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Section S1 contains the proofs of the results under the case of a known noise variance in Sec-
tion 3.2. Section S2 extends theoretical results to the unknown variance case with the proofs.
Section S3 provides CAVI updates and their derivation. Section S4 reports additional simulation

results. Section S5 presents additional information and results on the two real applications.

S1 Proof of Theoretical Results Under Known Vari-

ance Case

In this section, we provide the proofs of the theoretical results in Sec-

tion 3.2, where a known o is assumed. Before entering the proof of the

2
y
main results, we first state several important lemmas whose proofs are de-

ferred in Section S1.2. We denote the log-likelihood as 1,(0) and, for any

model S, [,,(60s) represents the log-likelihood with 8sc = 0. We define
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Zn(05> = ln(es) — ln(aos) and

1Z,(0s) —EZ,(65)|
V, =sup sup — ,
s£eg®£u)n 105 — Bosl1 V Ao

where § is the considered model space and Ay = /log p/n.

Lemma S1.1. Under Condition 1, for @ € ©(M) there exists some constant

cg > 0, such that for any constant R > cg, we have as n — oo,
P(V, < R)\y) — L.

Further under Conditions 1 and 2, for some constants ¢, co, c3 > 0, it holds

that on {V,, < RAo},
Zn(05) > —c1in||@s — Oosl5 — 2¢2(]S| + 2) log p,

Zn(05) < —c3nl|@s — Bosl|3 + c2(|S| + 2) log p.
Lemma S1.1 constructs an event with probability going to 1 and states
that if this event holds, the divergence between the log-likelihoods of O¢
and Og, i.e., Z,(0s), is bounded both above and below in terms of the /;

error ||@s — Bgs||3 and model size |S].

Lemma S1.2. Let © be a subset of the parameter space © and 6, be the
underlying true parameter. For any event £ and any distribution @) for 6,

if there exists some C' > 0 and &, > 0 such that

Eg,[TI1(6 € © | Y)1g] < Ce ™, (S1.1)
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then

Eo,[Q(6 € 6)14] < 53 (oo [KLIQ(O)[|TI(0 | Y)]1¢] + Ce /) . (S1.2)

n
Lemma S1.2 builds a connection between the variational distribution
and the exact posterior distribution. To leverage Lemma S1.2, we define

the following events for R defined in Lemma S1.1 and L, M;, M, > 0:

Enn(R) ={V,, < R\o},

€,2(L) = {118 € O(M) : S| < Lso | Y) > 3/4},

Ml'\/ So logp | Y) < e—Mgsologp}

gn?g(Ml,Mg) = {H (0 S @(M) : ”0 — 00”2 > =
X1 Al 2]l

(S1.3)

where Z = (Z,T). We further define
gn - gn,l(R) ﬂ Sn,Q(L) ﬂ gn,g(Ml, Mg),

and our ultimate goals are to establish the upper bounds in (S1.1) and
(S1.2) on &, with respect to some predefined subspaces O. We first state
the following lemma to bound the KL divergence between the variational

posterior and the exact posterior.

Lemma S1.3. Under Conditions 1-3, for sufficiently large p and some con-

stant Cx > 0, we have

KL[Q"(0)[[T1(0 | Y)] ¢, < Cxsologp. (S1.4)
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Based on the results of Lemma S1.3, we are left to prove the posterior

contraction results on the event &,.

Lemma S1.4. Under Conditions 1-3, on &, 1(R), we have

L,(0
/ ) 111(6) > ¢ (1 = )™ exp{—2ca(s0 + 2) log p}
o) Ln(00)

50

1 2 1
>< e — e
<2cm7’2 + 1> (2017103 + 1)

X exXpd ———— |18 |2 b exp q ————[|ax||2 b,
2eint2 +1" " 2c1no2 + 1

where 8y = (85,v)".

Lemma S1.5. Under Conditions 1-3, for L > 2 4 5¢a(so + 2)/so,

1
Eg, [I1(6 € ©(M) : |S| > Lso | Y) ¢, ,(r)] < exp {_S(L —2)sg logp} :

Lemma S1.6. Under Conditions 1-3, for M; > \/2)\2(502 + 2+ 8cy/s0)/c3

and L satisfying the condition in Lemma S1.5,

Mi+/sglogp
o {n (0 €O(M): |6 — By, > V08P y ) g
I X[ ANZ]

M?s,1 L —2)sy1
jexp{—63 ;ilogp}_l_exp{_( )550 ogp}.

Lemma S1.4 provides a lower bound on the normalizing constant for

obtaining the posterior probability of any subspace. Lemma S1.5 establishes
a bound on the posterior probability of selecting models with sizes larger
than a multiple of sg, forming the basis for proving Lemma 1. Lemma S1.6
bounds the posterior probability of choosing @ with large /5 distance from

6,, preparing for the proof of Theorem 1.
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Lemma S1.7. Under Conditions 1-3, for R defined in Lemma S1.1, L
defined in Lemma S1.5, M; defined in Lemma S1.6, and My < (cM2/2X3) A

((L—2)/5), as p — oo, we have
Pgo [g;,i] — 0.

Lemma S1.7 guarantees &,, holds with probability going to 1 under 6.
Combining Lemma S1.5, S1.6, and S1.7, we are able to prove Lemma 1
and Theorem 1. To further obtain model selection consistency of the VB

posterior, we need the following result on the exact posterior.

Lemma S1.8. Under Conditions 1-4, for k,, > (2cas0/c3) V (2((3ca+2)s0+

8¢3)/casg) and L defined in Lemma S1.5, we have

Eo, [I1(0 € O(M): S # Sy |Y)le, ()]

< 3exp{_czﬁ;nsologp} +exp{—(L_2)SOIng}.

2 )

S1.1 Proof of Main Results
Proof of Lemma 1
By Lemma S1.5, for L,, > Lo := 2 + 5¢a(s0 + 2) /50,

1

Eg, [I1(0 € ©O(M) : |S| > Lpso | Y) 1g,] = exp{ 5(Ln —2)sg logp} )
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By assigning &, = (L, — 2)splogp in Lemma S1.2; we have for some

1
5
constant C7, > 10Ck,

Eg, [Q" (0 € O(M) : |S| > Ly,so) 1¢, ]

10 1
1 ——(Ly — 2)sp1
L. —2)sologp [CKSO ogp+exp{ = )50 ngH

100}( C’L
< < — .
< Ln_2<1+0(1)) <O (Ln>

Thus the targeted expectation can be bounded by

Eo, [Q7(8 € O(M) : [S] > Lnso)]

<K, [Q" (0 € O(M):|S| > Lynso) le,] + Po, (€] < O (%) +o(1).

n

O

Proof of Theorem 1

By Lemma S1.6, for M,, > My := 2X3(5¢o + 2 + 8¢a/s0) /c3,

Ey, [H (e € O(M) : 6 — By, > YnsoloBD | Y) 1gn]

1X[1 v [1Z]]
M, s0l L, —2)sgl
jexp{—63 QTZOgP}jLeXp{_( 5)50 ogp}.

Since M,, grows more slowly than L,, by assigning &, = %Mnso logp in

Lemma S1.2, we have for some constant C; > 4X\2Ck /cs,

V MnSO Ing
Eo {Q* (0 €EO(M):||0 -6yl > ———F2— | 1¢g,
’ 1 X[ v Z]l
4\ cs M, sologp
<2 1 2 _ S0 060
- C3Mn80 lng |:CK80 ng+ exp{ 2/\2

4)\20}{ C’M
< < — .
<L (I1+0(1)) <O (Mn)
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Thus the targeted expectation can be bounded by

\/Wlogp”

Eg, [Q* (0 €O(M): |0 — 62> =
IXIV 2]

VM, sqlogp
< Eq {Q* (0 €EO(M): |0 -0yl > -———2—|1g, | + Po,[E]
’ 1 XV ]l i
<O (%) + o(1).
O
Proof of Theorem 2
By Lemma S1.8, for k, > ko := (2cas0/c3) V (2((3ca + 2)s0 + 8¢2)/cas0),
Ego [H(0 € @(M) ) 7§ So | Y) 1gn]
< 3exp {_Cg/’inSO logp} - {_(Ln —2)s0 logp} '
2 5
Since #, grows more slowly than L,, by assigning &, = Fk,selogp in

Lemma S1.2, we have

]Ego [Q* (0 € C“)(M) - S 7'é So) lgn]

4 nSol
CoknSologp 2
4C C,

<—L1+401)<0O (—) :
CoRnp Rn

where Cyy > 4Ck /co. Thus the targeted expectation can be bounded by

Eo, [Q" (60 € ©(M) : S # S))]

< B [0 00N 5 £ 51+ Fulé) < O () +ol1).

Kn



RUQIAN ZHANG AND JUAN SHEN

S1.2 Proof of Technical Lemmas

Proof of Lemma S1.1

This lemma is modified from Lemma 3.1 and Lemma 3.2 in Zhang et al.
(2025), where we substitute the value of )\ into the inequality and refine

the constant terms.

Proof of Lemma S1.2

This lemma is modified from Theorem 5 in Ray and Szabé (2022).

Proof of Lemma S1.3

The exact posterior can be written as

IO |Y)=> wslls(0s|Y)® d(Ose),
ses

where wg denotes the posterior model weights satisfying 0 < wg < 1 and
ZSE sWs = 1 and IIg denotes the distribution with respect to model S.
Since the VB posterior Q* minimizes the KL divergence from the exact

posterior, we have
KL[Q"(0)[|T1(6 | Y)] < KL[Q(6)([11(6 | Y')],

for any @) € Q. To establish an upper bound on the KL divergence, we

carefully design a Q € Q, where for any model S, the VB posterior can be
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expressed as

Q(O) NS(OSaH‘SaDS ®50 BSC HN J?H’S]aaS] X H (50

jes jese

where Ng denotes an |S|+2 dimensional normal distribution corresponding
0 (Bg,vg, ). We set
ps = 0os — (1 +772) X505,
ZsZs O 0
S5 =Qen+m s+ 0 w0 |-
0 0 XiXg

with Dg = diag(Xg) being the diagonal matrix. Since the chosen @ is only
absolutely continuous with respect to wslls(@s | Y) ® dg(Osc) in I1(0 | Y),

we have
dNs(0s; pg, Dg) @ 60(0se)
wgdllg(Os | Y) ® dp(Osc)

KL[Q(0)|[IL(8 | Y)] = E; |log
(S1.5)
= log wig + KL[Ns(0s; g, Ds)||IIs(0s | Y)].

