Appendix

Proof of Corollary 2

Letting £ = p/(1 — p), where p(x) =P[Y =1 | X =z, Ry = Ry = 1], denoting dP, ,,(x) =
dP(z | Ry =11, Ry = r), and omitting function arguments for simplicity, note that
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Therefore rearranging shows that the remainder Ry(P;P) equals
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The term (5) above is second-order. Therefore consider term (4).
By the mean value theorem we have, for some E/ between ¢ and &, that
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since for £ = f(u) = £ we have f'(u) = 1/(1 — p)? = (1 + €)2. Call the second term in the
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last line above Sa¢(x). Similarly we have for some other E” between ¢ and &, that
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£ we have ¢/(¢) = @. Call the second term in the last line above Sy (z).
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Therefore for the first term in (4) we have
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The second term involving (Sa4, Saf) is second-order. For the first term, note
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Putting all of the above together gives the result.
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