
Statistica Sinica: Supplement

VARIATIONAL BAYES FOR HIGH-DIMENSIONAL

STRUCTURED MIXTURE MODEL

Fudan University

Supplementary Material

Section S1 contains the proofs of the results under the case of a known noise variance in Sec-

tion 3.2. Section S2 extends theoretical results to the unknown variance case with the proofs.

Section S3 provides CAVI updates and their derivation. Section S4 reports additional simulation

results. Section S5 presents additional information and results on the two real applications.

S1 Proof of Theoretical Results Under Known Vari-

ance Case

In this section, we provide the proofs of the theoretical results in Sec-

tion 3.2, where a known σ2
y is assumed. Before entering the proof of the

main results, we first state several important lemmas whose proofs are de-

ferred in Section S1.2. We denote the log-likelihood as ln(θ) and, for any

model S, ln(θS) represents the log-likelihood with θSc = 0. We define
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Zn(θS) := ln(θS)− ln(θ0S) and

Vn = sup
S∈S

sup
θ∈Θ(M)

1

n

|Zn(θS)− EZn(θS)|
󰀂θS − θ0S󰀂1 ∨ λ0

,

where S is the considered model space and λ0 =
󰁳

log p/n.

Lemma S1.1. Under Condition 1, for θ ∈ Θ(M) there exists some constant

cR > 0, such that for any constant R ≥ cR, we have as n → ∞,

P (Vn ≤ Rλ0) → 1.

Further under Conditions 1 and 2, for some constants c1, c2, c3 > 0, it holds

that on {Vn ≤ Rλ0},

Zn(θS) ≥ −c1n󰀂θS − θ0S󰀂22 − 2c2(|S|+ 2) log p,

Zn(θS) ≤ −c3n󰀂θS − θ0S󰀂22 + c2(|S|+ 2) log p.

Lemma S1.1 constructs an event with probability going to 1 and states

that if this event holds, the divergence between the log-likelihoods of θS

and θ0S, i.e., Zn(θS), is bounded both above and below in terms of the ℓ2

error 󰀂θS − θ0S󰀂22 and model size |S|.

Lemma S1.2. Let Θ̃ be a subset of the parameter space Θ and θ0 be the

underlying true parameter. For any event E and any distribution Q for θ,

if there exists some C > 0 and ξn > 0 such that

Eθ0 [Π(θ ∈ Θ̃ | Y )1E ] ≤ Ce−ξn , (S1.1)
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then

Eθ0 [Q(θ ∈ Θ̃)1E ] ≤
2

ξn

󰀃
Eθ0 [KL[Q(θ)󰀂Π(θ | Y )]1E ] + Ce−ξn/2

󰀄
. (S1.2)

Lemma S1.2 builds a connection between the variational distribution

and the exact posterior distribution. To leverage Lemma S1.2, we define

the following events for R defined in Lemma S1.1 and L,M1,M2 > 0:

En,1(R) = {Vn ≤ Rλ0},

En,2(L) = {Π(θ ∈ Θ(M) : |S| ≤ Ls0 | Y ) ≥ 3/4},

En,3(M1,M2) =

󰀝
Π

󰀕
θ ∈ Θ(M) : 󰀂θ − θ0󰀂2 >

M1

√
s0 log p

󰀂X󰀂 ∧ 󰀂Z̃󰀂
| Y

󰀖
≤ e−M2s0 log p

󰀞
,

(S1.3)

where Z̃ = (Z,T ). We further define

En = En,1(R) ∩ En,2(L) ∩ En,3(M1,M2),

and our ultimate goals are to establish the upper bounds in (S1.1) and

(S1.2) on En with respect to some predefined subspaces Θ̃. We first state

the following lemma to bound the KL divergence between the variational

posterior and the exact posterior.

Lemma S1.3. Under Conditions 1-3, for sufficiently large p and some con-

stant CK > 0, we have

KL [Q∗(θ)󰀂Π(θ | Y )] 1En ≤ CKs0 log p. (S1.4)
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Based on the results of Lemma S1.3, we are left to prove the posterior

contraction results on the event En.

Lemma S1.4. Under Conditions 1-3, on En,1(R), we have
󰁝

Θ(M)

Ln(θ)

Ln(θ0)
dΠ(θ) ≥ qs0(1− q)p−s0 exp{−2c2(s0 + 2) log p}

×
󰀕

1

2c1nτ 2 + 1

󰀖 s0
2
󰀕

1

2c1nσ2
α + 1

󰀖

× exp

󰀝
− c1n

2c1nτ 2 + 1
󰀂θ0,−󰀂22

󰀞
exp

󰀝
− c1n

2c1nσ2
α + 1

󰀂α0󰀂22
󰀞
,

where θ0,− = (βT
0 ,γ

T
0 )

T .

Lemma S1.5. Under Conditions 1-3, for L ≥ 2 + 5c2(s0 + 2)/s0,

Eθ0

󰀅
Π (θ ∈ Θ(M) : |S| ≥ Ls0 | Y ) 1En,1(R)

󰀆
≼ exp

󰀝
−1

5
(L− 2)s0 log p

󰀞
.

Lemma S1.6. Under Conditions 1-3, for M1 ≥
󰁳

2λ2(5c2 + 2 + 8c2/s0)/c3

and L satisfying the condition in Lemma S1.5,

Eθ0

󰀗
Π

󰀕
θ ∈ Θ(M) : 󰀂θ − θ0󰀂2 >

M1

√
s0 log p

󰀂X󰀂 ∧ 󰀂Z̃󰀂
| Y

󰀖
1En,1(R)

󰀘

≼ exp

󰀝
−c3M

2
1 s0 log p

2λ2

󰀞
+ exp

󰀝
−(L− 2)s0 log p

5

󰀞
.

Lemma S1.4 provides a lower bound on the normalizing constant for

obtaining the posterior probability of any subspace. Lemma S1.5 establishes

a bound on the posterior probability of selecting models with sizes larger

than a multiple of s0, forming the basis for proving Lemma 1. Lemma S1.6

bounds the posterior probability of choosing θ with large ℓ2 distance from

θ0, preparing for the proof of Theorem 1.
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Lemma S1.7. Under Conditions 1-3, for R defined in Lemma S1.1, L

defined in Lemma S1.5, M1 defined in Lemma S1.6, and M2 ≤ (cM2
1/2λ2)∧

((L− 2)/5), as p → ∞, we have

Pθ0 [Ec
n] → 0.

Lemma S1.7 guarantees En holds with probability going to 1 under θ0.

Combining Lemma S1.5, S1.6, and S1.7, we are able to prove Lemma 1

and Theorem 1. To further obtain model selection consistency of the VB

posterior, we need the following result on the exact posterior.

Lemma S1.8. Under Conditions 1-4, for κn ≥ (2c2s0/c3)∨ (2((3c2+2)s0+

8c2)/c2s0) and L defined in Lemma S1.5, we have

Eθ0

󰀅
Π (θ ∈ Θ(M) : S ∕= S0 | Y ) 1En,1(R)

󰀆

≼ 3 exp

󰀝
−c2κns0 log p

2

󰀞
+ exp

󰀝
−(L− 2)s0 log p

5

󰀞
.

S1.1 Proof of Main Results

Proof of Lemma 1

By Lemma S1.5, for Ln ≥ L0 := 2 + 5c2(s0 + 2)/s0,

Eθ0 [Π (θ ∈ Θ(M) : |S| ≥ Lns0 | Y ) 1En ] ≼ exp

󰀝
−1

5
(Ln − 2)s0 log p

󰀞
.
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By assigning ξn = 1
5
(Ln − 2)s0 log p in Lemma S1.2, we have for some

constant CL ≥ 10CK ,

Eθ0 [Q
∗ (θ ∈ Θ(M) : |S| ≥ Lns0) 1En ]

≼ 10

(Ln − 2)s0 log p

󰀗
CKs0 log p+ exp

󰀝
−1

5
(Ln − 2)s0 log p

󰀞󰀘

≤ 10CK

Ln − 2
(1 + o(1)) ≤ O

󰀕
CL

Ln

󰀖
.

Thus the targeted expectation can be bounded by

Eθ0 [Q
∗(θ ∈ Θ(M) : |S| ≥ Lns0)]

≤ Eθ0 [Q
∗ (θ ∈ Θ(M) : |S| ≥ Lns0) 1En ] + Pθ0 [Ec

n] ≤ O
󰀕
CL

Ln

󰀖
+ o(1).

□

Proof of Theorem 1

By Lemma S1.6, for Mn ≥ M0 := 2λ2(5c2 + 2 + 8c2/s0)/c3,

Eθ0

󰀗
Π

󰀕
θ ∈ Θ(M) : 󰀂θ − θ0󰀂2 ≥

√
Mns0 log p

󰀂X󰀂 ∨ 󰀂Z̃󰀂
| Y

󰀖
1En

󰀘

≼ exp

󰀝
−c3Mns0 log p

2λ2

󰀞
+ exp

󰀝
−(Ln − 2)s0 log p

5

󰀞
.

Since Mn grows more slowly than Ln, by assigning ξn = c3
2λ2

Mns0 log p in

Lemma S1.2, we have for some constant CM ≥ 4λ2CK/c3,

Eθ0

󰀗
Q∗

󰀕
θ ∈ Θ(M) : 󰀂θ − θ0󰀂2 ≥

√
Mns0 log p

󰀂X󰀂 ∨ 󰀂Z̃󰀂

󰀖
1En

󰀘

≼ 4λ2

c3Mns0 log p

󰀗
CKs0 log p+ 2 exp

󰀝
−c3Mns0 log p

2λ2

󰀞󰀘

≤ 4λ2CK

c3Mn

(1 + o(1)) ≤ O
󰀕
CM

Mn

󰀖
.
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Thus the targeted expectation can be bounded by

Eθ0

󰀗
Q∗

󰀕
θ ∈ Θ(M) : 󰀂θ − θ0󰀂2 ≥

√
Mns0 log p

󰀂X󰀂 ∨ 󰀂Z̃󰀂

󰀖󰀘

≤ Eθ0

󰀗
Q∗

󰀕
θ ∈ Θ(M) : 󰀂θ − θ0󰀂2 ≥

√
Mns0 log p

󰀂X󰀂 ∨ 󰀂Z̃󰀂

󰀖
1En

󰀘
+ Pθ0 [Ec

n]

≤ O
󰀕
CM

Mn

󰀖
+ o(1).

□

Proof of Theorem 2

By Lemma S1.8, for κn ≥ κ0 := (2c2s0/c3) ∨ (2((3c2 + 2)s0 + 8c2)/c2s0),

Eθ0 [Π (θ ∈ Θ(M) : S ∕= S0 | Y ) 1En ]

≼ 3 exp

󰀝
−c2κns0 log p

2

󰀞
+ exp

󰀝
−(Ln − 2)s0 log p

5

󰀞
.

Since κn grows more slowly than Ln, by assigning ξn = c2
2
κns0 log p in

Lemma S1.2, we have

Eθ0 [Q
∗ (θ ∈ Θ(M) : S ∕= S0) 1En ]

≼ 4

c2κns0 log p

󰀗
CKs0 log p+ 4 exp

󰀝
−c2κns0 log p

2

󰀞󰀘

≤ 4CK

c2κn

(1 + o(1)) ≤ O
󰀕
Cκ

κn

󰀖
,

where CM ≥ 4CK/c2. Thus the targeted expectation can be bounded by

Eθ0 [Q
∗ (θ ∈ Θ(M) : S ∕= S0)]

≤ Eθ0 [Q
∗ (θ ∈ Θ(M) : S ∕= S0) 1En ] + Pθ0 [Ec

n] ≤ O
󰀕
Cκ

κn

󰀖
+ o(1).

□
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S1.2 Proof of Technical Lemmas

Proof of Lemma S1.1

This lemma is modified from Lemma 3.1 and Lemma 3.2 in Zhang et al.

(2025), where we substitute the value of λ0 into the inequality and refine

the constant terms.

Proof of Lemma S1.2

This lemma is modified from Theorem 5 in Ray and Szabó (2022).

Proof of Lemma S1.3

The exact posterior can be written as

Π(θ | Y ) =
󰁛

S∈S

ŵSΠS(θS | Y )⊗ δ0(θSc),

where ŵS denotes the posterior model weights satisfying 0 ≤ ŵS ≤ 1 and

󰁓
S∈S ŵS = 1 and ΠS denotes the distribution with respect to model S.

Since the VB posterior Q∗ minimizes the KL divergence from the exact

posterior, we have

KL[Q∗(θ)󰀂Π(θ | Y )] ≤ KL[Q(θ)󰀂Π(θ | Y )],

for any Q ∈ Q. To establish an upper bound on the KL divergence, we

carefully design a Q̌ ∈ Q, where for any model S, the VB posterior can be
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expressed as

Q̌(θ) = NS(θS;µS,DS)⊗ δ0(θSc) =
󰁜

j∈S

N(θj;µSj, σ
2
Sj)⊗

󰁜

j∈Sc

δ0(θj),

where NS denotes an |S|+2 dimensional normal distribution corresponding

to (βS,γS,α). We set

µS = θ0S − (1 + τ−2)ΣSθ0S,

Σ−1
S = (2c3n+ τ−2)IS +

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

Z̃
T

S Z̃S 0 0

0 nλ2 0

0 0 XT
SXS

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
,

with DS = diag(ΣS) being the diagonal matrix. Since the chosen Q̌ is only

absolutely continuous with respect to ŵSΠS(θS | Y )⊗ δ0(θSc) in Π(θ | Y ),

we have

KL[Q̌(θ)󰀂Π(θ | Y )] = EQ̌

󰀗
log

dNS(θS;µS,DS)⊗ δ0(θSc)

ŵSdΠS(θS | Y )⊗ δ0(θSc)

󰀘

= log
1

ŵS

+KL[NS(θS;µS,DS)󰀂ΠS(θS | Y )].

(S1.5)

We first claim that on the event En, there exists a model Š satisfying

the following properties:

|Š| ≤ Ls0, 󰀂θ0Šc󰀂2 ≤
M1

√
s0 log p

󰀂X󰀂 ∧ 󰀂Z̃󰀂
, ŵŠ ≥ (2e)−1p−Ls0 .

