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tional simulation and data analysis results.

S1 Potential nuisance models and the cross-fitted ver-

sion of DRTL-comb

In this section, we first provide the alternative working nuisance models

for the density ratio w(y, z) and the imputation model m(y, z). Then

we provide the cross-fitted version of the DRTL-comb method when these

nuisance functions are estimated with flexible machine learning methods.
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S1.1 Potential nuisance models

To explore flexibility in modeling the nuisance models, we outline alter-

native approaches adaptable to the study’s context. For the density ratio

w(y, z), one can adopt a semi-parametric working model:

ω(y, z) = exp
{
b(y, z)⊤η + r(y, z)

}
,

where b(y,z) ∈ R1+p denotes a vector of pre-specified basis functions cap-

turing nonlinear effects, η ∈ R1+p represents the associated nuisance param-

eters, and r(y,z) is an unknown nonparametric function, as proposed by Liu

et al. (2023). The term b(y,z)⊤η captures parametric components. Fur-

ther, one can adopt the divergence-based method of Yan and Chen (2024)

to estimate the density ratio function, which is amenable to machine learn-

ing algorithms including the deep learning. This method is more stable

than the kernel smoothing or the classification-based methods to estimate

the density ratio.

For the imputation model m(y, z), one can also use some machine

learning algorithm (e.g., random forest or neural network) to learn the

mean E(X | Y,Z) directly. Adopting these approaches would require the

cross-fitted version of our DRTL-comb method, and require re-deriving the

asymptotic theoretical results. We will discuss these in the next section.
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S1.2 The cross-fitted version of DRTL-comb

In general, assume that ω̂(y,z) and m̂(y, z) are estimators of ω(y,z) and

m(y,z) obtained via nonparametric or flexible machine learning algorithms.

We now present a general cross-fitting framework of the DRTL-comb method.

Following the idea of Chernozhukov et al. (2018), we apply cross-fitting

on the source sample to eliminate the dependence between the nuisance

estimators and the samples on which they are evaluated. Specifically, we

randomly split the source sample into K disjoint subsets of equal size, each

containing nS/K observations, indexed by I1, . . . , IK , with {1, . . . , nS} =

∪K
k=1Ik, and denote I−k = {1, . . . , nS}\Ik. For each k ∈ [K], let ω̂[−k](y, z)

and m̂[−k](y, z) denote the estimators of ω(y,z) and m(y, z) constructed

using the observations in I−k ∪ {nS + 1, . . . , nS + nT }, and let m̂(y, z) =

K−1
∑K

k=1 m̂
[−k](y, z). The resulting cross-fitted estimating equation is then

given by

ÛDML(βx,βz) :=
1

nS

K∑
k=1

∑
i∈Ik

ω̂[−k](Yi,Zi){Xi − m̂[−k](Yi,Zi)}(Yi − βx −Z⊤
i βz)

+
1

nT

∑
i∈IT

m̂(Yi,Zi)(Yi − βx −Z⊤
i βz) = 0, (S1.1)

V̂DML(βx,βz) :=
1

nS

K∑
k=1

∑
i∈Ik

ω̂[−k](Yi,Zi)Zi{m̂[−k](Yi,Zi)−Xi}βx

+
1

nT

∑
i∈IT

Zi{Yi − m̂(Yi,Zi)βx −Z⊤
i βz} = 0. (S1.2)
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Define the solution of Eqs (S1.1)-(S1.2) as (β̂DML,x, β̂
⊤
DML,z)

⊤.

Let ω∗(y, z) andm∗(y,z) denote the corresponding best approximations

of ω̂(y,z) and m̂(y, z). Assume that the nuisance estimators satisfy

∥ω̂(y, z)− ω∗(y, z)∥2 = o(n−1/4), ∥m̂(y, z)−m∗(y, z)∥2 = o(n−1/4).

(S1.3)

These regularity conditions on nuisance estimators are standard and widely

adopted in double/debiased machine learning literature (Chernozhukov et al.,

2018). Assume that the correct specification conditions are

Either ω∗(y, z) = w(y, z), or m∗(y, z) = m(y, z). (S1.4)

This assumption is necessary to establish the double robustness property.

Under Assumptions (S1.3)-(S1.4), one can follow the double machine learn-

ing framework of Chernozhukov et al. (2018) to derive the desirable dou-

ble robustness of the DRTL-comb estimator. The root-n consistency and

the asymptotic results can be established similar to Liu et al. (2023).

We leave the details to readers who are interested in developing machine-

learning–based versions of the nuisance models.
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S2 Proof of Theorem 1

Proof. Let ∥ ·∥∞ represent the maximum norm of a vector or matrix. First,

we derive the error rates for β̂x and β̂z. We expand the left side of the

Eq (2.9) as

ÛDR(βx,βz) = U(βx,βz) + ∆11 +∆12 +∆13, (S2.5)

where

U(βx,βz) =
1

nS

∑
i∈IS

ω̄(Yi,Zi){Xi − m̄(Yi,Zi)}(Yi − βx −Z⊤
i βz) +

1

nT

∑
i∈IT

m̄(Yi,Zi)(Yi − βx −Z⊤
i βz),

∆11 =
1

nS

∑
i∈IS

{ω̂(Yi,Zi)− ω̄(Yi,Zi)}{m̄(Yi,Zi)− m̂(Yi,Zi)}(Yi − βx −Z⊤
i βz),

∆12 =
1

nS

∑
i∈IS

ω̄(Yi,Zi){m̄(Yi,Zi)− m̂(Yi,Zi)}(Yi − βx −Z⊤
i βz)

+
1

nT

∑
i∈IT

{m̂(Yi,Zi)− m̄(Yi,Zi)}(Yi − βx −Z⊤
i βz),

∆13 =
1

nS

∑
i∈IS

{ω̂(Yi,Zi)− ω̄(Yi,Zi)}{Xi − m̄(Yi,Zi)}(Yi − βx −Z⊤
i βz).

