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S1 Proofs

I. Proof of Theorem 1

Proof. Note that de Bruijn’s identity (Barron, 1986, Proof of Lemma 1) states that δH(Y+
√
tZ)

δt
=

I(Y+
√
tZ)

2
. In other words, H(Y +

√
tZ) is an increasing function of t as I(Y +

√
tZ) > 0 for

all t > 0. Hence, there exists σ′, such that H(Y + ϵ) ≤ H(Y +
√
σ′Z). Further, from the

fundamental theorem of calculus, note that

H(Y +
√
σ′Z)−H(Y ) =

1

2

∫ σ′

0

I(Y +
√
t′Z)dt.

We use convolution inequality of Fisher information (Zamir, 1998, Theorem 1) given by:

I(Y +
√
tZ) ≤ I(Y )I(

√
tZ)

I(Y ) + I(
√
tZ)

,

and note that I(
√
tZ) = 1/t to obtain the following inequality:

H(Y +
√
σ′Z) ≤ H(Y ) +

1

2
log(σ′I(Y ) + 1).

II. Proof of Theorem 3

Proof. From Theorem 2, for any small ϵ, there exists sufficiently large n such that∣∣∣f̂X;1(x)− fX(x)
∣∣∣ < ϵ, and

∣∣∣f̂X;2(x)− fX(x)
∣∣∣ < ϵ, x ∈ R.
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Next, note that if |x − a| < a for a > 0, i.e., if |x/a − 1| < 1, the following Taylor series
expansion holds:

ln(x)− ln(a) =
∞∑
n=1

(−1)n−1

nan
(x− a)n

=
1

a
(x− a)− 1

2a2
(x− a)2 +

1

3a3
(x− a)3 + · · ·

Since, from Theorem 2, f̂X is uniformly consistent for fX , we neglect quadratic and higher
terms in the above expression and write the following approximations for j ∈ 1, . . . , n:

ln
(
f̂X;1(Xn+j)

)
= ln (fX;1(Xn+j)) +

f̂X;1(Xn+j)− fX;1(Xn+j)

fX;1(Xn+j)
,

ln
(
f̂X;2(Xj)

)
= ln (fX;2(Xj)) +

f̂X;2(Xj)− fX;2(Xj)

fX;2(Xj)
.

By Assumption 5, fX is bounded below by a constant, say B−1, on its support, it is easy to
show that ∣∣∣Ĥ1(X)−H0;1(X)

∣∣∣ ≤ 1

n

n∑
j=1

∣∣∣∣∣ f̂X;2 (Xj)− fX (Xj)

fX (Xj)

∣∣∣∣∣ ≤ ϵ

B
,

∣∣∣Ĥ2(X)−H0;2(X)
∣∣∣ ≤ 1

n

n∑
j=1

∣∣∣∣∣ f̂X;1 (Xn+j)− fX (Xn+j)

fX (Xn+j)

∣∣∣∣∣ ≤ ϵ

B
,

which together imply
∣∣∣Ĥ(X)−H0(X)

∣∣∣ a.s.→ 0, as n → ∞. Further, the strong law of large

numbers implies as n → ∞, we have H0(X) − H(X)
a.s.→ 0. Hence, using the inequality

obtained above in conjunction with the strong law of large numbers yields Ĥ(X)−H(X)
a.s.→ 0

as n → ∞. Similar results hold for ĤY ; thus, invoking the continuous mapping theorem, we
are able to show ĈX→Y

a.s.→ CX→Y as n → ∞. This concludes the proof.

III. Proof of Theorem 4

Proof. We consider the following Taylor series expansion:

√
n
{
Ĥ2(X)−H0;2(X)

}
=

1√
n

n∑
j=1

{
f̂X;1(Xn+j)− fX;1(Xn+j)

fX;1(Xn+j)

}
+ oP(n

−1/2)

=
Sn(2)√

n
+ oP(n

−1/2).

