
Statistica Sinica: Supplement

Supplement to “ Exploratory Hierarchical Factor

Analysis with an Application to Psychological Measurement”

In the supplement, we provide technical proofs of all theoretical results, additional simulation

studies, and further details of the real data analysis presented in the main paper. In particu-

lar, Section S1 provides the proof of Theorem 1, Section S2 proves Proposition 2, Section S3

discusses how Condition 3 of Theorem 1 can be relaxed under a simple hierarchical factor struc-

ture, Section S4 establishes Theorem 2, Section S5 presents numerical results demonstrating

the convergence of Algorithm 3 to the global solution from multiple random starting points,

Section S6 shows the numerical results of Algorithms 1 and 2 in learning the hierarchical factor

structure when cmax is underspecified, Section S7 provides the construct of the data discussed

in the real data analysis, and Section S8 presents the numerical results of the alternative models

discussed in the real data analysis.

S1 Proof of Theorem 1

In this section, we give the proof of Theorem 1. For simplicity of notation,

for any matrix A ∈ Rm×n, S1 ⊂ {1, . . . ,m} and S2 ⊂ {1, . . . , n}, we denote

by A[S1,:] = A[S1,{1,...,n}] and A[:,S2] = A[{1,...,m},S2].

Proof. Suppose that there exists a hierarchical factor model satisfying the

constraints C1-C4, and the corresponding loading matrix Λ and the unique

variance matrix Ψ satisfy Σ = ΛΛ⊤ +Ψ and Σ = Σ∗. We prove Theorem 1



by induction on the depth of the hierarchy. It suffices to prove that Ch1 =

Ch∗
1, vk = v∗k for all k ∈ Ch∗

1 and λ1 = λ∗
1 or λ1 = −λ∗

1 hold, where

v1, . . . , vK are the corresponding sets of variables for each factor according

to Λ, Ch1, . . . ,ChK are the child factors of each factor according to the

hierarchical factor model given Λ, and λ1 and λ∗
1 are the first columns of Λ

and Λ∗ respectively.

First, we establish that for each k ∈ Ch∗
1, there exits i ∈ Ch1 such that

v∗k ⊂ vi. By Condition 2, we have ΛΛ⊤ = Λ∗(Λ∗)⊤ and Ψ = Ψ∗. If Ch∗
1 = ∅,

the result holds trivially. Otherwise, suppose Ch∗
1 ̸= ∅. For any k ∈ Ch∗

1,

define Bk,i = v∗k ∩ vi, i ∈ Ch1.

If Ch∗
k = ∅, consider the following cases:

1. We have |{i ∈ Ch1 : |Bk,i| ≥ 1}| ≥ 4, which implies the existence of

four distinct factors i1, i2, i3, i4 such that vij ∩ v∗k ̸= ∅ for j = 1, . . . , 4.

In this case, choose j1 ∈ Bk,i1 , . . . , j4 ∈ Bk,i4 . Consider Σ[{j1,j2},{j3,j4}] =

Σ∗
[{j1,j2},{j3,j4}], which is equivalent to

Λ[{j1,j2},{1}](Λ[{j3,j4},{1}])
⊤ = Λ∗

[{j1,j2},{1,k}](Λ
∗
[{j3,j4},{1,k}])

⊤. (S1.1)

Observe that the left-hand side of (S1.1) has rank at most 1, whereas,

by Condition 3, the right-hand side has rank 2. This contradicts (S1.1).

Hence, this case cannot occur.
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2. There exist i1 and i2 ̸= i1 such that |Bk,i1| ≥ 2 and |Bk,i2| ≥ 1.

In this case, choose distinct j1, j2 ∈ Bk,i1 and j3 ∈ Bk,i2 . Consider

Σ[{j1,j2,j3},{j1,j2,j3}] = Σ∗
[{j1,j2,j3},{j1,j2,j3}], which is equivalent to

Λ[{j1,j2,j3},:](Λ[{j1,j2,j3},:])
⊤ = Λ∗

[{j1,j2,j3},{1,k}](Λ
∗
[{j1,j2,j3},{1,k}])

⊤. (S1.2)

By Condition 3, the right-hand side of (S1.2) has rank 2. Moreover,

Condition 3 also implies that the submatrix Σ∗
[{j1,j2},{j1,j2}] has rank 2,

and hence the matrix Λ[{j1,j2},:] must have rank 2 as well. However,

observe that for any s ∈ {i2} ∪ Di2 , λj1,s = 0 and λj2,s = 0, whereas

Λ[{j3},{i2}∪Di2
] ̸= 0. Consequently, Λ[{j1,j2,j3},:] has rank 3. Thus, the

left-hand side of (S1.2) has rank 3, which contradicts (S1.2). There-

fore, this case cannot occur.

3. |v∗k| = 3, and there exist distinct i1, i2, i3 such that |Bk,i1| = |Bk,i2| =

|Bk,i3| = 1. Let {j1} = Bk,i1 , {j2} = Bk,i2 , and {j3} = Bk,i3 . Consider

Σ[{j1,j2,j3},{j1,j2,j3}] = Σ∗
[{j1,j2,j3},{j1,j2,j3}],

which is equivalent to (S1.2). In this case, the left-hand side of (S1.2)

has rank 3, whereas, by Condition 3, the right-hand side has rank 2.

This contradicts (S1.2). Hence, this case cannot occur.

4. There exists a unique i ∈ Ch1 such that Bk,i1 = v∗k, which indicates

that v∗k ⊂ vi.



When Ch∗
k ̸= ∅, consider the following cases:

1. There exist s ∈ Ch∗
k and i ∈ Ch1 such that |Bk,i∩v∗s | ≥ 2. In this case,

we claim that

|(∪i′ ̸=i,i′∈Ch1Bk,i′) ∩ (∪s′ ̸=s,s′∈Ch∗k
v∗s′)| ≤ 1, (S1.3)

Otherwise, choose j1, j2 ∈ Bk,i ∩ v∗s and j3, j4 ∈ (∪i′ ̸=i,i′∈Ch1Bk,i′) ∩

(∪s′ ̸=s,s′∈Ch∗k
v∗s′). Consider Σ[{j1,j2},{j3,j4}] = Σ∗

[{j1,j2},{j3,j4}], which is

equivalent to (S1.1). The left-hand side of (S1.1) has rank 1, whereas

by Condition 3, the right-hand side has rank 2. This contradicts (S1.1),

and thus the claim in (S1.3) holds.

Now observe that |v∗s′| ≥ 3 for all s′ ̸= s, s′ ∈ Ch∗
k. Combined

with (S1.3), |Bk,i ∩ v∗s′ | ≥ 2 for all s′ ∈ Ch∗
k. By an analogous ar-

gument, we also have,

|(∪i′ ̸=i,i′∈Ch1Bk,i′) ∩ v∗s | ≤ 1, (S1.4)

holds. Combining (S1.3) with (S1.4) yields

|(∪i′ ̸=i,i′∈Ch1Bk,i′) ∩ (∪s′∈Ch∗k
v∗s′)| ≤ 2. (S1.5)

We now analyze the possible values of the left-hand side of (S1.5).