Similarly, we expand the left side of the Eq (2.10) as

V̂DR(βx,βz) = V (βx,βz) +∆21 +∆22 +∆23, (S2.6)

where

V (βx,βz) =
1

nS

∑
i∈IS

ω̄(Yi,Zi)Zi{m̄(Yi,Zi)−Xi}βx +
1

nT

∑
i∈IT

Zi{Yi − m̄(Yi,Zi)βx −Z⊤
i βz},

∆21 =
1

nS

∑
i∈IS

{ω̂(Yi,Zi)− ω̄(Yi,Zi)}Zi{m̂(Yi,Zi)− m̄(Yi,Zi)}βx,
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∆22 =
1

nS

∑
i∈IS

ω̄(Yi,Zi)Zi{m̂(Yi,Zi)− m̄(Yi,Zi)}βx −
1

nT

∑
i∈IT

Zi{m̂(Yi,Zi)− m̄(Yi,Zi)}βx,

∆23 =
1

nS

∑
i∈IS

{ω̂(Yi,Zi)− ω̄(Yi,Zi)}Zi(m̄(Yi,Zi)−Xi)βx.

Using Theorem 5.21 in Van der Vaart (2000), Chebyshev’s inequality, and

nS/nT = O(1), we have

n−1
S

∑
i∈IS

{ω̂(Yi,Zi)− ω̄(Yi,Zi)}2 − ES{ω̂(Y,Z)− ω̄(Y,Z)}2 = op(n
−1/2
S ),

n−1
S

∑
i∈IS

{m̂(Yi,Zi)− m̄(Yi,Zi)}2 − ES{m̂(Y,Z)− m̄(Y,Z)}2 = op(n
−1/2
S ),

n−1
T

∑
i∈IT

{m̂(Yi,Zi)− m̄(Yi,Zi)}2 − ET {m̂(Y,Z)− m̄(Y,Z)}2 = op(n
−1/2
S ).

Also, by Assumption 1, we have that

ES{ω̂(Y,Z)− ω̄(Y,Z)}2 = ES [ω̄
2(Y,Z){ω̂(Y,Z)/ω̄(Y,Z)− 1}2]

≤ ES [ω̄
2(Y,Z){2Y 2(η̂y − η̄y)

2 + Y 4(η̂y − η̄y)
4 + 2∥Z∥22∥η̂z − η̄z∥22 + ∥Z∥42∥η̂z − η̄z∥42}]

≤ ES
[
{2ω̄4(Y,Z) + Y 4 + Y 16 +Op(n

−1
S )}(η̂y − η̄y)

2
]

+ ES
[
{2ω̄4(Y,Z) + ∥Z∥42 + ∥Z∥162 +Op(n

−1
S )}∥η̂z − η̄z∥22

]
= op(n

−1/2
S ).

And that for each ι ∈ {T ,S},

Eι{m̂(Y,Z)− m̄(Y,Z)}2

≤ Eι{ğ2(m̄(Y,Z))
(
∥(Y,Z⊤)⊤∥22 + ∥γ̂ − γ̄∥22

)
+ C2

L

(
∥(Y,Z⊤)⊤∥42 + ∥γ̂ − γ̄∥42

)
}
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= Op

(
Eι{ğ2(m̄(Y,Z))

(
∥(Y,Z⊤)⊤∥22 + ∥γ̂ − γ̄∥22

)
}+ n−1

S
)
= op(n

−1/2
S ),

where ğ(a) = ġ(g−1(a)). Thus, we have

n−1
S

∑
i∈IS

{ω̂(Yi,Zi)− ω̄(Yi,Zi)}2 = op(n
−1/2
S ),

n−1
S

∑
i∈IS

{m̂(Yi,Zi)− m̄(Yi,Zi)}2 = op(n
−1/2
S ),

n−1
T

∑
i∈IT

{m̂(Yi,Zi)− m̄(Yi,Zi)}2 = op(n
−1/2
S ).

Combining these with Assumption 1 and Eqs (S2.5)-(S2.6), we have

∥∆11∥∞ ≤ n−1
S max

i∈IS
(Yi − βx −Z⊤

i βz)
∑
i∈IS

[{ω̂(Yi,Zi)− ω̄(Yi,Zi)}2 + {m̂(Yi,Zi)− m̄(Yi,Zi)}2]

= op(n
−1/2
S ),

∥∆12∥∞ ≤ max
i∈IS

(Yi − βx −Z⊤
i βz){n−1

S

∑
i∈IS

ω̄2(Yi,Zi)}1/2[n−1
S

∑
i∈IS

{m̂(Yi,Zi)− m̄(Yi,Zi)}2]1/2

+max
i∈IT

(Yi − βx −Z⊤
i βz)[n

−1
T

∑
i∈IT

{m̂(Yi,Zi)− m̄(Yi,Zi)}2]1/2

= op(n
−1/4
S ),

∥∆13∥∞ ≤ max
i∈IS

(Yi − βx −Z⊤
i βz)[n

−1
S

∑
i∈IS

{ω̂(Yi,Zi)− ω̄(Yi,Zi)}2]1/2[n−1
S

∑
i∈IS

{X2
i + m̄2(yi,Zi)}]1/2

= op(n
−1/4
S ),

∥∆21∥∞ ≤ n−1
S max

i∈IS
∥Zi∥∞|βx|

∑
i∈IS

[{ω̂(Yi,Zi)− ω̄(Yi,Zi)}2 + {m̂(Yi,Zi)− m̄(Yi,Zi)}2]

= op(n
−1/2
S ),
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∥∆22∥∞ ≤ max
i∈IS

∥Zi∥∞|βx|{n−1
S

∑
i∈IS

ω̄2(Yi,Zi)}1/2[n−1
S

∑
i∈IS

{m̂(Yi,Zi)− m̄(Yi,Zi)}2]1/2

+max
i∈IT

∥Zi∥∞|βx|[n−1
T

∑
i∈IT

{m̂(Yi,Zi)− m̄(Yi,Zi)}2]1/2

= op(n
−1/4
S ),

∥∆23∥∞ ≤ max
i∈IS

∥Zi∥∞|βx|[n−1
S

∑
i∈IS

{ω̂(Yi,Zi)− ω̄(Yi,Zi)}2]1/2[n−1
S

∑
i∈IS

{X2
i + m̄2(yi,Zi)}]1/2

= op(n
−1/4
S ).