We first claim that on the event &,, there exists a model S satisfying

the following properties:

Mi+/soplogp NS

S| < Lso,  [10p]l2 < P > (20) p .
XAl

p

On &, we have
M \/solog
6 : [[6osc|> > 'Y
1X [ A 1Z]]

( 16— 8y, > Mrvsolozp

| Y) < exp{—Mssglogp} — 0.
111 A1 Z]]
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Thus the posterior weights satisfy

I

N —

N 3
Z wg Z Z - eXp{_M280 10gp} Z
S:|S|<Lso,
80 [la< May/50 18

IXTAIZ]
with the number of elements in the sum bounded by
()5
o\ AT 7
which implies that there exists at least a model S of size |S| < Lsy with

—Lso . . § < o
P satisfying ||@yg. |2 < AL

posterior weight wg > (2e)
(S1.5), the first term is bounded by 2 + Lsqlog p.
Denote Qg = Ng(84; pg, Dg) and the second KL term in (S1.5) can be

rewritten as

ng(eg;us,Es)] _ (S1.6)

KLIQs N0 s 55)] + B, [log T L5

The KL divergence between the two multivariate-normal distributions QS

and Ng(0g; pg, Xg) can be expressed as

. 1 dg = _
KLIQs N0 s 55)] = 5 Jlog 155 = 18] - 2 (55 D).

By definitions, tr(X3'Dg) = |S| + 2 while their determinants are

57T - ~|8sl-1 e
Sl < (Awin(Z5Z5) +2esn+772) 7 (04) ™! (i XEX ) + 269+ 772) 7

v —151-1
< TL_|S|—2 (Al + 263 + —2) )\2_17
nrt
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and
|Sgl+1 o 1 |Sy| 1
D' = H [(Zng)jj + 2¢3n + ﬁ} nAs H [(Xng)ee + 2c3n + )
j=1 =1

~ 1Sg|+1 X
< (1212 +2e5m +772) " ndg (IX |2 + 269m 4+ 77%)"™!

. |S]+1
S n|5|+2 ()\2 -+ 203 + —2) )\2.
nTt

Combining the above bounds, we have

1S]+1
L oo (2212 Lso+1. [do+2
[QSHNS(O&M&ES)] 51 ( 2 C3+n72) < 50 + log( 9+ 2c3 +

)\1 + 263 + o) 2 )\1 -+ 203 +

and thus the first term in (S1.6) is bounded by O(Lsg). We are only left
with the second non-diagonal term in (S1.6).

The probability density of the exact posterior I1g(0g | Y') is propor-
tional to

1
exp {1,(03) ~ 1,005) = 5165~ 0513

1
T
7-2008 (05,— - 905,—) T 992 ||a||§} )
where 85 = ( g, v§)". Thus the non-diagonal term can be rewritten as

) dNg(0g; g, Xg)
S

_E, |og b exp{—3(05 —005) 251 (05 — 6p5) — (B — pg) 25 (05 — 045)}
©s D—Hexp{zn< §) = 520105 — 005 I3 — 5005 (05 — 005 ) — 5z llex]l3}
Dry 1 B B
= log D_N + EQ [ 9 (05 - OOS)ngl(OS - 003“) - (005' - NS)ngl(BS - 003‘)

1 1 1
~2,(63) + 513105~ 8053+ 0% (O 605 )+ 5zl
(S1.7)

1
nt?

1 )
nt2

|
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where

1 _ J—
Dy = /@ an exp {—5(95 — 003)7’231(09 —0,5) — (0yg — ”S)Tzsl(eg _ 005)} d6
g

1 1 1
Du= [ e {206~ 5505~ 05 1B~ 56l (65~ 005 )~ 5l | b
©5(M) o
We first bound the ratio of the normalizing constants. Define the subspace

2Mi+/sglogp
Bg = {95 € O5(M) : [|05 — Oyz2 < #}

IX[A1Z]

If we define 85 € RP with 04 for S and 0 for S¢, then on &,,

_ 2M+/sg lo
(55| ¥) < 115 (05 € 0400 8~ Bull + sl > SV HEL )
XA [Z]
My+/50Tog p
gn(ee@w) (10 — @ylp > V008D Y)
| X[ A1 Z]]
1
< exp{—M,splogp} < 3
Using Bayes’ formula, we have on &,
[Ig(Bs | Y)
Sy 0 {Z0(05) = 521105, — Ons, |3~ 5605 (05— 0us) — 5 llall3 } d

= >
Jouan 0 { Z0(05) = 5521105 - — 005 |3~ 5605 (05— 8ys) — 55 llall3} db

N | —
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Thus on &,, the log ratio log(Dn/Dy) is bounded by

1 2 [, exp {Zn(eé) — 370105 — 00515 — 56055 (05— —0p5_) — ﬁllaﬂg} d0g
og — —
Jogary &P {=3(05 — 005)"S5 (05 — O5) — (8o — 15) X" (05 — Bys) } g

<log sup exp {—czn||0z — Oyz3 + ca(|S| +2) logp
OSEBS‘

1 1 1
- FHHS,— - 903,—“3 - ﬁHaH% - ;953,_(93,— - gos,—)

[e%

1 . .
+5(05 = 003)" T (05 — 0p5) + (Bos — p1g)" T (05 — 905)} +log 2

1
< ¢o(Lso+2)logp — ﬁHaOH% + log 2

1 - ~
+ sup {—5(95” —005)" [(2csn + 7715 — 351 (85 — 6y3)

GS‘EBS

_ 1
+ [(005* - NS)TESI - ﬁegb‘] (05 — 905‘)} :

By the definitions of pg and X4, if we define Bs = (ﬁg, a1)T, the sup term

is bounded by

1,5 =~ ~ 1 1
sup {§HZ§(35~ — Bos) I + 5ndalas — am) + 1 X (s — Yos) I + 0T - 005,)}
0s€Bg

1
< sup {3mrals - 80513 + 16012105 - Ol
05635
2\
h\ 2M1280 logp + MHOOSHQ

S ——
1

Thus the log ratio of the normalizing constants is controlled by O(sqlog p).

We now deal with the expectation term in (S1.7). By Lemma S1.1, on



RUQIAN ZHANG AND JUAN SHEN

&y, it is bounded by

. 1 _
2¢5(]S] +2) logp + Eg | =5 (685 — 05) 25" (05 — 6y3)

— (85 — 13) 251 (05 — Oy5) + c1n|05 — 0513

1 1 . 1
3rallBs. — Bus B+ 50 (05— 815, ) + 55 o]
5 1 Ty—1 1 -1
= 205(|S| +2)logp — S (ks — 005) By (g — bpg) — 5 tr(Zg Ds)

_ 1
— (85 — 13)" 25" (g — Bp3) + <01n + ﬁ) ([t — 0psll3 + tr(Dy)]
1 ., 1
+ —500s(1g — 0o3) + Eqg {E
IS|+2 1

5+ 5 (1+ 77055550,

1

ez = 5= (el = [leoll3)
2T

< 202(|S| +2)logp —

1
- <C1n + ﬁ) [(1+772)%00:5%0,5 + tr(Dg)] +

ﬁ“aoﬂg

1 1 1 _ 2
- (; + ;) 005 5005 + 55 [OoTs (Zs = (1+77%)85)" O5 + tr(Ds)] :
By the definition of Dg and Xg, the trace is bounded by

|5’g‘+1

1 1
tr(Dg) = 7 + —
j; (Zgzs')jj 4 2n 472 Nht2an+T 2
EM =
1 < |S|+2

+ < )
Zz:; (XgXS)gg + 2c3n + 772 2c3n

and the quadratic forms are bounded by

1 1
0,:|2 <0120, < 0112
n)\2—|—2cgn—|—7'—2H 05ll2 < 855005 < n/\1+263n+7—2“ 052
and
1 2 T 2 1 2
51600sl5 < 055505 < 5 [160sl2-

(nAg + 2¢c3n + 772) (A1 + 2¢3n + 772)
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On &,, the expectation term is bounded by

S| +2 1

263(13] + 2)logp — 20 + S {1+ T 6y
* Lil?jog + %”O{O”% B % (1 + %) nio + 2013n + 772 HOOSHE
9 ~2)2

* % {1 a 2n/\2 —i ;—c;-n +772  (nA (i ;c;-n —2 7'—2)2} 1905112

< 2esLsologp + 5 Lso + 55 el

+ ey 1Ousl + 571801 + s sl

which is of the order O(sglogp).
Combining all of the above bounds gives the result. O

Proof of Lemma S1.4

By the definition of the prior II, the desired integral is a weighted sum over
all models. Since each summand is non-negative, the integral is bounded

below by

_ 1 50 1 Ln(HS ) 1 2
qso 1_qp so< > ( )/ —Oexp —— @ —I5 —
S 2nT 210, ) Jeg, () Ln(Bos) 272 19502

el

2
20¢,

} o,
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By Lemma S1.1, on &,;(R), the integral term in the above display is

bounded below by

exp{Z,(0s,)} exp 5 51050, 112 So
O, (M) T

2
202

> exp{—2cy(so + 2) log p}

<[ ew{-anlos - ouslz - 10518 - 122 L aos,
eSO(M) 2T O,

Since |05, — Oos, |l1 < V/s0 + 2|05, — s, |2 and

M2 so+2 M2
_ 2 < ) = 00)° < ———
{”950 0050”2 — So + 2} - JQ {(9‘7 90]) - (80 + 2)2 } ’

we can shrink the integral space and bound the integral from below by
M

/{HGSO —0os, ||2§7m

>/ exp{—cm”@s — 005, |12 — 160,113 . HaH%}dHS
I {6002 < M0 ) o 7 Y0Sllz T o 202 0

(50+2)2

150,115 _ [lexll3
}GXP{—CWHOSO — 605,113 — 2:_2 2 20; dbs,

M
90]' + Sot+2

1
= H exXp {—cln(ej — 00]')2 — —02} dgj

Qo M 27’2 J
7€S50 07 s0+2
2

M
a0t 5o+3 , 1,
X H exp § —cin(o; — apj)” — = ¢ doy.
1V/a g

. M
J= 077 50+2
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By defining u; = (0; — QCIQfo_lg 00;)/ /ﬁ, each integral for j € Sy can

be written as

Port 2 2 L s
o exXp {—cln(6’j - eoj) — FQJ} dQJ
GOJ—W
foi+ 5952 2cin + % 2c1n 2 cn
= e S P g - — ) - —— 028 dh,
/eoj_% P 2 ( T 2em+ 5 OJ) 2ernt2+ 1% (7
50