On En, we have

Π

󰀕
θ : 󰀂θ0Sc󰀂2 >

M1

√
s0 log p

󰀂X󰀂 ∧ 󰀂Z̃󰀂
| Y

󰀖

≤ Π

󰀕
θ : 󰀂θ − θ0󰀂2 >

M1

√
s0 log p

󰀂X󰀂 ∧ 󰀂Z̃󰀂
| Y

󰀖
≤ exp{−M2s0 log p} → 0.
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Thus the posterior weights satisfy

󰁛

S:|S|≤Ls0,

󰀂θ0Sc󰀂2≤
M1

√
s0 log p

󰀂X󰀂∧󰀂Z̃󰀂

ŵS ≥ 3

4
− exp{−M2s0 log p} ≥ 1

2
,

with the number of elements in the sum bounded by

Ls0󰁛

d=0

󰀕
p

d

󰀖
≤

Ls0󰁛

d=0

pd

d!
≤ epLs0 ,

which implies that there exists at least a model Š of size |Š| ≤ Ls0 with

posterior weight ŵŠ ≥ (2e)−1p−Ls0 satisfying 󰀂θ0Šc󰀂2 ≤ M1
√
s0 log p

󰀂X󰀂∧󰀂Z̃󰀂 . Thus in

(S1.5), the first term is bounded by 2 + Ls0 log p.

Denote Q̌Š = NŠ(θŠ;µŠ,DŠ) and the second KL term in (S1.5) can be

rewritten as

KL[Q̌Š󰀂NŠ(θŠ;µŠ,ΣŠ)] + EQ̌Š

󰀗
log

dNŠ(θŠ;µŠ,ΣŠ)

dΠŠ(θŠ | Y )

󰀘
. (S1.6)

The KL divergence between the two multivariate-normal distributions Q̌Š

and NŠ(θŠ;µŠ,ΣŠ) can be expressed as

KL[Q̌Š󰀂NŠ(θŠ;µŠ,ΣŠ)] =
1

2

󰀗
log

|ΣŠ|
|DŠ|

− |Š|− 2 + tr(Σ−1
Š
DŠ)

󰀘
.

By definitions, tr(Σ−1
Š
DŠ) = |Š|+ 2 while their determinants are

|ΣŠ| ≤
󰀓
λmin(Z̃

T

Š Z̃ Š) + 2c3n+ τ−2
󰀔−|Šβ|−1

(nλ2)
−1

󰀃
λmin(X

T
ŠX Š) + 2c3n+ τ−2

󰀄−|Šγ |

≤ n−|Š|−2

󰀕
λ1 + 2c3 +

1

nτ 2

󰀖−|Š|−1

λ−1
2 ,
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and

|D−1
Š
| =

|Šβ|+1󰁜

j=1

󰀗
(Z̃

T

Š Z̃ Š)jj + 2c3n+
1

τ 2

󰀘
nλ2

|Šγ |󰁜

ℓ=1

󰀗
(XT

ŠX Š)ℓℓ + 2c3n+
1

τ 2

󰀘

≤
󰀓
󰀂Z̃󰀂2 + 2c3n+ τ−2

󰀔|Šβ |+1

nλ2

󰀃
󰀂X󰀂2 + 2c3n+ τ−2

󰀄|Šγ |

≤ n|Š|+2

󰀕
λ2 + 2c3 +

1

nτ 2

󰀖|Š|+1

λ2.

Combining the above bounds, we have

KL[Q̌Š󰀂NŠ(θŠ;µŠ,ΣŠ)] ≤
1

2
log

󰀕
λ2 + 2c3 +

1
nτ2

λ1 + 2c3 +
1

nτ2

󰀖|Š|+1

≤ Ls0 + 1

2
log

󰀕
λ2 + 2c3 +

1
nτ2

λ1 + 2c3 +
1

nτ2

󰀖
,

and thus the first term in (S1.6) is bounded by O(Ls0). We are only left

with the second non-diagonal term in (S1.6).

The probability density of the exact posterior ΠŠ(θŠ | Y ) is propor-

tional to

exp

󰀝
ln(θŠ)− ln(θ0Š)−

1

2τ 2
󰀂θŠ,− − θ0Š,−󰀂22

− 1

τ 2
θT
0Š,−(θŠ,− − θ0Š,−)−

1

2σ2
α

󰀂α󰀂22
󰀞
,

where θŠ,− = (βT
Š ,γ

T
Š
)T . Thus the non-diagonal term can be rewritten as

EQ̌Š

󰀗
log

dNŠ(θŠ;µŠ,ΣŠ)

dΠŠ(θŠ | Y )

󰀘

= EQ̌Š

󰀥
log

1
DN

exp{−1
2
(θŠ − θ0Š)

TΣ−1
Š
(θŠ − θ0Š)− (θ0Š − µŠ)

TΣ−1
Š
(θŠ − θ0Š)}

1
DΠ

exp{Zn(θŠ)− 1
2τ2

󰀂θŠ,− − θ0Š,−󰀂22 − 1
τ2
θT
0Š,−(θŠ,− − θ0Š,−)− 1

2σ2
α
󰀂α󰀂22}

󰀦

= log
DΠ

DN

+ EQ̌Š

󰀗
−1

2
(θŠ − θ0Š)

TΣ−1
Š
(θŠ − θ0Š)− (θ0Š − µŠ)

TΣ−1
Š
(θŠ − θ0Š)

−Zn(θŠ) +
1

2τ 2
󰀂θŠ,− − θ0Š,−󰀂22 +

1

τ 2
θT
0Š,−(θŠ,− − θ0Š,−) +

1

2σ2
α

󰀂α󰀂22
󰀘
,

(S1.7)
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where

DN =

󰁝

ΘŠ(M)

exp

󰀝
−1

2
(θŠ − θ0Š)

TΣ−1
Š
(θŠ − θ0Š)− (θ0Š − µŠ)

TΣ−1
S (θŠ − θ0Š)

󰀞
dθŠ

DΠ =

󰁝

ΘŠ(M)

exp

󰀝
Zn(θŠ)−

1

2τ 2
󰀂θŠ,− − θ0Š,−󰀂22 −

1

τ 2
θT
0Š,−(θŠ,− − θ0Š,−)−

1

2σ2
α

󰀂α󰀂22
󰀞
dθŠ.

We first bound the ratio of the normalizing constants. Define the subspace

BŠ =

󰀝
θŠ ∈ ΘŠ(M) : 󰀂θŠ − θ0Š󰀂2 ≤

2M1

√
s0 log p

󰀂X󰀂 ∧ 󰀂Z̃󰀂

󰀞
.

If we define θ̄Š ∈ Rpn with θŠ for Š and 0 for Šc, then on En,

ΠŠ(B
c
Š
| Y ) ≤ ΠŠ

󰀕
θŠ ∈ ΘŠ(M) : 󰀂θ̄Š − θ0󰀂2 + 󰀂θ0Šc󰀂2 >

2M1

√
s0 log p

󰀂X󰀂 ∧ 󰀂Z̃󰀂
| Y

󰀖

≤ Π

󰀕
θ ∈ Θ(M) : 󰀂θ − θ0󰀂2 >

M1

√
s0 log p

󰀂X󰀂 ∧ 󰀂Z̃󰀂
| Y

󰀖

≤ exp{−M2s0 log p} ≤ 1

2
.

Using Bayes’ formula, we have on En,

ΠŠ(BŠ | Y )

=

󰁕
BŠ

exp
󰁱
Zn(θŠ)− 1

2τ2
󰀂θŠ,− − θ0Š,−󰀂22 − 1

τ2
θT
0Š,−(θŠ,− − θ0Š,−)− 1

2σ2
α
󰀂α󰀂22

󰁲
dθŠ

󰁕
ΘŠ(M)

exp
󰁱
Zn(θŠ)− 1

2τ2
󰀂θŠ,− − θ0Š,−󰀂22 − 1

τ2
θT
0S,−(θŠ,− − θ0Š,−)− 1

2σ2
α
󰀂α󰀂22

󰁲
dθŠ

≥ 1

2
.
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Thus on En, the log ratio log(DΠ/DN) is bounded by

log
2
󰁕
BŠ

exp
󰁱
Zn(θŠ)− 1

2τ2
󰀂θŠ,− − θ0Š,−󰀂22 − 1

τ2
θT
0Š,−(θŠ,− − θ0Š,−)− 1

2σ2
α
󰀂α󰀂22

󰁲
dθŠ

󰁕
ΘŠ(M)

exp
󰀋
−1

2
(θŠ − θ0Š)

TΣ−1
Š
(θŠ − θ0Š)− (θ0Š − µŠ)

TΣ−1
Š
(θŠ − θ0Š)

󰀌
dθŠ

≤ log sup
θŠ∈BŠ

exp
󰀋
−c3n󰀂θŠ − θ0Š󰀂22 + c2(|Š|+ 2) log p

− 1

2τ 2
󰀂θŠ,− − θ0Š,−󰀂22 −

1

2σ2
α

󰀂α󰀂22 −
1

τ 2
θT
0Š,−(θŠ,− − θ0Š,−)

+
1

2
(θŠ − θ0Š)

TΣ−1
Š
(θS − θ0Š) + (θ0Š − µŠ)

TΣ−1
Š
(θŠ − θ0Š)

󰀞
+ log 2

≤ c2(Ls0 + 2) log p− 1

2τ 2
󰀂α0󰀂22 + log 2

+ sup
θŠ∈BŠ

󰀝
−1

2
(θŠ − θ0Š)

T
󰀅
(2c3n+ τ−2)IŠ − Σ−1

Š

󰀆
(θŠ − θ0Š)

+

󰀗
(θ0Š − µŠ)

TΣ−1
Š

− 1

τ 2
θT
0Š

󰀘
(θŠ − θ0Š)

󰀞
.

By the definitions of µŠ and ΣŠ, if we define β̃Š = (βT
Š ,α1)

T , the sup term

is bounded by

sup
θŠ∈BŠ

󰀝
1

2
󰀂Z̃ Š(β̃Š − β̃0Š)󰀂22 +

1

2
nλ2(α2 − α20)

2 +
1

2
󰀂X Š(γŠ − γ0Š)󰀂22 + θT

0Š(θŠ − θ0Š)

󰀞

≤ sup
θŠ∈BŠ

󰀝
1

2
nλ2󰀂θŠ − θ0Š󰀂22 + 󰀂θ0Š󰀂2󰀂θŠ − θ0Š󰀂2

󰀞

≤ 2λ2

λ1

M2
1 s0 log p+M󰀂θ0Š󰀂2.

Thus the log ratio of the normalizing constants is controlled by O(s0 log p).

We now deal with the expectation term in (S1.7). By Lemma S1.1, on
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En, it is bounded by

2c2(|Š|+ 2) log p+ EQ̌Š

󰀗
−1

2
(θŠ − θ0Š)

TΣ−1
Š
(θŠ − θ0Š)

− (θ0Š − µŠ)
TΣ−1

Š
(θŠ − θ0Š) + c1n󰀂θŠ − θ0Š󰀂22

+
1

2τ 2
󰀂θŠ,− − θ0Š,−󰀂22 +

1

τ 2
θT
0Š,−(θŠ,−α − θ0Š,−) +

1

2σ2
α

󰀂α󰀂22
󰀘

= 2c2(|Š|+ 2) log p− 1

2
(µŠ − θ0Š)

TΣ−1
Š
(µŠ − θ0Š)−

1

2
tr(Σ−1

Š
DŠ)

− (θ0Š − µŠ)
TΣ−1

Š
(µŠ − θ0Š) +

󰀕
c1n+

1

2τ 2

󰀖󰀅
󰀂µŠ − θ0Š󰀂22 + tr(DŠ)

󰀆

+
1

τ 2
θT
0Š(µŠ − θ0Š) + EQ̌Š

󰀗
1

2σ2
α

󰀂α󰀂22 −
1

2τ 2
(󰀂α󰀂22 − 󰀂α0󰀂22)

󰀘

≤ 2c2(|Š|+ 2) log p− |Š|+ 2

2
+

1

2
(1 + τ−2)2θT

0ŠΣŠθ0Š

+

󰀕
c1n+

1

2τ 2

󰀖󰀅
(1 + τ−2)2θT

0ŠΣ
2
Š
θ0Š + tr(DŠ)

󰀆
+

1

2τ 2
󰀂α0󰀂22

−
󰀕

1

τ 2
+

1

τ 4

󰀖
θT
0ŠΣŠθ0Š +

1

2σ2
α

󰁫
θT
0Š

󰀃
IŠ − (1 + τ−2)ΣŠ

󰀄2
θ0Š + tr(DŠ)

󰁬
.

By the definition of DŠ and ΣŠ, the trace is bounded by

tr(DŠ) =

|Šβ|+1󰁛

j=1

1

(Z̃
T

Š Z̃ Š)jj + 2c3n+ τ−2
+

1

nλ2 + 2c3n+ τ−2

+

|Šγ |󰁛

ℓ=1

1

(XT
ŠX Š)ℓℓ + 2c3n+ τ−2

≤ |Š|+ 2

2c3n
,

and the quadratic forms are bounded by

1

nλ2 + 2c3n+ τ−2
󰀂θ0Š󰀂22 ≤ θT

0ŠΣŠθ0Š ≤ 1

nλ1 + 2c3n+ τ−2
󰀂θ0Š󰀂22,

and

1

(nλ2 + 2c3n+ τ−2)2
󰀂θ0Š󰀂22 ≤ θT

0ŠΣ
2
Š
θ0Š ≤ 1

(nλ1 + 2c3n+ τ−2)2
󰀂θ0Š󰀂22.
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On En, the expectation term is bounded by

2c2(|Š|+ 2) log p− |Š|+ 2

2
+

1

2
(1 + τ−2)2

1

nλ1 + 2c3n+ τ−2
󰀂θ0Š󰀂22

+
|Š|+ 2

4c3nσ2
α

+
1

2τ 2
󰀂α0󰀂22 −

1

τ 2

󰀕
1 +

1

τ 2

󰀖
1

nλ2 + 2c3n+ τ−2
󰀂θ0Š󰀂22

+

󰀕
c1n+

1

2τ 2

󰀖󰀗
(1 + τ−2)2

1

(nλ1 + 2c3n+ τ−2)2
󰀂θ0Š󰀂22 +

|Š|+ 2

2c3n

󰀘

+
1

2σ2
α

󰀗
1− 2

1 + τ−2

nλ2 + 2c3n+ τ−2
+

(1 + τ−2)2

(nλ2 + 2c3n+ τ−2)2

󰀘
󰀂θ0Š󰀂22

≼ 2c2Ls0 log p+
c1
2c3

Ls0 +
1

2τ 2
󰀂α0󰀂22

+
1

n(λ1 + 2c3)
󰀂θ0Š󰀂22 +

1

2σ2
α

󰀂θ0Š󰀂22 +
c1

n(λ1 + 2c3)2
󰀂θ0Š󰀂22,

which is of the order O(s0 log p).