Thus, (β̂x, β̂z) solve 
U(βx,βz) + op(n

−1/4
S ) = 0,

V (βx,βz) + op(n
−1/4
S ) = 0.

Let (β̄x, β̄z) be the solution of
E{U(βx,βz)} = 0,

E{V (βx,βz)} = 0.

(S2.7)

When ω̄(·) = w(·), we have that

E{U(βx,βz)} = ES [w(Y,Z){X − m̄(Y,Z)}(Y − βx −Z⊤βz)] + ET {m̄(Y,Z)(Y − βx −Z⊤βz)}

= ET {X(Y − βx −Z⊤βz)}.

E{V (βx,βz)} = ES [w(Y,Z){m̄(Y,Z)−X}βx] + ET [Z{Y − m̄(Y,Z)βx − Z⊤θ}]

= ET {Z(Y −Xβx −Z⊤βz)}.
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When m̄(·) = m(·), we have that

E{U(βx,βz)} = 0 + ET {X(Y − βx −Z⊤βz)},

E{V (βx,βz)} = ET {Z(Y −Xβx −Z⊤βz)}.

Both cases lead to that (βx0,βz0) be the solution of Eq (S2.7). So under

Assumption 2, we have β̄x = βx0 and β̄z = βz0. By Assumption 1, both

U(βx,βz) and V (βx,βz) are continuous differential on βx and βz. Then, us-

ing the standard empirical process theory of Van der Vaart (2000)[Theorem

5.21], we have

β̂x − βx0 = op(1), ∥β̂z − βz0∥2 = op(1).

S3 Proof of Theorem 2

Proof. We consider the asymptotic expansion of
√
nS c⊤(β̂x − βx0, β̂

⊤
z −

β⊤
z0)

⊤. Recall the definition of the information matrix Jβx,βz is

Jβx,βz = −

E{∂U(βx,βz)
∂βx

} E{∂U(βx,βz)
∂β⊤

z
}

E{∂V (βx,βz)
∂βx

} E{∂V (βx,βz)
∂βz

}

 ∈ R(1+p)×(1+p),

where

E

{
∂U(βx,βz)

∂βx

}
= ES [ω̄(Y,Z){m̄(Y,Z)−X}]− ET {m̄(Y,Z)} ∈ R,
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E

{
∂V (βx,βz)

∂βx

}
=

[
E

{
∂U(βx,βz)

∂β⊤
z

}]⊤
= ES [ω̄(Y,Z)Z{m̄(Y,Z)−X}]− ET {Zm̄(Y,Z)} ∈ Rp,

E

{
∂V (βx,βz)

∂βz

}
= −ET (ZZ⊤) ∈ Rp×p.

Thus, Jβx,βz is independent of βx,βz. Let Ju ∈ R1+p,Jv ∈ R(1+p)×p satis-

fying [Ju,Jv] = J−1
βx,βz

. Noting that (β̂x, β̂
⊤
z )

⊤ is consistent for (βx0,β
⊤
z0)

⊤,

by Theorem 5.21 of Van der Vaart (2000), we can expand Eqs (S2.5)-(S2.6)

with respect to
√
nS c⊤(β̂x − βx0, β̂

⊤
z − β⊤

z0)
⊤ as:

√
nS c⊤

 β̂x − βx0

β̂⊤
z − β⊤

z0

 =
√
nSc

⊤Ĵ−1

β̆x,β̆z

ÛDR(βx0,βz0)

V̂DR(βx0,βz0)



=
√
nSc

⊤(Ĵu, Ĵv)

 U(βx,βz) + ∆11 +∆12 +∆13

V (βx,βz) +∆21 +∆22 +∆23


βx=βx0,βz=βz0

=
√
nSc

⊤Ĵu{U(βx,βz) + ∆11 +∆12 +∆13}|βx=βx0,βz=βz0

+
√
nSc

⊤Ĵv{V (βx,βz) +∆21 +∆22 +∆23}|βx=βx0,βz=βz0

=: I + II,

where (β̆x, β̆
⊤
z )

⊤ is some vector lying between (βx0,β
⊤
z0)

⊤ and (β̂x, β̂
⊤
z )

⊤.

For the first term I, we have

I = U + T11 + T12 + T13, (S3.8)
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where

U = n
−1/2
S

∑
i∈IS

ω̄(Yi,Zi)c
⊤Ĵu{Xi − m̄(Yi,Zi)}(Yi − βx0 −Z⊤

i βz0)

+ n
1/2
S n−1

T

∑
i∈IT

c⊤Ĵum̄(Yi,Zi)(Yi − βx0 −Z⊤
i βz0),

T11 = n
−1/2
S

∑
i∈IS

{ω̂(Yi,Zi)− ω̄(Yi,Zi)}c⊤Ĵu{m̄(Yi,Zi)− m̂(Yi,Zi)}(Yi − βx0 −Z⊤
i βz0),

T12 = n
−1/2
S

∑
i∈IS

ω̄(Yi,Zi)c
⊤Ĵu{m̄(Yi,Zi)− m̂(Yi,Zi)}(Yi − βx0 −Z⊤

i βz0)

+ n
1/2
S n−1

T

∑
i∈IT

c⊤Ĵu{m̂(Yi,Zi)− m̄(Yi,Zi)}(Yi − βx0 −Z⊤
i βz0),

T13 = n
−1/2
S

∑
i∈IS

{ω̂(Yi,Zi)− ω̄(Yi,Zi)}c⊤Ĵu{Xi − m̄(Yi,Zi)}(Yi − βx0 −Z⊤
i βz0).

We shall show that

∥Ĵu − Ju∥∞ = op(n
−1/2
S ), ∥Ĵv − Jv∥∞ = op(n

−1/2
S ). (S3.9)

Since the dimensionality of Z, p, is fixed, we have

∥Ĵ−1

β̆x,β̆z
− J−1

βx0,βz0
∥∞ = ∥Ĵ−1

β̆x,β̆z
(Jβx0,βz0 − Ĵβ̆x,β̆z

)J−1
βx0,βz0

∥∞

≤ (1 + p)3∥Ĵ−1

β̆x,β̆z
∥∞∥Jβx0,βz0 − Ĵβ̆x,β̆z

∥∞∥J−1
βx0,βz0

∥∞.