Y ST Oy B
2einT2+ 1Y 2c1n + T—12

1 T .M 1

V72 2oz it sz /20t 2 1,

X exp § —5u; o duy.
—12— 1 eoj——M 2C1’I’L+—12- 2

V 2\ 2c1n7—§+1 spt+2V T

As n — oo, the integral interval goes to R, and thus

00+ 5ot 1 cmn 2
expl —cin(f; — 0;)> — —62 5 db; = expd ————— 62, —_
/goj_so% p{ (0 = o) 272 J} ! p{ 2eint? + 1% 2010 + %

Similar results hold for the integral of o, and we have

Ln(a) S0 pP—s0
/@(M) Ln<90)dﬂ(0) 2 q*(1-q) exp{—2c,(so + 2) log p}

1 2 1
X e — —_—
<201n7'2 + 1) <2clnafY + 1)

X exXp —=—— |18 |2 b exp ——— ' —[[ax||2 b -
2eont? +1" 7 2cino2 + 1
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Proof of Lemma S1.5

By defining the event A(L) = {0 € O(M) : |S| > Lsg}, the left-hand side

can be rewritten as

Jawy Ln 00 dI1(6)
LdII(6)

EOO [H(A(L) | Y)lgn,l(R)} = Eeo En,1(R)

J; o(M) Ln(eo

Using the results in Lemma S1.4, the right-hand side is bounded above by

Eg, / L:(9) dIL(0)1e, ,(r)| (1 — )* P (2c1n7” + 1)# (2cin07, + 1)
Ay Ln(60) "

cn 9 can
exp {5t 1001+ 5l + 2ea(s0 + Do

Given the definition of the prior II, the expectation term is

51
S gl gps (\/21_M> 27303

SZ|S|2LSQ

Ln(05s) { 1 2 _ HaHz} }
Eo, exp { — Os,_ dOslg, |(

We define 85 € RI¥US01+2 to contain g for S and 0 for S°N Sy and the

corresponding true parameter is given by 8,5 with 6, for Sy and 0 for S§N.S.



S1. PROOF OF THEORETICAL RESULTS UNDER KNOWN VARIANCE CASE

Then we can rewrite L,,(0s)/L,(0) = exp{Z,(03)}, and by Lemma S1.1,

/ exp{Z,(03)} exp {_%Hg&_”g _ ||a|2|§ } 105
©s5(M) 2T 202

< exp{cy(|S] + 2) log p}

1 all?
x/ eXp{—anHeg—Oogﬂg}exp{—ﬁugs’_ug_ I HQ}dOS
Os(M) T

2
202

< exp{ca([S] + so + 2) log p}

_ B 2 9 16s-113 el
X exp{—c3n(||@s — Oosl|5 + [|Qos:|3) } exp dfs
O

272 202

9 27 2m 2
2} i i
2c3n + =) 2c3n + =

X e —— || ¥ e ———||0¢ps — .
0 { g laal} pesp {5 l6us. I3}

= exp{ca(|S| + so + 2) log p} exp{—csnl|Bos:

Since the above display does not include Y, the expectation only involves

the indicator variable 1g, | (g) With Eg,[l¢, ,(r)] < 1. Thus we have

Boo [/A(L) LL:(<900)) dn(a)lgn’l(m}

< —_— — 5 |60s - |5 — c3n||Bose
< 5 o5l — 5 6as 1§ - cunlos 3
S:|S|>Lso
11
x explea(|S] + 50+ 2)logp}g¥l (1 — g (L )T L |
2can7t? + 1 2¢c3no? + 1
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Then the posterior probability of our desired event is bounded by

Eg, [H(.A (L) | Y)le, ] <q (1 — q)so_‘f"(chm'2 + 1)%0(2017103 +1)

cin
X exp {2 v 160,15+ m“ang + 2¢5(s0 + 2) logp}
1l
Z #5101 = g9 1 ’ 1
= 2csn7t? + 1 2¢3no2 + 1
X €xp {02 S|+ s0+2)logp — WHQUHQ - ﬁ”eos—“z c3n||Bose 2}
< (1 = q)*(2cn7> + 1) 7 exp {#MHBO |13+ 3ca(s0 + 2) logp}
N
|S] =S
>, l-q) <72>
1SS Ls0 2cant? + 1

exp {50 60s 1B - cunlluse [} + el oz

Since the model size is a non-negative integer, we define k = | (L — 1)s¢]

where (L —1)sp — 1 < k < (L — 1)sq. The probability is bounded above by

q*SO(l — q>50<201n7'2 + 1)%0 exp {QTfTﬁH 0, _”2 + 3CQ<80 + 2) logp}
N
|5| =151
X —
Z (2037172 + 1)

S:|S|>s0+k

XeXP{ 2, n72+1|| Bos.— |5 — canl|Boge §+C2|5|10gp},
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and, by listing all candidate models, the above is bounded by

30
2

¢ (1 — q)*(2cin7? + 1) 2 exp {3ca(so + 2) log p}

d
PN ary _ \-d 1 ’
Xy (d)q(l 9) (2637”“1) exp {cad log p}

d=so+k

= exp {3c2(s0 + 2)logp + (2 + 1)s9 log p}

d—sg

; q d—so 1 5 ;
Yoot (L S — log p}4=*.
b (1 - q) (203717'2 + 1) exp{e; log p}

d=so+k

By Condition 3,

q 1 _1
N 1 <p L.
p (1 — q) e I 1 exp{czlogp} < p

Thus the desired probability is bounded by

Eo, [II(A(L) | Y)1¢, ,(r)] < exp{3ca(so+ 2)logp + (c2 + 1)slog p} pF

< exp {[4ca(so + 2) — (L — 2)so] log p} .

Then for L > 5¢y(so +2)/so + 2, we have

Eg, [TI(A(L) | Y)1s,,n)] < exp {—§<L — 9 1ogp} |
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Proof of Lemma S1.6

We denote the desired event as B(n) = {68 € O(M) : |6 — 6y||2 > n}. By

defining B(L,n) = {60 € O(M) : |S| < Lsy, ||@ — 0¢||2 > n}, we have

Eo, [I1(B(n) | Y) e, ()]
< Eg, [I1(0 € O(M) : |S| > Lsg | Y) 1e,,(r)] + Eo, [IL(B(L,7) | Y)1e, ()] -
By Lemma S1.5, for some constant L, the first term on the right-hand side

is bounded. For the second term, it can be written as

L,(0)
fB(L7U) Ln(eo)dn(e) ]
Le, 1 (r)

Ln(®) 117(9)

]Eeo [H (B(Lv 77) | Y) 15n,1(R)} = ]Eeo f
O(M) Ln(60)

Then by Lemma S1.4, the last display is bounded above by

L.,(6 .
Eo, / () dI(0)1e, ,(r)| ¢ (1 — )" (27 + 1) (2c1n07 + 1)
B(Ln) Ln(60)

cn cn
X exp {17”007_”% + 5 !

2
2 2)1 .
2ent® + 1 [eeol|2 + 2¢2(s0 + )ng}

cno2 +1

The expectation term can be calculated as

> Q'S'(l—Q)”'S'( 1 >S 27302

S:|S|<Lso

L,(05s) { 1 ) ||a||§} ]
g / exp§ —5510s-l2 — d0g1 .
" { Bt Ln(B0) 372 19s-ll2= 525 sle.m)

Using a similar idea in the proof of Lemma S1.5, the integral term is

bounded above by

exp{ca(|S| + so + 2) log p}

2 2
g) _ ||05y_H2 _ “aHZ}dOS

X exp {—c;m |05 — 005||2 + ||@ose
/33(77) ( ? 27 203
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On the set Bg(n), we have [|6s — 0gs]|3 + [|@os<||5 > n?. Thus
10515 = (165 — Bos|13 + [|6osll3 — 2(8s — Bos)" Bos

> 1" = [18ose 13 + 1Bosl3 — 2M |6os]l2 > n* — [|8013 — 2M |60 >-

Then we have

L,(0) ]
Eq, / dli(e)lg, ,
o [ B(L.n) L,(6y) O)le

1 \"® 1
< Z q|S|(1 _ q>p—\S\ < ) 5o exp{ca(|S| + so + 2) log p}

S:|S|<Lso 2T
1 lexl3
< E —eann? — —— 110 |12 — 2% d0g1
Z ¢51(1 — gyr-1S < > 5 exp{ca(|S| + s0 + 2) log p}
2nT 2moy,
S|S|<LS()

1
<o {- <03n+2—>77 + 553 (16015 + 221160l |
Thus,

Eo, [IL(B(L,n) | Y) 1e,, )] = ¢ (1= ) "(2en7” + 1) (2c1n07% + 1)

2
X eXp{2C nT2+1H o013+ %—FQCQ(SO—F%I%}?}
1811 — g1 [ 2 .
; (=) 5z explanlS] + 50+ 2)og)
S:|S|<Lsog a

1
XeXp{ (C37’L+2—)T] + — (||00_||2+2MH00|| )}

- 2e1n7? + 1 e 201n0a+1
- 2102

«

Sy exp {[3ca(so + 2) + cas0]log p}

1
XeXp{— (C37’L+F)T] —2(H00||2+2M“00|| )}

<Y (15) T (s) et s

S:|S|<Lsg
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Denote k = | Lsg|. We can rewrite the sum as

k d—so 1 d—so d
exp{cs lo o0
S0) () ()t
k q d—sg 1 d—so
<po 3 pie (_> ( — ) exp{cz log p} ¥~

I—gq

el () ()]
o 2 b () ()]

When d < sy, by Condition 3,

. q 1 d—s0 0 ) d—so
1+co < [ ¢ < %0
dZ:O [p (1—Q) ( 2#7)} = ( (n\/p2)1+cgp ) op

d=

When d > sq, similarly, we have

k

p q 1 n d—SO
E 1+c2 )
d=s0+1 ( Q> < 27 T > (n \/ p?)l—}— ) —

d

Combining the results,

SQ+2

Eo, [I1(B(L,n) | Y) 1e,,(m)] = (Cln)

™

x exp {[3¢a(s0 +2) + (2 + 2)s0] log p} exp {_ (03n + %) n?} |

Let 7 = Miv/s0log pa /|| X || A || Z]). Since | X||? < Amax(XTX) < n)y and,
similarly, || Z||? < n)g, we have
EGQ [H (B(LJ?) | Y) 18n,1(R):|

M?2sy1
< oxp {[4ea(s0 +2) + (c2 + 2)s0] log p} exp {_Cslj—oogp} |
2
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For M; > \/2Xa(5cq + 2 + 8ca/s0) /3,

cgMisg logp}

Ba, [T(B(L) | ¥) 1, ] = oxp { - 200

Proof of Lemma S1.7

By the union bound, we have

Poy [€5] < Poy [En1(R)] + Pog [En1(R) N Ena(L)] + Poy [En1(R) N En (M, M)

By Lemma S1.1, the first term is bounded as Py, [E,1(R)¢] — 0. For the

second term, by Markov’s inequality and Lemma S1.5, we have

Py [En1(R) N Epa(L)] = Pa, [II(0 € O(M) : |S| < Lso | Y)1g, ,(r) < 3/4]
= Py, [II(6 € (M) : |S| > Lso | Y)1g, ,(r) > 1/4]
< 4Eq, [I1(6 € O(M) : |S| > Lso | Y)1¢, ,(r)] — 0.