We now show that the leading term Sn(2)/
√
n

P→ 0 as n → 0, which will establish

√
n
{
Ĥ2(X)−H0;2(X)

}
P→ 0, as n → 0.
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Using identical arguments, we establish similar results for Ĥ2(Y ) as well. It is sufficient to

show E
[
{Sn(2)/

√
n}2
]
→ 0 as n → ∞. Note that E

[
{Sn(2)/

√
n}2
]
= E2 [{Sn(2)/

√
n}] +

V [{Sn(2)/
√
n}]. First, we prove E [{Sn(2)/

√
n}]:

E
{
Sn(2)√

n

}
= ED1

[
ED2 |D1

{
Sn(2)√

n

∣∣∣∣D1

}]
= ED1

[
ED2 |D1

{
1√
n

n∑
j=1

(
f̂X;1(Xn+j)− fX(Xn+j)

fX(Xn+j)

)∣∣∣∣∣D1

}]

=
√
n ED1

[
ED2 |D1

{(
f̂X;1(X)− fX(X)

fX(X)

)∣∣∣∣∣D1

}]
,

where the inner expectation term is evaluated as follows:

ED2|D1

{(
f̂X;1(X)− fX(X)

fX(X)

)∣∣∣∣∣D1

}
=

∫
R

(
f̂X;1(x)− fX(x)

fX(x)

)
fX(x)dx = 0,

where the equality holds since ϕ̂1 is the Fourier transform associated with the optimal den-
sity function estimator f̂X;1, and we know

∫
R f̂X;1(x)dx = ϕ̂1(0) = 1 and consequently,

E [{Sn(2)/
√
n}] = 0. Next, we consider the term V [{Sn(2)/

√
n}]:

V
[{

Sn(2)√
n

}]
= ED1

[
VD2 |D1

{(
Sn(2)√

n

)∣∣∣∣D1

}]
+ VD1

[
ED2 |D1

{(
Sn(2)√

n

)∣∣∣∣D1

}]
,

where the second term is zero, as per our calculations above. Conditional on D1, the terms
f̂X;1(Xn+j) are independent and identically distributed for 1 ≤ j ≤ n. We have:

VD2 |D1

{(
Sn(2)√

n

)∣∣∣∣D1

}
= VD2 |D1

{
1√
n

n∑
j=1

(
f̂X;1(Xn+j)− fX(Xn+j)

fX(Xn+j)

)∣∣∣∣∣D1

}

= VD2 |D1

{(
f̂X;1(X)− fX(X)

fX(X)

)∣∣∣∣∣D1

}

= ED2 |D1


(
f̂X;1(X)− fX(X)

fX(X)

)2
∣∣∣∣∣∣D1

 ,

The last equality follows from

ED2 |D1

{(
f̂X;1(X)− fX(X)

)
/fX(X)

∣∣∣D1

}
= 0.

Moreover,

ED2 |D1


 f̂X;1(X)− fX(X)

fX(X)

)2
∣∣∣∣∣∣D1

 ≤ B

∫
R

(
f̂X;1(x)− fX(x)

)2
dx.
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where B is a (positive) lower bound for the density fX over its support. Consequently, we
get

V
[{

Sn(2)/
√
n
}]

≤ B × ED1

{∫
R

(
f̂X;1(x)− fX(x)

)2
dx

}
= B ×MISE(f̂X;1, fX).

Bernacchia and Pigolotti (2011) present an expression of MISE in terms of the opti-
mal kernel and prove that the last expression goes to zero as sample size increases, i.e.,

MISE(f̂X;1, fX) → 0 as n → ∞. This allows us to claim
√
n
(
Ĥ2(X)−H0;2(X)

)
P→ 0 as

n → ∞. Note that the arguments presented above are generally valid for any true density
function that is bounded away from zero and infinity on its support. Hence, they can also

be used to establish similar results involving
√
n
(
Ĥ2(Y )−H0;2(Y )

)
P→ 0 as n → ∞.