Combining all of the above bounds gives the result. □

Proof of Lemma S1.4

By the definition of the prior Π, the desired integral is a weighted sum over

all models. Since each summand is non-negative, the integral is bounded

below by

qs0(1− q)p−s0

󰀕
1√
2πτ

󰀖s0 󰀕 1

2πσ2
α

󰀖󰁝

ΘS0
(M)

Ln(θS0)

Ln(θ0S0)
exp

󰀝
− 1

2τ 2
󰀂θS0,−󰀂22 −

󰀂α󰀂22
2σ2

α

󰀞
dθS0 .
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By Lemma S1.1, on En,1(R), the integral term in the above display is

bounded below by

󰁝

ΘS0
(M)

exp{Zn(θS0)} exp
󰀝
− 1

2τ 2
󰀂θS0,−󰀂22 −

󰀂α󰀂22
2σ2

α

󰀞
dθS0

≥ exp{−2c2(s0 + 2) log p}

×
󰁝

ΘS0
(M)

exp

󰀝
−c1n󰀂θS0 − θ0S0󰀂22 −

1

2τ 2
󰀂θS0,−󰀂22 −

󰀂α󰀂22
2σ2

α

󰀞
dθS0 .

Since 󰀂θS0 − θ0S0󰀂1 ≤
√
s0 + 2󰀂θS0 − θ0S0󰀂2 and

󰀝
󰀂θS0 − θ0S0󰀂22 ≤

M2

s0 + 2

󰀞
⊇

s0+2󰁟

j=1

󰀝
(θj − θ0j)

2 ≤ M2

(s0 + 2)2

󰀞
,

we can shrink the integral space and bound the integral from below by

󰁝
󰀝
󰀂θS0

−θ0S0
󰀂2≤ M√

s0+2

󰀞 exp

󰀝
−c1n󰀂θS0 − θ0S0󰀂22 −

󰀂θS0,−󰀂22
2τ 2

− 󰀂α󰀂22
2σ2

α

󰀞
dθS0

≥
󰁝

󰁗
j

󰁱
(θj−θ0j)2≤ M2

(s0+2)2

󰁲 exp

󰀝
−c1n󰀂θS0 − θ0S0󰀂22 −

󰀂θS0,−󰀂22
2τ 2

− 󰀂α󰀂22
2σ2

α

󰀞
dθS0

=
󰁜

j∈S0

󰁝 θ0j+
M

s0+2

θ0j− M
s0+2

exp

󰀝
−c1n(θj − θ0j)

2 − 1

2τ 2
θ2j

󰀞
dθj

×
2󰁜

j=1

󰁝 α0j+
M

s0+2

α0j− M
s0+2

exp

󰀝
−c1n(αj − α0j)

2 − 1

2σ2
α

α2
j

󰀞
dαj.
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By defining uj = (θj − 2c1n
2c1n+

1
τ2
θ0j)

󰀑󰁴
1

2c1n+
1
τ2
, each integral for j ∈ S0 can

be written as

󰁝 θ0j+
M

s0+2

θ0j− M
s0+2

exp

󰀝
−c1n(θj − θ0j)

2 − 1

2τ 2
θ2j

󰀞
dθj

=

󰁝 θ0j+
M

s0+2

θ0j− M
s0+2

exp

󰀫
−
2c1n+ 1

τ2

2

󰀕
θj −

2c1n

2c1n+ 1
τ2

θ0j

󰀖2

− c1n

2c1nτ 2 + 1
θ20j

󰀬
dθj

= exp

󰀝
− c1n

2c1nτ 2 + 1
θ20j

󰀞󰁶
1

2c1n+ 1
τ2

×
󰁝 󰁴

1
τ2

󰁴
1

2c1nτ2+1
θ0j+

M
s0+2

󰁴
2c1n+

1
τ2

󰁴
1
τ2

󰁴
1

2c1nτ2+1
θ0j− M

s0+2

󰁴
2c1n+

1
τ2

exp

󰀝
−1

2
u2
j

󰀞
duj.

As n → ∞, the integral interval goes to R, and thus

󰁝 θ0j+
M

s0+2

θ0j− M
s0+2

exp

󰀝
−c1n(θj − θ0j)

2 − 1

2τ 2
θ2j

󰀞
dθj = exp

󰀝
− c1n

2c1nτ 2 + 1
θ20j

󰀞󰁶
2π

2c1n+ 1
τ2

.

Similar results hold for the integral of αj, and we have

󰁝

Θ(M)

Ln(θ)

Ln(θ0)
dΠ(θ) ≥ qs0(1− q)p−s0 exp{−2c2(s0 + 2) log p}

×
󰀕

1

2c1nτ 2 + 1

󰀖 s0
2
󰀕

1

2c1nσ2
α + 1

󰀖

× exp

󰀝
− c1n

2c1nτ 2 + 1
󰀂θ0,−󰀂22

󰀞
exp

󰀝
− c1n

2c1nσ2
α + 1

󰀂α0󰀂22
󰀞
.

□
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Proof of Lemma S1.5

By defining the event A(L) = {θ ∈ Θ(M) : |S| ≥ Ls0}, the left-hand side

can be rewritten as

Eθ0

󰀅
Π(A(L) | Y )1En,1(R)

󰀆
= Eθ0

󰀥 󰁕
A(L)

Ln(θ)
Ln(θ0)

dΠ(θ)
󰁕
Θ(M)

Ln(θ)
Ln(θ0)

dΠ(θ)
1En,1(R)

󰀦
.

Using the results in Lemma S1.4, the right-hand side is bounded above by

Eθ0

󰀗󰁝

A(L)

Ln(θ)

Ln(θ0)
dΠ(θ)1En,1(R)

󰀘
q−s0(1− q)s0−p(2c1nτ

2 + 1)
s0
2 (2c1nσ

2
α + 1)

× exp

󰀝
c1n

2c1nτ 2 + 1
󰀂θ0,−󰀂22 +

c1n

2c1nσ2
α + 1

󰀂α0󰀂22 + 2c2(s0 + 2) log p

󰀞
.

Given the definition of the prior Π, the expectation term is

󰁛

S:|S|≥Ls0

q|S|(1− q)p−|S|
󰀕

1√
2πτ

󰀖|S|
1

2πσ2
α

Eθ0

󰀗󰁝

ΘS(M)

Ln(θS)

Ln(θ0)
exp

󰀝
− 1

2τ 2
󰀂θS,−󰀂22 −

󰀂α󰀂22
2σ2

α

󰀞
dθS1En,1(R)

󰀘
.

We define θS̃ ∈ R|S∪S0|+2 to contain θS for S and 0 for Sc ∩ S0 and the

corresponding true parameter is given by θ0S̃ with θ0 for S0 and 0 for Sc
0∩S.
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Then we can rewrite Ln(θS)/Ln(θ0) = exp{Zn(θS̃)}, and by Lemma S1.1,

󰁝

ΘS(M)

exp{Zn(θS̃)} exp
󰀝
− 1

2τ 2
󰀂θS,−󰀂22 −

󰀂α󰀂22
2σ2

α

󰀞
dθS

≤ exp{c2(|S̃|+ 2) log p}

×
󰁝

ΘS(M)

exp{−c3n󰀂θS̃ − θ0S̃󰀂22} exp
󰀝
− 1

2τ 2
󰀂θS,−󰀂22 −

󰀂α󰀂22
2σ2

α

󰀞
dθS

≤ exp{c2(|S|+ s0 + 2) log p}

×
󰁝

ΘS

exp{−c3n(󰀂θS − θ0S󰀂22 + 󰀂θ0Sc󰀂22)} exp
󰀝
−󰀂θS,−󰀂22

2τ 2
− 󰀂α󰀂22

2σ2
α

󰀞
dθS

= exp{c2(|S|+ s0 + 2) log p} exp{−c3n󰀂θ0Sc󰀂22}
2π

2c3n+ 1
σ2
α

󰀕
2π

2c3n+ 1
τ2

󰀖 |S|
2

× exp

󰀝
− c3n

2c3nσ2
α + 1

󰀂α0󰀂22
󰀞
exp

󰀝
− c3n

2c3nτ 2 + 1
󰀂θ0S,−󰀂22

󰀞
.

Since the above display does not include Y , the expectation only involves

the indicator variable 1En,1(R) with Eθ0 [1En,1(R)] ≤ 1. Thus we have

Eθ0

󰀗󰁝

A(L)

Ln(θ)

Ln(θ0)
dΠ(θ)1En,1(R)

󰀘

≤
󰁛

S:|S|≥Ls0

exp

󰀝
− c3n

2c3nσ2
α + 1

󰀂α0󰀂22 −
c3n

2c3nτ 2 + 1
󰀂θ0S,−󰀂22 − c3n󰀂θ0Sc󰀂22

󰀞

× exp{c2(|S|+ s0 + 2) log p}q|S|(1− q)p−|S|
󰀕

1

2c3nτ 2 + 1

󰀖 |S|
2 1

2c3nσ2
α + 1

.
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Then the posterior probability of our desired event is bounded by

Eθ0

󰀅
Π(A(L) | Y )1En,1(R)

󰀆
≤ q−s0(1− q)s0−p(2c1nτ

2 + 1)
s0
2 (2c1nσ

2
α + 1)

× exp

󰀝
c1n

2c1nτ 2 + 1
󰀂θ0,−󰀂22 +

c1n

2c1nσ2
α + 1

󰀂α0󰀂22 + 2c2(s0 + 2) log p

󰀞

×
󰁛

S:|S|≥Ls0

q|S|(1− q)p−|S|
󰀕

1

2c3nτ 2 + 1

󰀖 |S|
2 1

2c3nσ2
α + 1

× exp

󰀝
c2(|S|+ s0 + 2) log p− c3n

2c3nσ2
α + 1

󰀂α0󰀂22 −
c3n

2c3nτ 2 + 1
󰀂θ0S,−󰀂22 − c3n󰀂θ0Sc󰀂22

󰀞

≼ q−s0(1− q)s0(2c1nτ
2 + 1)

s0
2 exp

󰀝
c1n

2c1nτ 2 + 1
󰀂θ0,−󰀂22 + 3c2(s0 + 2) log p

󰀞

×
󰁛

S:|S|≥Ls0

q|S|(1− q)−|S|
󰀕

1

2c3nτ 2 + 1

󰀖 |S|
2

× exp

󰀝
− c3n

2c3nτ 2 + 1
󰀂θ0S,−󰀂22 − c3n󰀂θ0Sc󰀂22 + c2|S| log p

󰀞

Since the model size is a non-negative integer, we define k = ⌊(L − 1)s0⌋

where (L− 1)s0 − 1 < k ≤ (L− 1)s0. The probability is bounded above by

q−s0(1− q)s0(2c1nτ
2 + 1)

s0
2 exp

󰀝
c1n

2c1nτ 2 + 1
󰀂θ0,−󰀂22 + 3c2(s0 + 2) log p

󰀞

×
󰁛

S:|S|≥s0+k

q|S|(1− q)−|S|
󰀕

1

2c3nτ 2 + 1

󰀖 |S|
2

× exp

󰀝
− c3n

2c3nτ 2 + 1
󰀂θ0S,−󰀂22 − c3n󰀂θ0Sc󰀂22 + c2|S| log p

󰀞
,
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and, by listing all candidate models, the above is bounded by

q−s0(1− q)s0(2c1nτ
2 + 1)

s0
2 exp {3c2(s0 + 2) log p}

×
󰁛

d=s0+k

󰀕
p

d

󰀖
qd(1− q)−d

󰀕
1

2c3nτ 2 + 1

󰀖 d
2

exp {c2d log p}

≼ exp {3c2(s0 + 2) log p+ (c2 + 1)s0 log p}

󰁛

d=s0+k

pd−s0

󰀕
q

1− q

󰀖d−s0 󰀕 1

2c3nτ 2 + 1

󰀖 d−s0
2

exp{c2 log p}d−s0 .

By Condition 3,

p

󰀕
q

1− q

󰀖󰁵
1

2c3nτ 2 + 1
exp{c2 log p} ≼ p−1.

Thus the desired probability is bounded by

Eθ0

󰀅
Π(A(L) | Y )1En,1(R)

󰀆
≼ exp {3c2(s0 + 2) log p+ (c2 + 1)s0 log p} p−k

≤ exp {[4c2(s0 + 2)− (L− 2)s0] log p} .

Then for L ≥ 5c2(s0 + 2)/s0 + 2, we have

Eθ0

󰀅
Π(A(L) | Y )1En,1(R)

󰀆
≼ exp

󰀝
−1

5
(L− 2)s0 log p

󰀞
.

□
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Proof of Lemma S1.6

We denote the desired event as B(η) = {θ ∈ Θ(M) : 󰀂θ − θ0󰀂2 > η}. By

defining B(L, η) = {θ ∈ Θ(M) : |S| < Ls0, 󰀂θ − θ0󰀂2 > η}, we have

Eθ0

󰀅
Π (B(η) | Y ) 1En,1(R)

󰀆

≤ Eθ0

󰀅
Π (θ ∈ Θ(M) : |S| ≥ Ls0 | Y ) 1En,1(R)

󰀆
+ Eθ0

󰀅
Π (B(L, η) | Y ) 1En,1(R)

󰀆
.

By Lemma S1.5, for some constant L, the first term on the right-hand side

is bounded. For the second term, it can be written as

Eθ0

󰀅
Π (B(L, η) | Y ) 1En,1(R)

󰀆
= Eθ0

󰀥󰁕
B(L,η)

Ln(θ)
Ln(θ0)

dΠ(θ)
󰁕
Θ(M)

Ln(θ)
Ln(θ0)

dΠ(θ)
1En,1(R)

󰀦
.

Then by Lemma S1.4, the last display is bounded above by

Eθ0

󰀗󰁝

B(L,η)

Ln(θ)

Ln(θ0)
dΠ(θ)1En,1(R)

󰀘
q−s0(1− q)s0−p(2c1nτ

2 + 1)
s0
2 (2c1nσ

2
α + 1)

× exp

󰀝
c1n

2c1nτ 2 + 1
󰀂θ0,−󰀂22 +

c1n

2c1nσ2
α + 1

󰀂α0󰀂22 + 2c2(s0 + 2) log p

󰀞
.

The expectation term can be calculated as

󰁛

S:|S|≤Ls0

q|S|(1− q)p−|S|
󰀕

1√
2πτ

󰀖|S|
1

2πσ2
α

Eθ0

󰀗󰁝

BS(η)

Ln(θS)

Ln(θ0)
exp

󰀝
− 1

2τ 2
󰀂θS,−󰀂22 −

󰀂α󰀂22
2σ2

α

󰀞
dθS1En,1(R)

󰀘
.

Using a similar idea in the proof of Lemma S1.5, the integral term is

bounded above by

exp{c2(|S|+ s0 + 2) log p}

×
󰁝

BS(η)

exp

󰀝
−c3n

󰀃
󰀂θS − θ0S󰀂22 + 󰀂θ0Sc󰀂22

󰀄
− 󰀂θS,−󰀂22

2τ 2
− 󰀂α󰀂22

2σ2
α

󰀞
dθS.
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On the set BS(η), we have 󰀂θS − θ0S󰀂22 + 󰀂θ0Sc󰀂22 > η2. Thus

󰀂θS󰀂22 = 󰀂θS − θ0S󰀂22 + 󰀂θ0S󰀂22 − 2(θS − θ0S)
Tθ0S

≥ η2 − 󰀂θ0Sc󰀂22 + 󰀂θ0S󰀂22 − 2M󰀂θ0S󰀂2 ≥ η2 − 󰀂θ0,−󰀂22 − 2M󰀂θ0󰀂2.