Similarly, for the third term, for My < (¢M?/2X2)A((L—2)/5), by Lemma S1.6,

Py, [Ena(R) N Ens(My, My)©]

Mi+/sglogp

=Py [H <0€@(M) ||0—90||2> =
' X1 Al 2]l

| Y) L, (r) > exp{—Mysg logp}]

Mi+/splogp
—_— | Y 15n,1(R)
X1 Al 2]l

Misol L —2)spl

< exp{Massg log p}Eg, {H (0 € O(M): |0 — Oqll2 >

O
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Proof of Lemma S1.8

Similar to the proof of Lemma S1.6, we have
]EQO [H (0 € @(M) - S 7£ So | Y) 15n,1(R)]
< Eg, [I1(8 € O(M) : [S| = Lso | Y) 1¢, ,(r)]
+E90 [H (0 - C"‘)(M) - S 7é So, |S| < LSO | Y) lgn,l(R)} ,

where the first term is bounded for some constant L. The posterior proba-

bility of a specific model S” can be calculated as

NOecOM):S=51Y)=Cu(1-q) (L> . <L>

2T 2mo?

X / Ln(egl)exp{—LHQSI_“%}GXP{—W}deS/
04 (M) 272 ’ 202
_ I8 s\
=Crg”'(1—q) ( 27”_) (W) L, (00s)
a3

1 2
x/@ o exp{Zn(OS/)}exp{——27_2”95/’_”2}eXp{— 52 }d@sx,
S’ «

where (), is the normalizing constant. We are going to construct both upper

and lower bounds for II(@ € ©(M) : S =5"|Y) on &,1(R).
For the upper bound, by the calculation in the proof of Lemma S1.5,

the integral term is bounded above by

1S/
2 2 2
explea(|S'] + 2) log py —2T ( U )

2ean + % \ 2e3n + &
(o T

C3MN 9 csn )
x oxp § —5————|lew|l3 — 5————160s 3 ¢ -
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Thus the posterior probability is bounded above by

e coM):S=5Y)

< qu|5’|<1 — Q)|S/|Ln(005’) exp{ca(|S’[ +2) log p}

Ed
1 ’ c3n ) c3n )
X expd ——— a2 = —=||@os |2 b .
<2037’L7’2 + 1) p { 2637103 +1 || 0“2 2esn72 + 1 ” 057, ”2

Similarly, for the lower bound, by the calculation in the proof of Lemma S1.4,

2c3no? +1

the posterior probability is bounded below by

MO cOM):S=5"|Y)

s s
> Cog®1(1 — @)L, (00s) exp{—2c5(| S| + 2) 10gp}m

1S’]
1 2 cn 9 cin 9
Ny . — __an — A g |12
(2017172 + 1) eXP { 2¢ino2 + 1 levoll2 2cint? 4+ 1 160s - l2

Then, by Condition 4, the ratio can be calculated as

I1(6 € ©(M ) S=51Y)
MO ecO(M):S=5,Y)
Ed

|S| S0 a5 1 _STO
(1 q) (203n72+1) (201n72+1)

Ln 005’)
LTL(HOSO

cin 9
X ——————||6ps’.— —  1|@ _
exp{ 2c3 n7’2+1H os7,- 12 + n72+1H 0So, ||2}

=< exp{[3caso + (2 — ¢ + c2k,50) (50 — |S'|) + 6o log p}

Ln(OOS’) C3n cin )
L (00c ) 1005~ ———|6ps,.— )
% Ln(ooso) exp 26 nt?+1 H 05", H2 ent? 41 ” 0So, H2

.Q

exp{ca(|S’| + 2s¢ + 6) log p}

\_/
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We split the model space into the following possibly overlapping sets:

Over-fitted models: &; = {S : S D Sy, S # So,|S| < Lso},
Large models: Sy = {S : so < |S| < Lsp},
Under-fitted models: Sz = {S:S 2 So, |S] < so}-
Over-fitted models: if S’ € Sy, then L, (0ps') = L,(6os,). Let k = | Lso].

Then

O cO(M):S=5Y)
O cO(M):S=25]Y)

< exp{[3caso + (2 — ca + caknS0)(s0 — |S']) + 6¢2] log p}.

The sum of probability ratios in &; is

MO ecOM):S=5Y)
< (0 €O(M): S =5]Y)

= Z (Z : °0 ) exp{[3caso + (2 — ¢a + c2k,50) (S0 — d) + 6¢2] log p}

k

j p3cgso+6cg 2 (pl—cg—l—cgfinso)(sf)*d)
d=sp+1

d=80+1

< p30250+702—1—02nn50 )

If K, >6+2(7—1/ca)/s0, we have

S MO ecOM):S=51Y) {exp{

—2/4;310 }
MO cO(M):S=25,]Y) g 008y

S'eSy

Large models: for S’ € S, we define S = S’US; and define 05 to include

0ps for S” and 0 for (S")°N Sy and B,5 to include Byg, for Sy and O for
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S"N S§. Then

M@ ecO(M):S=5|Y)
M@ecO(M):S=5,]Y)

< exp{[3caso + (2 — ca + caknS0) (S0 — |5'|) + 6¢2] log p}

L,(0%) can
X e
L, (0,z) P { 2e3nT? + 1

c1in
180s7. I + ml|0050,—||§}

< exp{[Beasy + (2 — 2¢2 + caknso) (S0 — |S']) + 8ca] log p} exp { —csn||@ogsne |3}

< exp{[5easo + (2 — 2¢2 + cakns0)(so — |S']) + 8co] log p} exp { —cskiso logp} -

The sum of probability ratios in Sy is

> O ecO(M):S=5"Y)

L TOEOM):S=5|Y)

< exp { —cski s log p} exp{(5caso + 8cz) log p}

k so—1
-5 s0—1
X _Z g (Zzl B }S) 50( Oh ) expq{ (2 — 2¢o + caknS0) (S0 — d) log p}

k
a2 _ —d)
C3KZ S0 ,,0C250+8c2+S0 1—2co+c2kn S0 (so
=p E: (» )

d=so+1

< p—C3)€%80+50280+1002+80—1—02)€n80 ]

If Kk, > 2cy/c3, then czk2sg + Coknsg > 3Caknsg. Further if k, > 2((5cy +

1)sg + 10¢y — 1) /3¢90, then

S (6 cO(M):S=51Y) jexp{

—%m solo
S T(OcO(M):S=5]Y) g Py
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Under-fitted models: for S’ € S3, similarly, we have

e cOM):S=51Y) )
< _
MOcOM):S=25,|Y) — exp { —czk2sologp}

X exp{[5easo + (2 — 2¢o + cakinso)(s0 — |S']) + 8¢o] log p},
and the sum of probability ratios in Ss is

O cO(M):S=5Y)
SZ;B O cO(M):S=25]Y)

< exp {—csk; s log p} exp{(5easo + 8cz) log p}

S0 d
-5 50— 1
X ZZ <Z_ ;)30( Oh )exp{(Z — 2¢y + c2kn50) (S0 — d) log p}

2
—C3K;, 80 0, (3C2+C2KknS0+2)s0+8c2
=p p :

For k, > 2ces0/c3, we have c3r?sg — cokinSt > cakinss. If K, > 2((3co +

2)so + 8¢y)/cas3, then

O cOM):S=5Y) e
< —= .
S% MO cOM):S=5,|Y) eXp{ g 'm0 10gp}

Combining the results leads to, on &, 1(R),

IOeecOM):S=51Y) o
< =
2 HGG(M):S:SO|Y)_3eXp{ 2“”3010”}’

—~

S'+#80,|S"|<Lso

which implies that

, c
Eo, [T1(0 € O(M) : S # So,[S'| < Lso | Y) 1g, ,(m)] = 3exp {—52/%80 logp} :

O
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S2 Theoretical Results Under Unknown Variance Case

In this section, we elaborate on the discussion in Section 3.3, extending the
theoretical results in Section 3.2 to the case of an unknown noise variance.
The parameter studied here is @ = (8, a,~, 0,)) € RPT with the true value
00 = (By, a0, 7o, 0y0). The Gaussian components in the priors of 5; and oy
are adjusted as N(0,73) and N (0,07) to avoid coupling, respectively, while
the other priors remain unchanged.

Compared with the known-variance setting in Section 3.2, we now in-

2

,) in the joint prior and its variational

clude an inverse gamma prior (o
counterpart ¢(o;) in the variational family. Similar to the case of a known

variance, we assume bounded covariate spaces Z and X. The parameter

space is defined as

O(M) :={0: (|6 — 0o, < M, [logo,| < M},

following a common practice in the analysis of mixture of regressions with
an unknown 05 (Stadler et al., 2010; Zhang et al., 2025). The condition
| log ay] < M ensures that 0 < ¢ < 0,9 < 0 < 0o for some constants ¢ and
7, and thus no modification of the beta-min condition is required. Under the
same regularity conditions specified in Section 3.2, the variational posterior

Q* satisfies the following posterior contraction properties on model selection
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and parameter estimation.

Lemma S2.1. Under Conditions 1-3, there exists a constant L{ > 2 such

that, for any sequence L,, > L{, as n — oo, the VB posterior Q* satisfies

Ba,[Q°(6 € O0) 518 > Lysu)] < 0 (72 +o(0)

n

with some constant C; > 0.

Theorem S2.1. Under the conditions in Lemma S2.1, there exists some
constant M > 0 such that, for any sequence M,, > M growing more slowly

than L, in Lemma S2.1, as n — oo, the VB posterior Q* satisfies

Ea, [ (0.€ 0001) 0 - 00l > YU EL) | < 0 (1) 4o,

X1 v |l M,
with some constant ', > 0.