Note that we can interchange the roles of D1 and D2 in the proof above to arrive at

√
n

(
Ĥ1(X)−H0;1(X)

Ĥ1(Y )−H0;1(Y )

)
P→ 0, as n → ∞, (S1.1)

which can be combined with the result we have obtained, given by:

√
n

(
Ĥ2(X)−H0;2(X)

Ĥ2(Y )−H0;2(Y )

)
P→ 0, as n → ∞,

and the continuous mapping theorem to yield the following:

√
n

(
Ĥ(X)−H0(X)

Ĥ(Y )−H0(Y )

)
P→ 0, as n → ∞.

This concludes the proof.

IV. Proof of Corollary 1

Proof. Using Theorem 4 and Lemma 2 in conjunction with Slutsky’s theorem, we get

√
n

(
Ĥ(X)−H(X)

Ĥ(Y )−H(Y )

)
D→ N (0,Σ) , as n → ∞,

where Σ is the 2× 2 dispersion matrix of (H0(X), H0(Y ))′. Hence, we note that

√
n
(
ĈX→Y − CX→Y

)
D→ N

(
0, σ2

C

)
, as n → ∞.

This concludes the proof.
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Case I: f(x) = x1 3, II: f(x) = x1 2, III: f(x) = x2, IV: f(x) = x3, V: f(x) = exp(x), VI: f(x) = sin(x). Dashed vertical lines in each density plot correspond to 2.5th, 50th and 97.5th percentiles of each distribution.

Behaviour of CX>Y in the GEM model Y = f(X) + ε, where X ~ U(0, 1) and ε ~ N(0, σ2). Smoothed density estimates of CX>Y are stratified by standard deviation (σ) of contaminating noise ε.

Supplementary Figure 1: Examining the behaviour of ĈX→Y under possibly contaminated GEM s.
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S2 Behaviour of ĈX→Y in NPGEM s

S3 Additional material for application to methylation data

See Supplementary Figure 2 for cross-inference results on all six genes. We applied our three-
step analytical pipeline to investigate the directional relationship between DNAm and blood
pressure (systolic SPB and diastolic DBP) for six candidate genes, stratifying the analysis
by sex. Our findings reveal distinct directional pathways for several genes. We summarise
our major findings here:

1. For genes FGF5 and HSD11B2, the analysis yielded strong, consistent evidence for
a directional influence from blood pressure to DNAm. In all tested scenarios—for
both males and females, and for both SBP and DBP—the functional orthogonality
assumption was uniquely satisfied for the BP → DNAm direction. The generative
functions were consistently identified as having contracting dynamics, and the resulting
asymmetry coefficient was statistically significant, with the one-sided 95% confidence
interval for ĈBP→DNAm being strictly positive.

2. The results for KCNK3 and ATP2B1 were more varied. For KCNK3, we identified a
significant pathway from SBP to DNAm in males and from DBP to DNAm in females.
However, the relationship between SBP and DNAm in females was inconclusive, as the
orthogonality assumption was violated. For ATP2B1, significant pathways from both
SBP and DBP to DNAm were found in males. In females, the SBP-DNAm relationship
was inconclusive due to a similar assumption violation, and no significant directionality
was found with DBP.

3. Finally, for genes ARHGAP42 and PRDM8, our analysis did not detect any significant
directional asymmetry. Across all sex and blood pressure combinations for these two
genes, the estimated asymmetry coefficient was not statistically distinguishable from
zero, providing no evidence to support a directional relationship in either direction.