Then we have

Eθ0

󰀗󰁝

B(L,η)

Ln(θ)

Ln(θ0)
dΠ(θ)1En,1(R)

󰀘

≤
󰁛

S:|S|≤Ls0

q|S|(1− q)p−|S|
󰀕

1√
2πτ

󰀖|S|
1

2πσ2
α

exp{c2(|S|+ s0 + 2) log p}

× Eθ0

󰀗󰁝

BS(η)

exp

󰀝
−c3nη

2 − 1

2τ 2
󰀂θS,−󰀂22 −

󰀂α󰀂22
2σ2

α

󰀞
dθS1En,1(R)

󰀘

≼
󰁛

S:|S|≤Ls0

q|S|(1− q)p−|S|
󰀕

1√
2πτ

󰀖|S|
1

2πσ2
α

exp{c2(|S|+ s0 + 2) log p}

× exp

󰀝
−
󰀕
c3n+

1

2τ 2

󰀖
η2 +

1

2τ 2
󰀃
󰀂θ0,−󰀂22 + 2M󰀂θ0󰀂2

󰀄󰀞
.

Thus,

Eθ0

󰀅
Π (B(L, η) | Y ) 1En,1(R)

󰀆
≼ q−s0(1− q)s0−p(2c1nτ

2 + 1)
s0
2 (2c1nσ

2
α + 1)

× exp

󰀝
c1n

2c1nτ 2 + 1
󰀂θ0,−󰀂22 +

c1n󰀂α0󰀂22
2c1nσ2

α + 1
+ 2c2(s0 + 2) log p

󰀞

×
󰁛

S:|S|≤Ls0

q|S|(1− q)p−|S|
󰀕

1√
2πτ

󰀖|S|
1

2πσ2
α

exp{c2(|S|+ s0 + 2) log p}

× exp

󰀝
−
󰀕
c3n+

1

2τ 2

󰀖
η2 +

1

2τ 2
󰀃
󰀂θ0,−󰀂22 + 2M󰀂θ0󰀂2

󰀄󰀞

≼
󰀕
2c1nτ

2 + 1

2πτ 2

󰀖 s0
2 2c1nσ

2
α + 1

2πσ2
α

exp {[3c2(s0 + 2) + c2s0] log p}

× exp

󰀝
−
󰀕
c3n+

1

2τ 2

󰀖
η2 +

1

τ 2
󰀃
󰀂θ0󰀂22 + 2M󰀂θ0󰀂2

󰀄󰀞

×
󰁛

S:|S|≤Ls0

󰀕
q

1− q

󰀖|S|−s0 󰀕 1√
2πτ

󰀖|S|−s0

exp{c2(|S|− s0) log p}.
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Denote k = ⌊Ls0⌋. We can rewrite the sum as

k󰁛

d=0

󰀕
p

d

󰀖󰀕
q

1− q

󰀖d−s0 󰀕 1√
2πτ

󰀖d−s0

exp{c2 log p}d−s0

≤ ps0
k󰁛

d=0

pd−s0

󰀕
q

1− q

󰀖d−s0 󰀕 1√
2πτ

󰀖d−s0

exp{c2 log p}d−s0

= ps0
s0󰁛

d=0

󰀗
p1+c2

󰀕
q

1− q

󰀖󰀕
1√
2πτ

󰀖󰀘d−s0

+ ps0
k󰁛

d=s0+1

󰀗
p1+c2

󰀕
q

1− q

󰀖󰀕
1√
2πτ

󰀖󰀘d−s0

.

When d ≤ s0, by Condition 3,

s0󰁛

d=0

󰀗
p1+c2

󰀕
q

1− q

󰀖󰀕
1√
2πτ

󰀖󰀘d−s0

≼
s0󰁛

d=0

󰀕󰁵
n

(n ∨ p2)1+c2
pc2

󰀖d−s0

≼ ps0 .

When d > s0, similarly, we have

k󰁛

d=s0+1

󰀗
p1+c2

󰀕
q

1− q

󰀖󰀕
1√
2πτ

󰀖󰀘d−s0

≼
s0󰁛

d=0

󰀕󰁵
n

(n ∨ p2)1+c2
pc2

󰀖d−s0

≼ 1.

Combining the results,

Eθ0

󰀅
Π (B(L, η) | Y ) 1En,1(R)

󰀆
≼

󰀓c1n
π

󰀔 s0+2
2

× exp {[3c2(s0 + 2) + (c2 + 2)s0] log p} exp
󰀝
−
󰀕
c3n+

1

2τ 2

󰀖
η2
󰀞
.

Let η = M1

√
s0 log pn/󰀂X󰀂 ∧ 󰀂Z̃󰀂. Since 󰀂X󰀂2 ≤ λmax(X

TX) ≤ nλ2 and,

similarly, 󰀂Z̃󰀂2 ≤ nλ2, we have

Eθ0

󰀅
Π (B(L, η) | Y ) 1En,1(R)

󰀆

≼ exp {[4c2(s0 + 2) + (c2 + 2)s0] log p} exp
󰀝
−c3M

2
1 s0 log p

λ2

󰀞
.



S1. PROOF OF THEORETICAL RESULTS UNDER KNOWN VARIANCE CASE

For M1 ≥
󰁳

2λ2(5c2 + 2 + 8c2/s0)/c3,

Eθ0

󰀅
Π (B(L, η) | Y ) 1En,1(R)

󰀆
≼ exp

󰀝
−c3M

2
1 s0 log p

2λ2

󰀞
.

□

Proof of Lemma S1.7

By the union bound, we have

Pθ0 [Ec
n] ≤ Pθ0 [En,1(R)c] + Pθ0 [En,1(R) ∩ En,2(L)c] + Pθ0 [En,1(R) ∩ En,3(M1,M2)

c] .

By Lemma S1.1, the first term is bounded as Pθ0 [En,1(R)c] → 0. For the

second term, by Markov’s inequality and Lemma S1.5, we have

Pθ0 [En,1(R) ∩ En,2(L)c] = Pθ0

󰀅
Π(θ ∈ Θ(M) : |S| ≤ Ls0 | Y )1En,1(R) ≤ 3/4

󰀆

= Pθ0

󰀅
Π(θ ∈ Θ(M) : |S| > Ls0 | Y )1En,1(R) > 1/4

󰀆

≤ 4Eθ0

󰀅
Π(θ ∈ Θ(M) : |S| > Ls0 | Y )1En,1(R)

󰀆
→ 0.

Similarly, for the third term, forM2 ≤ (cM2
1/2λ2)∧((L−2)/5), by Lemma S1.6,

Pθ0 [En,1(R) ∩ En,3(M1,M2)
c]

= Pθ0

󰀗
Π

󰀕
θ ∈ Θ(M) : 󰀂θ − θ0󰀂2 >

M1

√
s0 log p

󰀂X󰀂 ∧ 󰀂Z̃󰀂
| Y

󰀖
1En,1(R) > exp{−M2s0 log p}

󰀘

≤ exp{M2s0 log p}Eθ0

󰀗
Π

󰀕
θ ∈ Θ(M) : 󰀂θ − θ0󰀂2 >

M1

√
s0 log p

󰀂X󰀂 ∧ 󰀂Z̃󰀂
| Y

󰀖
1En,1(R)

󰀘

≼ exp{M2s0 log p}
󰀗
exp

󰀝
−c3M

2
1 s0 log p

2λ2

󰀞
+ exp

󰀝
−(L− 2)s0 log p

5

󰀞󰀘
→ 0.

□
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Proof of Lemma S1.8

Similar to the proof of Lemma S1.6, we have

Eθ0

󰀅
Π (θ ∈ Θ(M) : S ∕= S0 | Y ) 1En,1(R)

󰀆

≤ Eθ0

󰀅
Π (θ ∈ Θ(M) : |S| ≥ Ls0 | Y ) 1En,1(R)

󰀆

+ Eθ0

󰀅
Π (θ ∈ Θ(M) : S ∕= S0, |S| < Ls0 | Y ) 1En,1(R)

󰀆
,

where the first term is bounded for some constant L. The posterior proba-

bility of a specific model S ′ can be calculated as

Π (θ ∈ Θ(M) : S = S ′ | Y ) = Cnq
|S′|(1− q)|S

′|
󰀕

1√
2πτ

󰀖|S′| 󰀕
1

2πσ2
α

󰀖

×
󰁝

ΘS′ (M)

Ln(θS′) exp

󰀝
− 1

2τ 2
󰀂θS′,−󰀂22

󰀞
exp

󰀝
−󰀂α󰀂22

2σ2
α

󰀞
dθS′

= Cnq
|S′|(1− q)|S

′|
󰀕

1√
2πτ

󰀖|S′| 󰀕
1

2πσ2
α

󰀖
Ln(θ0S′)

×
󰁝

ΘS′ (M)

exp{Zn(θS′)} exp
󰀝
− 1

2τ 2
󰀂θS′,−󰀂22

󰀞
exp

󰀝
−󰀂α󰀂22

2σ2
α

󰀞
dθS′ ,

where Cn is the normalizing constant. We are going to construct both upper

and lower bounds for Π(θ ∈ Θ(M) : S = S ′ | Y ) on En,1(R).

For the upper bound, by the calculation in the proof of Lemma S1.5,

the integral term is bounded above by

exp{c2(|S ′|+ 2) log p} 2π

2c3n+ 1
σ2
α

󰀕
2π

2c3n+ 1
τ2

󰀖 |S′|
2

× exp

󰀝
− c3n

2c3nσ2
α + 1

󰀂α0󰀂22 −
c3n

2c3nτ 2 + 1
󰀂θ0S,−󰀂22

󰀞
.
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Thus the posterior probability is bounded above by

Π(θ ∈ Θ(M) : S = S ′ | Y )

≤ Cnq
|S′|(1− q)|S

′|Ln(θ0S′) exp{c2(|S ′|+ 2) log p} 1

2c3nσ2
α + 1

×
󰀕

1

2c3nτ 2 + 1

󰀖 |S′|
2

exp

󰀝
− c3n

2c3nσ2
α + 1

󰀂α0󰀂22 −
c3n

2c3nτ 2 + 1
󰀂θ0S′,−󰀂22

󰀞
.

Similarly, for the lower bound, by the calculation in the proof of Lemma S1.4,

the posterior probability is bounded below by

Π(θ ∈ Θ(M) : S = S ′ | Y )

≥ Cnq
|S′|(1− q)|S

′|Ln(θ0S′) exp{−2c2(|S ′|+ 2) log p} 1

2c1nσ2
α + 1

×
󰀕

1

2c1nτ 2 + 1

󰀖 |S′|
2

exp

󰀝
− c1n

2c1nσ2
α + 1

󰀂α0󰀂22 −
c1n

2c1nτ 2 + 1
󰀂θ0S′,−󰀂22

󰀞
.

Then, by Condition 4, the ratio can be calculated as

Π(θ ∈ Θ(M) : S = S ′ | Y )

Π(θ ∈ Θ(M) : S = S0 | Y )

≼
󰀕

q

1− q

󰀖|S′|−s0 󰀕 1

2c3nτ 2 + 1

󰀖 |S′|
2
󰀕

1

2c1nτ 2 + 1

󰀖− s0
2

× Ln(θ0S′)

Ln(θ0S0)
exp{c2(|S ′|+ 2s0 + 6) log p}

× exp

󰀝
− c3n

2c3nτ 2 + 1
󰀂θ0S′,−󰀂22 +

c1n

2c1nτ 2 + 1
󰀂θ0S0,−󰀂22

󰀞

≼ exp{[3c2s0 + (2− c2 + c2κns0)(s0 − |S ′|) + 6c2] log p}

× Ln(θ0S′)

Ln(θ0S0)
exp

󰀝
− c3n

2c3nτ 2 + 1
󰀂θ0S′,−󰀂22 +

c1n

2c1nτ 2 + 1
󰀂θ0S0,−󰀂22

󰀞
.
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We split the model space into the following possibly overlapping sets:

Over-fitted models: S1 = {S : S ⊃ S0, S ∕= S0, |S| < Ls0},

Large models: S2 = {S : s0 < |S| < Ls0},

Under-fitted models: S3 = {S : S ∕⊃ S0, |S| ≤ s0}.

Over-fitted models: if S ′ ∈ S1, then Ln(θ0S′) = Ln(θ0S0). Let k = ⌊Ls0⌋.

Then

Π(θ ∈ Θ(M) : S = S ′ | Y )

Π(θ ∈ Θ(M) : S = S0 | Y )

≼ exp{[3c2s0 + (2− c2 + c2κns0)(s0 − |S ′|) + 6c2] log p}.

The sum of probability ratios in S1 is

󰁛

S′∈S1

Π(θ ∈ Θ(M) : S = S ′ | Y )

Π(θ ∈ Θ(M) : S = S0 | Y )

≼
k󰁛

d=s0+1

󰀕
p− s0
d− s0

󰀖
exp{[3c2s0 + (2− c2 + c2κns0)(s0 − d) + 6c2] log p}

≼ p3c2s0+6c2

k󰁛

d=s0+1

󰀃
p1−c2+c2κns0

󰀄(s0−d)

≼ p3c2s0+7c2−1−c2κns0 .

If κn > 6 + 2(7− 1/c2)/s0, we have

󰁛

S′∈S1

Π(θ ∈ Θ(M) : S = S ′ | Y )

Π(θ ∈ Θ(M) : S = S0 | Y )
≼ exp

󰁱
−c2

2
κns0 log p

󰁲
.

Large models: for S ′ ∈ S2, we define S̃ = S ′∪S0 and define θS̃ to include

θ0S′ for S ′ and 0 for (S ′)c ∩ S0 and θ0S̃ to include θ0S0 for S0 and 0 for
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S ′ ∩ Sc
0. Then

Π(θ ∈ Θ(M) : S = S ′ | Y )

Π(θ ∈ Θ(M) : S = S0 | Y )

≼ exp{[3c2s0 + (2− c2 + c2κns0)(s0 − |S ′|) + 6c2] log p}

× Ln(θS̃)

Ln(θ0S̃)
exp

󰀝
− c3n

2c3nτ 2 + 1
󰀂θ0S′,−󰀂22 +

c1n

2c1nτ 2 + 1
󰀂θ0S0,−󰀂22

󰀞

≼ exp{[5c2s0 + (2− 2c2 + c2κns0)(s0 − |S ′|) + 8c2] log p} exp
󰀋
−c3n󰀂θ0(S′)c󰀂22

󰀌

≼ exp{[5c2s0 + (2− 2c2 + c2κns0)(s0 − |S ′|) + 8c2] log p} exp
󰀋
−c3κ

2
ns0 log p

󰀌
.

