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This supplement includes the potential nuisance models, the cross-fitted
version of the proposed method, proofs of all technical details, and addi-

tional simulation and data analysis results.

S1 Potential nuisance models and the cross-fitted ver-

sion of DRTL-comb

In this section, we first provide the alternative working nuisance models
for the density ratio w(y,z) and the imputation model m(y, z). Then
we provide the cross-fitted version of the DRTL-comb method when these

nuisance functions are estimated with flexible machine learning methods.
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S1.1 Potential nuisance models

To explore flexibility in modeling the nuisance models, we outline alter-
native approaches adaptable to the study’s context. For the density ratio

w(y, z), one can adopt a semi-parametric working model:

w(y,z) =exp{b(y,z) ' n+r(y,z)},

where b(y, z) € R denotes a vector of pre-specified basis functions cap-
turing nonlinear effects, 7 € R!*P represents the associated nuisance param-
eters, and r(y, z) is an unknown nonparametric function, as proposed by |Liu
et al|(2023). The term b(y, 2)'n captures parametric components. Fur-
ther, one can adopt the divergence-based method of [Yan and Chen| (2024)
to estimate the density ratio function, which is amenable to machine learn-
ing algorithms including the deep learning. This method is more stable
than the kernel smoothing or the classification-based methods to estimate
the density ratio.

For the imputation model m(y, z), one can also use some machine
learning algorithm (e.g., random forest or neural network) to learn the
mean E(X | Y, Z) directly. Adopting these approaches would require the
cross-fitted version of our DRTL-comb method, and require re-deriving the

asymptotic theoretical results. We will discuss these in the next section.
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S1.2 The cross-fitted version of DRTL-comb

In general, assume that @(y, z) and m(y, z) are estimators of w(y, z) and
m(y, z) obtained via nonparametric or flexible machine learning algorithms.
We now present a general cross-fitting framework of the DRTL-comb method.

Following the idea of |Chernozhukov et al. (2018), we apply cross-fitting
on the source sample to eliminate the dependence between the nuisance
estimators and the samples on which they are evaluated. Specifically, we
randomly split the source sample into K disjoint subsets of equal size, each
containing ns/K observations, indexed by Zy, ..., Zx, with {1,... ns} =
UK T, and denote Z_;, = {1,...,ns}\ Zi. For each k € [K], let &% (y, 2)
and ml=*l(y, z) denote the estimators of w(y, z) and m(y, z) constructed
using the observations in Z_, U {ns + 1,...,ns + nr}, and let m(y, z) =
K-t Zszl ml=*(y, ). The resulting cross-fitted estimating equation is then
given by

K
Dont (s, B-) .:%ZZA[ H(Y;, Z) (X — RN, Z)Y Y - B, — 2] B.)

k=1 i€T}

- ST (Y, Z)(Yi - B — 20 B.) =0, (S1.1)

n
T iGIT

Vou (B, B:) 1= RSZZA[ (Y, Z0) Z A NY, Zi) — X},

k=1 ZEIk

¢ ZAY - (Y, 208, — BB} =0, (S1.2)

n
T €L
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Define the solution of Eqs (S1.1))-(S1.2)) as (B\DMLX, ,@gML’Z)T.

Let w*(y, z) and m*(y, z) denote the corresponding best approximations

of @W(y, z) and m(y, z). Assume that the nuisance estimators satisfy

B(y, 2) = w*(y, 2)]l2 = o(n™),  [li(y, 2) = m*(y, 2)]|2 = o(n™"/").

(S1.3)

These regularity conditions on nuisance estimators are standard and widely
adopted in double/debiased machine learning literature (Chernozhukov et al.|

2018). Assume that the correct specification conditions are

Either w*(y, z) = w(y, z), or m*(y, z) = m(y, z). (S1.4)

This assumption is necessary to establish the double robustness property.
Under Assumptions -, one can follow the double machine learn-
ing framework of |Chernozhukov et al. (2018) to derive the desirable dou-
ble robustness of the DRTL-comb estimator. The root-n consistency and
the asymptotic results can be established similar to Liu et al.| (2023).
We leave the details to readers who are interested in developing machine-

learning—based versions of the nuisance models.
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S2 Proof of Theorem [

Proof. Let || || represent the maximum norm of a vector or matrix. First,

we derive the error rates for B\x and B\Z. We expand the left side of the

Fq (@3) as
Ubr(Be: B:) = U(By. B2) + At + Apy + Ay, (52.5)
where
U5 B) = 3606 20X, ~ MY ZDNYi = 2100+ — 3 2% = 5.~ 2T,
A= 3 (@0 2) ~ a(1i Z)Hm(Yi 2) = Y 20} = = 25,
Bua= 3 (0 Z){m(¥, ) = Y ZONY, - e = 2] )

+ S s, Z) — (Y, ZOYY - Be — Z)B.),

Ay = % SO GV Z0) — (i, Z) X, — ml(Yi, Z)HYi — Ba — Z) B.).