To empirically check if the tolerance of normally distributed noise contamination on
the BP measurements is controlled by the bound of Equation (4.5) in the main paper , we
fitted a linear generalised additive model (GAM ) with linear splines to estimate ĝ. Using

the fitted model and residuals, we can estimate Î(Ŷ ) and ĈX→Y = Ĥ(X) − Ĥ(Ŷ ), and

then obtained the estimated critical value σ̂CRIT =
(
exp(2ĈX→Y )− 1

)
/Î(Ŷ ) as well as the

residual variance σ̂. We present a tabular summary of the bootstrapped distribution of
σ̂ − σ̂CRIT in Table 1. According to Section 4 of the main article, our method correctly
captures the direction induced by the NPGEM so long as σ̂ and σ̂CRIT are comparable. We
implement a bootstrap approach to test whether σ and σCRIT and present our findings in
Table 1. This approach is not a rigorous test, but rather a diagnostic tool to examine noise
contamination relative to signal in the data. From Table 1 we see that in most cases the
estimated σ̂ and σ̂CRIT are comparable since most of bootstrap-based 95% CIs of σ̂CRIT − σ̂
contains zero. There are only a few cases where there is some evidence to reverse the
inequality of σ ≤ σCRIT , namely in ARHGAP42 for males, KCNK3 for males, and finally
in PRDM8 for males. Although the significant 95% CIs are very close to zero, our findings
imply that we exercise caution with examining asymmetry in an NPGEM framework using
the strong asymmetry coefficient.
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Supplementary Figure 2: Cross-fitting inference results for asymmetry in BP and DNAm include
unadjusted ĈBP→DNAm along with sex-adjusted ĈBP→DNAm|sex for six candidate genes.
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Gene BP Group 95% bootstrap CI for σ̂CRIT − σ̂

FGF5
Systolic

Females (-0.138, 0.268)
Males (-0.170, 0.001)
Combined (-0.145, 0.071)

Diastolic
Females (-0.140, 0.549)
Males (-0.177, 0.060)
Combined (-0.162, 0.173)

HSD11B2
Systolic

Females (-0.105, 0.528)
Males (-2.611, 1.671)
Combined (-3.400, 3.498)

Diastolic
Females (-0.101, 0.691)
Males (-0.162, 0.277)
Combined (-3.400, 3.498)

ARHGAP42
Systolic

Females (-0.827, 0.262)
Males (-0.191, -0.101)∗

Combined (-0.175, -0.008)∗

Diastolic
Females (-0.896, 0.523)
Males (-0.226, -0.026)∗

Combined (-0.566, 0.186)

ATP2B1
Systolic

Females (-0.284, 0.163)
Males (-0.184, 0.160)
Combined (-1.156, 0.121)

Diastolic
Females (-0.893, 0.104)
Males (-1.063, 0.352)
Combined (-2.279, 0.261)

KCNK3
Systolic

Females (-0.195, 0.094)
Males (-0.195, -0.094)∗

Combined (-0.161, 0.261)

Diastolic
Females (-0.353, 0.924)
Males (-0.186, -0.004)∗

Combined (-1.287, 0.625)

PRDM8
Systolic

Females (-0.750, 0.305)
Males (-0.214, -0.091)∗

Combined (-0.253, -0.118)∗

Diastolic
Females (-0.285, 0.361)
Males (-0.240, -0.024)∗

Combined (-0.364, 0.028)

Table 1: Comparing empirical distributions of bootstrapped σ̂CRIT − σ̂ estimates.
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S4 Data-splitting, cross-fitting inference, and estimation of σ̂2
C

Using Theorem 4 and Lemma 2, we get

√
n

(
Ĥ(X)−H(X)

Ĥ(Y )−H(Y )

)
D→ N (0,Σ) , as n → ∞,

where Σ is the 2× 2 dispersion matrix of (H0(X), H0(Y ))′. Hence, we note that

√
n
(
ĈX→Y − CX→Y

)
D→ N

(
0, σ2

C

)
, as n → ∞.

Note that σ2
C := σ11+σ22−2σ12, where σij is the (i, j)

th element of the covariance matrix given

by Σ. To obtain Σ̂ we use the same data-splitting and cross-fitting technique described in
Section 7.2 of the main article. For ease of exposition, we repeat the details of our estimation
and inference technique below.