If |(∪i′ ̸=i,i′∈Ch1Bk,i′) ∩ (∪s′∈Ch∗k
v∗s′)| = 2, there exists some s′ ̸= s such

that (S1.3) is tight. We choose j1, j2 ∈ Bk,i ∩ v∗s , j3, j4 ∈ Bk,i ∩ v∗s′ ,
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j5 ∈ (∪i′ ̸=i,i′∈Ch1Bk,i′)∩v∗s and j6 ∈ (∪i′ ̸=i,i′∈Ch1Bk,i′)∩v∗s′ . Furthermore,

when Ch∗
s ̸= ∅, we require that j1, j2 belong to different child factors of

factor s with j5. Similarly, when Ch∗
s′ ̸= ∅, we require that j3, j4 belong

to different child factors of factor s′ with j6. Such a choice is always

possible due to the assumed structure of the hierarchical model. Now

consider Σ[{j1,j2,j3,j4},{j5,j6}] = Σ∗
[{j1,j2,j3,j4},{j5,j6}], which is equivalent to

Λ[{j1,j2,j3,j4},{1}](Λ[{j5,j6},{1}])
⊤

=Λ∗
[{j1,j2,j3,j4},{1,k,s,s′}](Λ

∗
[{j5,j6},{1,k,s,s′}])

⊤,

(S1.6)

by the construction of j1, . . . , j6. The left-hand side of (S1.6) has rank

1. On the other hand, by Condition 3, the matrix Λ∗
[{j1,j2,j3,j4},{1,k,s,s′}]

has rank 4, and Λ∗
[{j5,j6},{1,k,s,s′}] has rank 2. By Sylvester’s rank in-

equality (see, e.g., Horn and Johnson, 2012),

rank
(
Λ∗

[{j1,j2,j3,j4},{1,k,s,s′}](Λ
∗
[{j5,j6},{1,k,s,s′}])

⊤)
≥rank

(
Λ∗

[{j1,j2,j3,j4},{1,k,s,s′}]
)
+ rank

(
Λ∗

[{j5,j6},{1,k,s,s′}]
)
− 4

=2,

which contradicts (S1.6). Hence, this case cannot occur.

If |(∪i′ ̸=i,i′∈Ch1Bk,i′) ∩ (∪s′∈Ch∗k
v∗s′)| = 1. Without loss of generality,

assume (∪i′ ̸=i,i′∈Ch1Bk,i′) ∩ (∪s′∈Ch∗k
v∗s′) = Bk,i1 ∩ v∗s1 = {j}, where i1 ∈

Ch1, i1 ̸= i and s1 ∈ Ch∗
k, s1 ̸= s. Consider Σ[v∗k,v

∗
k]
= Σ∗

[v∗k,v
∗
k]
, which is



equivalent to

Λ[v∗k,:]
(Λ[v∗k,:]

)⊤ = Λ∗
[v∗k,{1,k}∪D

∗
k]
(Λ∗

[v∗k,{1,k}∪D
∗
k]
)⊤. (S1.7)

By Condition 3, Λ∗
[v∗k\{j},{1,k}∪D

∗
k]
has rank 2+ |D∗

k|. Thus, Λ[v∗k\{j},:] has

rank 2+ |D∗
k|. Since Λ[{j},{i1}] ̸= 0 and Λ[v∗k\{j},{i1}] = 0, Λ[v∗k,:]

has rank

3 + |D∗
k|, which contradicts (S1.7). Hence, this case cannot occur.

If |(∪i′ ̸=i,i′∈Ch1Bk,i′) ∩ (∪s′∈Ch∗k
v∗s′)| = 0, there exists a unique i ∈ Ch1

such that Bk,i = v∗k, which indicates v∗k ⊂ vi.

2. |Bk,i ∩ v∗s | ≤ 1 for all i ∈ Ch1 and s ∈ Ch∗
k. If there exist some i ∈ Ch1

and s ∈ Ch∗
k such that |Bk,i ∩ v∗s | = 1 and |Bk,i ∩ v∗s′ | = 0 for all

s′ ∈ Ch∗
k, s

′ ̸= s, assume {j} = Bk,i∩v∗s . Similar to the proof in (S1.7),

the matrices on both sides have unequal ranks. Thus, the assumption

does not hold. We assume that there exist i ∈ Ch1, s1 ∈ Ch∗
k and

s2 ∈ Ch∗
k, s2 ̸= s1 such that |Bk,i∩ v∗s1 | = 1 and |Bk,i∩ v∗s2| = 1. If there

further exists s3 ∈ Ch∗
k, s3 ̸= s1, s2 such that |Bk,i∩ v∗s3| = 0, we denote

by {j1} = Bk,i ∩ v∗s1 and {j2} = Bk,i ∩ v∗s2 . Consider Σ[v∗s3 ,{j1,j2}]
=

Σ∗
[v∗s3 ,{j1,j2}]

, which is equivalent to

Λ[v∗s3 ,{1}]
(Λ[{j1,j2},{1}])

⊤ = Λ∗
[v∗s3 ,{1,k}]

(Λ∗
[{j1,j2},{1,k}])

⊤.

Noticing that the rank of the matrix on the left side is 1, while accord-

ing to Condition 3, the rank of the matrix on the right side is 2, the
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assumption does not hold.

Thus, for any i ∈ Ch1, if there exists some s ∈ Ch∗
k such that |Bk,i ∩

v∗s | = 1, then |Bk,i∩v∗s | = 1 for all s ∈ Ch∗
k, which indicate that |v∗s | are

the same for s ∈ Ch∗
k. If |Ch∗

k| ≥ 3, let s1, s2, s3 ∈ Ch∗
k and i1, i2, i3 ∈

Ch1 such that {j1} = Bk,i1 ∩ v∗s1 , {j2} = Bk,i2 ∩ v∗s1 , {j3} = Bk,i3 ∩ v∗s2 ,

{j4} = Bk,i3 ∩ v∗s3 . Consider Σ[{j1,j2},{j3,j4}] = Σ∗
[{j1,j2},{j3,j4}], which is

equivalent to

Λ[{j1,j2},{1}](Λ[{j3,j4},{1}])
⊤ = Λ∗

[{j1,j2},{1,k}](Λ
∗
[{j3,j4},{1,k}])

⊤. (S1.8)

Since the left-hand side has rank 1, while by Condition 3, the right-

hand side has rank 2, the assumption does not hold.

Finally, if |Ch∗
k| = 2, let {j1} = Bk,i1 ∩ v∗s1 , {j2} = Bk,i1 ∩ v∗s2 , j3, j4 ∈

v∗s1 , j3, j4 ̸= j1 and j5, j6 ∈ v∗s2 , j5, j6 ̸= j2. Furthermore, when |Ch∗
s1
| ≠

0, we require that j3, j4 belong to different child factors of factor

s1 with j1. Similarly, when |Ch∗
s2
| ̸= 0, j5, j6 belong to different

child factors of factor s2 with j2. Such a choice is always possible

due to the assumed structure of the hierarchical model. Consider

Σ[{j1,j2},{j3,j4,j5,j6}] = Σ∗
[{j1,j2},{j3,j4,j5,j6}], which is equivalent to

Λ[{j1,j2},{1}](Λ[{j3,j4,j5,j6},{1}])
⊤

=Λ∗
[{j1,j2},{1,k,s1,s2}](Λ

∗
[{j3,j4,j5,j6},{1,k,s1,s2}])

⊤.