1€Ls

Similarly, we expand the left side of the Eq (2.10) as

vDR(Bx» B.) =V (B, B.) + Ao + Aoy + Ay, (52.6)
where
V(B,,8:) = n—z > a(V;, Z)ZAm(Y, Z:) — X} B: + % > ZA{Y;—m(Y;, Z)B. — Z/] B},
i€Ts €Ty

Aoy = = SO, 2) — 6V, ZOVZY:, Z) — Y, )

S iezs
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1 1 N
Aoy = — E (D(Y}, ZZ)ZZ{ﬁ”L(YZ, ZZ) — m(Y;, Zl)}ﬁx - — E Zl{m(Y;, Zl) — m(YZ, Zl)}ﬁx,
ns 1 T iz
1els 1€l

Ass = = SOV, Z) — 6(Y, Z)VZ (Y, Z) ~ X

1€Ls
Using Theorem 5.21 in Van der Vaart| (2000), Chebyshev’s inequality, and

ns/nr = O(1), we have

15| Y {B0 Z) — BV, )Y - Es{R(Y, 2) - a(Y. 2)F = oyn5"),

i€ls

n§1 Z{fﬁ(Y;, Zz) - m(}/“ Zz)}2 _ Eg{’ff\l(Y; Z) . m(Y, Z)}2 _ Op<n§1/2),

i€ls

nr' Z{ﬁ@(Yi, Z,) —m(Y;, Z)}2 — Er{i(Y, Z) — m(Y, Z)}2 = o,(n3"?).

i€Tr
Also, by Assumption [I} we have that
Es (Y. 2) - oY, 2))’ = Eso*(Y. Z){B(Y. 2) /(Y. Z) - 1)
< Es[w*(Y, Z){2Y*(5, — ,)* + Y (0, — )" + 2| Z|E17: — 72:115 + | 21217 — 72-23]
< Es [{20M(Y, 2) + Y + Y + Oy(ns ")} (0l — m)’]
+ Es [{20%(Y, Z) + | Z]l2 + 1 2115° + Op(ns") HIn: — 03]

~1/2
= op(ng / )-

And that for each « € {T,S},

EA{m(Y, Z) —m(Y, Z)}?

< EA@*(m(Y,2)) (1Y, 2 ") "5+ 17 = 4112) + CE (V. Z2T) 2 + 17 = 7112)}
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= 0, (EAZm(, 2)) (1Y, ZD)T 12+ |5 —A12)} + ng') = op(n;1/2),

where g(a) = g(g~*(a)). Thus, we have

ns' S {B(Yi, Z)) — &(Yi, Z)}? = op(n5"?),

ng' D MY Zi) = m(Yi, Z)} = 0,(ns"”),
ny' DAY, Z) = m(Y, Z)Y = op(ns"?).

Combining these with Assumption |I| and Eqs (52.5))-(52.6)), we have

1Al < 15 max(Y; — fo — Z'B.) Y o, Z) - o(Y;, Z)Y + {(Yi, Z;) = m(Yi, Z,)}’]

i€ls
= o0,(n5'"?),

|Anlloe < max(Vi = B, = 2] Bo){ng' Y @*(Vi, Z)} Plng' Y_{m(Yi, Z) — m(Yi, Z) ]2

1€1s 1€Ls

+ max(¥; — f; — Z!B.)In" Y (Y, Z)) — m(Yi, Z,)}*)'?

1€l
1€l

—1/4
=0 (nS / )7

[Asslloo < max(Y; = 8 — Z/ B.)[n Elj{w Y, Zi) = 0(Yi, Z0)Y] g EIJ{XQ m(y:, Z)H'?
= op(ns""),
| Aatlloe < 5" max | Zillo| 8] 3BV Z0) = 0(¥;, Z)}* + (Vs Zo) = m(Yi, Zo) Y

1€ls
1€Ls

—1/2
= 0,(ng"?),
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[ Aslloo < max | Ziflocl B2/ {5 > @Y, Z)Y gt Y _Am(Yi, Zi) — m(Yi, Z) Y]
i€Ls 1€Ls
+ max | Zilcl Aol [ Y _{m(Yi, Z0) —m(Yi, Z0) ]2
1€l
= 0,(ns""),
|Aslloe < max | Zilloo|Bellng' Y {0V Z0) = @(%;, Z0Y) 2 ng! D_AXT +m(y:, 20}
i€ls i€ls
=o (ng1/4).

Thus, (Ex, ,@Z) solve

U(Ba, B.) + 0p(ng"*) = 0,
V(8. B:) + op(ns'’!) = 0.

Let (., 3.) be the solution of

E{U(ﬁxa /Bz)} =0,
(82.7)

E{V(5:,B8:)} = 0.

When w(-) = w(-), we have that

E{U<5x;ﬁz)} = ES[W(Y7 Z){X - m(}/a Z)}(Y - 53: - ZT/Bz)] + ET{m(Y7 Z)(Y — B — ZTBZ)}

= ET{X(Y - /B.I - ZT/@z)}
E{V(B.,8.)} = Estw(Y, Z){m(Y, Z) — X}, + Er[Z{Y —m(Y, Z)B, — Z " 0}]

= ET{Z(Y — XB — ZTIBZ)}
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When m(-) = m(+), we have that

E{U(Bs,B:)} = 0+ Er{X(Y — 5. — Z'B.)},
E{V(ﬁxaﬁz)} = ET{Z(Y - Xﬁx - ZT/BZ)}
Both cases lead to that (S.0,3.0) be the solution of Eq (S2.7). So under
Assumption , we have 3, = B, and B. = B.9. By Assumption [I| both
U(B:,3.) and V(B,, B.) are continuous differential on 5, and 3,. Then, us-

ing the standard empirical process theory of [Van der Vaart| (2000) [Theorem

5.21], we have

B\x - ﬁx[) = Op(1)> HB\Z - ﬁzOHQ = Op(l)'