Data-splitting

Let D = {(X1, Y1), . . . , (X2n, Y2n)} be a random sample drawn from a bivariate distribution
fXY with marginal fX for X and fY for Y . Since we do not know fX or fY , we invoke a
data-splitting and cross-fitting technique to estimate the underlying density functions as well
as the relevant entropy terms. That is, we first split the available data D into two equal-sized
but disjoint sets denoted by:

D1 := {(X1, Y1), . . . , (Xn, Yn)} and D2 := {(Xn+1, Yn+1), . . . , (X2n, Y2n)} .

Using one data split D1, we obtain estimates of the marginal density functions f̂X;1 and

f̂Y ;1 by the SCE method described in Section 7.1 of the main article. The estimated density
functions are evaluated for data belonging to the second data split D2 to obtain the following
estimates of marginal entropies:

Ĥ2(X) = − 1

n

n∑
j=1

ln
(
f̂X;1 (Xn+j)

)
, and Ĥ2(Y ) = − 1

n

n∑
j=1

ln
(
f̂Y ;1 (Yn+j)

)
.

Interchanging the roles of data splits D1 and D2, by a similar procedure, we obtain the
estimated densities f̂X;2 and f̂Y ;2. The estimated density functions are evaluated for data
belonging to data split D1 to obtain the estimated entropies:

Ĥ1(X) = − 1

n

n∑
j=1

ln
(
f̂X;2 (Xj)

)
, and Ĥ1(Y ) = − 1

n

n∑
j=1

ln
(
f̂Y ;2 (Yj)

)
.

In anticipation of estimating the variance of
√
n
(
ĈX→Y − CX→Y

)
later we define the fol-

lowing quantities:

Σ̂(1) :=

{
σ̂11(1) σ̂12(1)

σ̂22(1)

}
, Σ̂(2) :=

{
σ̂11(2) σ̂12(2)

σ̂22(2)

}
,
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where the elements of Σ̂(1) are given by:

σ̂11(1) :=
1

n

n∑
j=1

{
− log

(
f̂X;2 (Xj)

)
− Ĥ1(X)

}2

,

σ̂22(1) :=
1

n

n∑
j=1

{
− log

(
f̂Y ;2 (Yj)

)
− Ĥ1(Y )

}2

,

σ̂12(1) :=
1

n

n∑
j=1

{
− log

(
f̂X;2 (Xj)

)
− Ĥ1(X)

}{
− log

(
f̂Y ;2 (Yj)

)
− Ĥ1(Y )

}
.

Similarly, we define the elements of Σ̂(2) as follows:

σ̂11(2) :=
1

n

n∑
j=1

{
− log

(
f̂X;1 (Xn+j)

)
− Ĥ1(X)

}2

,

σ̂22(2) :=
1

n

n∑
j=1

{
− log

(
f̂Y ;1 (Yn+j)

)
− Ĥ1(Y )

}2

,

σ̂12(2) :=
1

n

n∑
j=1

{
− log

(
f̂X;1 (Xn+j)

)
− Ĥ1(X)

}{
− log

(
f̂Y ;1 (Yn+j)

)
− Ĥ1(Y )

}
.

Cross-fitting

Taking an average of the two sets of estimates, we obtain the so-called “cross-fitted” estimates
of the marginal entropies:

Ĥ(X) =
Ĥ1(X) + Ĥ2(X)

2
, and Ĥ(Y ) =

Ĥ1(Y ) + Ĥ2(Y )

2
.

Using these cross-fitted estimates we obtain ĈX→Y := Ĥ(X)−Ĥ(Y ). For variance estimation

purposes, we will be using Σ̂ :=
(
Σ̂(1) + Σ̂(2)

)
/2.