By Assumption 1 and the central limit theorem (CLT), we have

∥Jβx0,βz0 − Ĵβ̆x,β̆z
∥∞ = op(n

−1/2
S ).

Also noting that ∥Ĵ−1
βx0,βz0

∥∞ and ∥J−1
βx0,βz0

∥∞ are bounded by Assumption 1
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and Neumann series, we have

∥Ĵ−1

β̆x,β̆z
− J−1

βx0,βz0
∥∞ = op(n

−1/2
S ),

that is, Eq (S3.9) holds. Under Assumption 2, and similar to above deduc-

tion (E{U(βx,βz)} = 0), the below expectation is zero:

n
−1/2
S

∑
i∈IS

ω̄(Yi,Zi){Xi−m̄(Yi,Zi)}(Yi−βx0−Z⊤
i βz0)+n

1/2
S n−1

T

∑
i∈IT

m̄(Yi,Zi)(Yi−βx0−Z⊤
i βz0).

So by Assumption 1, Eq (S3.9), CLT and Slutsky’s theorem, we have

that U weakly converges to N(0, σ2
u), where σ2

u represents the asymptotic

variance of U and is order 1. We then consider the remaining terms

(T11, T12, T13) separately. First, we consider T11 in Eq (S3.8). By As-

sumption 1, the boundness of |c⊤Ĵu(Yi − βx0 − Z⊤
i βz0)|, and our derived

bounds for n
−1/2
S

∑
i∈IS{ω̂(Yi,Zi)−ω̄(Yi,Zi)}2 and n

−1/2
S

∑
i∈IS{m̂(Yi,Zi)−

m̄(Yi,Zi)}2, we have

|T11| = O
(
n
−1/2
S

∑
i∈IS

|ω̂(Yi,Zi)− ω̄(Yi,Zi)| · |m̂(Yi,Zi)− m̄(Yi,Zi)|
)

≤
√
nSO

(
[n−1

S

∑
i∈IS

{ω̂(Yi,Zi)− ω̄(Yi,Zi)}2]1/2[n−1
S

∑
i∈IS

{m̂(Yi,Zi)− m̄(Yi,Zi)}2]1/2
)

= op(1).

For T12, we have

T12 = −n
−1/2
S

∑
i∈IS

ω̄(Yi,Zi)c
⊤Ĵuğ(m̄(Yi,Zi))

[
(Y,Z⊤)(γ̂ − γ̄) +Op({(Y,Z⊤)(γ̂ − γ̄)}2)

]
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× (Yi − βx0 −Z⊤
i βz0)

+ n
1/2
S n−1

T

∑
i∈IT

c⊤Ĵuğ(m̄(Yi,Zi))[(Y,Z
⊤)(γ̂ − γ̄) +Op({(Y,Z⊤)(γ̂ − γ̄)}2)](Yi − βx0 −Z⊤

i βz0),

Again using Eq (S3.9) and Assumption 1, we have

n−1
S

∑
i∈IS

ω̄(Yi,Zi)c
⊤Ĵuğ(m̄(Yi,Zi))(Yi,Z

⊤
i )

⊤(Yi − βx0 −Z⊤
i βz0)

+ n−1
T

∑
i∈IT

c⊤Ĵuğ(m̄(Yi,Zi))(Yi,Z
⊤
i )

⊤(Yi − βx0 −Z⊤
i βz0)

p→ ξuγ ,

where

ξuγ = −ES{ω̄(Y,Z)c⊤Ju ğ(m̄(Y,Z))(Y,Z⊤)⊤(Y − βx0 −Z⊤βz0)}

+ ET {c⊤Ju ğ(m̄(Y,Z))(Y,Z⊤)⊤(Y − βx0 −Z⊤βz0)}.

By standard analysis, it can be shown that

∥γ̂ − γ̄∥1 = Op(n
−1/2
S ),

and
√
nS(γ̂ − γ̄) converges in distribution to multivariate normal distri-

bution with mean 0 and covariance of order 1. Combining these with As-

sumption 1 and using Slutsky’s theorem, we have that T12 is asymptotically

equivalent with
√
nS(ξ

u
γ )

⊤(γ̂ − γ̄), which weakly converges to normal dis-

tribution with mean 0 and variance of order 1.

Similarly, we write the term T13 as

T13 = n
−1/2
S

∑
i∈IS

ω̄(Yi,Zi)c
⊤Ĵu{Xi − m̄(Yi,Zi)}(Yi − βx0 −Z⊤

i βz0)
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×
[
(Y,Z⊤)(η̂ − η̄) +Op({(Y,Z⊤)(η̂ − η̄)}2)

]
(Yi − βx0 −Z⊤

i βz0).

Using Eq (S3.9) and Assumption 1, we have

n−1
S

∑
i∈IS

ω̄(Yi,Zi)c
⊤Ĵu{Xi − m̄(Yi,Zi)}(Yi,Z

⊤
i )

⊤(Yi − βx0 −Z⊤
i βz0)

p→ ξuη ,

where

ξuη = ES{ω̄(Y,Z)c⊤Ju(X − m̄(Y,Z))(Y,Z⊤)⊤(Y − βx0 −Z⊤βz0)}.

Also, by standard analysis, it can be shown that

∥η̂ − η̄∥1 = Op(n
−1/2
S ),

and
√
nS(η̂ − η̄) converges in distribution to multivariate normal distri-

bution with mean 0 and covariance of order 1. Combining these with As-

sumption 1 and using Slutsky’s theorem, we have that T13 is asymptotically

equivalent with
√
nS(ξ

u
η )

⊤(η̂ − η̄), which weakly converges to normal dis-

tribution with mean 0 and variance of order 1.