S3 Proof of Theorem [2

Proof. We consider the asymptotic expansion of /ns ¢ ( — Bzo, ,BT

1) T, Recall the definition of the information matrix Jjg, g, is

ou 51 B:) U (Bz,B:)
Bt bR T e RU+PX(14p)

E{ 8‘/(533 B:) } E{ avaﬂﬁx ,8z) }

Jﬁﬂl 7Bz = -

where

{000

05, } = Es[w(Y, Z2){m(Y, Z) — X} - Er{m(Y, Z)} €R,
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E{Qz@ﬁﬁﬁ} {E{gﬂ&fz}r}q%paqu@mxzy—Xﬂ—Eﬁzm@uw}ewz

9B, oB;
av(@x,ﬁz) _ T PXp
E{—7ﬁ;—}_ Er(ZZ") e RP*P,.

Thus, Jg, g, is independent of ., 3,. Let J, € R'? J, € RAFP*P gatis-
tying [, J,] = Jﬂjﬁz' Noting that (BI,B\ZT)T is consistent for (8,0,8.) ",
by Theorem 5.21 of [Van der Vaart (2000)), we can expand Eqs (52.5)-(]S2.6))

with respect to /ns CT(BI — B0, BZT - ﬂzTo)T as:

Bx - Bac() ~ ﬁDR(ﬁan 5,20)
Jns ¢’ = ngcTnglé
ﬁ;;r - ;;E) VDR(Bx()w@zO)

U(Bz,B:) + A1 + Aqz + Ags

V (Bs, B:) + Aoy + Aoy + Ao
6126107ﬁz:ﬂz0

= /ns€ T {U(Ba, B:) + Ayy + Mgy + A3}, =8,0,8.=B0
+ \/nSch;{V<5xa B:) + Aoy + Aoy + Ass s, —p.0.8.B-0

= I+1I,

where (3., 8])7 is some vector lying between (8,0, 31,)" and (Bx, B:r )

For the first term I, we have

I = U + T11 + T12 + T13, <S38>
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where

U=ns" 0V, Z,)e T AX: — m(Ye, Z)Y(Ys — Bao — Z] Buo)

i€ls
it ST T TV, Z)(Y: ~ B — 2 Beo).
i€LT
Ty = ns Z{ (Y;, Z;) — w(Y;, Zi)}CTju{mO/ia Z;) — m(Y;, Zi) }(Yi — Bao — ZiTBZO)’
1€1Ls

Tio =ng* > " (Y, Z)e" T Am(Yi, Z;) — m(Y:, Zi)}Yi — Buo — Z; Bro)

1€Ls

+ n1/2 —1 Z ch;{f?\’L(Y;-, Zz) - m(Y;, Zz)}(Y; - Bxl) - ZiTIBZO)’

1€l

Tz =n5'"? Y {0(Y:, Z) — &(Y:, Zo) e T X — m(Ys, Z)Yi — Boo — Z]' Bro)-

1€ls

We shall show that
1 = Tulloe = 0p(n5"*). 1T = Ll = 0p(n5"°). (53.9)
Since the dimensionality of Z, p, is fixed, we have
155, = Topalle = 1955 (Taopeo = T, 50T 0l
< QU DTSy el 00 = T e T3 e

By Assumption |If and the central limit theorem (CLT), we have

= —1/2
15,0820 — T3, 5.ll0 = 0p(n5"?).

Also noting that ||J; P Baolloo and || P 8. |loo are bounded by Assumption
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and Neumann series, we have

—1/2
- 0?(”8 / )7

-1 -1
||Jél,éz - Jﬁzo,ﬁzo

that is, Eq (S3.9)) holds. Under Assumption , and similar to above deduc-

tion (E{U(B., B.)} = 0), the below expectation is zero:

nst 3 0V Z)IXi=m(Ys, Z)WYi=Bao—Z] Bao)tnd*n S (Vi Z0) (Yim B2 Bo).

1€1s 1€LT

So by Assumption , Eq , CLT and Slutsky’s theorem, we have
that U weakly converges to N(0,02), where 2 represents the asymptotic
variance of U and is order 1. We then consider the remaining terms
(Th1, T2, T13) separately. First, we consider Tj; in Eq . By As-
sumption , the boundness of \chu(Yi — Beo — Z;' B.0)|, and our derived
bounds for ng'* S, ., DY, Z)~&(Y;, Z)}? and ng* 3, cp {m(Yi, Zi)—

i€ls
m(Y;, Z;)}?, we have

Tl = O(ns'* D" 0%, Z) — @i, Z0)| - [in(Y;, Z2) — (Y;, )

1€Ls

S \/%O<[n§1 Z{@(}/” ZZ) - @(Y;7 Zi)}2]1/2[n§1 Z{T?L(E, ZZ) - m(Y;, Zi)}2]1/2>

i€Ls i€Ls

= 0,(1).

