Proposition S5(a); the argument for the other

two statistics is similar. First, by the continuous mapping theorem, we have

sup  |[Ee[h(Th0)] — E(h((Ty = T5)%)| &0 asn — oo.
heBL1(R)

Since k(41 — 42 — 71 + 72)? is a random variable on R,

.....

satisfies Condition 2.1 of Biicher and Kojadinovid (2019), and the distribu-
tion of (I'; — I'y)? is continuous, the result follows from Biicher and Kojadi-

novid (2019, Lemma 4.2). O

Proof of Proposition B The argument under Hyy and Hyy follows immedi-
tately from Proposition S5. We next prove the statement for Proposition
El(b) By consistency of the Hill estimators, ¥; i v; 7 =1,2, we have

T'H10
k

= (31— 42)? = 62 (S4.5)
Thus, for an € > 0, we have for a sufficiently large n,
P (Twi0 > k6%/2) > 1—¢/2.

On the other hand, Proposition S5(a) also yields that k(4 — 42 — (71 —

72))? converges in distribution and that the bootstrap consistently estimates
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its (1 —«)-quantile. By the asymptotic tightness of @1o(1—«), for any € > 0,
there exists a constant M such that for sufficiently large n and B,
P(ip(l1—a) < M) >1-¢/2. (S4.6)
Finally, take n so large that k62/2 > M. Then, we have
P(Tui0 > t1o(1 — a)) > P(Thio > k6%/2, tao(1 — ) < M) > 1—e.
Since € > 0 is arbitrary, we obtain
P (Tx10 > G10(1 — a)) — 1.

The argument for testing Hog proceeds analogously and is omitted. [
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