The sum of probability ratios in S2 is

󰁛

S′∈S2

Π(θ ∈ Θ(M) : S = S ′ | Y )

Π(θ ∈ Θ(M) : S = S0 | Y )

≼ exp
󰀋
−c3κ

2
ns0 log p

󰀌
exp{(5c2s0 + 8c2) log p}

×
k󰁛

d=s0+1

s0−1󰁛

h=0

󰀕
p− s0
d− h

󰀖
s0

󰀕
s0 − 1

h

󰀖
exp{(2− 2c2 + c2κns0)(s0 − d) log p}

≼ p−c3κ2
ns0p5c2s0+8c2+s0

k󰁛

d=s0+1

󰀃
p1−2c2+c2κns0

󰀄(s0−d)

≼ p−c3κ2
ns0+5c2s0+10c2+s0−1−c2κns0 .

If κn ≥ 2c2/c3, then c3κ
2
ns0 + c2κns0 ≥ 3c2κns0. Further if κn ≥ 2((5c2 +

1)s0 + 10c2 − 1)/3c2s0, then

󰁛

S′∈S2

Π(θ ∈ Θ(M) : S = S ′ | Y )

Π(θ ∈ Θ(M) : S = S0 | Y )
≼ exp

󰀝
−3c2

2
κns0 log p

󰀞
.
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Under-fitted models: for S ′ ∈ S3, similarly, we have

Π(θ ∈ Θ(M) : S = S ′ | Y )

Π(θ ∈ Θ(M) : S = S0 | Y )
≼ exp

󰀋
−c3κ

2
ns0 log p

󰀌

× exp{[5c2s0 + (2− 2c2 + c2κns0)(s0 − |S ′|) + 8c2] log p},

and the sum of probability ratios in S3 is

󰁛

S′∈S3

Π(θ ∈ Θ(M) : S = S ′ | Y )

Π(θ ∈ Θ(M) : S = S0 | Y )

≼ exp
󰀋
−c3κ

2
ns0 log p

󰀌
exp{(5c2s0 + 8c2) log p}

×
s0󰁛

d=0

d󰁛

h=0

󰀕
p− s0
d− h

󰀖
s0

󰀕
s0 − 1

h

󰀖
exp{(2− 2c2 + c2κns0)(s0 − d) log p}

≼ p−c3κ2
ns0p(3c2+c2κns0+2)s0+8c2 .

For κn ≥ 2c2s0/c3, we have c3κ
2
ns0 − c2κns

2
0 ≥ c2κns

2
0. If κn ≥ 2((3c2 +

2)s0 + 8c2)/c2s
2
0, then

󰁛

S′∈S3

Π(θ ∈ Θ(M) : S = S ′ | Y )

Π(θ ∈ Θ(M) : S = S0 | Y )
≼ exp

󰁱
−c2

2
κns

2
0 log p

󰁲
.

Combining the results leads to, on En,1(R),

󰁛

S′ ∕=S0,|S′|<Ls0

Π (θ ∈ Θ(M) : S = S ′ | Y )

Π (θ ∈ Θ(M) : S = S0 | Y )
≼ 3 exp

󰁱
−c2

2
κns0 log p

󰁲
,

which implies that

Eθ0

󰀅
Π (θ ∈ Θ(M) : S ∕= S0, |S ′| < Ls0 | Y ) 1En,1(R)

󰀆
≼ 3 exp

󰁱
−c2

2
κns0 log p

󰁲
.

□
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S2 Theoretical Results Under Unknown Variance Case

In this section, we elaborate on the discussion in Section 3.3, extending the

theoretical results in Section 3.2 to the case of an unknown noise variance.

The parameter studied here is θ = (β,α,γ, σy) ∈ Rp+3 with the true value

θ0 = (β0,α0,γ0, σy0).The Gaussian components in the priors of βj and αk

are adjusted as N(0, τ 2β) and N(0, σ2
α) to avoid coupling, respectively, while

the other priors remain unchanged.

Compared with the known-variance setting in Section 3.2, we now in-

clude an inverse gamma prior π(σ2
y) in the joint prior and its variational

counterpart q(σ2
y) in the variational family. Similar to the case of a known

variance, we assume bounded covariate spaces Z and X . The parameter

space is defined as

Θ(M) := {θ : 󰀂θ − θ0󰀂1 ≤ M, | log σy| ≤ M},

following a common practice in the analysis of mixture of regressions with

an unknown σ2
y (Städler et al., 2010; Zhang et al., 2025). The condition

| log σy| < M ensures that 0 < σ ≤ σy0 ≤ σ̄ < ∞ for some constants σ and

σ̄, and thus no modification of the beta-min condition is required. Under the

same regularity conditions specified in Section 3.2, the variational posterior

Q∗ satisfies the following posterior contraction properties on model selection
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and parameter estimation.

Lemma S2.1. Under Conditions 1-3, there exists a constant L′
0 > 2 such

that, for any sequence Ln ≥ L′
0, as n → ∞, the VB posterior Q∗ satisfies

Eθ0 [Q
∗(θ ∈ Θ(M) : |S| ≥ Lns0)] ≤ O

󰀕
C ′

L

Ln

󰀖
+ o(1),

with some constant C ′
L > 0.

Theorem S2.1. Under the conditions in Lemma S2.1, there exists some

constant M ′
0 > 0 such that, for any sequence Mn ≥ M ′

0 growing more slowly

than Ln in Lemma S2.1, as n → ∞, the VB posterior Q∗ satisfies

Eθ0

󰀗
Q∗

󰀕
θ ∈ Θ(M) : 󰀂θ − θ0󰀂2 ≥

√
Mns0 log p

󰀂X󰀂 ∨ 󰀂Z̃󰀂

󰀖󰀘
≤ O

󰀕
C ′

M

Mn

󰀖
+ o(1),

with some constant C ′
M > 0.

Theorem S2.2. Under Conditions 1-4, for any κn growing more slowly

than Ln defined in Lemma S2.1, as n → ∞, the VB posterior Q∗ satisfies

Eθ0 [Q
∗ (θ ∈ Θ(M) : S ∕= S0)] ≤ O

󰀕
C ′

κ

κn

󰀖
+ o(1),

with some constant C ′
κ > 0.

These results confirm the robustness of our theoretical framework in

the presence of an unknown noise variance σ2
y .
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S2.1 Proof of Main Results

Similar to the proof in Section S1, we first derive the upper and lower

bounds on the log-likelihood. However, the inclusion of σy poses a challenge

in the analysis of high-dimensional mixture of regressions, since existing

results are typically established on a transformed parameter vector θ̃ =

(β/σy,α/σy, 1/σy,γ) (Städler et al., 2010; Zhang et al., 2025). To eliminate

the discrepancy between the parameters studied in the exact posterior and

those defined in the variational posterior, we need to refine the results to

focus directly on the original parameter θ.

Lemma S2.2. Under Condition 1, for θ ∈ Θ(M) there exists some constant

c′R > 0, such that for any constant R ≥ c′R, we have as n → ∞,

P (Vn ≤ Rλ0) → 1.

Further under Conditions 1 and 2, for some constants c′1, c
′
2, c

′
3 > 0, it holds

that on {Vn ≤ Rλ0},

Zn(θS) ≥ −c′1n󰀂θS − θ0S󰀂22 − 2c′2(|S|+ 3) log p,

Zn(θS) ≤ −c′3n󰀂θS − θ0S󰀂22 + c′2(|S|+ 3) log p.

The variational posterior contraction properties are established by lever-

aging Lemma S1.2. The events En,1, En,2, and En,3 are defined in a similar

way as in Eq.(S1.3) with some positive constants R′, L′, M ′
1, and M ′

2. We
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further define En = En,1(R′) ∩ En,2(L′) ∩ En,3(M ′
1,M

′
2). We first derive the

bound on the KL divergence between the variational and exact posteriors.

Lemma S2.3. Under Conditions 1-3, for sufficiently large p and some con-

stant C ′
K > 0, we have

KL [Q∗(θ)󰀂Π(θ | Y )] 1En ≤ C ′
Ks0 log p. (S2.8)

Then we are left to derive the exact posterior contraction rates and

show that the event En holds with probability going to 1.

Lemma S2.4. Under Conditions 1-3, on En,1(R′), we have

󰁝

Θ(M)

Ln(θ)

Ln(θ0)
dΠ(θ) ≽ qs0(1− q)p−s0 exp{−2c′2(s0 + 3) log p}

×
󰀕

1

2c′1nτ
2 + 1

󰀖 s0
2
󰀕

1

2c′1nσ
2
α + 1

󰀖󰁶
1

c′1n

× exp

󰀝
− c′1n

2c′1nτ
2 + 1

󰀂θ0,−󰀂22
󰀞
exp

󰀝
− c′1n

2c′1nσ
2
α + 1

󰀂α0󰀂22
󰀞
.

Lemma S2.5. Under Conditions 1-3, for L′ ≥ 2 + 5c′2(s0 + 3)/s0,

Eθ0

󰀅
Π (θ ∈ Θ(M) : |S| ≥ L′s0 | Y ) 1En,1(R)

󰀆
≼ exp

󰀝
−1

5
(L′ − 2)s0 log p

󰀞
.

Lemma S2.6. Under Conditions 1-3, forM ′
1 ≥

󰁳
2λ2(5c′2 + 2 + 12c′2/s0)/c

′
3

and L′ satisfying the condition in Lemma S1.5,

Eθ0

󰀗
Π

󰀕
θ ∈ Θ(M) : 󰀂θ − θ0󰀂2 >

M ′
1

√
s0 log p

󰀂X󰀂 ∧ 󰀂Z̃󰀂
| Y

󰀖
1En,1(R′)

󰀘

≼ exp

󰀝
−c′3M

′2
1 s0 log p

2λ2

󰀞
+ exp

󰀝
−(L′ − 2)s0 log p

5

󰀞
.
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Lemma S2.7. Under Conditions 1-3, for R′ defined in Lemma S1.1, L′

defined in Lemma S1.5, M ′
1 defined in Lemma S1.6, and M ′

2 ≤ (cM ′2
1 /2λ2)∧

((L′ − 2)/5), as p → ∞, we have

Pθ0 [Ec
n] → 0.

Lemma S2.8. Under Conditions 1-4, for κn ≥ (2c′2s0/c
′
3)∨ (2((3c′2+2)s0+

11c′2)/c
′
2s0) and L′ defined in Lemma S1.5, we have

Eθ0

󰀅
Π (θ ∈ Θ(M) : S ∕= S0 | Y ) 1En,1(R′)

󰀆

≼ 3 exp

󰀝
−c′2κns0 log p

2

󰀞
+ exp

󰀝
−(L′ − 2)s0 log p

5

󰀞
.

With the preliminary lemmas, we are ready to prove the main theo-

retical results under the unknown σ2
y setting. The proofs of the technical

lemmas are deferred to Section S2.2.

Proof of Lemma S2.1

By choosing Ln ≥ L′
0 := 2 + 5c′2(s0 + 3)/s0 in Lemma S2.5, we follow the

proof of Lemma 1 to obtain the result.

Proof of Theorem S2.1

By choosing Mn ≥ M ′
0 := 2λ2(5c

′
2 + 2 + 12c′2/s0)/c

′
3 in Lemma S2.6, we

follow the proof of Lemma 1 to obtain the result.
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Proof of Theorem S2.2

By choosing κn ≥ κ0 := (2c′2s0/c
′
3)∨(2((3c′2+2)s0+11c′2)/c

′
2s0) in Lemma S2.8,

we follow the proof of Lemma 2 to obtain the result.

S2.2 Proof of Technical Lemmas

Proof of Lemma S2.2

This lemma is modified from Lemma 3.1 and Lemma 3.2 in Zhang et al.

(2025), but our proof avoids the auxiliary reparameterization of β, α, and

σy, leading to a more direct argument under the original model formulation.

Following the proof in Zhang et al. (2025), for a model S, we define θS̄ ∈

Rp+3 with θS for S and 0 for Sc. Then the parameters in the structured

mixture model can be represented as

ψ(x, z, t, S) =

󰀕
exp{xTγS̄}

1 + exp{xTγS̄}
, zTβS̄ + tα1, z

TβS̄ + tα2, σy

󰀖

:= (ψ1,ψ2,ψ3,ψ4),

with a fixed dimension of 4 independent of p. For conciseness, we omit

(x, z, t) in the notation ψ(x, z, t, S) in the following. We denote the density

of Y as fψ(S)(Y ), the log-likelihood as ℓψ(S)(Y ) = log fψ(S)(Y ), and the

score function as sψ(S)(Y ) = ∂ℓψ(S)(Y )/∂ψ(S). By direct calculation, we

can verify that, under the case of the original parameterization, there also
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exists a function G(·) for any S such that

sup
x∈X ,z∈Z,θS∈Θ(M)

󰀂sψ(S)(Y )󰀂∞ ≤ G(Y ) := C(Y 2 + |Y |+ 1),

where the finite constant C only depends on X , Z, and M . We can then

adopt the same peeling device as Eq.(8) in Zhang et al. (2025) to prove the

first part in Lemma S2.2, i.e., for any constant R ≥ c′R, as n → ∞,

P (Vn ≤ Rλ0) → 1.

The second part follows similar calculations in the proof of Lemma 3.2 in

Zhang et al. (2025). □

Proof of Lemma S2.3

The proof follows a similar strategy to that of Lemma S1.3, except for the

non-Gaussian factors induced from the inverse gamma distributions π(σ2
y)

and q(σ2
y). The surrogate variational distribution Q̌ ∈ Q is defined as,

Q̌(θ) = NS(θS,−σy ;µS,DS)⊗ δ0(θSc)⊗ IG(σ2
y ; ay, by)

=
2󰁜

j=1

N(αj;µαj
, σ2

αj
)⊗

󰁜

j∈S

N(θj;µSj, σ
2
Sj)⊗

󰁜

j∈Sc

δ0(θj)⊗ IG(σ2
y ; ay, by),
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where θS,−σy = (βS,γS,α). We set

µS = θ0S,−σy − (1 + τ−2)ΣSθ0S,−σy ,

Σ−1
S = (2c′3n+ τ−2)IS +

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

Z̃
T

S Z̃S 0 0

0 nλ2 0

0 0 XT
SXS

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
,

with DS = diag(ΣS) being the diagonal matrix, and

ay = a0, b
1
2
y = (ay − 1)

󰀗
σy0r(ay) + σy0

󰁴
r(ay)2 − 1/(ay − 1)

󰀘
,

where r(ay) = Γ(ay − 1/2)/Γ(ay). Then we have

KL[Q̌(θ)󰀂Π(θ | Y )]

= EQ̌

󰀗
log

dNS(θS,−σy ;µS,DS)⊗ δ0(θSc)⊗ d IG(σ2
y ; ay, by)

ŵSdΠS(θS | Y )⊗ δ0(θSc)

󰀘

= log
1

ŵS

+KL[NS(θS,−σy ;µS,DS)⊗ IG(σ2
y ; ay, by)󰀂ΠS(θS | Y )].