For Ti,, we have

Tio = —ng'? Y 0(V;, Z)e Jug(m(Y;, Z:)) (Y. Z2T)A =) + O,({(Y, ZT)A = 1)})]

1€ls
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X (Y; - /BIO - Z’]/TIBZO)

ndn7' Y el Tg(m(Yi, Z))(Y. Z2T)A =) + O, ({(Y: ZT)A = NN = Buo — Z/ Bro),

€L

Again using Eq (S3.9) and Assumption , we have

ns' Y@V, Zi)e Jug(m(Yi, Z:))(V;, Z1)" (Yi = Buo — 2, Bro)

i€Ls

+ n']‘ Z CTJug (Y:n Z, ))(sza ZZT)T(Y; - Bx(] - Z:/BZO) £> S};a

1€l

where

¢ = —Es{o(Y, Z)c"J, g(m(Y,2))(Y,ZT) (Y = Boo — Z " B:0)}

+ Bric" Ju (Y, 2))(Y, 2 (Y = B — 27 Buo)}.

By standard analysis, it can be shown that

and /ns(y — 7) converges in distribution to multivariate normal distri-
bution with mean 0 and covariance of order 1. Combining these with As-
sumption [If and using Slutsky’s theorem, we have that T}, is asymptotically
equivalent with /ng (E“) (¥ — 4), which weakly converges to normal dis-
tribution with mean 0 and variance of order 1.

Similarly, we write the term 733 as

Tis =ng"? > 0(Yi, Z)e T X — m(Y;, Z)}Yi — Bao — 2] Bao)

1€Ls
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< [(Y,Z2")(0 —0) + O,({(Y, Z") (71 — 7)}*)] (Yi = Buo — Z Bro)-
Using Eq (53.9) and Assumption [} we have

ns' S 0V, Z)eT TAXs — m(Yi, Z)YYi, Z7) (Y = Buo — 2] Bao) B €L,

i€ls

where
¢ = Es{o(Y, Z)e" Ju(X — (Y, Z))(YV, ZT) (Y = Buo — Z7 Buo)}.

Also, by standard analysis, it can be shown that

—~ _ —1/2
|7 — 7l = Op(ng"?),

and /ns(n — n) converges in distribution to multivariate normal distri-
bution with mean 0 and covariance of order 1. Combining these with As-
sumption [If and using Slutsky’s theorem, we have that T3 is asymptotically
equivalent with \/%(S}]‘)T(ﬁ — 1), which weakly converges to normal dis-
tribution with mean 0 and variance of order 1.

For the second term 11, we have
1T =V + Ty + Thy + Tos, (S3.10)
where

V=ng"Y" oV, Z:)e" J,Z{m(Y:, Zi) — Xi}Buo

1€ls
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0?0t N €T TZAY — mlYi, Z) a0 — Z) Buo).

1€l

Ty =ng"* Y {B(Y:. Z) — 0(Y;, Z)Ye' T, Z{i (Y, Zi) — (Y;, Z:)}Buo,

1€Ls

Ty = ng? Z (Y;, Z) e T, Z (Y, Z;) — m(Ys, Zi)}Bao

1€Ls

—nd*n7t Y T Zd(Y;, Z0) — m(Yi, Z) oo,

1€l

Tys =gy {0(Yi, Z) — a(Y;, Zo) e T, Z{m(Y;, Z:) — X} Boo-

1€Ls
Under Assumption [2| and similar to above deduction (E{V' (8., 3.)} = 0),
the expectation of the following expression equals zero:

ng'? Z o(Ys, Z))ZAm(Y;, Z;)~ X} Baotngd "ny! Z Z{Yi—m(Y;, Z;)Bro—2Z; B0}

i€ls i€y
So by Assumption , Eq , CLT and Slutsky’s theorem, we have that V'
weakly converges to N(0,02), where o2 represents the asymptotic variance
of V and is order 1. We then consider the remaining terms (751, Ta2, To3) sep-
arately in Eq (S3.10)). First, we consider T3. By Assumption[l] the bound-
edness of |¢"J,Z;B,0|, and our derived bounds for ngl/Q Y iers10(Yi, Zi) —

(D(}/l; Zl)}2 and ngl/Q Z {fﬁ‘(}/;a Zl) - ﬁl(}i, Zi)}27 we have

i€ls

Tl = O(n"* Y [6(V;, Z5) = 0(Vi, Z0)| - [V, Zi) = m(Y:, Z0))

1€Ls

< visO(Ing" S 1B(Y:, Z0) = @Y, 2012 (s Y (s, 2) — (Y, Z0) )2

1€Ls 1€Ls
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= 0,(1).

For Ty, we have

Ty =ng' Y 0(V;, Z,)e T, Zg(m(Y, 2)) (Y. Z21)F =) + O,({(Y. ZT)A = )}?)] Buo

1€ls

—ngd’ni' Y 1,2 (9(m(Y, Z,)) [(V,Z1)F =) + 0,({(Y. Z21)(F = 1)})] Bro) -

€L

Again using Eq (S3.9) and Assumption [I}, we have

ns' Y @V, Zi)e T, Z:g(m(Yi, Z) (Y, Z")Boo — 7 Y € L Zig(m(Y;, 2:)) (Y, 2] ) Bao B €,

i€ls i€l

where
& = Es{o(Y, 2)c" J,Zg(m(Y, Z))(Y, Z") Buo} — Er{c' J,Zg(m(Y, Z))(Y, Z") " Buo}-

Recall that \/ns(y —4) converges in distribution to a multivariate normal
distribution with mean 0 and covariance of order 1. Combining these with
Assumption [I] and using Slutsky’s theorem, we have that Ty, is asymptoti-
cally equivalent with |/ns (E”) (% — ), which weakly converges to normal
distribution with mean 0 and variance of order 1.