For the second term II, we have

II = V + T21 + T22 + T23, (S3.10)

where

V = n
−1/2
S

∑
i∈IS

ω̄(Yi,Zi)c
⊤ĴvZi{m̄(Yi,Zi)−Xi}βx0
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+ n
1/2
S n−1

T

∑
i∈IT

c⊤ĴvZi{Yi − m̄(Yi,Zi)βx0 −Z⊤
i βz0},

T21 = n
−1/2
S

∑
i∈IS

{ω̂(Yi,Zi)− ω̄(Yi,Zi)}c⊤ĴvZi{m̂(Yi,Zi)− m̄(Yi,Zi)}βx0,

T22 = n
−1/2
S

∑
i∈IS

ω̄(Yi,Zi)c
⊤ĴvZi{m̂(Yi,Zi)− m̄(Yi,Zi)}βx0

− n
1/2
S n−1

T

∑
i∈IT

c⊤ĴvZi{m̂(Yi,Zi)− m̄(Yi,Zi)}βx0,

T23 = n
−1/2
S

∑
i∈IS

{ω̂(Yi,Zi)− ω̄(Yi,Zi)}c⊤ĴvZi{m̄(Yi,Zi)−Xi}βx0.

Under Assumption 2, and similar to above deduction (E{V (βx,βz)} = 0),

the expectation of the following expression equals zero:

n
−1/2
S

∑
i∈IS

ω̄(Yi,Zi)Zi{m̄(Yi,Zi)−Xi}βx0+n
1/2
S n−1

T

∑
i∈IT

Zi{Yi−m̄(Yi,Zi)βx0−Z⊤
i βz0}.

So by Assumption 1, Eq (S3.9), CLT and Slutsky’s theorem, we have that V

weakly converges to N(0, σ2
v), where σ2

v represents the asymptotic variance

of V and is order 1. We then consider the remaining terms (T21, T22, T23) sep-

arately in Eq (S3.10). First, we consider T21. By Assumption 1, the bound-

edness of |c⊤ĴvZiβx0|, and our derived bounds for n
−1/2
S

∑
i∈IS{ω̂(Yi,Zi)−

ω̄(Yi,Zi)}2 and n
−1/2
S

∑
i∈IS{m̂(Yi,Zi)− m̄(Yi,Zi)}2, we have

|T21| = O
(
n
−1/2
S

∑
i∈IS

|ω̂(Yi,Zi)− ω̄(Yi,Zi)| · |m̂(Yi,Zi)− m̄(Yi,Zi)|
)

≤
√
nSO

(
[n−1

S

∑
i∈IS

{ω̂(Yi,Zi)− ω̄(Yi,Zi)}2]1/2[n−1
S

∑
i∈IS

{m̂(Yi,Zi)− m̄(Yi,Zi)}2]1/2
)
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= op(1).

For T22, we have

T22 = n
−1/2
S

∑
i∈IS

ω̄(Yi,Zi)c
⊤ĴvZiğ(m̄(Yi,Zi))

[
(Y,Z⊤)(γ̂ − γ̄) +Op({(Y,Z⊤)(γ̂ − γ̄)}2)

]
βx0

− n
1/2
S n−1

T

∑
i∈IT

c⊤ĴvZi

(
ğ(m̄(Yi,Zi))

[
(Y,Z⊤)(γ̂ − γ̄) +Op({(Y,Z⊤)(γ̂ − γ̄)}2)

]
βx0

)
.

Again using Eq (S3.9) and Assumption 1, we have

n−1
S

∑
i∈IS

ω̄(Yi,Zi)c
⊤ĴvZiğ(m̄(Yi,Zi))(Y,Z

⊤)βx0 − n−1
T

∑
i∈IT

c⊤ĴvZiğ(m̄(Yi,Zi))(Yi,Z
⊤
i )βx0

p→ ξvγ,

where

ξvγ = ES{ω̄(Y,Z)c⊤JvZğ(m̄(Y,Z))(Y,Z⊤)⊤βx0} − ET {c⊤JvZğ(m̄(Y,Z))(Y,Z⊤)⊤βx0}.

Recall that
√
nS(γ̂ − γ̄) converges in distribution to a multivariate normal

distribution with mean 0 and covariance of order 1. Combining these with

Assumption 1 and using Slutsky’s theorem, we have that T22 is asymptoti-

cally equivalent with
√
nS(ξ

v
γ)

⊤(γ̂ − γ̄), which weakly converges to normal

distribution with mean 0 and variance of order 1.

Similarly, we write the term T23 as

T23 = n
−1/2
S

∑
i∈IS

ω̄(Yi,Zi)c
⊤ĴvZi

[
(Y,Z⊤)(η̂ − η̄) +Op({(Y,Z⊤)(η̂ − η̄)}2)

]
{m̄(Yi,Zi)−Xi}βx0.

Using Eq (S3.9) and Assumption 1, we have

n−1
S

∑
i∈IS

ω̄(Yi,Zi)c
⊤ĴvZi{m̄(Yi,Zi)−Xi}βx0

p→ ξvη ,
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where

ξvη = ES [ω̄(Y,Z)c⊤JvZ(Y,Z⊤)⊤{m̄(Y,Z)−X}βx0].

Also,
√
nS(η̂ − η̄) converges in distribution to multivariate normal dis-

tribution with mean 0 and covariance of order 1. Combining these with

Assumption 1 and using Slutsky’s theorem, we have that T23 is asymptoti-

cally equivalent with
√
nS(ξ

v
η)

⊤(η̂ − η̄), which weakly converges to normal

distribution with mean 0 and variance of order 1.

Combining with the asymptotic properties derived for U, V, T11, T12, T13, T21, T22, T23

and the expansions Eqs (S3.8)-(S3.10), we finish the proof for the asymp-

totic expansion and distribution of
√
nS c⊤(β̂x − βx0, β̂

⊤
z − β⊤

z0)
⊤.

S4 Additional simulation results

In this section, we present additional simulation results under three cases

that deviate from the ideal conditions: (i) unbalanced labels of the binary

variable X, (ii) reduced overlap between the two populations, and (iii)

smaller sample size ratios between the target and source populations. These

results provide further insights into the robustness of the proposed method

and give potential limitations that warrant further investigation.
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S4.1 Simulation with unbalanced two labels of binary X

In this section, we conduct simulations with unbalanced two labels of binary

X. The difference from the simulation setting in the main text is that here

we consider two new models to generate Xi:

M*cor : logit{P (Xi = 1 | Yi,Zi)} = 4 + 0.8Yi + 3.2Z1,i − 3.2Z2,i,

M*mis : logit{P (Xi = 1 | Yi,Zi)} = 4 + 0.8Yi + 3.2Z1,i − 3.2Z2,i + 3YiZ1,i.