(S1.9)



The left-hand side of (S1.9) has rank 1. On the other hand, by Condi-

tion 3, Λ∗
[{j3,j4,j5,j6},{1,k,s1,s2}] has rank 4 and Λ∗

[{j1,j2},{1,k,s1,s2}] has rank

2. By Sylvester’s rank inequality,

rank
(
Λ∗

[{j1,j2},{1,k,s1,s2}](Λ
∗
[{j3,j4,j5,j6},{1,k,s1,s2}])

⊤)
≥rank

(
Λ∗

[{j1,j2},{1,k,s1,s2}]
)
+ rank

(
Λ∗

[{j3,j4,j5,j6},{1,k,s1,s2}]
)
− 4

=2,

(S1.10)

which contradicts (S1.9). Thus, the assumption does not hold.

From the previous proof, for any k ∈ Ch∗
1, there exists i ∈ Ch1 such

that v∗k ⊂ vi. For any i ∈ Ch1, define Ci = {k ∈ Ch∗
1 : v∗k ⊂ vi}. Consider

Σ[vi,vi] = Σ∗
[vi,vi]

, which is equivalent to

Λ[vi,{1,i}∪Di](Λ[vi,{1,i}∪Di])
⊤ = Λ∗

[vi,{1}∪Ci∪(∪k∈Ci
D∗

k)]
(Λ∗

[vi,{1}∪Ci∪(∪k∈Ci
D∗

k)]
)⊤.

According to Condition 3, the matrix Λ∗
[vi,{1}∪Ci∪(∪k∈Ci

D∗
k)]

has rank 1+|Ci|+∑
k∈Ci

|D∗
k|. Thus, we must have 1 + |Di| ≥ |Ci| +

∑
k∈Ci

|D∗
k|. Summing

both sides over all i ∈ Ch1, we have

K−1 =
∑
i∈Ch1

(1+|Di|) ≥
∑
i∈Ch1

(
|Ci|+

∑
k∈Ci

|D∗
k|

)
=
∑

k∈Ch∗1

(1+|D∗
k|) = K−1.

Therefore,

1 + |Di| = |Ci|+
∑
k∈Ci

|D∗
k|, (S1.11)

for every i ∈ Ch1. According to Lemma 5.1 of Anderson and Rubin (1956),
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there exists an orthogonal matrix Ri such that

Λ[vi,{1,i}∪Di] = Λ∗
[vi,{1}∪Ci∪(∪k∈Ci

D∗
k)]
Ri. (S1.12)

On the other hand, for i, i′ ∈ Ch1, consider Σ[vi,vi′ ]
= Σ∗

[vi,vi′ ]
, which is

equivalent to

Λ[vi,{1}](Λ[vi′ ,{1}])
⊤ = Λ∗

[vi,{1}](Λ
∗
[vi′ ,{1}])

⊤. (S1.13)

Combining (S1.12) with (S1.13), either Λ[vi,{1}] = Λ∗
[vi,{1}] or Λ[vi,{1}] =

−Λ∗
[vi,{1}] holds. Without loss of generality, we assume Λ[vi,{1}] = Λ∗

[vi,{1}],

which further implies λ1 = λ∗
1.

It remains to show that |Ci| = 1 for all i ∈ Ch1. Suppose, for con-

tradiction, that there exists some i ∈ Ch1 such that |Ci| ≥ 2. Since

|Di| ≥ 2, for s1, s2 ∈ Chi, there exist k1, k2 ∈ Ci such that vs1 ∩ v∗k1 ̸= ∅ and

vs2 ∩ v∗k2 ̸= ∅. Consider Σ[vs1∩v
∗
k1

,vs2∩v
∗
k2

] = Σ∗
[vs1∩v

∗
k1

,vs2∩v
∗
k2

]. Combined with

Λ[vs1∩v
∗
k1

,{1}] = Λ∗
[vs1∩v

∗
k1

,{1}] and Λ[vs2∩v
∗
k2

,{1}] = Λ∗
[vs2∩v

∗
k2

,{1}], we have

Λ[vs1∩v
∗
k1

,{i}](Λ[vs2∩v
∗
k2

,{i}])
⊤ = 0.

Consequently, Λ[vs1∩v
∗
k1

,{i}] = 0 or Λ[vs2∩v
∗
k2

,{i}] = 0, which contradicts the

definition of vi. Thus, |Ci| = 1 for all i ∈ Ch1. Therefore, we have shown

that Ch1 = Ch∗
1, vk = v∗k for all k ∈ Ch∗

1.

Finally, combining λ1 = λ∗
1 with Σ = Σ∗, the covariance equality de-



composes into |Ch∗
1| independent equations

Λ[v∗k,{k}∪Dk](Λ[v∗k,{k}∪Dk])
⊤ = Λ∗

[v∗k,{k}∪D
∗
k]
(Λ∗

[v∗k,{k}∪D
∗
k]
)⊤,

k ∈ Ch∗
1. By (S1.11), we have |Dk| = |D∗

k| for all k ∈ Ch∗
1. Thus, by

applying the same argument recursively to factors on the tth layer, t =

2, . . . , T , we conclude that Λ = Λ∗Q and Ψ = Ψ∗ for some sign flip matrix

Q.

S2 Proof of Proposition 2

In this section, we give the proof of Proposition 2.

Proof. Since factor j and its descendant factors construct a hierarchical

factor structure that satisfies constraint C1-C4, it suffices to prove that

|v∗1| ≥ 3 + |D∗
1|. (S2.14)

Let Lt be the factors that belong to the tth layer, t = 1, . . . , T . We

divide Lt into L
(1)
t = {k ∈ Lt : Ch

∗
k ̸= ∅} and L

(2)
t = {k ∈ Lt : Ch

∗
k = ∅}

for t = 2, . . . , T so that L
(1)
t ∪ L(2)

t = Lt and L
(1)
t ∩ L(2)

t = ∅. By definition,

L
(1)
T = ∅. By constraint C3, we first have

|L(1)
t | ≤

⌊
1

2
|Lt+1|

⌋
=

⌊
1

2
|L(1)

t+1|+
1

2
|L(2)

t+1|
⌋
, t = 2, . . . , T − 1. (S2.15)
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Iterating (S2.15) for t+ 1 ≤ j ≤ T − 1 yields

|L(1)
t | ≤

T∑
j=t+1

1

2j−t
|L(2)

j |.

Consequently,

|D∗
1| =

T∑
t=2

|Lt|

=
T∑
t=2

|L(1)
t |+ |L(2)

t |

≤
T∑
t=2

(|L(2)
t |+

T∑
j=t+1

1

2j−t
|L(2)

j |)

=
T∑
t=2

(2− 1

2t−2
)|L(2)

t |

<2
T∑
t=2

|L(2)
t |.

(S2.16)

On the other hand, constraint C4 implies

|v∗1| ≥ 3
T∑
t=2

|L(2)
t |. (S2.17)

Combining (S2.16) and (S2.17), we have |v∗1| > 2
3
|D∗

1|. In particular, (S2.14)

holds when v∗1 ≥ 9. When |v∗1| = 7 or 8, |D∗
1| ≤ 2 by constraint C4 and

(S2.14) holds. When 3 ≤ |v∗1| ≤ 6, |D∗
1| = 0 by constraint C4 and (S2.14)

holds.