Theorem S2.2. Under Conditions 1-4, for any k, growing more slowly

than L,, defined in Lemma S2.1, as n — oo, the VB posterior Q* satisfies

Ea, (@7 (0.€ 003 5 7 50 0 (2 ) 4 o),

n

with some constant C7, > 0.

These results confirm the robustness of our theoretical framework in

the presence of an unknown noise variance 02.
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S2.1 Proof of Main Results

Similar to the proof in Section S1, we first derive the upper and lower
bounds on the log-likelihood. However, the inclusion of o, poses a challenge
in the analysis of high-dimensional mixture of regressions, since existing
results are typically established on a transformed parameter vector 8 =
(B/oy, a0y, 1]0,,) (Stadler et al., 2010; Zhang et al., 2025). To eliminate
the discrepancy between the parameters studied in the exact posterior and

those defined in the variational posterior, we need to refine the results to

focus directly on the original parameter 6.

Lemma S2.2. Under Condition 1, for @ € ©(M) there exists some constant

cr > 0, such that for any constant R > ¢, we have as n — oo,

Further under Conditions 1 and 2, for some constants ¢, ¢,, ¢5 > 0, it holds

that on {V,, < R},
Zn(05) > —n|0s — Bos|l3 — 2¢5(| S| + 3) log p,
Z,(05) < —cinl|@s — Bos||3 + 5 (| S| + 3) log p.
The variational posterior contraction properties are established by lever-
aging Lemma S1.2. The events &, 1, &,2, and &, 3 are defined in a similar

way as in Eq.(S1.3) with some positive constants R', L', M|, and M;. We
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further define &, = &,1(R') N En2(L') N E,3(M], M}). We first derive the

bound on the KL divergence between the variational and exact posteriors.

Lemma S2.3. Under Conditions 1-3, for sufficiently large p and some con-

stant C% > 0, we have
KL[Q*(0)|I1(6 | V)] 1g, < Cysplogp. (52.8)

Then we are left to derive the exact posterior contraction rates and

show that the event &, holds with probability going to 1.

Lemma S2.4. Under Conditions 1-3, on &, 1(R’), we have

L,(0) . - /
/e(M> L, (6) T1(0) = 4™ (L= @)™ exp{=2¢5(s0 + 3) log p}

. 1 ? 1 1
2dint? 4+ 1 2cino2 +1 dn

an 9 an 9
X ———F— |60 - —_— .
exp{ 20’1n7'2+1” 0, ||2}exp{ 20’1n03+1”a0”2

Lemma S2.5. Under Conditions 1-3, for L' > 2 + 5¢(sg + 3)/so,

1
Eg, [I1(6 € O(M) : |S| > L'so | Y) ¢, ()] < exp {_5(1/ —2)s0 logp} .

Lemma S2.6. Under Conditions 1-3, for M| > /2X\s(5c, + 2 + 12¢}/s0) /4

and L' satisfying the condition in Lemma S1.5,

Mi+/splogp
_— | Y 1€n,1(R’)
| X[ A1 Z]]

L M5, L' —2)sol
< oxpd _GMrsologpl ( )sologp ]
2\ 5

Ea, |11(6 € 00+ 16 - 60l >
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Lemma S2.7. Under Conditions 1-3, for R’ defined in Lemma S1.1, L'
defined in Lemma S1.5, M| defined in Lemma S1.6, and M} < (¢M7?/2X9) A

(L' —2)/5), as p — oo, we have

Po, [

n

| —0.

Lemma S2.8. Under Conditions 1-4, for k,, > (2¢,s0/c%) V (2((3¢y+2)s0+

11¢,)/chs0) and L' defined in Lemma S1.5, we have

Eo, [I1(6 € O(M): S # Sy | Y) e, (m)]

_ ChnSo logp} +exp {_(L/ — 2)sg logp}
2T 5 :

j3exp{ 5

With the preliminary lemmas, we are ready to prove the main theo-

2

retical results under the unknown oy,

setting. The proofs of the technical
lemmas are deferred to Section S2.2.

Proof of Lemma S2.1

By choosing L,, > L{, := 2 + 5c,(s0 + 3)/so in Lemma S2.5, we follow the
proof of Lemma 1 to obtain the result.

Proof of Theorem S2.1

By choosing M,, > M{ = 2Xy(5c¢), + 2 + 12¢,/so) /¢ in Lemma S2.6, we

follow the proof of Lemma 1 to obtain the result.
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Proof of Theorem S2.2

By choosing k,, > ko 1= (2¢)s0/¢5)V(2((3¢4+2)so+11¢,)/chs0) in Lemma S2.8,

we follow the proof of Lemma 2 to obtain the result.

S2.2 Proof of Technical Lemmas

Proof of Lemma S2.2

This lemma is modified from Lemma 3.1 and Lemma 3.2 in Zhang et al.
(2025), but our proof avoids the auxiliary reparameterization of 3, a, and
oy, leading to a more direct argument under the original model formulation.

Following the proof in Zhang et al. (2025), for a model S, we define 85 €
RP3 with Og for S and 0 for S¢. Then the parameters in the structured

mixture model can be represented as

. eXP{mT’)’S} T T
w(a:’zut7s> - (1—|—exp{:cT'yg}’z 16§+talaz /8§+ta270y

1= (Y1, 2, V3, 4),
with a fixed dimension of 4 independent of p. For conciseness, we omit
(x, z,t) in the notation ¥ (x, z, ¢, 5) in the following. We denote the density
of Y as fy(s)(Y), the log-likelihood as ly(s)(Y) = log fys)(Y), and the
score function as sy g)(Y) = 0lys)(Y)/0P(S). By direct calculation, we

can verify that, under the case of the original parameterization, there also
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exists a function G(+) for any S such that

sup [8p(5)(Y)]loo < G(Y) := C(Y?+ |V] + 1),
zeX,2z€EZ,05€0(M)

where the finite constant C' only depends on X', Z, and M. We can then
adopt the same peeling device as Eq.(8) in Zhang et al. (2025) to prove the

first part in Lemma S2.2, i.e., for any constant R > ¢, as n — oo,

The second part follows similar calculations in the proof of Lemma 3.2 in

Zhang et al. (2025). O

Proof of Lemma S2.3

The proof follows a similar strategy to that of Lemma S1.3, except for the
non-Gaussian factors induced from the inverse gamma distributions 7 (o)

and ¢(o7). The surrogate variational distribution Q € Q is defined as,

Q(0) = Ns(05s,—0,; g, Ds) @ 60(0s:) @ IG(02; ay, by)

2
:HNajaﬂajy ®HN JaﬂS]aUSJ H50 ®IGU ayvby)a
j=1

JES jES®
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where 05 _,, = (Bg,vg ). We set

ps =005 s, — (1+ 72550050,
ZyZs 0 0
Zgl = (Qan + 7-_2)]5 + 0 Ny 0 )

0 0 XiXg

with Dg = diag(Xg) being the diagonal matrix, and

ay =aog, bj =(ay—1) [UyOT(ay) + UyO\/r(ay)Q —1/(a, = 1)|,
where r(a,) =I'(a, —1/2)/T'(a,). Then we have

KLQ(6)|TL(6 | Y)]
st(agﬁgy; Mg, Ds) X 50(05c> (%Y dIG(O’;, Gy, by>
wsdllg(0s | Y) @ 0o(Ose)

=[Ey |log (52.9)

1
= log o + KL[Ns(0s,—0,; 5. Ds) @ 1G(07; ay, b,)|[1Ls(0s | Y)].

Denote Qg = Ng(Os_,,; g, Dg) and the second KL term in (52.9) can be

rewritten as

dNg(03,_,,; g, Xg) ® d1G(07; ay, by)

KL[Qgl|Ng(05 _,,; bs, Bs)]+Eq, |log (05| Y)

(52.10)
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The first term in (S2.10) remains the same as the proof of Lemma S1.6 and

is bounded by O(L'sy). For the second term, we have

log

ANg(03 _,,; g, Xg) ® d1G(0y; ay, by)
dllg(0s|Y)

1
11 _
=log — + Egq, [——(03,_ — 005 _5,) 25 (05 5, — 005,_0,)
_ 1
— (805,05, — 115) 251 (05, — 0ps o) — Zn(05) + 2—72“93,_ — 005,13

L 1 b, — bo
+ 5005 (B3 — Bus. ) + 55 3 — 2(a, — ao)log, — 20

202
(S2.11)

[e%

where

1 Ty -1
Dy = /@s(M) exXp {_5(05‘7—% - 0057‘”1/) ES (03’_% B 003’_0‘1’)
) b
_(OOS,—Uy - IJ’S)Tzsl(oS’_Uy o OOS’_Jy) N 2(ay + 1) log Uy B O-_yZ} des’
)

1 1
Dn = / exp {Zn(eé) ~ 55105 — Oos,_1I5 — 500505 — Bos_)
o T T

5(M)
1 9 bo
_@HQH2 —2(ap+1)logo, — 0—5 dfs.

To bound the ratio of the normalizing constants, define the subspace

2M{+/sglog p
By — {93 € O4(M) : |85 — Bygl, < Vo018 ”} .

1[I A 11 Z])
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Following a similar practice, on &,, log(Dy/Dy) is bounded by

log2/
B

b 1 _
—2(ap + 1) log o, — 0—2} dfg — 10g/® o exp {—5(95,_% —605,,,)" 25 05, — 045 _,,)
s

Y

1 1 1
exp {ang) — 5105 — 85 I3~ 0% (05— 8ys.) — 55l

S [e%

_ b
—(005,—0, — 135) 251 (05, — Ops_,,) — 2(ay +1)logo, — U—Z} dfg
)

1
< ¢o(Lso+ 3)logp — 2—72||a0|]§ + log 2

1
+ sup {_é(eg,—ay - 005',—0y>T [(20371 + 7_2)15' - Egl} (eg,—ay - OOS,—Uy) - C3n(0y - Uy0)2

OS‘EBS

_ 1 bo — b
+ {(905,_% — 1) 'S5t = 5005 | 050, — 00s,_5,) — 2(a0 — a,) logo, — y} :

2
T O'y

By the definitions of pg, X3, a,, and b, if we define Bs = (Bg,al)T, the

sup term is bounded by

1.~ - ~ 1
sup { 512685 = Bus) I + gndalen — o)’
GS'EBS’

1 bo—b
31X sCrs = B8+ 655, (85, — 05, ,) — ]
)

2\
< 22 MPsolog p.
A1

Thus the log ratio of the normalizing constants is controlled by O(sqlogp).