This modification increases the proportion of 1’s of binary X to the range

(0.75, 0.90), compared with the earlier range of (0.40, 0.50). Similarly, the

imputation model m(y, z) = (y, 1, z1, z2)
⊤γ is correctly specified under

M*cor but misspecified under M*mis, as M*mis includes the interaction term.

We then consider the following three configurations: (I) M*cor and Wcor,

(II) M*mis and Wcor, and (III) M*cor and Wmis.

We compare our DRTL-comb estimator with the estimator (denoted as

“Naive”) obtained by directly regressing Y on Z while ignoring completely

missing X in the target population. We also present the preliminary IW

and IM estimators as two benchmark estimators. For the variance estima-

tor of the Naive method, we use standard error of linear regression. For

the variance estimator of the IW, IM, and DRTL-comb methods, we use

bootstrap in practice.
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For each configuration, 500 bootstrap samples for variance estimation

and 500 simulation replications are generated to summarize the average per-

formance measures. For the given estimators β̂0, β̂x, β̂z1 , β̂z2 that correspond

to the coefficients of the intercept and X,Z1, Z2 respectively, we report the

empirical average bias, root mean square error (RMSE), standard error,

and coverage rate of the nominal 95% confidence interval. We present the

statistical inference results for βx and βz in Tables S4.1-S4.2. Here, there

are no inference results for βx using the Naive method, as it excludes X

from the regression models.

As shown in Tables S4.1–S4.2, the Naive method performs poorly across

all configurations because it ignores the information in the binary variable

X, which is related to Y and Z. When both nuisance models are correctly

specified (configuration (I)), the IM and DRTL-comb methods exhibit simi-

lar performance, with slightly smaller bias and RMSE than the IW method.

When the imputation model is misspecified (configuration (II)), IM shows

larger bias than IW and DRTL-comb, whereas under a misspecified density

ratio model (configuration (III)), IW yields greater bias and RMSE than

IM and DRTL-comb. In contrast, DRTL-comb produces nearly unbiased

point estimates for βx and βz in configurations (I) and (III), demonstrating

its double robustness.



HUALI ZHAO AND TIANYING WANG

Table S4.1: Point estimator results for βx and βz with unbalanced two labels of binary

X.

Bias RMSE

True Naive IW IM DRTL-comb Naive IW IM DRTL-comb

Configuration (I): M*cor and Wcor

β0 = 0.834 0.843 -0.028 0.000 -0.008 0.845 0.216 0.157 0.177

βx = 0.929 / 0.028 0.003 0.012 / 0.234 0.166 0.188

βz1 = −0.212 0.088 -0.007 -0.005 -0.005 0.102 0.104 0.053 0.054

βz2 = 0.163 -0.089 0.009 0.004 0.005 0.102 0.105 0.051 0.051

Configuration (II): M*mis and Wcor

β0 = 1.929 -0.255 -0.034 -0.062 -0.036 0.260 0.192 0.129 0.153

βx = −0.336 / 0.031 0.079 0.045 / 0.233 0.156 0.190

βz1 = −0.036 -0.088 -0.016 -0.037 -0.019 0.101 0.116 0.069 0.075

βz2 = 0.033 0.038 0.012 -0.002 0.001 0.065 0.098 0.057 0.055

Configuration (III): M*cor and Wmis

β0 = 0.269 0.821 0.356 0.003 0.005 0.822 0.376 0.129 0.142

βx = 0.920 / -0.397 -0.001 -0.002 / 0.420 0.134 0.149

βz1 = −0.880 0.129 1.592 0.002 0.002 0.137 1.593 0.048 0.050

βz2 = 0.178 0.148 -0.063 0.000 0.000 0.156 0.085 0.053 0.055



S4. ADDITIONAL SIMULATION RESULTS

Table S4.2: Variance estimator results for βx and βz with unbalanced two labels of

binary X.

Standard Error Coverage Rate

True Naive IW IM DRTL-comb Naive IW IM DRTL-comb

Configuration (I): M*cor and Wcor

β0 = 0.834 0.049 0.198 0.157 0.173 0.000 0.912 0.934 0.928

βx = 0.929 / 0.215 0.163 0.182 / 0.912 0.940 0.934

βz1 = −0.212 0.051 0.093 0.053 0.053 0.600 0.910 0.944 0.938

βz2 = 0.163 0.051 0.090 0.052 0.053 0.574 0.924 0.958 0.956

Configuration (II): M*mis and Wcor

β0 = 1.929 0.049 0.176 0.113 0.145 0.000 0.922 0.918 0.936

βx = −0.336 / 0.215 0.136 0.180 / 0.930 0.922 0.932

βz1 = −0.036 0.051 0.101 0.059 0.072 0.622 0.904 0.902 0.934

βz2 = 0.033 0.051 0.086 0.055 0.053 0.864 0.912 0.944 0.936

Configuration (III): M*cor and Wmis

β0 = 0.269 0.048 0.131 0.128 0.142 0.000 0.204 0.960 0.958

βx = 0.920 / 0.137 0.131 0.149 / 0.152 0.956 0.960

βz1 = −0.880 0.048 0.058 0.049 0.051 0.238 0.000 0.964 0.958

βz2 = 0.178 0.047 0.056 0.052 0.053 0.128 0.798 0.936 0.930
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For variance estimation, DRTL-comb generally lies between the IW and

IM methods, indicating that it does not inflate the standard error. A new

phenomenon is that the IW method produces larger standard errors in most

cases compared with the results in the main text, which is potentially due

to the unbalanced labels of the binary variable X. Regarding coverage, the

IW method shows poor performance in configuration (III), with coverage

far below the nominal 95% level (all less than 80%), and the IM method

exhibits unsatisfactory coverage in configuration (II) (e.g., 90.2% for βz1).

In contrast, DRTL-comb maintains coverage rates close to the nominal level

in most cases.