S3 Further discussions of Condition 3

In this section, we discuss the identifiability of a bi-factor model with two

group factors, which constructs a special case of a two-layer hierarchical

factor model. Let Λ∗ and Ψ∗ be the true loading matrix and the unique

variance matrix. Let v∗1, v
∗
2 and v∗3 be the sets of variables loading on the

general factor (Factor 1) and the two group factors (Factors 2 and 3) such

that v∗1 = v∗2 ∪ v∗3 and v∗2 ∩ v∗3 = ∅. Lemma 1 provides a counterexam-

ple showing that Conditions 1 and the following Condition S1—the latter

being a sufficient condition for Condition 2 under this specific hierarchi-

cal structure—are not sufficient to guarantee identifiability of the model.

Theorem S1 then establishes the identifiability under the additional Con-

dition S2.

Condition S1. |v∗g | ≥ 3 and Λ∗
[v∗g ,{1,g}]

is of full rank for g ∈ {2, 3}.

Moreover, there exists g ∈ {2, 3} and disjoint partition E1, E2 such that

E1 ∪E2 = v∗g , E1 ∩E2 = ∅, and Λ∗
[E1,{1,g}],Λ

∗
[E2,{1,g}] are of full column rank.

Lemma 1. Suppose that Conditions 1 and S1 hold. There exists another

hierarchical factor structure with the loading matrix Λ and the unique vari-

ance matrix Ψ such that ΛΛ⊤ +Ψ = Σ∗.

Proof. It is easy to check that Condition S1 is a sufficient condition for
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Condition 2. Thus, we have Ψ = Ψ∗ and focus on constructing a loading

matrix Λ that produces the same covariance matrix Σ∗ but corresponds to

a different hierarchical factor structure. The hierarchical factor structure

decoded by Λ is still a bi-factor structure with two group factors. Let v2

and v3 be the sets of variables belonging to Factor 2 and 3 according to Λ.

Moreover, let B2,2 = v∗2 ∩ v2, B2,3 = v∗2 ∩ v3, B3,2 = v∗3 ∩ v2 and B3,3 = v∗3 ∩ v3

and assume that |Bi,j| ≠ 0 for all i, j ∈ {2, 3}. Now we construct Λ∗ and Λ

by specifying their nonzero loadings as follows:

Λ∗
[B2,2,{2}] =

1

2
Λ∗

[B2,2,{1}],Λ[B2,2,{1}] = Λ∗
[B2,2,{1}],Λ[B2,2,{2}] =

1

2
Λ∗

[B2,2,{1}],

Λ∗
[B2,3,{2}] = 2Λ∗

[B2,3,{1}],Λ[B2,3,{1}] = 2Λ∗
[B2,3,{1}],Λ[B2,3,{3}] = −Λ∗

[B2,3,{1}],

Λ∗
[B3,2,{3}] =

1

2
Λ∗

[B3,2,{1}],Λ[B3,2,{1}] =
1

2
Λ∗

[B3,2,{1}],Λ[B3,2,{2}] = Λ∗
[B3,2,{1}],

Λ∗
[B3,3,{3}] = −Λ∗

[B3,3,{1}],Λ[B3,3,{1}] = Λ∗
[B3,3,{1}],Λ[B3,3,{3}] = Λ∗

[B3,3,{1}].

(S3.18)

As long as |B2,2| ≥ 2 and |B2,3| ≥ 2, Λ∗ satisfies Conditions 1 and

S1. However, ΛΛ⊤ = Λ∗Λ∗⊤ while Λ and Λ∗ produce different hierarchical

factor structures.

To avoid the counterexample raised in Lemma 1, we need the following

Condition S2.

Condition S2. There exists g ∈ {2, 3} and i, j, k ∈ v∗g such that Λ∗
[{i,j},{1,g}]

Λ∗
[{i,k},{1,g}] and Λ∗

[{j,k},{1,g}] are of full rank.



Theorem S1. Suppose that Conditions 1, S1, and S2 hold. If there exists

some hierarchical factor structure with three factors such that its loading

matrix Λ and unique variance matrix Ψ satisfy Σ∗ = ΛΛ⊤ +Ψ, there exists

some sign flip matrix Q ∈ Q such that Λ = Λ∗Q, where Q consists of all

the 3× 3 diagonal matrix Q whose diagonal entries take values 1 or −1.

Proof. We adopt the notation from the proof of Lemma 1. By Condition S1,

we have ΛΛ⊤ = Λ∗Λ∗⊤ and Ψ = Ψ∗. We consider the following cases:

1. |Bs1,s2| ≠ 0 for all s1, s2 ∈ {2, 3}.

2. Without loss of generality, v2 = v∗2 but v3 ̸= v∗3.

3. v2 = v∗2 and v3 = v∗3.

In the first case, since Λ∗
[v∗2 ,{1,2}]

and Λ∗
[v∗3 ,{1,3}]

are of rank-2, all the

following submatrices are of rank-1:

Λ∗
[B2,2,{1,2}],Λ

∗
[B2,3,{1,2}],Λ

∗
[B3,2,{1,3}],Λ

∗
[B3,3,{1,3}],

Λ[B2,2,{1,2}],Λ[B2,3,{1,3}],Λ[B3,2,{1,2}],Λ[B3,3,{1,3}].

However, according to Condition S2, there exists at least one of the matrices

Λ∗
[B2,2,{1,2}],Λ

∗
[B2,3,{1,2}],Λ

∗
[B3,2,{1,3}] and Λ∗

[B3,3,{1,3}] such that it is of rank-2.

Thus, the first case is not allowed.

In the second case, we assume v2 = v∗2 while v3 ̸= v∗3 without loss of

generality. Since Λ[v∗2 ,{1,2}]Λ
⊤
[v∗2 ,{1,2}]

= Λ∗
[v∗2 ,{1,2}]

Λ∗⊤
[v∗2 ,{1,2}]

, there exits some
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orthogonal rotation matrix R ∈ R2×2 such that

Λ[v∗2 ,{1,2}] = Λ∗
[v∗2 ,{1,2}]

R. (S3.19)

With Λ[v∗2 ,{1}]Λ
⊤
[B3,3,{1}] = Λ∗

[v∗2 ,{1}]
Λ∗⊤

[B3,3,{1}], there exists some constant a such

that Λ[v∗2 ,{1}] = aΛ∗
[v∗2 ,{1}]

. Combined with (S3.19), a = 1 or −1 since

Λ∗
[v∗2 ,{1,2}]

is of rank-2. Without loss of generality, we assume Λ[v∗2 ,{1}] =

Λ∗
[v∗2 ,{1}]

and Λ[v∗2 ,{2}] = Λ∗
[v∗2 ,{2}]

further. Then, consider Λ[v∗2 ,{1,2}]Λ
⊤
[B3,2,{1,2}] =

Λ∗
[v∗2 ,{1}]

Λ∗⊤
[B3,2,{1}], which leads to Λ[B3,2,{2}] = 0. Thus, the second case is not

allowed.