(S2.9)

Denote Q̌Š = NŠ(θŠ,−σy
;µŠ,DŠ) and the second KL term in (S2.9) can be

rewritten as

KL[Q̌Š󰀂NŠ(θŠ,−σy
;µŠ,ΣŠ)]+EQ̌Š

󰀥
log

dNŠ(θŠ,−σy
;µŠ,ΣŠ)⊗ d IG(σ2

y ; ay, by)

dΠŠ(θŠ | Y )

󰀦
.

(S2.10)
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The first term in (S2.10) remains the same as the proof of Lemma S1.6 and

is bounded by O(L′s0). For the second term, we have

EQ̌Š

󰀥
log

dNŠ(θŠ,−σy
;µŠ,ΣŠ)⊗ d IG(σ2

y ; ay, by)

dΠŠ(θŠ | Y )

󰀦

= log
DΠ

DN

+ EQ̌Š

󰀗
−1

2
(θŠ,−σy

− θ0Š,−σy
)TΣ−1

Š
(θŠ,−σy

− θ0Š,−σy
)

− (θ0Š,−σy
− µŠ)

TΣ−1
Š
(θŠ,−σy

− θ0Š,−σy
)− Zn(θŠ) +

1

2τ 2
󰀂θŠ,− − θ0Š,−󰀂22

+
1

τ 2
θT
0Š,−(θŠ,− − θ0Š,−) +

1

2σ2
α

󰀂α󰀂22 − 2(ay − a0) log σy −
by − b0
σ2
y

󰀘
,

(S2.11)

where

DN =

󰁝

ΘŠ(M)

exp

󰀝
−1

2
(θŠ,−σy

− θ0Š,−σy
)TΣ−1

Š
(θŠ,−σy

− θ0Š,−σy
)

−(θ0Š,−σy
− µŠ)

TΣ−1
S (θŠ,−σy

− θ0Š,−σy
)− 2(ay + 1) log σy −

by
σ2
y

󰀞
dθŠ,

DΠ =

󰁝

ΘŠ(M)

exp

󰀝
Zn(θŠ)−

1

2τ 2
󰀂θŠ,− − θ0Š,−󰀂22 −

1

τ 2
θT
0Š,−(θŠ,− − θ0Š,−)

− 1

2σ2
α

󰀂α󰀂22 − 2(a0 + 1) log σy −
b0
σ2
y

󰀞
dθŠ.

To bound the ratio of the normalizing constants, define the subspace

BŠ =

󰀝
θŠ ∈ ΘŠ(M) : 󰀂θŠ − θ0Š󰀂2 ≤

2M ′
1

√
s0 log p

󰀂X󰀂 ∧ 󰀂Z̃󰀂

󰀞
.
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Following a similar practice, on En, log(DΠ/DN) is bounded by

log 2

󰁝

BŠ

exp

󰀝
Zn(θŠ)−

1

2τ 2
󰀂θŠ,− − θ0Š,−󰀂22 −

1

τ 2
θT
0Š,−(θŠ,− − θ0Š,−)−

1

2σ2
α

󰀂α󰀂22

−2(a0 + 1) log σy −
b0
σ2
y

󰀞
dθŠ − log

󰁝

ΘŠ(M)

exp

󰀝
−1

2
(θŠ,−σy

− θ0Š,−σy
)TΣ−1

Š
(θŠ,−σy

− θ0Š,−σy
)

−(θ0Š,−σy
− µŠ)

TΣ−1
Š
(θŠ,−σy

− θ0Š,−σy
)− 2(ay + 1) log σy −

by
σ2
y

󰀞
dθŠ

≤ c2(Ls0 + 3) log p− 1

2τ 2
󰀂α0󰀂22 + log 2

+ sup
θŠ∈BŠ

󰀝
−1

2
(θŠ,−σy

− θ0Š,−σy
)T

󰀅
(2c3n+ τ−2)IŠ − Σ−1

Š

󰀆
(θŠ,−σy

− θ0Š,−σy
)− c3n(σy − σy0)

2

+

󰀗
(θ0Š,−σy

− µŠ)
TΣ−1

Š
− 1

τ 2
θT
0Š,−σy

󰀘
(θŠ,−σy

− θ0Š,−σy
)− 2(a0 − ay) log σy −

b0 − by
σ2
y

󰀞
.

By the definitions of µŠ, ΣŠ, ay, and by, if we define β̃Š = (βT
Š ,α1)

T , the

sup term is bounded by

sup
θŠ∈BŠ

󰀝
1

2
󰀂Z̃ Š(β̃Š − β̃0Š)󰀂22 +

1

2
nλ2(α2 − α20)

2

+
1

2
󰀂X Š(γŠ − γ0Š)󰀂22 + θT

0Š,−σy
(θŠ,−σy

− θ0Š,−σy
)− b0 − by

σ2
y

󰀞

≼ 2λ2

λ1

M ′2
1 s0 log p.

Thus the log ratio of the normalizing constants is controlled by O(s0 log p).

Similarly, for the expectation term in (S2.11), by Lemma S2.2, on En,
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it is bounded by

2c2(|Š|+ 3) log p+ EQ̌Š

󰀗
−1

2
(θŠ,−σy

− θ0Š,−σy
)TΣ−1

Š
(θŠ,−σy

− θ0Š,−σy
)

− (θ0Š,−σy
− µŠ)

TΣ−1
Š
(θŠ,−σy

− θ0Š,−σy
) + c1n󰀂θŠ − θ0Š󰀂22 +

1

2τ 2
󰀂θŠ,− − θ0Š,−󰀂22

+
1

τ 2
θT
0Š,−(θŠ,− − θ0Š,−) +

1

2σ2
α

󰀂α󰀂22 − 2(ay − a0) log σy −
by − b0
σ2
y

󰀘

≤ 2c2(|Š|+ 3) log p− |Š|+ 2

2
+

1

2
(1 + τ−2)2θT

0Š,−σy
ΣŠθ0Š,−σy

+

󰀕
c1n+

1

2τ 2

󰀖󰁫
(1 + τ−2)2θT

0Š,−σy
Σ2

Š
θ0Š,−σy

+ tr(DŠ)
󰁬
+

1

2τ 2
󰀂α0󰀂22

−
󰀕

1

τ 2
+

1

τ 4

󰀖
θT
0Š,−σy

ΣŠθ0Š,−σy
+

1

2σ2
α

󰁫
θT
0Š,−σy

󰀃
IŠ − (1 + τ−2)ΣŠ

󰀄2
θ0Š,−σy

+ tr(DŠ)
󰁬

+ c1n

󰀕
by

ay − 1
− 2σy0b

1/2
y r(ay) + σ2

y0

󰀖
− 2(ay − a0) log σy − (by − b0)

ay
by
.

On En, by the definitions of ay and by, the expectation term is bounded by

2c2(|Š|+ 3) log p− |Š|+ 2

2
+

1

2
(1 + τ−2)2

1

nλ1 + 2c′3n+ τ−2
󰀂θ0Š,−σy

󰀂22

+
|Š|+ 2

4c′3nσ
2
α

+
1

2τ 2
󰀂α0󰀂22 −

1

τ 2

󰀕
1 +

1

τ 2

󰀖
1

nλ2 + 2c′3n+ τ−2
󰀂θ0Š,−σy

󰀂22

+

󰀕
c′1n+

1

2τ 2

󰀖󰀗
(1 + τ−2)2

1

(nλ1 + 2c′3n+ τ−2)2
󰀂θ0Š,−σy

󰀂22 +
|Š|+ 2

2c′3n

󰀘

+
1

2σ2
α

󰀗
1− 2

1 + τ−2

nλ2 + 2c′3n+ τ−2
+

(1 + τ−2)2

(nλ2 + 2c′3n+ τ−2)2

󰀘
󰀂θ0Š,−σy

󰀂22 − (by − b0)
a0
by

≼ 2c′2L
′s0 log p+

c′1
2c′3

Ls0 +
1

2τ 2
󰀂α0󰀂22

+
1

n(λ1 + 2c′3)
󰀂θ0Š,−σy

󰀂22 +
1

2σ2
α

󰀂θ0Š,−σy
󰀂22 +

c′1
n(λ1 + 2c′3)

2
󰀂θ0Š,−σy

󰀂22,

which is of the order O(s0 log p).

Combining all of the above bounds gives the result. □
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Proof of Lemma S2.4

By the definition of the prior Π, the desired integral is bounded below by

qs0(1− q)p−s0

󰀕
1√
2πτ

󰀖s0 󰀕 1

2πσ2
α

󰀖

×
󰁝

ΘS0
(M)

Ln(θS0)

Ln(θ0S0)
exp

󰀝
− 1

2τ 2
󰀂θS0,−󰀂22 −

󰀂α󰀂22
2σ2

α

󰀞
pσ(σy)dθS0 ,

where pσ(σy) defines a distribution derived from the inverse gamma distri-

bution on σ2
y . By Lemma S2.2, on En,1(R′), the integral term in the above

display is bounded below by

exp{−2c′2(s0 + 3) log p}
󰁝

󰁗
j

󰁱
(θj−θ0j)2≤ M2

(s0+3)2

󰁲 exp

󰀝
−c′1n󰀂θS0 − θ0S0󰀂22 −

󰀂θS0,−󰀂22
2τ 2

− 󰀂α󰀂22
2σ2

α

󰀞
pσ(σy)dθS0

= exp{−2c′2(s0 + 3) log p}
󰁜

j∈S0

󰁝 θ0j+
M

s0+3

θ0j− M
s0+3

exp

󰀝
−c′1n(θj − θ0j)

2 − 1

2τ 2
θ2j

󰀞
dθj

×
2󰁜

j=1

󰁝 α0j+
M

s0+3

α0j− M
s0+3

exp

󰀝
−c′1n(αj − α0j)

2 − 1

2σ2
α

α2
j

󰀞
dαj

×
󰁝 σy0+

M
s0+3

σy0− M
s0+3

exp
󰀋
−c′1n(σy − σy0)

2
󰀌
pσ(σy)dσy.

For the integral of σy, we define uσ =
󰁳

2c′1n(σy − σy0) and obtain

󰁝 σy0+
M

s0+3

σy0− M
s0+3

exp
󰀋
−c1n(σy − σy0)

2
󰀌
pσ(σy)dσy

=

󰁶
1

2c′1n

󰁝 M
s0+3

√
2c′1n

− M
s0+3

√
2c′1n

exp

󰀝
−u2

σ

2

󰀞
pσ

󰀣󰁶
1

2c′1n
uσ + σy0

󰀤
duσ,

which, as n → ∞, converges to
󰁴

2π
2c′1n

Euσpσ(σy0) ≍
󰁴

1
c′1n

with Euσ denoting

the expectation from a Gaussian distribution on uσ. Combining the results
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on the integral of θj for j ∈ S0 and αk, we have

󰁝

Θ(M)

Ln(θ)

Ln(θ0)
dΠ(θ) ≽ qs0(1− q)p−s0 exp{−2c′2(s0 + 3) log p}

×
󰀕

1

2c′1nτ
2 + 1

󰀖 s0
2
󰀕

1

2c′1nσ
2
α + 1

󰀖󰁶
1

c′1n

× exp

󰀝
− c′1n

2c′1nτ
2 + 1

󰀂θ0,−󰀂22
󰀞
exp

󰀝
− c′1n

2c′1nσ
2
α + 1

󰀂α0󰀂22
󰀞
.

□

Proof of Lemma S2.5

Define A(L′) = {θ ∈ Θ(M) : |S| ≥ L′s0}. By Lemma S2.4, the left-hand

side is bounded above by

Eθ0

󰀗󰁝

A′(L)

Ln(θ)

Ln(θ0)
dΠ(θ)1En,1(R′)

󰀘
q−s0(1− q)s0−p(2c′1nτ

2 + 1)
s0
2 (2c′1nσ

2
α + 1)

×
󰁳

c′1n exp

󰀝
c′1n

2c′1nτ
2 + 1

󰀂θ0,−󰀂22 +
c′1n

2c1nσ2
α + 1

󰀂α0󰀂22 + 2c′2(s0 + 3) log p

󰀞
.

Given the definition of the prior Π, the expectation term is

󰁛

S:|S|≥L′s0

q|S|(1− q)p−|S|
󰀕

1√
2πτ

󰀖|S|
1

2πσ2
α

Eθ0

󰀗󰁝

ΘS(M)

Ln(θS)

Ln(θ0)
exp

󰀝
− 1

2τ 2
󰀂θS,−󰀂22 −

󰀂α󰀂22
2σ2

α

󰀞
pσ(σy)dθS1En,1(R)

󰀘
.
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Similarly, we define θS̃ ∈ R|S∪S0|+3 to contain θS for S and 0 for Sc ∩ S0.

By Lemma S2.2, we have
󰁝

ΘS(M)

exp{Zn(θS̃)} exp
󰀝
− 1

2τ 2
󰀂θS,−󰀂22 −

󰀂α󰀂22
2σ2

α

󰀞
pσ(σy)dθS

≤ exp{c′2(|S̃|+ 3) log p}

×
󰁝

ΘS(M)

exp{−c′3n󰀂θS̃ − θ0S̃󰀂22} exp
󰀝
− 1

2τ 2
󰀂θS,−󰀂22 −

󰀂α󰀂22
2σ2

α

󰀞
pσ(σy)dθS

≼ exp{c′2(|S|+ s0 + 3) log p− c′3n󰀂θ0Sc󰀂22}
2π

2c′3n+ 1
σ2
α

󰀕
2π

2c′3n+ 1
τ2

󰀖 |S|
2

󰁶
1

c′3n

× exp

󰀝
− c′3n

2c′3nσ
2
α + 1

󰀂α0󰀂22
󰀞
exp

󰀝
− c′3n

2c′3nτ
2 + 1

󰀂θ0S,−󰀂22
󰀞
,

since the value of σy is bounded and pσ(·) is a density function. The re-

maining proof then follows the proof of Lemma S1.5. □

Proof of Lemma S2.6

Similarly, we define B(η) = {θ ∈ Θ(M) : 󰀂θ − θ0󰀂2 > η} and B(L′, η) =

{θ ∈ Θ(M) : |S| < L′s0, 󰀂θ − θ0󰀂2 > η}. We have

Eθ0

󰀅
Π (B(η) | Y ) 1En,1(R′)

󰀆

≤ Eθ0

󰀅
Π (θ ∈ Θ(M) : |S| ≥ L′s0 | Y ) 1En,1(R′)

󰀆
+ Eθ0

󰀅
Π (B(L′, η) | Y ) 1En,1(R′)

󰀆
.