S4.2 Simulation with reduced overlap between the two popula-

tions

In this case, we conduct simulations with reduced overlap of the distribution

Y across the two populations. Specifically, under the same data generation

presented in simulation studies in the main text, we artificially delete the

source samples with negative Y values. Then, the total sample size nS+nT

ranges from 2000 to less than 1700, and the sample size ratio (nT /nS) ranges

from (0.7, 0.9) to (0.95, 2.5). We also consider three same configurations in

the main text: (I) Mcor and Wcor, (II) Mmis and Wcor, and (III) Mcor and
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Wmis.

We also compare the DRTL-comb estimator with the Naive, IW, and

IM estimators as three benchmarks. For each configuration, 500 bootstrap

samples for variance estimation of the IW, IM, and DRTL-comb methods

and 500 simulation replications are generated to summarize the average

performance measures. We present the statistical inference results for βx

and βz in Tables S4.3-S4.4. Here, there are no inference results for βx using

the Naive method, as it excludes X from the regression models.

As shown in Tables S4.3–S4.4, the Naive method performs poorly across

all configurations because it ignores the information in the binary variable

X, which is related to (Y,Z). The IW method exhibits substantial bias

and unsatisfactory coverage in every configuration. This is because remov-

ing source samples with negative Y reduces population overlap, leading

to inaccurate estimation of the density ratio for the distribution of (Y,Z)

across the two populations.

Both the IM and DRTL-comb methods produce nearly unbiased point

estimates and achieve nominal coverage rates in configurations (I) and (III).

In configuration (II), where the imputation model is misspecified, IM ex-

hibits smaller but still non-negligible bias for βx compared with IW. Due to

the combined effects of inaccurate density ratio estimation and misspecified
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Table S4.3: Point estimator results for βx and βz with reduced population overlap.

Bias RMSE

True Naive IW IM DRTL-comb Naive IW IM DRTL-comb

Configuration (I): Mcor and Wcor

β0 = 1.105 0.572 0.141 0.003 0.002 0.574 0.158 0.102 0.102

βx = 1.103 / -0.484 0.001 0.002 / 0.501 0.173 0.173

βz1 = −0.437 0.313 0.183 -0.005 -0.005 0.317 0.196 0.072 0.071

βz2 = 0.392 -0.319 -0.165 0.003 0.003 0.322 0.180 0.071 0.071

Configuration (II): Mmis and Wcor

β0 = 1.263 0.413 0.103 0.040 0.050 0.416 0.129 0.115 0.124

βx = 0.854 / -0.458 -0.101 -0.120 / 0.478 0.222 0.236

βz1 = −0.427 0.304 0.201 0.018 0.022 0.308 0.218 0.095 0.099

βz2 = 0.219 -0.147 -0.101 -0.005 -0.016 0.156 0.118 0.064 0.065

Configuration (III): Mcor and Wmis

β0 = 0.618 0.471 0.289 0.003 -0.003 0.474 0.293 0.081 0.119

βx = 0.999 / -0.616 0.002 0.016 / 0.623 0.151 0.244

βz1 = −1.004 0.252 1.290 0.002 -0.006 0.256 1.291 0.056 0.085

βz2 = 0.339 -0.310 -0.223 0.003 0.004 0.314 0.227 0.069 0.085
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Table S4.4: Variance estimator results for βx and βz with reduced population overlap.

Standard Error Coverage Rate

True Naive IW IM DRTL-comb Naive IW IM DRTL-comb

Configuration (I): Mcor and Wcor

β0 = 1.105 0.049 0.068 0.100 0.101 0.000 0.440 0.942 0.938

βx = 1.103 / 0.122 0.164 0.167 / 0.046 0.926 0.928

βz1 = −0.437 0.051 0.069 0.068 0.069 0.000 0.222 0.936 0.938

βz2 = 0.392 0.051 0.067 0.069 0.069 0.000 0.314 0.940 0.946

Configuration (II): Mmis and Wcor

β0 = 1.263 0.049 0.076 0.109 0.113 0.000 0.736 0.940 0.936

βx = 0.854 / 0.136 0.195 0.201 / 0.088 0.942 0.926

βz1 = −0.427 0.051 0.080 0.091 0.093 0.000 0.274 0.944 0.932

βz2 = 0.219 0.051 0.060 0.062 0.061 0.188 0.642 0.948 0.942

Configuration (III): Mcor and Wmis

β0 = 0.618 0.048 0.047 0.086 0.126 0.000 0.000 0.964 0.964

βx = 0.999 / 0.086 0.158 0.253 0.000 0.000 0.956 0.964

βz1 = −1.004 0.048 0.044 0.058 0.085 0.000 0.000 0.964 0.968

βz2 = 0.339 0.047 0.040 0.070 0.089 0.000 0.000 0.952 0.954
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imputation in configuration (II), DRTL-comb does not achieve an almost

unbiased estimate for βx; however, it still yields acceptable bias and main-

tains a nominal coverage rate, demonstrating its robustness.

S4.3 Simulation with smaller sample size ratios

In this section, we conduct simulations with a smaller sample size ratio

range of two populations (nT /nS ∈ (0.3, 0.6)). The difference from the

simulation setting in the main text is that here we consider two new models

to generate a membership variable Si to assign the ith observation to the

source population when Si = 1 and to the target data when Si = 0:

W*cor : logit{P (Si = 1 | Yi, Zi)} = 0.8 + 0.3Yi − 0.5Z1,i + 0.3Z2,i,

W*mis : logit{P (Si = 1 | Yi, Zi)} = 0.8 + 0.3Yi − 0.5Z1,i + 0.3Z2,i + 2YiZ1,i.

The density ratio model ω̂(y, z) = (1, y, z1, z2)
⊤η̂ is correctly specified under

W*cor but misspecified under W*mis. We then consider the following three

configurations: (I) Mcor and W*cor, (II) Mmis and W*cor, and (III) Mcor

and W*mis.

We also compare the DRTL-comb estimator with the Naive, IW, and

IM estimators as three benchmarks. For each configuration, 500 bootstrap

samples for variance estimation of the IW, IM, and DRTL-comb methods

and 500 simulation replications are generated to summarize the average
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performance measures. We present the statistical inference results for βx

and βz in Tables S4.5-S4.6. Here, there are no inference results for βx using

the Naive method, as it excludes X from the regression models.