In the third case, similar to the proof in the second case, there exists

two orthogonal rotation matrices R1, R2 ∈ R2×2 and such that

Λ[v∗2 ,{1,2}] = Λ∗
[v∗2 ,{1,2}]

R1 and Λ[v∗3 ,{1,3}] = Λ∗
[v∗3 ,{1,3}]

R2. (S3.20)

Combined with Λ[v∗2 ,{1}]Λ
⊤
[v∗3 ,{1}]

= Λ∗
[v∗2 ,{1}]

Λ∗⊤
[v∗3 ,{1}]

, there exists some sign flip

matrix Q ∈ Q such that Λ = Λ∗Q.

Remark S1. Theorem S1 establishes the identifiability of the bi-factor

model with two group factors. Compared to the general hierarchical identi-

fiability result in Theorem 1, it requires fewer structural assumptions, but

still needs the additional rank condition (Condition S2). The proof of The-

orem S1 is based on the specific hierarchical structure and we believe the

requirement for Condition 3 can be simplified based on the true hierarchical



factor structure.

S4 Proof of Theorem 2

We first introduce some notations and lemmas needed for the proof of

Theorem 2. Suppose that A, ε ∈ Rm×n. We denote by σ1(A) ≥ . . . ≥

σmin(m,n)(A) ≥ 0 are the singular values of A, and U1, . . . , Umin(m,n) are

the corresponding right(left) singular vectors. Similarly, we denote by

σ1(A + ε) ≥ . . . ≥ σmin(m,n)(A + ε) ≥ 0 as the singular values of A + ε

and U ′
1, . . . , U

′
min(m,n) the corresponding right(left) singular vectors. We use

∥A∥2 denote the spectral norm of a matrix A.

Lemma 2 (Weyl’s bound, Weyl (1912)).

max
1≤i≤min(m,n)

|σi(A)− σi(A+ ε)| ≤ ∥ε∥2.

We further assume that the rank of A is r. We denote by U =

(U1, . . . , Uj) and U ′ = (U ′
1, . . . , U

′
j), 1 ≤ j ≤ r. The following Lemma 3

is a modification of Wedin’s Theorem (Wedin, 1972).

Lemma 3. There exists some orthogonal matrix R such that

∥UR− U ′∥F ≤ 23/2r1/2∥ε∥F
δ

.

when δ = σj(A)− σj+1(A) > 0.
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Lemma 4. Given a J ×K dimensional matrix Λ following a hierarchical

structure that satisfies constraints C1-C4 and a J×J dimensional diagonal

matrix Ψ = diag(ψ1, . . . , ψJ) with ψj > 0, j = 1, . . . , J . Assume that Λ

satisfies Condition 5 and Condition 8. If there exist a series of J × K

dimensional random matrices {Λ̂N}∞N=1 and a series of J × J dimensional

diagonal random matrices {Ψ̂N}∞N=1, where Ψ̂N = diag(ψ̂N,1, . . . , ψ̂N,J) with

ψ̂N,j ≥ 0, j = 1, . . . , J , such that {Λ̂N}∞N=1 satisfies Condition 8 and

∥Λ̂N Λ̂
⊤
N + Ψ̂N − ΛΛ⊤ −Ψ∥F = OP(1/

√
N). (S4.21)

Then we have ∥Λ̂N Λ̂
⊤
N−ΛΛ⊤∥F = OP(1/

√
N) and ∥Ψ̂N−Ψ∥F = OP(1/

√
N).

Lemma 4 is a generalization of Theorem 5.1 in Anderson and Rubin

(1956), and its proof proceeds along the same lines.

Proof. For j = 1, . . . , J , by Condition 5, there exist E1, E2 ∈ {1, . . . , J}\{j}

with |E1| = |E2| = K and E1 ∩ E2 = ∅ such that Λ[E1,:] and Λ[E2,:] are full-

rank matrices. Without loss of generality, we assume that Λ and Λ̂N can

be expressed as

Λ =



Λ1

λj

Λ2

Λ3


, Λ̂N =



Λ̂N,1

λ̂N,j

Λ̂N,2

Λ̂N,3


,



where we denote by Λ1 = Λ[E1,:], Λ2 = Λ[E2,:], λj = Λ[{j},:] is the jth row of

Λ, Λ3 consists of the remaining rows in Λ with a slight abuse of notation.

The blocks Λ̂N,1, Λ̂N,2, λ̂N,j, and Λ̂N,3 are defined analogously for Λ̂N , with

the same row partitioning. Thus, we have

Λ[E1∪E2∪{j},:]Λ
⊤
[E1∪E2∪{j},:] =


Λ1Λ

⊤
1 Λ1λ

⊤
j Λ1Λ

⊤
2

λjΛ
⊤
1 λjλ

⊤
j λjΛ

⊤
2

Λ2Λ
⊤
1 Λ2λ

⊤
j Λ2Λ

⊤
2

 ,

and

(Λ̂N)[E1∪E2∪{j},:](Λ̂N)
⊤
[E1∪E2∪{j},:] =


Λ̂N,1Λ̂

⊤
N,1 Λ̂N,1λ̂

⊤
N,j Λ̂N,1Λ̂

⊤
N,2

λ̂N,jΛ̂
⊤
N,1 λ̂N,jλ̂

⊤
N,j λ̂N,jΛ̂

⊤
N,2

Λ̂N,2Λ̂
⊤
N,1 Λ̂N,2λ̂

⊤
N,j Λ̂N,2Λ̂

⊤
N,2

 .

According to (S4.21), we have

∥Λ1λ
⊤
j − Λ̂N,1λ̂

⊤
N,j∥ = OP(1/

√
N),

∥Λ2λ
⊤
j − Λ̂N,2λ̂

⊤
N,j∥ = OP(1/

√
N),

∥Λ1Λ
⊤
2 − Λ̂N,1Λ̂

⊤
N,2∥F = OP(1/

√
N).

(S4.22)

Since each of the following (K +1)× (K +1) matrices has rank at most K Λ1λ
⊤
j Λ1Λ

⊤
2

λjλ
⊤
j λjΛ

⊤
2

 and

 Λ̂N,1λ̂
⊤
N,j Λ̂N,1Λ̂

⊤
N,2

λ̂N,jλ̂
⊤
N,j λ̂N,jΛ̂

⊤
N,2

 ,
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we have

det

 Λ1λ
⊤
j Λ1Λ

⊤
2

λjλ
⊤
j λjΛ

⊤
2

 = det

 Λ̂N,1λ̂
⊤
N,j Λ̂N,1Λ̂

⊤
N,2

λ̂N,jλ̂
⊤
N,j λ̂N,jΛ̂

⊤
N,2

 = 0.

Then, we have

(−1)Kλjλ
⊤
j det(Λ1Λ

⊤
2 ) + f(Λ1λ

⊤
j ,λjΛ

⊤
2 )

=(−1)Kλ̂N,jλ̂
⊤
N,j det(Λ̂N,1Λ̂

⊤
N,2) + f(Λ̂N,1λ̂

⊤
N,j, λ̂N,jΛ̂

⊤
N,2)

=0,

(S4.23)

where f(·) is a scalar-valued function. Both f(·) and the determinant func-

tion det(·) are Lipschitz continuous with respect to the entries of their

matrix arguments, with Lipschitz constants depending only on K and τ .