Optimal split: 50-50

To justify the use of a 50/50 data-splitting ratio, we conducted a simulation study for Cases
(I) and (II) under varying sample sizes to assess the performance of the estimator under
various unbalanced splits. The results, presented in supplementary Table 2, show that the
50/50 split is optimal. It yields the lowest absolute bias and a coverage probability that
is closest to the nominal 95% level. As the split becomes more unbalanced (e.g., 70/30,
90/10), the bias steadily increases and the coverage probability deteriorates significantly.
This provides strong empirical support for using the 50/50 split in our main analysis.



S5. RESOLVING AMBIGUITY IN CAUSAL DIRECTION X → Y OR Y → X WHEN
NATURE OF GENERATIVE FUNCTION IS UNKNOWN

Table 2: Examining ĈX→Y : absolute bias (A.Bias) and coverage probability (CP) for different
sample sizes n ∈ {250, 500, 1000} under two cases: (i) X ∼ Lognormal(5, 1) and Y ∼ N(5, 1) and
(ii) X ∼ Exp(mean = 1) and Y ∼ Weibull(scale = 1, shape = 3/2) under different data-splitting
ratios.

Case (I) Case (II)

n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000

A.Bias

50/50 0.095 0.058 0.045 0.082 0.062 0.040
60/40 0.097 0.059 0.046 0.085 0.064 0.042
70/30 0.101 0.065 0.050 0.094 0.065 0.040
80/20 0.118 0.078 0.052 0.108 0.075 0.044
90/10 0.183 0.101 0.073 0.149 0.101 0.063

CP

50/50 0.945 0.980 0.957 0.935 0.935 0.940
60/40 0.925 0.970 0.950 0.920 0.915 0.955
70/30 0.845 0.900 0.925 0.880 0.850 0.920
80/20 0.765 0.815 0.840 0.765 0.795 0.865
90/10 0.475 0.660 0.645 0.550 0.600 0.705

Inference

From Corollary 1 in the main article, we note that the asymptotic behaviour of
√
nĈX→Y is

given by √
n
(
ĈX→Y − CX→Y

)
D→ N(0, σ2

C), as n → ∞,

where σ2
C denotes the asymptotic variance of the estimate ĈX→Y and can be estimated using

Σ̂ as follows: σ̂2
C := σ̂11+ σ̂22−2σ̂12, where σ̂ij is the (i, j)

th element of the covariance matrix

given by Σ̂.

S5 Resolving ambiguity in causal direction X → Y or Y → X when
nature of generative function is unknown

The Inverse of an Expanding Function is Contracting

A key insight for our practical workflow is that for a monotonic function, if g has expanding
dynamics, its inverse g−1 must have contracting dynamics. This can be proven formally.
Recall that a function g has expanding dynamics if the geometric mean of its gradient’s
magnitude is greater than one. Taking the logarithm, this is equivalent to the average
log-gradient being positive:

|X |−1

∫
X
log(|∇g(x)|)dx > 0

For a function h with contracting dynamics, we must have its average log-gradient be nega-
tive:

|Y|−1

∫
Y
log(|∇h(y)|)dy < 0
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Proof. Let U be a random variable uniformly distributed on the support X . The condition
for expanding dynamics can be written as an expectation E[log(|∇g(U)|)] > 0. Let’s define
a new random variable Z = log(|∇g(U)|), where E[Z] > 0. Using a change of variables
(y = g(x), dy = |∇g(x)|dx) and the inverse function rule (∇h(y) = 1/∇g(x)), we get:∫

Y
log(|∇h(y)|)dy =

∫
X
log

(∣∣∣∣ 1

∇g(x)

∣∣∣∣) · |∇g(x)|dx

=

∫
X
(− log |∇g(x)|) · |∇g(x)|dx

Since |∇g(x)| = exp(log(|∇g(x)|)), this is equivalent to:

|X | · E[− log(|∇g(U)|) · exp(log(|∇g(U)|))] = |X | · E[−ZeZ ]