Similarly, we write the term 753 as

Tos =ng"? > (Y, Z)e 1,2 [(YV, Z27)(\ — 1) + O,({(Y, 27) (5 — m)}*)] {m(Y;, Zi) — Xi}Bao.

i€Ls

Using Eq (S3.9) and Assumption [I} we have

ns Y 0(Yi, Z)e L ZAm(Yi, Z;) — Xi}Bao 2 €L,

1€ls
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where

& = Eslo(Y, 2)e" J,Z2(Y, Z") {m(Y, Z) — X}Bu).

Also, \/ns(n — m) converges in distribution to multivariate normal dis-
tribution with mean 0 and covariance of order 1. Combining these with
Assumption [I] and using Slutsky’s theorem, we have that T»3 is asymptoti-
cally equivalent with /ns (ﬁg)T(ﬁ —n), which weakly converges to normal
distribution with mean 0 and variance of order 1.

Combining with the asymptotic properties derived for U, V, Ty, T2, T13, To1, Toa, Tos

and the expansions Eqs (S3.8)-(53.10]), we finish the proof for the asymp-

totic expansion and distribution of |/ng cT(BJ; — B0, ,/Bj -8B O

S4 Additional simulation results

In this section, we present additional simulation results under three cases
that deviate from the ideal conditions: (i) unbalanced labels of the binary
variable X, (ii) reduced overlap between the two populations, and (iii)
smaller sample size ratios between the target and source populations. These
results provide further insights into the robustness of the proposed method

and give potential limitations that warrant further investigation.
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S4.1 Simulation with unbalanced two labels of binary X

In this section, we conduct simulations with unbalanced two labels of binary
X. The difference from the simulation setting in the main text is that here

we consider two new models to generate X;:

M*cor : loglt{P(Xl =1 | 1/;, Zz)} =44 OSY; + 3'2Z1,i - 3.2227“

This modification increases the proportion of 1’s of binary X to the range
(0.75,0.90), compared with the earlier range of (0.40,0.50). Similarly, the
imputation model m(y,z) = (y,1, 21, 20) "~ is correctly specified under
M* o but misspecified under M* .55, as M* ;s includes the interaction term.
We then consider the following three configurations: (I) M*.o, and Wy,
(IT) M*is and Weer, and (I11) M*,o, and Wpps.

We compare our DRTL-comb estimator with the estimator (denoted as
“Naive”) obtained by directly regressing Y on Z while ignoring completely
missing X in the target population. We also present the preliminary IW
and IM estimators as two benchmark estimators. For the variance estima-
tor of the Naive method, we use standard error of linear regression. For
the variance estimator of the IW, IM, and DRTL-comb methods, we use

bootstrap in practice.
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For each configuration, 500 bootstrap samples for variance estimation
and 500 simulation replications are generated to summarize the average per-
formance measures. For the given estimators B\O, Bm, ley BZQ that correspond
to the coefficients of the intercept and X, Z;, Z, respectively, we report the
empirical average bias, root mean square error (RMSE), standard error,
and coverage rate of the nominal 95% confidence interval. We present the
statistical inference results for 3, and B3, in Tables [S4.THS4.2] Here, there
are no inference results for [, using the Naive method, as it excludes X
from the regression models.

As shown in Tables the Naive method performs poorly across
all configurations because it ignores the information in the binary variable
X, which is related to Y and Z. When both nuisance models are correctly
specified (configuration (I)), the IM and DRTL-comb methods exhibit simi-
lar performance, with slightly smaller bias and RMSE than the IW method.
When the imputation model is misspecified (configuration (II)), IM shows
larger bias than IW and DRTL-comb, whereas under a misspecified density
ratio model (configuration (III)), IW yields greater bias and RMSE than
IM and DRTL-comb. In contrast, DRTL-comb produces nearly unbiased
point estimates for 5, and 3, in configurations (I) and (III), demonstrating

its double robustness.
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Table S4.1: Point estimator results for 8, and 3, with unbalanced two labels of binary

X.
Bias RMSE
True Naive W IM DRTL-comb Naive IW IM  DRTL-comb
Configuration (I): M*.o, and Weer
Bo = 0.834 0.843 -0.028 0.000 -0.008 0.845 0.216 0.157 0.177
Bz = 0.929 / 0.028  0.003 0.012 / 0.234 0.166 0.188
Bz =—0.212  0.088 -0.007 -0.005 -0.005 0.102 0.104 0.053 0.054
B, = 0.163 -0.089 0.009 0.004 0.005 0.102 0.105 0.051 0.051
Configuration (IT): M*p,;s and Weer
Bo = 1.929 -0.255 -0.034 -0.062 -0.036 0.260 0.192 0.129 0.153
B = —0.336 / 0.031  0.079 0.045 / 0.233 0.156 0.190
Bz = —0.036 -0.088 -0.016 -0.037 -0.019 0.101 0.116 0.069 0.075
Bz, = 0.033 0.038 0.012 -0.002 0.001 0.065 0.098 0.057 0.055
Configuration (II1): M*.o, and Wpis
Bo = 0.269 0.821  0.356  0.003 0.005 0.822 0.376 0.129 0.142
B = 0.920 / -0.397 -0.001 -0.002 / 0.420 0.134 0.149
B., =—0.880 0.129 1.592  0.002 0.002 0.137 1.593 0.048 0.050
Bz, = 0.178 0.148 -0.063 0.000 0.000 0.156  0.085 0.053 0.055
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Table S4.2: Variance estimator results for §, and B, with unbalanced two labels of