Combined with (S4.22) and (S4.23), we have

|λjλ
⊤
j − λ̂N,jλ̂

⊤
N,j|| det(Λ1Λ

⊤
2 )|

≤|f(Λ1λ
⊤
j ,λjΛ

⊤
2 )− f(Λ̂N,1λ̂

⊤
N,j, λ̂N,jΛ̂

⊤
N,2)|

+ |λ̂N,jλ̂
⊤
N,j|| det(Λ1Λ

⊤
2 )− det(Λ̂N,1Λ̂

⊤
N,2)|

=OP(1/
√
N).

Noticing that | det(Λ1Λ
⊤
2 )| > 0, we have |λjλ

⊤
j − λ̂N,jλ̂

⊤
N,j| = OP(1/

√
N).

Combined with

|λjλ
⊤
j + ψj − λ̂N,jλ̂

⊤
N,j − ψ̂N,j| = OP(1/

√
N),

we have |ψj − ψ̂N,j| = OP(1/
√
N) for j = 1, . . . , J . Thus, we have ∥Ψ̂N −



Ψ∥F = OP(1/
√
N) and furthermore we have ∥Λ̂N Λ̂

⊤
N−ΛΛ⊤∥F = OP(1/

√
N).

For Factor k ∈ Lt−1, t ≥ 3, let Σ∗
k,0 :=

∑kt−2

i=1 (λ
∗
i )[v∗k](λ

∗
i )

⊤
[v∗k]

when

k ∈ L̂t−1 and Σ∗
k = (λ∗

k)[v∗k](λ
∗
k)

⊤
[v∗k]

+
∑

i∈D∗
k
(λ∗

i )[v∗k](λ
∗
i )

⊤
[v∗k]

+ Ψ∗
[v∗k,v

∗
k]
. We

further define

Θk(c, d) ={Σ = ΛkΛ
⊤
k +Ψk ∈ R|v∗k|×|v∗k| : Λk ∈ R|v∗k|×(1+cd),

|λk,ij| ≤ τ, λk,ijλk,ij′ = 0, for i = 1, . . . , |v∗k|, j ∈ Bs, j
′ ∈ Bs′ , s ̸= s′

and Ψ = diag(ψk1, . . . , ψk|v∗k|) with κ1 ≤ ψki ≤ κ2 for i = 1, . . . , |v∗k|},
(S4.24)

where Bs = 2 + (s − 1)d, . . . , 1 + sd for s = 1, . . . , c, and τ , κ1 and κ2 are

those specified in Condition 8. Given a symmetric positive semi-definite

matrix Σ̃k,0 serving as an estimator of Σ∗
k,0, we define

Σ̂k = argmin
Σk∈Θk(c,d)

l
(
Σ̃k,0 + Σk, Sk

)
. (S4.25)

The following Lemma 5 and 6 establish the consistency and convergence

rate of Σ̂k.

Lemma 5 (Consistency). Suppose d is sufficiently large such that Σ∗
k ∈

Θk(c, d) and ∥Σ̃k,0 −Σ∗
k,0∥F = oP(1). If Conditions 7 and 8 hold, Σ̂k

P→ Σ∗
k.

Proof. The proof of Lemma 5 follows Theorem 2.1 in Newey and McFadden

(1994). First, we show that Θk(c, d) is a compact set in R|v∗k|×|v∗k|. By defini-
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tion, we directly have that Θk(c, d) is a bounded set. To prove that Θk(c, d)

is also a closed set, we assume {Σ(n)
k = Λ

(n)
k Λ

(n)⊤
k + Ψ

(n)
k }∞n=1 is an arbi-

trary convergent sequence in Θk(c, d). Since {Λ(n)
k }∞n=1 and {Ψ(n)

k }∞n=1 are

bounded sequences, there exists subsequence {Λ(nm)
k }∞m=1 and {Ψ(nm)

k }∞m=1

such that

lim
m→∞

Λ
(nm)
k = Λ∞

k and lim
m→∞

Ψ
(nm)
k = Ψ∞

k .

Since λnm
k,ijλ

nm

k,ij′ = 0, limm→∞ λnm
k,ij = λ∞k,ij and limm→∞ λnm

k,ij′ = λ∞k,ij′ , we have

λ∞k,ijλ
∞
k,ij′ = 0 for i = 1, . . . , |v∗k|, j ∈ Bs, j

′ ∈ Bs′ , 1 ≤ s < s′ ≤ c. Thus,

lim
n→∞

Σ
(n)
k = Λ∞

k Λ∞⊤
k +Ψ∞

k ∈ Θk(c, d).

Then Θk(c, d) is a compact set.

Second, let

ak(x; Σk, Σ̃k,0) = log det(Σ̃k,0 + Σk) + tr
(
x[v∗k]x

⊤
[v∗k]

(Σ̃k,0 + Σk)
−1
)

Mk(Σk, Σ̃k,0) = log det(Σ̃k,0 + Σk) + tr
(
Sk(Σ̃k,0 + Σk)

−1
)

M0,k(Σk, Σ̃k,0) = log det(Σ̃k,0 + Σk) + tr
(
(Σ∗

k,0 + Σ∗
k)(Σ̃k,0 + Σk)

−1
)

(S4.26)

We directly have

Σ̂k = argmin
Σk∈Θk(c,d)

Mk(Σk, Σ̃k,0). (S4.27)



Moreover,

∂

∂Σk

M0,k(Σk,Σ
∗
k,0)

=(Σk + Σ∗
k,0)

−1 − (Σk + Σ∗
k,0)

−1(Σ∗
k + Σ∗

k,0)(Σk + Σ∗
k,0)

−1

=0,

(S4.28)

when Σk = Σ∗
k ∈ Θk(c, d). Thus,M0,k(Σk,Σ

∗
k,0) reaches its unique minimum

at Σ∗
k.

Third,

|ak(x; Σk,Σ
∗
k,0)|

≤| log det(Σ∗
k,0 + Σk)|+

∣∣∣tr(x[v∗k]x⊤[v∗k](Σ∗
k,0 + Σk)

−1
)∣∣∣

≤|v∗k|max
(
| log(σmin(Σ

∗
k,0 + Σk))|, | log(σmax(Σ

∗
k,0 + Σk))|

)
+

∥∥x[v∗k]∥∥2
σmin(Σ∗

k,0 + Σk)

≤|v∗k|max
(
| log κ1|,

∣∣log (|v∗k| ((1 + cd)2 +K2
)
τ 2 + κ2

)∣∣)+ 1

κ1

∥∥x[v∗k]∥∥2 .
(S4.29)

Since E
(∥∥x[v∗k]∥∥2) <∞, by Lemma 2.4 of Newey and McFadden (1994)

sup
Σk∈Θk(c,d)

|Mk(Σk,Σ
∗
k,0)−M0,k(Σk,Σ

∗
k,0)|

P→ 0. (S4.30)
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Now we have

M0,k(Σ̂k,Σ
∗
k,0)

=M0,k(Σ
∗
k,Σ

∗
k,0) + (M0,k(Σ̂k,Σ

∗
k,0)−M0,k(Σ̂k, Σ̃k,0)) + (M0,k(Σ̂k, Σ̃k,0)

−Mk(Σ̂k, Σ̃k,0)) + (Mk(Σ̂k, Σ̃k,0)−Mk(Σ
∗
k, Σ̃k,0)) + (Mk(Σ

∗
k, Σ̃k,0)

−M0,k(Σ
∗
k, Σ̃k,0)) + (M0,k(Σ

∗
k, Σ̃k,0)−M0,k(Σ

∗
k,Σ

∗
k,0))

≤M0,k(Σ
∗
k,Σ

∗
k,0) + 2 sup

Σk∈Θk(c,d)

|M0,k(Σk,Σ
∗
k,0)−M0,k(Σk, Σ̃k,0)|

+ 2 sup
Σk∈Θk(c,d)

|M0,k(Σk, Σ̃k,0)−Mk(Σk, Σ̃k,0)−M0,k(Σk,Σ
∗
k,0) +Mk(Σk,Σ

∗
k,0)|

+ 2 sup
Σk∈Θk(c,d)

|Mk(Σk,Σ
∗
k,0)−M0,k(Σk,Σ

∗
k,0)|.