Similarly, for the expectation term in (S2.11), by Lemma S2.2, on &,
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it is bounded by
) 1 _
2¢5(15] +3) logp + Eg | =5(05 0, — 00s,—0,) 25 (050, — 003_s,)

B 1
— (803,—0, — 15) 55" (05, — O05,_,,) + c1n]|0g — Oygl5 + 52005 — 603, II5

1 1 b, — by
#2508 (O~ 005 )+ 5 lall — 20, — an) oo, — 0]

202 o2
. S|+2 1 _
< 2¢(|S| + 3) logp — | |2 + 5(1 +7 Q)QOOTS,—%ESGOS,—%
1 _ 1
 (ent gz ) [+ 726, 23005, + (D] + 5zlloll

11 1 v 2
- (ﬁ + g) 0050, 250050, + 53 [955,_% (Is = (L+77)%5)" Ops o, + tr(Ds)

b a
+cn (ay i T 20'y0b11/27"(a,y) + 05()) —2(a, — ag)logo, — (b, — bg)b—z.

On &,, by the definitions of a, and b,, the expectation term is bounded by

e+ 91omp— 02 4 Lt
+ <c’1n + %) {(1 7 (nA\; + 20;:71 + 772)2 ||005',—ay 2+ |g|c;z2]
* % { T -i ;c;-n_j- 772 (n\y (-i 2+C§Tn_2—327_2)2} ||00S’_Uy||g ~ (b~ bO)Z_j

/
=< 2¢yL'sglogp + iLsa +

2
— ||

1 1
S— 2 J 2 0. 2 1 0. - 2
+ ’I'L(/\l + 26%) “ OS,—ay”Q + 20_3 H OS,—cryHZ + n()\l + 263)2 H 0S,—oy ”2’

/

which is of the order O(sglog p).

Combining all of the above bounds gives the result. O
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Proof of Lemma S2.4

By the definition of the prior II, the desired integral is bounded below by

1 50 1
$0(1 — g)P—%0
g 9) ( 27T7') <27r0§>

L,(0s,) { 1 o el
X a5 exp — 55 105,112 — po(0y)dbs,,
LSO(M) Ln(e()go) 272 0 2 20‘3 v 0

where p,(0,) defines a distribution derived from the inverse gamma distri-

bution on ¢7. By Lemma S2.2, on &, (R’), the integral term in the above

display is bounded below by

exp{—2c,(so + 3) log p}

/ﬂ~{(9'—901 2

= exp{—2¢5(so + 3) log p} H / "t exp {—c’ln(Qj — 0o;)* — %92} db;

65,13 _
}exp{—canneso—eoson%— scle Mol (0,005,

M
<Teo+97

92
J€So 003 s0+3
2 ragit+iis 1
0 / 2
X H exp { —cin(oj — ag;)” — da;
M 202
j=17 i~ 5,53 e}
Uy0+50+3
/ 2
X oD {—cin(oy — 0y0)*} po(0y)doy,.
7043

For the integral of o, we define u, = \/2¢\n(o, — 0y) and obtain

0'y0+30% )
exp {—cin(oy — 040)° } po(oy)doy
80+3

50+3 261” ug_ 1 d

which, as n — oo, converges to 5] nEua Po(0y0) < 4 / — with E,,, denoting

the expectation from a Gaussian distribution on u,. Combining the results
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on the integral of 6, for j € Sy and oy, we have

L,(0
/ ©) 11106 = ¢ (1 = g7 exp{—2dy(sy + 3) log p}
o) Ln(00)

o 1 2 1 1
2dnT? + 1 2cino? +1 an

c’ln 9 c’ln 9
XexXpy —————5— 9, _ ex - ||x .
{ 2dnt? 4+ 1 16, “2} P { 2dno2 +1 levollz

Proof of Lemma S2.5

Define A(L') = {0 € ©(M) : |S| > L'sp}. By Lemma S2.4, the left-hand

side is bounded above by

L s
Eg, / n(0) dIN(0)1e, (| (1 — Q)P (2dnT?* + 1)_2Q(20’1ncri +1)
4 (r) Ln(00)

/ /
camn cn

X \/chnexp {mll%—ll% +3 levol3 + 2¢5(s0 + 3) logp} :
1

cno? +1

Given the definition of the prior II, the expectation term is

. LA
R e =

S5:|S|>L"so 2rT

L,(05) { 1 , HaH%}
E / exp§ —5510s- 2 — Po(0y)dOsle, |
°H) |: O5(M) Ln(HO) 27.2” S, ||2 20_3 ( y) sle,. (R)
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Similarly, we define 85 € RISV501+3 to contain @ for S and 0 for S¢ N Sp.

By Lemma S2.2; we have
1 el
exp{Z,(05)} exp {——\|9s,—||2 _edB s
/@S(M) o 27'2 2 20'3 Y
< exp{cy(|S| + 3) log p}

| o
< [ exp{—cinl8s — 8,512} exp {——||es,_||2 B I G
/95(M) 3N||Vs 0512 972 2 202 y

5 27 ( 27 ) ER
2}2 / 1 / 1 .
N+ oz 2e3n + = csn

csn 2 can )
X - 5 I ||* EE— E—1 ' ’
eXp{ 2an0§+ 1|| 0||2}exp{ 2Cén7'2+ 1|| 05, ||2

since the value of o, is bounded and p,(-) is a density function. The re-

< exp{c,(|S] + 50 + 3) logp — &y Bose

maining proof then follows the proof of Lemma S1.5. O

Proof of Lemma S2.6

Similarly, we define B(n) = {0 € ©(M) : |6 — 0y||s > n} and B(L',n) =
{60 € ©(M) :|S| < L'sp, ||@ — 0o||> > n}. We have

Eg, [I1(B(n) | Y) Le,,,(rr)]

< Eg, [I1(0 € O(M) : [S| = L'so | Y) g, ,(m)] + Eo, [IL(B(L',0) | V) Le, (m] -
By Lemma S2.5, for some constant L', the first term on the right-hand side

is bounded. By Lemma S2.4, the second term is bounded above by

L,(0 50
Eo [/ ((0 )) dI1(0)1e, ,(ry | a (1 — Q) P2t +1)2 (2¢,n0? + 1)
0

cn

L
/
clnexp{2 n7’2+1 ,_||§+ﬁ||ao||2+202(30+3)10gp}
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The expectation term can be written as

el 11
e =

S:|S|<L'so 2T a
L.(05s) 1 lex]|3
Ea, | [ exp {51z l05- 1 = 2 b (000515,
0 Bs(n) Ln(00> 272 2 20’3 Y 1(B)
The remaining proof follows the ideas in the proof of Lemma S1.6. 0

Proof of Lemma S2.7

The proof directly follows that of Lemma S1.7. 0J

Proof of Lemma S2.8

Similar to the proof of Lemma S2.6, we have
Eg, [IL(0 € ©(M) : S # So | Y)1e,,(m)] < Eo, [I1(0 € O(M):|S| > L'sg | Y) Le, y(ar)]
+E90 [H (0 - @(M) . S 7é So, |S| < L/SO | Y) 18n71(R’)} y

where the first term is bounded for some constant L'. For the second term,

we follow the same idea in the proof of Lemma S1.8. O

S3 Details of the Variational Algorithm

In this section, we provide the updates for the non-hierarchical factors,

including 7; and ¢; for i = 1,...,n, and (a;,b;) for o2, as well as the

Y

derivations of the CAVI updates of our variational algorithm in Section 4.
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S3.1 CAVI Updates For Non-Hierarchical Factors

For the non-hierarchical factors, the updates for ¢(d;) for i = 1,...,n are

Bernoulli with log odds ratio equal to

Uy

logz—— =z (" © 1)
i (53.1)

ay
— gy Lol — s = oh =2 [y = (7 © )] (1 = )} i

where ® denotes the element-by-element product. The updates for g(w;)

fori=1,...,n are PG(1, ¢;) with

¢ = \/%T {D(m"©07) + [ (n")" +D(n7© (1 —n7)] O pw ()"} ;.
(S3.2)

The update for ¢(o7) is given by a; =n/2 4+ 1+ §i1 77?/2 + ap and

1
bi =5 [YTY + (mi + o) TTEAT + (m} + o3)T" (I - EA)T

—2Y" (uEAT + p1o(1— EA)T)]
— Y — mEAT — 1p(1-EA)T)" Z (n° © pP)

(53.3)
(n° & u?)" 272 (0 © ) + 5 1r (272D (n © 0™))

+
N~ N~

%)'D(272) (1-n°) o 1)

o
O]
=

+=(n

1 1 Pz
+?(uf+0f+u§+0§)+2—7_22nf (ugﬂ—ka]m) + bo.
« ﬁj:l
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S3.2 Proofs for the CAVI Updates

Since the updates of the non-hierarchical factors can be directly obtained
based on (4.8), we focus on the derivation of the hierarchical ones.
The optimal variational distribution minimizes the KL divergence, or

equivalently, maximizes the evidence lower bound (ELBO)

£(0,¢) = / 1(0, ) log %

= E, [log(7(6)Ln(6, ¢)) —log (0, $)] .

d0d¢

Thus, we need to calculate the expectation with respect to the variational
distribution. Before diving into the details, we first present some prelim-
inary results to facilitate the calculation. The marginal expectation of w;
from PG(1,¢;) is given by E,[w;] = tanh(c;/2)/2¢;. The expectation of
1/} is given by a;/b;. The marginal expectation of 4 can be calculated

conditionally as
E[Y] =EnEyn[y] =En [["0Op]=n" 0 p.

We are ready to derive the updates. For simplicity, we use C to repre-
sent a constant that does not affect the optimization process, with its exact
value potentially varying across different lines. For ; for j =1,...,pz, if

conditional on I ]B = 0, the variational posterior is dy, and if conditional on
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Ijﬁ =1, we can express the ELBO as a function of ,u] and a ,

2
(0 d)) Iﬁ 1) [ 2 HY - ZIB - O[lAT - O[Q(I - )THQ 27_’;0_2]

1 1 2
B2 B
+ ]Eq(lf:n 3 logo;™ + 20?2 (5] uj> +C
Doy — W EAT — po(I — EAYT]T 2,02 — 242272 (n?. o p
2()1 H M2 Z]/J’] N] n_; ©Op_;

B2 | B2\ .T a B2 1 32
- (1" oS )Zﬂ‘zﬂ']_2r§b1 (7 + o) + 3 loge) +.C.

where the subscript ¢(I f = 1) denotes that the expectation is taken with
respect to the variational distribution conditional on I ]ﬁ = 1. We then take

derivatives with respect to ,u? and Jf % to get

0L0,¢)  a
8/1@ b

J

[[Y MEAT — 5 (T-EA)T]" 2

~1Z (%0 u8)) = (F2 + 750
0L(6,4) !