Our goal is to prove that this expression is negative, which requires showing that E[ZeZ ] > 0.
We use the formula for covariance, Cov(A,B) = E[AB]− E[A]E[B], which gives E[ZeZ ] =
Cov(Z, eZ) + E[Z]E[eZ ]. We can now evaluate each term on the right-hand side:

1. E[Z] > 0 since g has expanding dynamics.

2. E[eZ] > 0: Since ez is always positive, its expectation must be positive.

3. Cov(Z, eZ) ≥ 0: This is a known property of covariance.

Combining these facts, we see that E[ZeZ ] is the sum of a non-negative term and a strictly
positive term. Therefore, E[ZeZ ] > 0. This implies that |X | · E[−ZeZ ] < 0, which in
turn proves that

∫
Y log(|∇h(y)|)dy < 0. Thus, the inverse function h must have contracting

dynamics.

Indistinguishability of direction via the asymmetry coefficient alone

Just by observing the sign of the asymmetry coefficient, we cannot distinguish between
two complementary scenarios. This creates an ambiguity we must resolve. The asymmetry
coefficient is defined as CX→Y = H(X) − H(Y ). The coefficient for the reverse direction
is CY→X = H(Y ) − H(X) = −CX→Y . Consider the two hypotheses that could explain an
observation where the estimated coefficient is significantly negative:

1. Hypothesis A: The true causal direction is X → Y with an expanding function g.
According to the paper, this implies CX→Y < 0.

2. Hypothesis B: The true causal direction is Y → X with a contracting function h.
This implies CY→X > 0.

The mathematical conditions for these two hypotheses, CX→Y < 0 and CY→X > 0, are
identical. The key to resolving the ambiguity is that Assumption 1 is not symmetric.

Proof. We assume the true direction isX → Y and that g and fX are functionally orthogonal,
satisfying Assumption 1:∫

X
log(|∇g(x)|)fX(x)dx =

1

|X |

∫
X
log(|∇g(x)|)dx
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We now check if the inverse relationship, X = h(Y ), also satisfies the assumption. This
would require: ∫

Y
log(|∇h(y)|)fY (y)dy

?
=

1

|Y|

∫
Y
log(|∇h(y)|)dy

Using a change of variables, we express the left-hand side (LHS) and right-hand side (RHS)
in terms of g and fX :

LHS =

∫
X
log

(∣∣∣∣ 1

∇g(x)

∣∣∣∣) · fX(x)

|∇g(x)|
· |∇g(x)|dx

= −
∫
X
log(|∇g(x)|)fX(x)dx

= −|X |−1

∫
X
log(|∇g(x)|)dx

RHS = |Y|−1

∫
X
log

(∣∣∣∣ 1

∇g(x)

∣∣∣∣) |∇g(x)|dx

= −|Y|−1

∫
X
log(|∇g(x)|)|∇g(x)|dx

For the assumption to be symmetric, we would need LHS = RHS. However, these two
expressions are generally not equal due to the extra weighting term |∇g(x)| in the RHS
integral and the different normalization constants (|X | vs. |Y|). This proves the asymmetry.
The rationale is that the distribution of an effect (fY ) is fundamentally shaped by the
interaction of the cause’s distribution (fX) and the mechanism (g). It is therefore highly
improbable that this derived distribution fY would also be functionally orthogonal to the
inverse mechanism h = g−1.

To provide a practical method for assessing the plausibility of Assumption 1, we devel-
oped a data-driven diagnostic check. This procedure estimates the two sides of the functional
orthogonality equality and calculates a “Orthogonality Deviation Score,” as described in Al-
gorithm 1 of the manuscript. A score close to zero suggests the assumption is plausible. We
use a bootstrap procedure to construct a 95% confidence interval (CI) for this score to as-
sess its statistical significance. We demonstrate the effectiveness of this diagnostic with two
simulation cases using data generated from the model Y = X3+ ϵ, where X ∼ Uniform(0, 2)
and n = 500.

• Case 1 (Assumption Satisfied): We run the diagnostic on the true causal direction,
X → Y . Since the input X is drawn from a uniform distribution, Assumption 1 is
satisfied by design.