By Lemma S2.5, for some constant L′, the first term on the right-hand side

is bounded. By Lemma S2.4, the second term is bounded above by

Eθ0

󰀗󰁝

B(L′,η)

Ln(θ)

Ln(θ0)
dΠ(θ)1En,1(R′)

󰀘
q−s0(1− q)s0−p(2c′1nτ

2 + 1)
s0
2 (2c′1nσ

2
α + 1)

×
󰁳

c′1n exp

󰀝
c′1n

2c′1nτ
2 + 1

󰀂θ0,−󰀂22 +
c′1n

2c′1nσ
2
α + 1

󰀂α0󰀂22 + 2c′2(s0 + 3) log p

󰀞
.
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The expectation term can be written as

󰁛

S:|S|≤L′s0

q|S|(1− q)p−|S|
󰀕

1√
2πτ

󰀖|S|
1

2πσ2
α

Eθ0

󰀗󰁝

BS(η)

Ln(θS)

Ln(θ0)
exp

󰀝
− 1

2τ 2
󰀂θS,−󰀂22 −

󰀂α󰀂22
2σ2

α

󰀞
pσ(σy)dθS1En,1(R′)

󰀘
.

The remaining proof follows the ideas in the proof of Lemma S1.6. □

Proof of Lemma S2.7

The proof directly follows that of Lemma S1.7. □

Proof of Lemma S2.8

Similar to the proof of Lemma S2.6, we have

Eθ0

󰀅
Π (θ ∈ Θ(M) : S ∕= S0 | Y ) 1En,1(R′)

󰀆
≤ Eθ0

󰀅
Π (θ ∈ Θ(M) : |S| ≥ L′s0 | Y ) 1En,1(R′)

󰀆

+ Eθ0

󰀅
Π (θ ∈ Θ(M) : S ∕= S0, |S| < L′s0 | Y ) 1En,1(R′)

󰀆
,

where the first term is bounded for some constant L′. For the second term,

we follow the same idea in the proof of Lemma S1.8. □

S3 Details of the Variational Algorithm

In this section, we provide the updates for the non-hierarchical factors,

including πi and ci for i = 1, . . . , n, and (a1, b1) for σ2
y , as well as the

derivations of the CAVI updates of our variational algorithm in Section 4.
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S3.1 CAVI Updates For Non-Hierarchical Factors

For the non-hierarchical factors, the updates for q(δi) for i = 1, . . . , n are

Bernoulli with log odds ratio equal to

log
πi

1− πi

= xT
i (η

γ ⊙ µγ)

− a1
2b1

󰀋
µ2
1 + σ2

1 − µ2
2 − σ2

2 − 2
󰀅
yi − zTi (η

β ⊙ µβ)
󰀆
(µ1 − µ2)

󰀌
ti,

(S3.1)

where ⊙ denotes the element-by-element product. The updates for q(ωi)

for i = 1, . . . , n are PG(1, ci) with

ci =
󰁴

xT
i {D(ηγ ⊙ σγ2) + [ηγ(ηγ)T +D(ηγ ⊙ (1− ηγ))]⊙ µγ(µγ)T}xi.

(S3.2)

The update for q(σ2
y) is given by a1 = n/2 + 1 +

󰁓pZ
j=1 η

β
j /2 + a0 and

b1 =
1

2

󰀅
Y TY + (m2

1 + σ2
1)T

TE∆T + (m2
2 + σ2

2)T
T (I− E∆)T

−2Y T (µ1E∆T + µ2(I− E∆)T )
󰀆

− [Y − µ1E∆T − µ2(I− E∆)T ]T Z
󰀃
ηβ ⊙ µβ

󰀄

+
1

2

󰀃
ηβ ⊙ µβ

󰀄T
ZTZ

󰀃
ηβ ⊙ µβ

󰀄
+

1

2
tr
󰀃
ZTZ D

󰀃
ηβ ⊙ σβ2

󰀄󰀄

+
1

2

󰀃
ηβ ⊙ µβ

󰀄T
D
󰀃
ZTZ

󰀄 󰀃󰀃
1− ηβ

󰀄
⊙ µβ

󰀄

+
1

2σ2
α

(µ2
1 + σ2

1 + µ2
2 + σ2

2) +
1

2τ 2β

pZ󰁛

j=1

ηβj

󰀓
µβ2
j + σβ2

j

󰀔
+ b0.

(S3.3)
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S3.2 Proofs for the CAVI Updates

Since the updates of the non-hierarchical factors can be directly obtained

based on (4.8), we focus on the derivation of the hierarchical ones.

The optimal variational distribution minimizes the KL divergence, or

equivalently, maximizes the evidence lower bound (ELBO)

L(θ,φ) =
󰁝

q(θ,φ) log
π(θ)Ln(θ,φ)

q(θ,φ)
dθdφ

= Eq [log(π(θ)Ln(θ,φ))− log q(θ,φ)] .

Thus, we need to calculate the expectation with respect to the variational

distribution. Before diving into the details, we first present some prelim-

inary results to facilitate the calculation. The marginal expectation of ωi

from PG(1, c1) is given by Eq[ωi] = tanh(ci/2)/2ci. The expectation of

1/σ2
y is given by a1/b1. The marginal expectation of γ can be calculated

conditionally as

Eq[γ] = EIγEγ|Iγ [γ] = EIγ [I
γ ⊙ µγ ] = ηγ ⊙ µγ .

We are ready to derive the updates. For simplicity, we use C to repre-

sent a constant that does not affect the optimization process, with its exact

value potentially varying across different lines. For βj for j = 1, . . . , pZ , if

conditional on Iβj = 0, the variational posterior is δ0, and if conditional on
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Iβj = 1, we can express the ELBO as a function of µβ
j and σβ2

j ,

L(θ,φ) = Eq(Iβj =1)

󰀥
− 1

2σ2
y

󰀂Y −Zβ − α1∆T − α2(I−∆)T 󰀂22 −
β2
j

2τ 2βσ
2
y

󰀦

+ Eq(Iβj =1)

󰀥
1

2
log σβ2

j +
1

2σβ2
j

󰀓
βj − µβ

j

󰀔2
󰀦
+ C

=
a1
2b1

󰁫
2 [Y − µ1E∆T − µ2(I− E∆)T ]T zjµ

β
j − 2µβ

j z
T
j Z−j

󰀓
ηβ
−j ⊙ µβ

−j

󰀔

−
󰀓
µβ2
j + σβ2

j

󰀔
zTj zj

󰁬
− a1

2τ 2βb1

󰀓
µβ2
j + σβ2

j

󰀔
+

1

2
log σβ2

j + C,

where the subscript q(Iβj = 1) denotes that the expectation is taken with

respect to the variational distribution conditional on Iβj = 1. We then take

derivatives with respect to µβ
j and σβ2

j to get

∂L(θ,φ)
∂µβ

j

=
a1
b1

󰁫
[Y − µ1E∆T − µ2(I− E∆)T ]T zj

−zTj Z−j

󰀓
ηβ
−j ⊙ µβ

−j

󰀔
− (zTj zj + τ−2

β )µβ
j

󰁬
,

∂L(θ,φ)
∂σβ2

j

= − a1
2b1

󰀃
zTj zj + τ−2

β

󰀄
+

1

2σβ2
j

.

Then the updates conditional on Iβj = 1 is given by the maximizers

µβ
j =

[Y − µ1E∆T − µ2(I− E∆)T ]T zj − (ηβ
−j ⊙ µβ

−j)Z
T
−jzj

zTj zj + τ−2
β

,

σβ
j =

1

a1(zTj zj + τ−2
β )/b1

.
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For Iβj for j = 1, . . . , pZ , we maximize the ELBO with respect to ηβj :

L(θ,φ) = C + Eq

󰀗
− a1
2b1

󰀂Y −Zβ − α1∆T − α2(I−∆)T 󰀂22

+Iβj

󰀳

󰁃log
qβ󰁴
2πτ 2β

− 1

2
log σ2

y −
a1β

2
j

2τ 2βb1

󰀴

󰁄+
󰀓
1− Iβj

󰀔
log (1− qβ)

󰀶

󰀸

− Eq

󰀵

󰀹󰀷Iβj

󰀳

󰁅󰁃log
ηβj󰁴
2πσβ2

j

−

󰀓
βj − µβ

j

󰀔2

2σβ2
j

󰀴

󰁆󰁄+
󰀓
1− Iβj

󰀔
log

󰀓
1− ηβj

󰀔
󰀶

󰀺󰀸

= C +
a1
b1

󰁫
[Y − µ1E∆T − µ2(I− E∆)T ]T zjη

β
j µ

β
j

−(ηβ
−j ⊙ µβ

−j)
TZT

−jzjη
β
j µ

β
j − 1

2
zTj zjη

β
j (µ

β2
j + σβ2

j )

󰀘
+ (1− ηβj ) log

1− qβ

1− ηβj

+ ηβj

󰀵

󰀷log
qβ

󰁴
σβ2
j

ηβj

󰁴
τ 2β

− 1

2
(log b1 − ψ(a1))−

a1
2τ 2βb1

󰀓
µβ2
j + σβ2

j

󰀔
+

1

2

󰀶

󰀸 .

After taking derivative with respect to ηβj , the update for q(I
β
j ) is given by

the optimizer solving

log
ηβj

1− ηβj
=

µβ2
j

2σβ2
j

− 1

2
(log b1 − ψ(a1)) + log

qβσ
β
j

(1− qβ)τβ
.

Similarly, conditional on Iγℓ = 0, the update for γℓ is δ0 for ℓ = 1, . . . , pX .
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Conditional on Iγℓ = 1.

L(θ,φ) = Eq(Iγℓ =1)

󰀥
n󰁛

i=1

󰀗󰀕
δi −

1

2

󰀖
xT
i γ − 1

2
ωi

󰀃
xT
i γ

󰀄2
󰀘
− γ2

ℓ

2τ 2γ

󰀦

+ Eq(Iγℓ =1)

󰀗
1

2
log σγ2

ℓ +
1

2σγ2
ℓ

(γℓ − µγ
ℓ )

2

󰀘
+ C

= 1T (E∆− 1/2)xℓµ
γ
ℓ − (ηγ

−ℓ ⊙ µγ
−ℓ)

TXT
−ℓEΩxℓµ

γ
ℓ

− 1

2
xT
ℓ EΩxℓ

󰀃
µγ2
ℓ + σγ2

ℓ

󰀄
− 1

2τ 2γ
(µγ2

ℓ + σγ2
ℓ ) +

1

2
log σγ2

ℓ + C.

We take first derivatives with respect to µγ
j and σγ2

j to obtain the updates

µγ
ℓ =

1T (E∆− 1/2)xℓ − (ηγ
−ℓ ⊙ µγ

−ℓ)
TXT

−ℓEΩxℓ

xT
ℓ EΩxℓ + τ−2

γ

,

σγ2
ℓ =

1

xT
ℓ EΩxℓ + τ−2

γ

,

For Iγℓ for ℓ = 1, . . . , pX , the ELBO is calculated as

L(θ,φ) = C + Eq

󰀥
n󰁛

i=1

󰀗󰀕
δi −

1

2

󰀖
xT
i γ − 1

2
ωi

󰀃
xT
i γ

󰀄2
󰀘

+Iγℓ

󰀣
log

qγ󰁳
2πτ 2γ

− γ2
ℓ

2τ 2γ

󰀤
+ (1− Iγℓ ) log (1− qγ)

󰀦

− Eq

󰀵

󰀷Iγℓ

󰀳

󰁃log
ηγℓ󰁴
2πσγ2

ℓ

− (γℓ − µγ
ℓ )

2

2σγ2
ℓ

󰀴

󰁄+ (1− Iγℓ ) log(1− ηγℓ )

󰀶

󰀸 ,

and the updates are derived by solving

log
ηγℓ

1− ηγℓ
=

µγ2
ℓ

2σγ2
ℓ

+ log
qγσ

γ
ℓ

(1− qγ)τγ
.
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S4 Additional Simulation Results

In this section, we present additional numerical results on the comparison

of the proposed VB method with the scalable MCMC-based BVSA (Zhang

et al., 2025) and other subgroup identification approaches.

S4.1 Variable Selection with Correlated Covariates

We adopt the same settings as in Section 5.1 except that we now consider

the scenario where the prognostic covariates Z, as well as the predictive

covariates X, can be correlated. To account for this, we generate the co-

variates zi independently from a normal distribution with a mean vector

0 and pairwise covariate correlations of ρ = 0.25. The same generation

process is applied to xi.

We conduct VSM and BVSA following the same procedure as in Sec-

tion 5.1 and run 100 independent trials. The results are summarized in

Table 1. Similar conclusions hold under the scenario of correlated covari-

ates. Although the performance of VSM deteriorates due to the presence

of correlation, it remains comparable to BVSA across all settings when

n = 200. As n increases to 300, VSM shows a more substantial improve-

ment compared to BVSA, particularly when p = 2000, further supporting

our theoretical conclusions.
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Table 1: Finite sample results on variable selection performance under structured mix-

ture model settings when ρ = 0.25. VSM: our proposed method; BVSA: scalable MCMC-

based method (Zhang et al., 2025).

p n Method
β γ

TPR FDR F1 Ext TPR FDR F1 Ext

100

200
VSM 1 0 1 100% 0.930 0.053 0.933 77%

BVSA 1 0 1 100% 0.955 0.075 0.934 76%

300
VSM 1 0 1 100% 0.988 0.024 0.980 98%

BVSA 1 0 1 100% 0.993 0.075 0.953 97%

500

200
VSM 1 0 1 100% 0.893 0.130 0.874 63%

BVSA 1 0 1 100% 0.900 0.043 0.922 68%

300
VSM 1 0 1 100% 0.990 0.088 0.945 93%

BVSA 1 0 1 100% 0.948 0.035 0.951 91%

2000

200
VSM 1 0 1 100% 0.668 0.122 0.737 29%

BVSA 1 0 1 100% 0.625 0.121 0.710 20%

300
VSM 1 0 1 100% 0.915 0.058 0.919 79%

BVSA 1 0 1 100% 0.795 0.047 0.848 56%

S4.2 Estimation Comparisons with the MCMC Method

To evaluate parameter estimation accuracy, we analyze how the ℓ2 errors of

β, γ, and α change with increasing sample size. We consider both p = 100

and p = 500 settings and use the same true values of β0, γ0, and α0

as specified in Section 5.1. The averaged ℓ2 errors are obtained from 100

independent trials and presented in Figure 1 for p = 100 and Figure 2 for

p = 500.