As shown in Tables S4.5-S4.6, the Naive method, due to the neglect

of the information of the binary X which is related to Y,Z, has inferior

performance in all configurations. When both nuisance models are cor-

rect (configuration (I)), the two preliminary methods (IW and IM) and the

DRTL-comb method demonstrate similar performance in terms of bias and

RMSE. When the imputation model is misspecified (configuration (II)), IM

exhibits a larger bias and RMSE than IW and DRTL-comb, whereas with

a misspecified density ratio model (configuration (III)), IW shows a greater

bias and RMSE than IM and DRTL-comb. However, DRTL-comb achieves

almost unbiased point estimators for βx and βz in three configurations,

showing its double robustness. For the variance estimator, DRTL-comb

typically falls between the IW and IM methods, which indicates that the

proposed DRTL-comb method will not introduce a large standard error.

Regarding the coverage rate, the IW method has poor coverage rates below

the nominal level of 95% in configuration (III), and the IM method has

unsatisfactory coverages in configuration (II). However, DRTL-comb main-

tains a nominal coverage rate in most cases. The lowest coverages are 62.0%
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Table S4.5: Point estimator results for βx and βz with a smaller nT /nS range.

Bias RMSE

True Naive IW IM DRTL-comb Naive IW IM DRTL-comb

Configuration (I): Mcor and W*cor

β0 = −0.004 0.528 0.003 0.006 0.006 0.532 0.088 0.081 0.082

βx = 1.224 / 0.002 -0.006 -0.006 / 0.139 0.133 0.137

βz1 = −0.300 0.364 -0.002 -0.002 -0.002 0.370 0.069 0.079 0.080

βz2 = 0.324 -0.364 0.001 0.000 0.000 0.370 0.070 0.079 0.080

Configuration (II): Mmis and W*cor

β0 = 0.079 0.449 0.001 0.160 0.098 0.454 0.087 0.182 0.131

βx = 1.040 / 0.010 -0.369 -0.223 / 0.153 0.394 0.263

βz1 = −0.213 0.279 -0.006 0.053 0.024 0.286 0.081 0.093 0.077

βz2 = 0.195 -0.232 0.005 -0.097 -0.059 0.241 0.064 0.120 0.094

Configuration (III): Mcor and W*mis

β0 = 0.212 0.436 0.174 0.011 0.011 0.439 0.188 0.068 0.070

βx = 1.005 / 0.020 -0.019 -0.019 / 0.110 0.119 0.124

βz1 = −1.158 0.237 1.551 0.004 0.004 0.242 1.552 0.052 0.053

βz2 = 0.321 -0.309 -0.036 -0.002 -0.002 0.314 0.065 0.068 0.068
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Table S4.6: Variance estimator results for βx and βz with a smaller nT /nS range.

Standard Error Coverage Rate

True Naive IW IM DRTL-comb Naive IW IM DRTL-comb

Configuration (I): Mcor and W*cor

β0 = −0.004 0.067 0.083 0.081 0.082 0.000 0.930 0.958 0.956

βx = 1.224 / 0.132 0.129 0.131 / 0.936 0.932 0.932

βz1 = −0.300 0.068 0.073 0.079 0.079 0.000 0.964 0.950 0.936

βz2 = 0.324 0.067 0.069 0.078 0.078 0.002 0.940 0.948 0.948

Configuration (II): Mmis and W*cor

β0 = 0.079 0.067 0.088 0.085 0.086 0.000 0.942 0.542 0.798

βx = 1.040 / 0.149 0.135 0.137 / 0.938 0.242 0.620

βz1 = −0.213 0.068 0.079 0.083 0.078 0.010 0.936 0.920 0.948

βz2 = 0.195 0.067 0.062 0.072 0.072 0.068 0.938 0.734 0.858

Configuration (III): Mcor and W*mis

β0 = 0.212 0.051 0.070 0.068 0.070 0.000 0.308 0.954 0.954

βx = 1.005 / 0.111 0.119 0.126 / 0.950 0.950 0.956

βz1 = −1.158 0.049 0.058 0.053 0.054 0.000 0.000 0.960 0.958

βz2 = 0.321 0.051 0.053 0.064 0.065 0.000 0.886 0.942 0.942
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for βx and 79.8% for β0 in configuration (II); although below nominal, it

still represents a substantial improvement over IM (24.2% for βx and 54.2%

for β0).

S5 Additional data analysis results

In this section, we first present the detailed linear regression results for

the two populations separately from an oracle perspective, assuming that

binary X, smoking status, is known in the target data (Table S5.7). Here,

the source population has 4713 subjects with the negative polygenic risk

score for BMI (prs.BMI), while the target population includes 3196 subjects

with the positive prs.BMI.

As shown in Table S5.7, there are clear differences between the two

populations in both cases regarding the estimates of covariate coefficients

(Estimate), standard error (SE), 95% confidence intervals (95%CI), and p-

values. The coefficient of energy for the target population is larger than

that of the source population, suggesting an increased effect of energy on

BMI among the target individuals. The effects of X, sex, and age on

BMI also differ between the two populations (sex = 1 for males and sex

= 0 for females). There are larger standard errors for covariates in the

target data compared to those in the source data, resulting in wider 95%
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Table S5.7: Detailed results for two populations without missing X.

Population Covariate Estimate SE 95%CI p-value

Source X 0.752 0.119 (0.520,0.985) < 5e− 4

energy 0.074 0.058 (-0.040,0.188) 0.201

sex 0.888 0.119 (0.656,1.120) < 5e− 4

age 0.053 0.058 (-0.060,0.166) 0.358

Target X 0.774 0.180 (0.422,1.126) < 5e− 4

energy 0.242 0.091 (0.065,0.420) 0.008

sex 1.004 0.181 (0.650,1.359) < 5e− 4

age 0.008 0.088 (-0.165,0.181) 0.927

confidence intervals in the target data. These differences demonstrate the

heterogeneity between the source and target populations.

Table S5.8: Coefficients of the logistic regression of X on Y and Z for two populations.

Population Y energy sex age

Source 0.049 0.000 0.446 0.188

Target 0.032 -0.015 0.355 0.243
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