= T2+ 15%) + ——.
80?2 2b1( ! ﬁ) 2052

Then the updates conditional on f = 1 is given by the maximizers

M'@ _ Y — mEAT — pp(I - EA)T] (77 ; © #_])ZT %j
J ijzj + 7"32 '
1
P =

J al(ijzj +TL;2)/61‘
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For Ijﬁ for j =1,...,pz, we maximize the ELBO with respect to n?:

£(6,¢) = C +E, [—% IY — 28— AT — ao(1 — AT

1 a3
—l—[f log _ log 05 — 1263
27r7§ 2 275b1

+<1—If)log(1—qﬁ)

2
—E, |17 | log i —<Bj_%@) (1= 17)tos (1)

32
A/ 2%0? 2 20]‘

—C+ b_1 LY - AT — (T~ EA)T]" 20 1)
B T ;T 1 B2 1 —gqg
_<n—j®“ ) Z 2377]“.1 2]'2]77](#3 +0; ) +(1_77])10g1_nﬁ
J

+nf

a 1
log logb1 W(ar)) — — (/LJ + 0'62> +

27’5[)1 2

[

After taking derivative with respect to 775-a , the update for ¢(I ]B ) is given by

the optimizer solving

~ 1
log -5 = — 5llogbr = ¥(a1)) + log

Similarly, conditional on I} = 0, the update for v, is 0y for £ = 1,...,px.
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Conditional on [, = 1.

n 2
L£(0,¢) = g(17=1) [Z 1 {(5 — —) x?‘)’— %Wi (JizT'T’)Z] - %]

1
+ Eqry=1) [5 - (ve — uZ)Z} +C

9y
= 17(EA — 1/2)a] — (07, © p7 )" XL EQz )

1

1 1
— §x;7FEng (w2 +07%) — WP +07%) + 3 loga)” + C.

2
We take first derivatives with respect to x and 0;72 to obtain the updates

1"(EA —1/2)z, — (07, 0 p7 )" XL EQa,

uy =
¢ rTEQux, + 72 ’
1
022
EQJZ‘g + 72

For I} for £ =1,...,px, the ELBO is calculated as

L(8,¢)=C+E,

5[ (5= 5) et - g a7 ]

=1

2
7 G~ e o
~ v
Y _ 72
E, |17 ( log —A _ e VMQ‘) + (1= 1)) log(1 =) | ,
27(022 20,

and the updates are derived by solving

94 2 9l
" F aaddl
log = + log
1—mn) 2022 (1= gy)7y
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S4 Additional Simulation Results

In this section, we present additional numerical results on the comparison
of the proposed VB method with the scalable MCMC-based BVSA (Zhang

et al., 2025) and other subgroup identification approaches.

S4.1 Variable Selection with Correlated Covariates

We adopt the same settings as in Section 5.1 except that we now consider
the scenario where the prognostic covariates Z, as well as the predictive
covariates X, can be correlated. To account for this, we generate the co-
variates z; independently from a normal distribution with a mean vector
0 and pairwise covariate correlations of p = 0.25. The same generation
process is applied to ;.

We conduct VSM and BVSA following the same procedure as in Sec-
tion 5.1 and run 100 independent trials. The results are summarized in
Table 1. Similar conclusions hold under the scenario of correlated covari-
ates. Although the performance of VSM deteriorates due to the presence
of correlation, it remains comparable to BVSA across all settings when
n = 200. As n increases to 300, VSM shows a more substantial improve-
ment compared to BVSA, particularly when p = 2000, further supporting

our theoretical conclusions.
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Table 1: Finite sample results on variable selection performance under structured mix-
ture model settings when p = 0.25. VSM: our proposed method; BVSA: scalable MCMC-

based method (Zhang et al., 2025).

B v
TPR FDR F1 Ext TPR FDR F1  Ext

p n  Method

VSM 1 0 1 100% 0.930 0.053 0.933 77%

200 BVSA 1 0 1 100% 0.955 0.075 0.934 76%

100 VSM 1 0 1 100% 0.988 0.024 0.980 98%
300 BVSA 1 0 1 100% 0.993 0.075 0.953 97%
VSM 1 0 1 100% 0.893 0.130 0.874 63%

200 BVSA 1 0 1 100% 0.900 0.043 0.922 68%

500 VSM 1 0 1 100% 0.990 0.088 0.945 93%
300 BVSA 1 0 1 100% 0.948 0.035 0.951 91%
VSM 1 0 1 100% 0.668 0.122 0.737 29%

200 BVSA 1 0 1 100% 0.625 0.121 0.710 20%
2000 VSM 1 0 1 100% 0.915 0.058 0.919 79%
300 BVSA 1 0 1 100% 0.795 0.047 0.848 56%

S4.2 Estimation Comparisons with the MCMC Method

To evaluate parameter estimation accuracy, we analyze how the /5 errors of
B, v, and a change with increasing sample size. We consider both p = 100
and p = 500 settings and use the same true values of B3,, 7., and oy
as specified in Section 5.1. The averaged ¢y errors are obtained from 100
independent trials and presented in Figure 1 for p = 100 and Figure 2 for
p = 500.

As n increases, the ¢y errors and their standard errors decrease to-
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Figure 1: The {5 errors of parameter estimation with growing sample sizes when p = 100.
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Figure 2: The /5 errors of parameter estimation with growing sample sizes when p = 500.
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wards 0 for all parameters. The estimation errors of 3 and « are nearly
identical between VSM and BVSA across different model dimensions and
sample sizes, indicating that the variational approximation induces negligi-
ble bias in estimating the linear coefficients. For the logistic coefficient -,
the gaps between the {5 errors of VSM and BVSA are slightly larger. Nev-
ertheless, their overall performance remains comparable. Note that when
p = 100, VSM achieves smaller /5 errors, suggesting that the proposed
variational method can even attain higher estimation accuracy than the

scalable MCMC-based counterpart.

p=100 p=500

-
n
1

o
©

o
w

100 400 700 1000 100 400 700 1000
Sample size

Difference of gamma estimation errors
=} o
o (o]

Figure 3: The difference of ¢y errors of « estimation between VSM and BVSA with

growing sample sizes when p = 100 and p = 500.

To empirically illustrate the asymptotic behavior of variational approxi-

mation error, we examine how the gap between the « estimation errors from
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VSM and BVSA changes with n. As shown in Figure 3, the gap exhibits an
overall shrinking trend as n grows, suggesting that the approximation error
introduced by VB converges to 0 with larger samples. This observation is
consistent with our theoretical findings, where the approximation error is

of order O(Cy;/M,,) in Theorem 1 and vanishes as M,, — occ.

S4.3 Selection Frequencies Under Traditional Subgroup Settings

In this subsection, we provide additional analyses under the traditional sub-
group settings. The comparison methods are the same as those adopted in
Section 5.2, which are implemented using R codes (BVSA) and R pack-
ages partykit for MOB, MrSGUIDE for GUIDE, SubgrpID for PRIM and
SeqBT, and FindIt for FindIt. BVSA is implemented as described in Sec-
tion 5.1, and parameters for subgroup identification methods are set to the
recommended values.

We consider the two settings evaluated in Section 5.2 along with an
additional setting SO:

SO0:Y =142, + Z, + 40t + ¢,

S1:Y =1+ Zy +40tl x,50,x,<1,x5=2) + &,
S2:Y =1+ 21+ Zy+ Za+ Lize=2) + Z7 + 40t (x,50,x,<1,x0=2) €,

where € ~ N(0,1). Setting SO contains no meaningful subgroups and is

designed to examine the robustness of VSM against falsely identifying spu-
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rious subgroup structures.

We set p = 20 and n = 200, and generate all prognostic and predic-
tive covariates in the same way as described in Section 5.2. The selection
frequencies of predictive covariates averaged over 100 random replications
are reported in Table 2. We highlight two observations. First, under set-
ting SO, VSM tends not to select covariates when no subgroup exists and
achieves selection frequencies comparable to BVSA. In contrast, other sub-
group identification methods, particularly those based on splitting rules, are
more likely to mistakenly identify subgroups and select inactive covariates.
Second, under settings S1 and S2, VSM and BVSA successfully identify
all important predictive covariates, while other methods struggle to differ-
entiate between predictive and prognostic covariates, frequently selecting

inactive predictive covariates.

S4.4 Sensitivity Analysis of Initialization

In this subsection, we investigate the sensitivity of our proposed VSM to
different initialization approaches. We focus on the logistic component that
governs the predictive variable selection, while keeping the linear component
randomly initialized as implemented in our numerical studies. We compare

the proposed GUIDE-based initialization (GUIDE, Loh 2002) with the
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Table 2: Selection frequencies of predictive variables when p = 20.

(a) SO:Y =14 2y + Zo + 40t + £

X1 X2 X3 X4 X5 Xe X7 XS X9 XlO

VSM 0.02 0.04 0.04 0 0.01 0 0.02 0.03 0.01 0.02
BVSA 0 0 0 0 0 0 0 0 0 0

GUIDE 0.27 0.28 0.22 0.07 0.05 0.10 0.11 0.10 0.08 0.11
FindIt 0.08 0.01 0 0.02 0.03 0.05 0 0 0 0.02
PRIM 0.53 0.55 0.07 0.08 0 0 0.06 0.03 0.04 0.02
MOB 1 1 0 0 0 0 0.01 0 0 0

SeqBT  0.18 0.21 0.19 0.12 0.06 0.08 0.14 0.09 0.09 0.13

(b) S1:Y=1 + ZQ + 40tI(X1>0,X4<1,X6=2) +e€

X1 Xa X3 X2 X5 Xe X7 Xs Xo X0

VSM 090 0.05 0.01 0.78 0.01 097 0.01 0.01 0.01 0.01
BVSA 0.92 0.01 0 0.85 0.02 1 0 0 0 0
GUIDE 0.86 0.18 0.07 0.13 0.05 098 0.03 0.06 0.04 0.07
FindIt 099 0.84 0.81 1 0.86 1 093 0.86 0.80 0.89
PRIM 0.53 0.16 0.15 0.50 0 0.12 0.12 0.16 0.16 0.12
MOB 0.19 1 0.02 0.05 0 0.51 0 0.01 0 0
SeqBT  0.08 0 0.01 0.02 0 0.93 0 0 0 0

(C) S2:Y=14+21+22+Z4 + .I(Z6=2) + Z7 + 40t1(x1>0,X4<1,X6:2) + €

X1 Xa Xz X2 X5 Xe Xr Xs Xo X0

VSM 0.90 0.03 0 0.75 0.04 0.97 0 0 0.01 0
BVSA 0.90 0.01 0 0.82 0.02 1 0 0.01 0 0
GUIDE 0.87 0.22 0.14 0.26 0.04 098 0.21 0.08 0.13 0.09
FindIt 1 0.84 0.84 099 087 1 092 0.82 0.80 0.86
PRIM 0.51 0.19 0.23 0.43 0 0.12 0.19 0.22 0.14 0.19
MOB 0.90 0.74 0.01 0.52 0 0.86 0.75 0.03 0 0.03
SeqBT  0.09 0 0 0.01 0 0.94 0 0 0 0
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following alternative approaches:

e MOB: initialize via the subgroup method MOB (Seibold et al., 2016);

e Random: initialize by randomly selecting active predictive covariates

with a predetermined size of min(5,0.2px);

e Zero: initialize without any active predictive covariate.