As n increases, the ℓ2 errors and their standard errors decrease to-
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Figure 1: The ℓ2 errors of parameter estimation with growing sample sizes when p = 100.
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Figure 2: The ℓ2 errors of parameter estimation with growing sample sizes when p = 500.
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wards 0 for all parameters. The estimation errors of β and α are nearly

identical between VSM and BVSA across different model dimensions and

sample sizes, indicating that the variational approximation induces negligi-

ble bias in estimating the linear coefficients. For the logistic coefficient γ,

the gaps between the ℓ2 errors of VSM and BVSA are slightly larger. Nev-

ertheless, their overall performance remains comparable. Note that when

p = 100, VSM achieves smaller ℓ2 errors, suggesting that the proposed

variational method can even attain higher estimation accuracy than the

scalable MCMC-based counterpart.
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Figure 3: The difference of ℓ2 errors of γ estimation between VSM and BVSA with

growing sample sizes when p = 100 and p = 500.

To empirically illustrate the asymptotic behavior of variational approxi-

mation error, we examine how the gap between the γ estimation errors from
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VSM and BVSA changes with n. As shown in Figure 3, the gap exhibits an

overall shrinking trend as n grows, suggesting that the approximation error

introduced by VB converges to 0 with larger samples. This observation is

consistent with our theoretical findings, where the approximation error is

of order O(CM/Mn) in Theorem 1 and vanishes as Mn → ∞.

S4.3 Selection Frequencies Under Traditional Subgroup Settings

In this subsection, we provide additional analyses under the traditional sub-

group settings. The comparison methods are the same as those adopted in

Section 5.2, which are implemented using R codes (BVSA) and R pack-

ages partykit for MOB, MrSGUIDE for GUIDE, SubgrpID for PRIM and

SeqBT, and FindIt for FindIt. BVSA is implemented as described in Sec-

tion 5.1, and parameters for subgroup identification methods are set to the

recommended values.

We consider the two settings evaluated in Section 5.2 along with an

additional setting S0:

S0 : Y = 1 + Z1 + Z2 + 40t+ ε,

S1 : Y = 1 + Z2 + 40tI(X1>0,X4<1,X6=2) + ε,

S2 : Y = 1 + Z1 + Z2 + Z4 + I(Z6=2) + Z7 + 40tI(X1>0,X4<1,X6=2) + ε,

where ε ∼ N(0, 1). Setting S0 contains no meaningful subgroups and is

designed to examine the robustness of VSM against falsely identifying spu-
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rious subgroup structures.

We set p = 20 and n = 200, and generate all prognostic and predic-

tive covariates in the same way as described in Section 5.2. The selection

frequencies of predictive covariates averaged over 100 random replications

are reported in Table 2. We highlight two observations. First, under set-

ting S0, VSM tends not to select covariates when no subgroup exists and

achieves selection frequencies comparable to BVSA. In contrast, other sub-

group identification methods, particularly those based on splitting rules, are

more likely to mistakenly identify subgroups and select inactive covariates.

Second, under settings S1 and S2, VSM and BVSA successfully identify

all important predictive covariates, while other methods struggle to differ-

entiate between predictive and prognostic covariates, frequently selecting

inactive predictive covariates.

S4.4 Sensitivity Analysis of Initialization

In this subsection, we investigate the sensitivity of our proposed VSM to

different initialization approaches. We focus on the logistic component that

governs the predictive variable selection, while keeping the linear component

randomly initialized as implemented in our numerical studies. We compare

the proposed GUIDE-based initialization (GUIDE, Loh 2002) with the
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Table 2: Selection frequencies of predictive variables when p = 20.

(a) S0 : Y = 1 + Z1 + Z2 + 40t+ ε

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

VSM 0.02 0.04 0.04 0 0.01 0 0.02 0.03 0.01 0.02

BVSA 0 0 0 0 0 0 0 0 0 0

GUIDE 0.27 0.28 0.22 0.07 0.05 0.10 0.11 0.10 0.08 0.11

FindIt 0.08 0.01 0 0.02 0.03 0.05 0 0 0 0.02

PRIM 0.53 0.55 0.07 0.08 0 0 0.06 0.03 0.04 0.02

MOB 1 1 0 0 0 0 0.01 0 0 0

SeqBT 0.18 0.21 0.19 0.12 0.06 0.08 0.14 0.09 0.09 0.13

(b) S1 : Y = 1 + Z2 + 40tI(X1>0,X4<1,X6=2) + ε

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

VSM 0.90 0.05 0.01 0.78 0.01 0.97 0.01 0.01 0.01 0.01

BVSA 0.92 0.01 0 0.85 0.02 1 0 0 0 0

GUIDE 0.86 0.18 0.07 0.13 0.05 0.98 0.03 0.06 0.04 0.07

FindIt 0.99 0.84 0.81 1 0.86 1 0.93 0.86 0.80 0.89

PRIM 0.53 0.16 0.15 0.50 0 0.12 0.12 0.16 0.16 0.12

MOB 0.19 1 0.02 0.05 0 0.51 0 0.01 0 0

SeqBT 0.08 0 0.01 0.02 0 0.93 0 0 0 0

(c) S2 : Y = 1 + Z1 + Z2 + Z4 + I(Z6=2) + Z7 + 40tI(X1>0,X4<1,X6=2) + ε

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

VSM 0.90 0.03 0 0.75 0.04 0.97 0 0 0.01 0

BVSA 0.90 0.01 0 0.82 0.02 1 0 0.01 0 0

GUIDE 0.87 0.22 0.14 0.26 0.04 0.98 0.21 0.08 0.13 0.09

FindIt 1 0.84 0.84 0.99 0.87 1 0.92 0.82 0.80 0.86

PRIM 0.51 0.19 0.23 0.43 0 0.12 0.19 0.22 0.14 0.19

MOB 0.90 0.74 0.01 0.52 0 0.86 0.75 0.03 0 0.03

SeqBT 0.09 0 0 0.01 0 0.94 0 0 0 0
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following alternative approaches:

• MOB: initialize via the subgroup method MOB (Seibold et al., 2016);

• Random: initialize by randomly selecting active predictive covariates

with a predetermined size of min(5, 0.2pX);

• Zero: initialize without any active predictive covariate.

We begin with the mixture model setting described in Section 5.1 and

conduct simulations with n = 200 and varying p ∈ {100, 500}. The results

averaged from 100 random replications are summarized in Table 3. All ini-

tialization strategies yield similar performance across all metrics, indicating

that the proposed VSM is highly robust to initialization when the model is

correctly specified.

To comprehensively examine initialization sensitivity, we consider the

traditional subgroup scenario in Section 5.2. We adopt setting S1 with

n = 200 and p ∈ {20, 200}. Table 4 reports the results averaged from

100 random trials. GUIDE initialization achieves the highest F1 and exact

recovery (Ext) scores among all methods, demonstrating its advantage in

identifying active predictive covariates under model misspecification. Its

advantage becomes more evident in the high-dimensional case when p =

200. In contrast, the Zero initialization exhibits conservative behavior,
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Table 3: Predictive variable selection results under structured mixture model settings in

Section 5.1 for n = 200 and p ∈ {100, 500}. “GUIDE”: initialization via GUIDE (Loh,

2002); “MOB”: initialization via MOB (Seibold et al., 2016); “Random”: initialization

with random predictive variable selection; “Zero”: initialization without any predictive

variable.

Mixture model p = 100 p = 500

TPR FDR F1 Ext TPR FDR F1 Ext

GUIDE 0.955 0.036 0.956 90% 0.903 0.126 0.881 64%

MOB 0.945 0.027 0.955 89% 0.903 0.126 0.881 64%

Random 0.953 0.032 0.956 91% 0.900 0.141 0.871 64%

Zero 0.948 0.031 0.954 90% 0.905 0.121 0.884 64%

with notably lower TPR and FDR values, underscoring the importance of

providing an informative initialization to guide the variational optimization.

It can be concluded that VSM is strongly robust to initialization when

the model is correctly specified. Furthermore, under model misspecification,

the proposed GUIDE-based initialization can lead to more accurate variable

selection.

S4.5 Sensitivity Analysis of Hyperparameters

To examine the sensitivity of VSM to the spike-and-slab prior hyperparame-

ters, we conduct analyses under the structured mixture model setting speci-

fied in Section 5.1 with n = 200 and p ∈ {100, 500}. We vary each hyperpa-
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Table 4: Predictive variable selection results for S1: Y = 1+Z2+40tI(X1>0,X4<1,X6=2)+ε

for n = 200 and p ∈ {20, 200} in Section 5.2. “GUIDE”: initialization via GUIDE (Loh,

2002); “MOB”: initialization via MOB (Seibold et al., 2016); “Random”: initialization

with random predictive variable selection; “Zero”: initialization without any predictive

variable.

Tree model p = 20 p = 200

TPR FDR F1 Ext TPR FDR F1 Ext

GUIDE 0.873 0.031 0.891 77% 0.703 0.268 0.662 38%

MOB 0.727 0.024 0.786 69% 0.533 0.161 0.586 25%

Random 0.724 0.047 0.793 68% 0.507 0.196 0.591 20%

Zero 0.580 0.008 0.693 63% 0.477 0.067 0.585 19%

rameter independently while keeping the others fixed at their recommended

values in Section 4.3. Specifically, we consider qγ , qβ ∈ {0.1, 0.2, 0.3, 0.5}

and τγ , τβ ∈ {0.8, 1, 1.3, 1.5}. The variable selection performance summa-

rized from 100 random trials is provided in Table 5.

We can draw the following conclusions from Table 5. First, for qβ and

τβ in the prior of the linear coefficients, the performance on both β and

γ remains nearly identical across different values, indicating that VSM is

highly robust to their choices. Second, varying τγ in the prior of the logistic

coefficients has only a minor influence on the predictive variable selection,

and the prognostic variable selection remains perfect in all settings.

Third, the choice of qγ plays a more substantial role in identifying the
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Table 5: Performance on variable selection under structured mixture model settings in

Section 5.1 with n = 200 and p ∈ {100, 500}. When one prior hyperparameter varies,

other hyperparameters are set as recommended.

Hyper p Value
β γ

TPR FDR F1 Ext TPR FDR F1 Ext

qγ

100

0.1 1 0 1 100% 0.728 0.001 0.827 83%

0.2 1 0 1 100% 0.828 0.010 0.893 86%

0.3 1 0 1 100% 0.895 0.010 0.934 88%

0.5 1 0 1 100% 0.955 0.036 0.956 90%

500

0.1 1 0 1 100% 0.693 0.008 0.799 56%

0.2 1 0 1 100% 0.790 0.025 0.859 59%

0.3 1 0 1 100% 0.863 0.033 0.901 65%

0.5 1 0 1 100% 0.903 0.126 0.881 64%

qβ

100

0.1 1 0 1 100% 0.955 0.036 0.956 90%

0.2 1 0 1 100% 0.955 0.036 0.956 90%

0.3 1 0 1 100% 0.955 0.036 0.956 90%

0.5 1 0 1 100% 0.955 0.036 0.956 90%

500

0.1 1 0 1 100% 0.903 0.126 0.881 64%

0.2 1 0 1 100% 0.903 0.126 0.881 64%

0.3 1 0 1 100% 0.903 0.128 0.880 64%

0.5 1 0 1 100% 0.903 0.126 0.881 64%

τγ

100

0.8 1 0 1 100% 0.958 0.062 0.943 87%

1 1 0 1 100% 0.953 0.051 0.947 88%

1.3 1 0 1 100% 0.955 0.036 0.956 90%

1.5 1 0 1 100% 0.955 0.033 0.957 90%

500

0.8 1 0 1 100% 0.905 0.159 0.864 62%

1 1 0 1 100% 0.908 0.150 0.871 64%

1.3 1 0 1 100% 0.903 0.143 0.872 63%

1.5 1 0 1 100% 0.905 0.133 0.879 63%

τβ

100

0.8 1 0 1 100% 0.955 0.036 0.956 90%

1 1 0 1 100% 0.955 0.036 0.956 90%

1.3 1 0 1 100% 0.955 0.036 0.956 90%

1.5 1 0 1 100% 0.955 0.036 0.956 90%

500

0.8 1 0 1 100% 0.903 0.126 0.881 64%

1 1 0 1 100% 0.903 0.126 0.881 64%

1.3 1 0 1 100% 0.903 0.126 0.881 64%

1.5 1 0 1 100% 0.903 0.126 0.881 64%
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true predictive model. Large values of qγ , e.g., 0.5, tend to include more

predictive covariates in the model, whereas smaller values of qγ , e.g., 0.1,

induce more sparse results. Overall, the variations in the performance on

γ are mild. The choice of qγ exhibits a clear trade-off between TPR and

FDR, and the recommended value of 0.5 achieves a satisfactory balance

with high F1 and Ext scores across different p.
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S5 Additional Information on the Real Application

S5.1 Posterior Inclusion Probabilities in the IWPC Dataset

The posterior inclusion probabilities of all covariates are shown in Figure 4.
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Figure 4: Posterior inclusion probabilities for the IWPC dataset with prognostic on the

left and predictive on the right.

S5.2 Additional Results on the ACTG 320 Study

The ACTG 320 dataset comprises 852 observations, with 423 patients re-

ceiving the three-drug regimen and 429 patients in the control group. The

pre-treatment covariates include sex, injection-drug use (dr), hemophilia

(hemo), weight (wt), and Karnofsky score (Ks), months of prior zidovu-
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dine (zido), age, log baseline CD4 counts (Lc), log baseline HIV-1 RNA

concentration with base 10 (Lr), and indicators for African (Afri) and

Hispanic (Hisp) ethnicity.

The variational posterior inclusion probabilities of all covariates esti-

mated from VSM, including noise variables, are shown in Figure 5. Based

on the results that Lr and Lc are selected as the only active prognostic and

predictive covariates, the estimated model that includes only the identified

active variables is given by

Y ∼π̂N(−63.1 + 10.99Lr − 39.9Lc + 139.25t, 8.572)

+ (1− π̂)N(−63.1 + 10.99Lr − 39.9Lc − 7.63t, 8.572),

log[π̂/(1− π̂)] = 3.49 + 1.06Lr − 3.38Lc.
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Figure 5: Posterior inclusion probabilities for the ACTG 320 study with prognostic on

the left and predictive on the right.
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To validate the identified subgroups, we empirically examine the treat-

ment effects across different subgroups. Patients are divided into two sub-

groups based on the estimated π̂ using a threshold of 0.5. Figure 6 presents

box plots of the response under treatment and control conditions for each

subgroup. In Group 1, the two box plots are distinctly separated, indicat-

ing a strong treatment effect. In contrast, in Group 2, the box plots exhibit

substantial overlap, suggesting a weaker or negligible treatment effect. This

difference in treatment effects between the two subgroups underscores the

validity and meaningfulness of the identified subgroups.
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Figure 6: CD4 count change at week 24 under treatment and no treatment in two

subgroups, where the subgroup membership is determined by the predicted subgroup

proportion with a threshold of 0.5.
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