• Case 2 (Assumption Violated): We use the same data but run the diagnostic on the
incorrect, anti-causal direction, Y → X. In this direction, the input (now Y ) has a
non-uniform distribution derived from X3. This is expected to violate the functional
orthogonality assumption.



Soumik Purkayastha AND Peter X.-K. Song

Simulation Results

The results of the bootstrap analysis (B = 500 iterations) are summarized in Table 3. The

Table 3: Bootstrap results for the Assumption 1 diagnostic check.

Causal Direction Orthogonality Deviation Score 95% Bootstrap CI

Correct (X → Y ) -0.0135 [-0.1481, 0.1276]
Incorrect (Y → X) 0.6738 [0.5888, 0.7552]

results clearly demonstrate the diagnostic’s ability to distinguish between the two scenarios.

• In the correct causal direction (Case 1), the mean deviation score is very close to zero,
and the 95% confidence interval clearly contains zero. This provides no evidence against
Assumption 1, indicating that it is plausible.

• In the incorrect causal direction (Case 2), the mean score is large and positive, and
the 95% confidence interval is strictly positive and far from zero. This serves
as a strong red flag, correctly indicating that Assumption 1 is likely violated for this
direction.

This simulation confirms that our diagnostic procedure is a valuable and effective tool for
researchers to assess the plausibility of Assumption 1 when determining the correct causal
direction. The visual separation of the two bootstrap distributions, as shown in the accom-
panying figure, provides further compelling evidence.

Figure 3: Bootstrap distributions of the Deviation Score for the correct (blue) and incorrect (orange)
causal directions. The distribution for the correct direction is centered at zero, while the distribution
for the incorrect direction is clearly shifted away from it.
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S6 Diagnostics

Determining if a generative function is expanding or contracting

To answer the practical question of whether an unknown function g in the relationship
Y = g(X) is expanding or contracting, we can directly probe the definition provided in
the main manuscript. A function is contracting if its average log-gradient is negative, and
expanding if it is positive. The procedure involves estimating this average log-gradient from
the observed data and quantifying its uncertainty:

1. Estimate the function ĝ(x): We fit a non-parametric smoothing spline to the data
pairs (xi, yi).

2. Estimate the Average Log-Gradient: We numerically integrate the logarithm of
the spline’s derivative over the support of X, X̂ = [min(X),max(X)], and average by
the length of the support:

AvgLogGradest = |X̂ |−1

∫ max(X)

min(X)

log(|∇ĝ(x)|)dx

3. Quantify Uncertainty: We perform a bootstrap analysis by repeatedly resampling
the data, re-calculating the average log-gradient, and constructing a 95% confidence
interval (CI) from the resulting empirical distribution.

A CI entirely below zero provides strong evidence for contracting dynamics, while a CI
entirely above zero indicates expanding dynamics.

Simulation Results

We demonstrate this procedure on two simulated cases (n = 500). The results are summa-
rized below.

Case True Dynamic Mean Avg. Log-Gradient 95% Bootstrap CI

1: Y =
√
X + ϵ Contracting −0.189 [−0.203,−0.176]

2: Y = eX + ϵ Expanding 0.501 [0.497, 0.506]

The simulation confirms the diagnostic’s effectiveness. In both the contracting and
expanding cases, the bootstrap confidence interval correctly identifies the sign of the average
log-gradient, providing a reliable, data-driven method to determine the function’s dynamics.
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Figure 4: Bootstrap distributions of the estimated average log-gradient of a contracting generating
function. The distribution for the contracting case is to the left of zero. The 95% CIs do not
overlap with zero, allowing for a definitive conclusion.

Figure 5: Bootstrap distributions of the estimated average log-gradient of an expanding generating
function. The distribution for the contracting case is to the right of zero. The 95% CIs do not
overlap with zero, allowing for a definitive conclusion.
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