We begin with the mixture model setting described in Section 5.1 and
conduct simulations with n = 200 and varying p € {100,500}. The results
averaged from 100 random replications are summarized in Table 3. All ini-
tialization strategies yield similar performance across all metrics, indicating
that the proposed VSM is highly robust to initialization when the model is
correctly specified.

To comprehensively examine initialization sensitivity, we consider the
traditional subgroup scenario in Section 5.2. We adopt setting S1 with
n = 200 and p € {20,200}. Table 4 reports the results averaged from
100 random trials. GUIDE initialization achieves the highest F1 and exact
recovery (Ext) scores among all methods, demonstrating its advantage in
identifying active predictive covariates under model misspecification. Its
advantage becomes more evident in the high-dimensional case when p =

200. In contrast, the Zero initialization exhibits conservative behavior,



S4. ADDITIONAL SIMULATION RESULTS

Table 3: Predictive variable selection results under structured mixture model settings in
Section 5.1 for n = 200 and p € {100,500}. “GUIDE”: initialization via GUIDE (Loh,
2002); “MOB?”: initialization via MOB (Seibold et al., 2016); “Random”: initialization
with random predictive variable selection; “Zero”: initialization without any predictive

variable.

Mixture model p =100 p = 500

TPR FDR F1 Ext TPR FDR F1 Ext

GUIDE 0.955 0.036 0.956 90% 0.903 0.126 0.881 64%
MOB 0.945 0.027 0.955 89% 0.903 0.126 0.881 64%
Random 0.953 0.032 0.956 91% 0.900 0.141 0.871 64%
Zero 0.948 0.031 0.954 90% 0.905 0.121 0.884 64%

with notably lower TPR and FDR values, underscoring the importance of
providing an informative initialization to guide the variational optimization.

It can be concluded that VSM is strongly robust to initialization when
the model is correctly specified. Furthermore, under model misspecification,
the proposed GUIDE-based initialization can lead to more accurate variable

selection.

S4.5 Sensitivity Analysis of Hyperparameters

To examine the sensitivity of VSM to the spike-and-slab prior hyperparame-
ters, we conduct analyses under the structured mixture model setting speci-

fied in Section 5.1 with n = 200 and p € {100, 500}. We vary each hyperpa-



RUQIAN ZHANG AND JUAN SHEN

Table 4: Predictive variable selection results for S1: Y = 1+ Z5+40t1(x, >0, x,<1,x5=2) €
for n =200 and p € {20,200} in Section 5.2. “GUIDE”: initialization via GUIDE (Loh,
2002); “MOB”: initialization via MOB (Seibold et al., 2016); “Random”: initialization
with random predictive variable selection; “Zero”: initialization without any predictive

variable.

Tree model p=20 p =200

TPR FDR F1 Ext TPR FDR F1 Ext

GUIDE 0.873 0.031 0.891 77% 0.703 0.268 0.662 38%
MOB 0.727 0.024 0.786 69% 0.533 0.161 0.586 25%
Random 0.724 0.047 0.793 68% 0.507 0.196 0.591 20%

Zero 0.580 0.008 0.693 63% 0.477 0.067 0.585 19%

rameter independently while keeping the others fixed at their recommended
values in Section 4.3. Specifically, we consider ¢,,gg € {0.1,0.2,0.3,0.5}
and 7,73 € {0.8,1,1.3,1.5}. The variable selection performance summa-
rized from 100 random trials is provided in Table 5.

We can draw the following conclusions from Table 5. First, for ¢g and
7 in the prior of the linear coefficients, the performance on both 8 and
~ remains nearly identical across different values, indicating that VSM is
highly robust to their choices. Second, varying 7. in the prior of the logistic
coefficients has only a minor influence on the predictive variable selection,
and the prognostic variable selection remains perfect in all settings.

Third, the choice of ¢, plays a more substantial role in identifying the
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Table 5: Performance on variable selection under structured mixture model settings in
Section 5.1 with n = 200 and p € {100,500}. When one prior hyperparameter varies,

other hyperparameters are set as recommended.

B8 ~y
TPR FDR F1 Ext TPR FDR Fl1  Ext

Hyper »p Value

0.1 1 0 1 100% 0.728 0.001 0.827 83%

0.2 0 1 100% 0.828 0.010 0.893 86%

100 0.3 1 0 1 100% 0.895 0.010 0.934 88%

0.5 1 0 1 100% 0.955 0.036 0.956 90%

T 0.1 1 0 1 100% 0.693 0.008 0.799 56%
0.2 1 0 1 100% 0.790 0.025 0.859 59%

500 0.3 1 0 1 100% 0.863 0.033 0.901 65%

0.5 1 0 1 100% 0.903 0.126 0.881 64%

0.1 1 0 1 100% 0.955 0.036 0.956 90%

0.2 1 0 1 100% 0.955 0.036 0.956 90%

100 0.3 1 0 1 100% 0.955 0.036 0.956 90%

0.5 1 0 1 100% 0.955 0.036 0.956 90%

%8 0.1 1 0 1 100% 0.903 0.126 0.881 64%
0.2 1 0 1 100% 0.903 0.126 0.881 64%

500 0.3 1 0 1 100% 0.903 0.128 0.880 64%

0.5 1 0 1 100% 0.903 0.126 0.881 64%

0.8 1 0 1 100% 0.958 0.062 0.943 87%

1 1 0 1 100% 0.953 0.051 0.947 88%

100 1.3 1 0 1 100% 0.955 0.036 0.956 90%

1.5 1 0 1 100% 0.955 0.033 0.957 90%

™ 0.8 1 0 1 100% 0.905 0.159 0.864 62%
1 1 0 1 100% 0.908 0.150 0.871 64%

500 1.3 1 0 1 100% 0.903 0.143 0.872 63%

1.5 1 0 1 100% 0.905 0.133 0.879 63%

0.8 1 0 1 100% 0.955 0.036 0.956 90%

1 1 0 1 100% 0.955 0.036 0.956 90%

100 1.3 1 0 1 100% 0.955 0.036 0.956 90%

1.5 1 0 1 100% 0.955 0.036 0.956 90%

s 0.8 1 0 1 100% 0.903 0.126 0.881 64%
1 1 0 1 100% 0.903 0.126 0.881 64%

500 1.3 1 0 1 100% 0.903 0.126 0.881 64%

1.5 1 0 1 100% 0.903 0.126 0.881 64%
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true predictive model. Large values of ¢y, e.g., 0.5, tend to include more
predictive covariates in the model, whereas smaller values of ¢4, e.g., 0.1,
induce more sparse results. Overall, the variations in the performance on
~ are mild. The choice of ¢, exhibits a clear trade-off between TPR and
FDR, and the recommended value of 0.5 achieves a satisfactory balance

with high F1 and Ext scores across different p.
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S5 Additional Information on the Real Application

S5.1 Posterior Inclusion Probabilities in the IWPC Dataset

The posterior inclusion probabilities of all covariates are shown in Figure 4.

Prognostic Predictive

1.00 =

e

3

a
[

0.50 =

Posterior inclusion probabilities

o

N}

a
[

0.00 =

Figure 4: Posterior inclusion probabilities for the IWPC dataset with prognostic on the

left and predictive on the right.

S5.2 Additional Results on the ACTG 320 Study

The ACTG 320 dataset comprises 852 observations, with 423 patients re-
ceiving the three-drug regimen and 429 patients in the control group. The
pre-treatment covariates include sex, injection-drug use (dr), hemophilia

(hemo), weight (wt), and Karnofsky score (Ks), months of prior zidovu-
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dine (zido), age, log baseline CD4 counts (L.), log baseline HIV-1 RNA
concentration with base 10 (L,), and indicators for African (Afri) and
Hispanic (Hisp) ethnicity.

The variational posterior inclusion probabilities of all covariates esti-
mated from VSM, including noise variables, are shown in Figure 5. Based
on the results that L, and L. are selected as the only active prognostic and
predictive covariates, the estimated model that includes only the identified

active variables is given by
Y ~AN(—63.1+10.99L, — 39.9L. + 139.25¢,8.57%)
+ (1 — #)N(—63.1 + 10.99L, — 39.9L. — 7.63t,8.57%),
log[n/(1 —7)] = 3.49 4+ 1.06L, — 3.38L,.

Prognostic Predictive

1.00 =
0.75 =

0.50 =

Posterior inclusion probabilities

0.25 =

0.00 =

Variable index

Figure 5: Posterior inclusion probabilities for the ACTG 320 study with prognostic on

the left and predictive on the right.
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To validate the identified subgroups, we empirically examine the treat-
ment effects across different subgroups. Patients are divided into two sub-
groups based on the estimated 7 using a threshold of 0.5. Figure 6 presents
box plots of the response under treatment and control conditions for each
subgroup. In Group 1, the two box plots are distinctly separated, indicat-
ing a strong treatment effect. In contrast, in Group 2, the box plots exhibit
substantial overlap, suggesting a weaker or negligible treatment effect. This
difference in treatment effects between the two subgroups underscores the

validity and meaningfulness of the identified subgroups.

Group 1 Group 2

200 = 200 = °

100 = 100 = ‘

CD4 count change at week 24

-100 - -100 = | |

. ; I

' ' -200 = ' '
trt no trt trt no trt

Figure 6: CD4 count change at week 24 under treatment and no treatment in two
subgroups, where the subgroup membership is determined by the predicted subgroup

proportion with a threshold of 0.5.
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