binary X.
Standard Error Coverage Rate
True Naive IW IM  DRTL-comb Naive IW IM  DRTL-comb
Configuration (I): M*.o, and Weer
Bo = 0.834 0.049 0.198 0.157 0.173 0.000 0.912 0.934 0.928
Bz = 0.929 / 0.215 0.163 0.182 / 0.912 0.940 0.934
Bz =—0.212 0.051 0.093 0.053 0.053 0.600 0.910 0.944 0.938
Bz, = 0.163 0.051  0.090 0.052 0.053 0.574 0.924 0.958 0.956
Configuration (II): M*p,;s and Weer
Bo = 1.929 0.049 0.176 0.113 0.145 0.000 0.922 0.918 0.936
By = —0.336 / 0.215 0.136 0.180 / 0.930 0.922 0.932
B:, =—0.036 0.051 0.101 0.059 0.072 0.622 0.904 0.902 0.934
Bz, = 0.033 0.051  0.086 0.055 0.053 0.864 0.912 0.944 0.936
Configuration (II1): M*.o, and Wpis
Bo = 0.269 0.048 0.131 0.128 0.142 0.000 0.204 0.960 0.958
B. = 0.920 / 0.137 0.131 0.149 / 0.152  0.956 0.960
Bz =—0.880 0.048 0.058 0.049 0.051 0.238 0.000 0.964 0.958
Bz, = 0.178 0.047 0.056  0.052 0.053 0.128 0.798 0.936 0.930
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For variance estimation, DRTL-comb generally lies between the IW and
IM methods, indicating that it does not inflate the standard error. A new
phenomenon is that the IW method produces larger standard errors in most
cases compared with the results in the main text, which is potentially due
to the unbalanced labels of the binary variable X. Regarding coverage, the
IW method shows poor performance in configuration (IIT), with coverage
far below the nominal 95% level (all less than 80%), and the IM method
exhibits unsatisfactory coverage in configuration (II) (e.g., 90.2% for £3,,).
In contrast, DRTL-comb maintains coverage rates close to the nominal level

In most cases.

S4.2 Simulation with reduced overlap between the two popula-

tions

In this case, we conduct simulations with reduced overlap of the distribution
Y across the two populations. Specifically, under the same data generation
presented in simulation studies in the main text, we artificially delete the
source samples with negative Y values. Then, the total sample size ns+nr
ranges from 2000 to less than 1700, and the sample size ratio (ny/ns) ranges
from (0.7,0.9) to (0.95,2.5). We also consider three same configurations in

the main text: (I) Meor and Weor, (II) Mynis and Weer, and (I11) Mg, and
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Winis-

We also compare the DRTL-comb estimator with the Naive, IW, and
IM estimators as three benchmarks. For each configuration, 500 bootstrap
samples for variance estimation of the IW, IM, and DRTL-comb methods
and 500 simulation replications are generated to summarize the average
performance measures. We present the statistical inference results for 5,
and 3, in Tables [54.3454.4] Here, there are no inference results for £, using
the Naive method, as it excludes X from the regression models.

As shown in Tables the Naive method performs poorly across
all configurations because it ignores the information in the binary variable
X, which is related to (Y, Z). The IW method exhibits substantial bias
and unsatisfactory coverage in every configuration. This is because remov-
ing source samples with negative Y reduces population overlap, leading
to inaccurate estimation of the density ratio for the distribution of (Y, Z)
across the two populations.

Both the IM and DRTL-comb methods produce nearly unbiased point
estimates and achieve nominal coverage rates in configurations (I) and (III).
In configuration (II), where the imputation model is misspecified, IM ex-
hibits smaller but still non-negligible bias for 5, compared with IW. Due to

the combined effects of inaccurate density ratio estimation and misspecified
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Table S4.3: Point estimator results for 3, and 3, with reduced population overlap.

Bias RMSE
True Naive Iw IM DRTL-comb Naive IW IM  DRTL-comb
Configuration (I): Mcor and Weor
Bo = 1.105 0.572  0.141  0.003 0.002 0.574 0.158 0.102 0.102
B, = 1.103 / -0.484  0.001 0.002 / 0.501 0.173 0.173
Bz =—0.437 0.313 0.183 -0.005 -0.005 0.317 0.196 0.072 0.071
Bz, = 0.392 -0.319 -0.165 0.003 0.003 0.322 0.180 0.071 0.071
Configuration (IT): Mpis and Weer
Bo = 1.263 0.413 0.103 0.040 0.050 0.416 0.129 0.115 0.124
B = 0.854 / -0.458 -0.101 -0.120 / 0.478 0.222 0.236
B., =—0.427 0.304 0.201 0.018 0.022 0.308 0.218 0.095 0.099
Bz, = 0.219 -0.147 -0.101 -0.005 -0.016 0.156 0.118 0.064 0.065
Configuration (III): Mcor and Wipis
Bo = 0.618 0.471  0.289  0.003 -0.003 0.474 0.293 0.081 0.119
Bz = 0.999 / -0.616  0.002 0.016 / 0.623 0.151 0.244
B, =—1.004 0.252 1.290 0.002 -0.006 0.256  1.291 0.056 0.085
Bz, = 0.339 -0.310 -0.223  0.003 0.004 0.314 0.227 0.069 0.085
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Table S4.4: Variance estimator results for 8, and 3, with reduced population overlap.