(S4.31)

For arbitrary Σk ∈ Θk(c, d), according to Taylor’s expansion there exists

some η ∈ (0, 1) such that

|M0,k(Σk,Σ
∗
k,0)−M0,k(Σk, Σ̃k,0)|

≤
∣∣∣∣tr((Σ̃k,0 − Σ∗

k,0)
(
Σk + (1− η)Σ∗

k,0 + ηΣ̃k,0

)−1

(Σ∗
k,0 + Σ∗

k)
(
Σk + (1− η)Σ∗

k,0

+ηΣ̃k,0

)−1
)∣∣∣∣+ ∣∣∣∣tr((Σ̃k,0 − Σ∗

k,0)
(
(1− η)Σ∗

k,0 + ηΣ̃k,0

)−1
)∣∣∣∣

≤|v∗k|K2τ 2 + κ2 + κ1
κ21

∥Σ̃k,0 − Σ∗
k,0∥F ,

(S4.32)

where the last inequality follows Ruhe’s trace inequality (Ruhe, 1970). Sim-



ilarly, with probability approaching 1 as N grows to infinity,

|Mk(Σk,Σ
∗
k,0)−Mk(Σk, Σ̃k,0)|

≤
∣∣∣∣tr((Σ̃k,0 − Σ∗

k,0)
(
Σk + (1− η)Σ∗

k,0 + ηΣ̃k,0

)−1

Sk

(
Σk + (1− η)Σ∗

k,0 + ηΣ̃k,0

)−1
)∣∣∣∣

+

∣∣∣∣tr((Σ̃k,0 − Σ∗
k,0)
(
Σk + (1− η)Σ∗

k,0 + ηΣ̃k,0

)−1
)∣∣∣∣

≤2 (|v∗k|K2τ 2 + κ2) + κ1
κ21

∥Σ̃k,0 − Σ∗
k,0∥F ,

(S4.33)

With (S4.32) and (S4.33)

sup
Σk∈Θk(c,d)

|M0,k(Σk,Σ
∗
k,0)−M0,k(Σk, Σ̃k,0)| = oP(1), (S4.34)

and

sup
Σk∈Θk(c,d)

|M0,k(Σk, Σ̃k,0)−Mk(Σk, Σ̃k,0)−M0,k(Σk,Σ
∗
k,0) +Mk(Σk,Σ

∗
k,0)|

=oP(1).

(S4.35)

For arbitrary ϵ > 0, let

∆(ϵ) = inf
Σk∈Θk(c,d),∥Σk−Σ∗

k∥F≥ϵ
M0,k(Σk,Σ

∗
k,0)−M0,k(Σ

∗
k,Σ

∗
k,0) > 0.

Combined with (S4.30), (S4.31), (S4.34) and (S4.35), with probability ap-

proaching 1 as N grows to infinity,

M0,k(Σ̂k,Σ
∗
k,0) < M0,k(Σ

∗
k,Σ

∗
k,0) + ∆(ϵ),

which indicates ∥Σ̂k − Σ∗
k∥F < ϵ. Thus, Σ̂k

P→ Σ∗
k.
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Lemma 6 (Convergence rate). Suppose d is sufficiently large such that

Σ∗
k ∈ Θk(c, d) and ∥Σ̃k,0−Σ∗

k,0∥F = OP(1/
√
N). If Conditions 7 and 8 hold,

∥Σ̂k − Σ∗
k∥F = OP(1/

√
N).

Proof. Consider

Mk(Σ̂k, Σ̃k,0)−Mk(Σ
∗
k,Σ

∗
k,0)

=M0,k(Σ̂k, Σ̃k,0)−M0,k(Σ
∗
k,Σ

∗
k,0) +Mk(Σ̂k, Σ̃k,0)−M0,k(Σ̂k, Σ̃k,0)

−Mk(Σ
∗
k,Σ

∗
k,0) +M0,k(Σ

∗
k,Σ

∗
k,0).

(S4.36)

Let ∆Σ̂k,Σ̃k,0
= Σ̂k + Σ̃k,0 − Σ∗

k − Σ∗
k,0. By Taylor’s expansion, there exists

some η ∈ (0, 1) such that

M0,k(Σ̂k, Σ̃k,0)−M0,k(Σ
∗
k,Σ

∗
k,0)

=
1

2
tr

(
∆Σ̂k,Σ̃k,0

(
Σ∗

k + Σ∗
k,0 + η∆Σ̂k,Σ̃k,0

)−1

∆Σ̂k,Σ̃k,0

(
Σ∗

k + Σ∗
k,0 + η∆Σ̂k,Σ̃k,0

)−1

(
2
(
Σ∗

k + Σ∗
k,0

) (
Σ∗

k + Σ∗
k,0 + η∆Σ̂k,Σ̃k,0

)−1

− I

))
.

(S4.37)

For simplicity of the notations, let

∆1 = ∆Σ̂k,Σ̃k,0

(
Σ∗

k + Σ∗
k,0 + η∆Σ̂k,Σ̃k,0

)−1

∆Σ̂k,Σ̃k,0
,

∆2 =
(
Σ∗

k + Σ∗
k,0 + η∆Σ̂k,Σ̃k,0

)−1
(
2
(
Σ∗

k + Σ∗
k,0

) (
Σ∗

k + Σ∗
k,0 + η∆Σ̂k,Σ̃k,0

)−1

− I

)

According to Lemma 5, Σ̂k
P→ Σ∗

k. Combined with Lemma 2, with proba-



bility approaching 1 as N grows to infinity,

∥∆Σ̂k,Σ̃k,0
∥2F

|v∗k|K2τ 2 + κ2

≤1

2
σmin

((
Σ∗

k + Σ∗
k,0

)−1
)
∥∆Σ̂k,Σ̃k,0

∥2F

≤tr(∆1)

≤2σmax

((
Σ∗

k + Σ∗
k,0

)−1
)
∥∆Σ̂k,Σ̃k,0

∥2F

≤2∥∆Σ̂k,Σ̃k,0
∥2F/κ1,

(S4.38)

and

σmin(∆2) ≥
1

2
σmin

((
Σ∗

k + Σ∗
k,0

)−1
)
≥ 1

|v∗k|K2τ 2 + κ2
,

σmax(∆2) ≤ 2σmax

((
Σ∗

k + Σ∗
k,0

)−1
)
≤ 2

κ1
.