Standard Error

Coverage Rate

True Naive IW IM  DRTL-comb Naive IW IM  DRTL-comb
Configuration (I): Mcor and Weor
Bo = 1.105 0.049 0.068 0.100 0.101 0.000 0.440 0.942 0.938
B = 1.103 / 0.122 0.164 0.167 / 0.046 0.926 0.928
Bz = —0.437 0.051 0.069 0.068 0.069 0.000 0.222 0.936 0.938
Bz, = 0.392 0.051 0.067 0.069 0.069 0.000 0.314 0.940 0.946
Configuration (IT): Mpis and Weer
Bo = 1.263 0.049 0.076 0.109 0.113 0.000 0.736  0.940 0.936
Bz = 0.854 / 0.136  0.195 0.201 / 0.088 0.942 0.926
B = —0.427 0.051 0.080 0.091 0.093 0.000 0.274 0.944 0.932
Bz, = 0.219 0.0561 0.060 0.062 0.061 0.188 0.642 0.948 0.942
Configuration (III): M¢o,r and Wipis
Bo = 0.618 0.048 0.047 0.086 0.126 0.000 0.000 0.964 0.964
Bz = 0.999 / 0.086 0.158 0.253 0.000 0.000 0.956 0.964
B, =—1.004 0.048 0.044 0.058 0.085 0.000 0.000 0.964 0.968
Bz, = 0.339 0.047 0.040 0.070 0.089 0.000 0.000 0.952 0.954
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imputation in configuration (IT), DRTL-comb does not achieve an almost
unbiased estimate for (,; however, it still yields acceptable bias and main-

tains a nominal coverage rate, demonstrating its robustness.

S4.3 Simulation with smaller sample size ratios

In this section, we conduct simulations with a smaller sample size ratio
range of two populations (nr/ns € (0.3,0.6)). The difference from the
simulation setting in the main text is that here we consider two new models
to generate a membership variable S; to assign the ith observation to the

source population when S; = 1 and to the target data when S; = 0:

W*cor : loglt{P(Sz =1 | Y;, Zz)} = 0.8+ 035/; - 0.52171‘ + 0.3Z27i,

Winis © logit{P(S; = 1|V, Z))} = 0.8 + 0.3Y; — 0.5Z1; + 0.3Z0, + 2Y; Z1.;.

The density ratio model @(y, 2) = (1,y, 21, 22) ' 7 is correctly specified under
WH*,or but misspecified under W* ;5. We then consider the following three
configurations: (I) Meor and W¥cop, (II) Myis and W¢op, and (III) Meoy
and W*,is.

We also compare the DRTL-comb estimator with the Naive, IW, and
IM estimators as three benchmarks. For each configuration, 500 bootstrap
samples for variance estimation of the IW, IM, and DRTL-comb methods

and 500 simulation replications are generated to summarize the average
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performance measures. We present the statistical inference results for [,
and (3, in Tables [S4.5S4.6] Here, there are no inference results for /3, using
the Naive method, as it excludes X from the regression models.

As shown in Tables the Naive method, due to the neglect
of the information of the binary X which is related to Y, Z, has inferior
performance in all configurations. When both nuisance models are cor-
rect (configuration (I)), the two preliminary methods (IW and IM) and the
DRTL-comb method demonstrate similar performance in terms of bias and
RMSE. When the imputation model is misspecified (configuration (II)), IM
exhibits a larger bias and RMSE than IW and DRTL-comb, whereas with
a misspecified density ratio model (configuration (III)), IW shows a greater
bias and RMSE than IM and DRTL-comb. However, DRTL-comb achieves
almost unbiased point estimators for 3, and (3, in three configurations,
showing its double robustness. For the variance estimator, DRTL-comb
typically falls between the IW and IM methods, which indicates that the
proposed DRTL-comb method will not introduce a large standard error.
Regarding the coverage rate, the IW method has poor coverage rates below
the nominal level of 95% in configuration (III), and the IM method has
unsatisfactory coverages in configuration (IT). However, DRTL-comb main-

tains a nominal coverage rate in most cases. The lowest coverages are 62.0%
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Table S4.5: Point estimator results for 5, and 3, with a smaller ny/ngs range.

Bias RMSE
True Naive Iw IM DRTL-comb Naive IW IM  DRTL-comb
Configuration (I): M¢or and W oy
Bo = —0.004 0.528  0.003  0.006 0.006 0.532 0.088 0.081 0.082
B, =1.224 / 0.002 -0.006 -0.006 / 0.139 0.133 0.137
Bz =—0.300 0.364 -0.002 -0.002 -0.002 0.370  0.069 0.079 0.080
Bz, = 0.324 -0.364 0.001  0.000 0.000 0.370 0.070 0.079 0.080
Configuration (IT): Mpy,is and W¥* o,
Bo = 0.079 0.449 0.001 0.160 0.098 0.454 0.087 0.182 0.131
B = 1.040 / 0.010 -0.369 -0.223 / 0.153 0.394 0.263
B., =—0.213 0279 -0.006 0.053 0.024 0.286 0.081 0.093 0.077
Bz, = 0.195 -0.232  0.005 -0.097 -0.059 0.241 0.064 0.120 0.094
Configuration (III): M¢o, and W6
Bo = 0.212 0.436 0.174  0.011 0.011 0.439 0.188 0.068 0.070
Bz = 1.005 / 0.020 -0.019 -0.019 / 0.110 0.119 0.124
Bz =—1.158 0.237 1.551  0.004 0.004 0.242 1.552 0.052 0.053
B, = 0.321 -0.309 -0.036 -0.002 -0.002 0.314 0.065 0.068 0.068
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Table S4.6: Variance estimator results for 8, and 8, with a smaller ny/ng range.

Standard Error

Coverage Rate

True Naive IW IM  DRTL-comb Naive IW IM  DRTL-comb
Configuration (I): Mco,r and W¥¢or
Bo =—0.004 0.067 0.083 0.081 0.082 0.000 0.930 0.958 0.956
Br =1.224 / 0.132 0.129 0.131 / 0.936 0.932 0.932
Bz =—0.300 0.068 0.073 0.079 0.079 0.000 0.964 0.950 0.936
Bz, = 0.324 0.067 0.069 0.078 0.078 0.002 0.940 0.948 0.948
Configuration (IT): Mp,is and W¥cq,
Bo = 0.079 0.067 0.088 0.085 0.086 0.000 0.942 0.542 0.798
B = 1.040 / 0.149 0.135 0.137 / 0.938 0.242 0.620
B., = —0.213 0.068 0.079 0.083 0.078 0.010 0.936 0.920 0.948
Bz, = 0.195 0.067 0.062 0.072 0.072 0.068 0.938 0.734 0.858
Configuration (III): Mcor and W* s
Bo = 0.212 0.0561 0.070 0.068 0.070 0.000 0.308 0.954 0.954
Bz = 1.005 / 0.111 0.119 0.126 / 0.950 0.950 0.956
Bz =—1.158 0.049 0.058 0.053 0.054 0.000 0.000 0.960 0.958
B, = 0.321 0.0561  0.053 0.064 0.065 0.000 0.886 0.942 0.942
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for B, and 79.8% for [, in configuration (II); although below nominal, it

still represents a substantial improvement over IM (24.2% for S, and 54.2%

for ).

S5 Additional data analysis results

In this section, we first present the detailed linear regression results for
the two populations separately from an oracle perspective, assuming that
binary X, smoking status, is known in the target data (Table|S5.7). Here,
the source population has 4713 subjects with the negative polygenic risk
score for BMI (prs.BMI), while the target population includes 3196 subjects
with the positive prs.BMI.

As shown in Table [S5.7 there are clear differences between the two
populations in both cases regarding the estimates of covariate coefficients
(Estimate), standard error (SE), 95% confidence intervals (95%CI), and p-
values. The coefficient of energy for the target population is larger than
that of the source population, suggesting an increased effect of energy on
BMI among the target individuals. The effects of X, sex, and age on
BMI also differ between the two populations (sex = 1 for males and sex
= 0 for females). There are larger standard errors for covariates in the

target data compared to those in the source data, resulting in wider 95%
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Table S5.7: Detailed results for two populations without missing X .

Population Covariate Estimate  SE 95%CI p-value
Source X 0.752 0.119 (0.520,0.985) <be—4
energy 0.074 0.058  (-0.040,0.188) 0.201
sex 0.888 0.119  (0.656,1.120) < b5e—4
age 0.053 0.058 (-0.060,0.166) 0.358
Target X 0.774 0.180 (0.422,1.126) < 5e—4
energy 0.242  0.091  (0.065,0.420) 0.008
sex 1.004  0.181 (0.650,1.359) < 5e—4
age 0.008 0.088 (-0.165,0.181) 0.927

confidence intervals in the target data. These differences demonstrate the

heterogeneity between the source and target populations.

Table S5.8: Coefficients of the logistic regression of X on Y and Z for two populations.

Population Y energy  sex age

Source 0.049  0.000 0.446 0.188

Target 0.032 -0.015 0.355 0.243

Bibliography

Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. Hansen,

W. Newey, and J. Robins (2018). Double/debiased machine learning for



HUALI ZHAO AND TIANYING WANG

treatment and structural parameters. The Econometrics Journal, Cl—

C68.

Liu, M., Y. Zhang, K. P. Liao, and T. Cai (2023). Augmented transfer
regression learning with semi-non-parametric nuisance models. Journal

of Machine Learning Research 24(293), 1-50.

Van der Vaart, A. W. (2000). Asymptotic statistics, Volume 3. Cambridge

university press.

Yan, H. and S. X. Chen (2024). Transfer learning with general estimating

equations. arXiww preprint arXiv:2410.04598.



	Potential nuisance models and the cross-fitted version of DRTL-comb
	Potential nuisance models
	The cross-fitted version of DRTL-comb

	Proof of Theorem 1
	Proof of Theorem 2
	Additional simulation results
	Simulation with unbalanced two labels of binary X
	Simulation with reduced overlap between the two populations
	Simulation with smaller sample size ratios

	Additional data analysis results