(S4.39)

By the Ruhe’s trace inequality, we have

∥∆Σ̂k,Σ̃k,0
∥2F = OP

(
M0,k(Σ̂k, Σ̃k,0)−M0,k(Σ

∗
k,Σ

∗
k,0)
)
. (S4.40)

Next, by Taylor’s expansion, there exists some η ∈ (0, 1) such that

Mk(Σ̂k, Σ̃k,0)−M0,k(Σ̂k, Σ̃k,0)−Mk(Σ
∗
k,Σ

∗
k,0) +M0,k(Σ

∗
k,Σ

∗
k,0)

=tr

(
∆Σ̂k,Σ̃k,0

(
Σ∗

k + Σ∗
k,0 + η∆Σ̂k,Σ̃k,0

)−1 (
Sk − Σ∗

[v∗k,v
∗
k]

)
(
Σ∗

k + Σ∗
k,0 + η∆Σ̂k,Σ̃k,0

)−1
)
.

(S4.41)

Combined with Condition 7, Lemma 2 and the Ruhe’s trace inequality, with
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probability approaching 1 as N grows to infinity,∣∣∣Mk(Σ̂k, Σ̃k,0)−M0,k(Σ̂k, Σ̃k,0)−Mk(Σ
∗
k,Σ

∗
k,0) +M0,k(Σ

∗
k,Σ

∗
k,0)
∣∣∣

=OP(∥∆Σ̂k,Σ̃k,0
∥F/

√
N).

(S4.42)

Similarly, let ∆Σ∗
k,Σ̃k,0

= Σ∗
k + Σ̃k,0 − Σ∗

k − Σ∗
k,0 = Σ̃k,0 − Σ∗

k,0. We have

Mk(Σ
∗
k, Σ̃k,0)−Mk(Σ

∗
k,Σ

∗
k,0) = OP(∥∆Σ∗

k,Σ̃k,0
∥2F ) +OP(∥∆Σ∗

k,Σ̃k,0
∥F/

√
N)

= OP(1/N)

(S4.43)

Thus, we have

0 ≤M0,k(Σ̂k, Σ̃k,0)−M0,k(Σ
∗
k,Σ

∗
k,0)

≤Mk(Σ̂k, Σ̃k,0)−Mk(Σ
∗
k,Σ

∗
k,0) +OP

(
∥∆Σ̂k,Σ̃k,0

∥F/
√
N
)

≤Mk(Σ
∗
k, Σ̃k,0)−Mk(Σ

∗
k,Σ

∗
k,0) +OP

(
∥∆Σ̂k,Σ̃k,0

∥F/
√
N
)

=OP(1/N) +OP

(
∥∆Σ̂k,Σ̃k,0

∥F/
√
N
)
.

(S4.44)

Combined with (S4.40), we have ∥∆Σ̂k,Σ̃k,0
∥2F = OP(1/N)+OP(∥∆Σ̂k,Σ̃k,0

∥F/
√
N),

which leads to ∥∆Σ̂k,Σ̃k,0
∥F = OP(1/

√
N). Furthermore, we have

∥Σ̂k − Σ∗
k∥F ≤ ∥∆Σ̂k,Σ̃k,0

∥F + ∥Σ̃k,0 − Σ∗
k,0∥F = OP(1/

√
N).

When the true hierarchical factor structure is known, the estimates of



the loading matrix and the unique variance matrix are defined as follows:

Λ̂, Ψ̂ = argmin
Λ,Ψ

l(ΛΛ⊤ +Ψ;S)

s.t. |λik| ≤ τ and λjk = 0 for k = 1, . . . , K, i ∈ v∗k, j /∈ v∗k,

Ψ = diag(ψ1, . . . , ψJ), κ1 ≤ |ψj| ≤ κ2, j = 1, . . . , J.

(S4.45)

Lemma 7. Suppose that the hierarchical factor structure is known. If Con-

ditions 1, 3, 5, 7 and 8 hold, we have

∥Λ̂− Λ∗Q̂∥F = OP(1/
√
N) and ∥Ψ̂−Ψ∗∥F = OP(1/

√
N), (S4.46)

where Q̂ is the diagonal matrix with diagonal entries consisting of the signs

of the corresponding entries of Λ̂⊤Λ∗ defined in Theorem 2.

Proof. Similar to the proof of Lemma 6, we have ∥Λ̂Λ̂⊤ + Ψ̂ − Σ∗∥F =

OP(1/
√
N). Furthermore, according to Lemma 4, we have ∥Λ̂Λ̂⊤−Λ∗Λ∗⊤∥F =

OP(1/
√
N) and ∥Ψ̂−Ψ∗∥F = OP(1/

√
N).

To prove that ∥Λ̂−Λ∗Q̂∥F = OP(1/
√
N), we first show that there exists

some orthogonal rotation matrix R such that ∥Λ̂ − Λ∗R∥F = OP(1/
√
N).

Second, we show that ∥λ̂1 − λ∗
1sign(λ̂

⊤
1 λ

∗
1)∥F = OP(1/

√
N). Third, we

conclude the proof by recursively applying the same argument to the factors

in the tth layer, t = 2, . . . , T .

Let Λ∗ = U∗diag (σ1(Λ
∗), . . . , σK(Λ

∗))V ∗⊤ be the singular value decom-
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position of Λ∗ and Λ̂ = Ûdiag
(
σ1(Λ̂), . . . , σK(Λ̂)

)
V̂ ⊤ be the singular value

decomposition of Λ̂. Then Λ∗Λ∗⊤ = U∗diag (σ2
1(Λ

∗), . . . , σ2
K(Λ

∗))U∗⊤ and

Λ̂Λ̂⊤ = Ûdiag
(
σ2
1(Λ̂), . . . , σ

2
K(Λ̂)

)
Û⊤. By Lemma 2, |σ2

i (Λ
∗) − σ2

i (Λ̂)| =

OP(1/
√
N) for i = 1, . . . , K, which further leads to |σi(Λ∗) − σi(Λ̂)| =

OP(1/
√
N) for all i. By Lemma 3, there exits some orthogonal rotation

matrix R̃ such that ∥Û − U∗R̃∥F = OP(1/
√
N). Moreover, R̃ satisfies

R̃diag (σ1(Λ
∗), . . . , σK(Λ

∗)) = diag (σ1(Λ
∗), . . . , σK(Λ

∗)) R̃ with probability

approaching 1 as N grows to infinity. Taking R = V ∗R̃V̂ ⊤, we have

∥Λ̂− Λ∗R∥F

=
∥∥∥Ûdiag(σ1(Λ̂), . . . , σK(Λ̂)) V̂ ⊤ − U∗diag (σ1(Λ

∗), . . . , σK(Λ
∗)) R̃V̂ ⊤

∥∥∥
F

=∥Ûdiag
(
σ1(Λ̂), . . . , σK(Λ̂)

)
− U∗R̃diag (σ1(Λ

∗), . . . , σK(Λ
∗)) ∥F

≤
∥∥∥Û (diag(σ1(Λ̂), . . . , σK(Λ̂))− diag (σ1(Λ

∗), . . . , σK(Λ
∗))
)∥∥∥

F
+
∥∥(Û − U∗R̃)

diag (σ1(Λ
∗), . . . , σK(Λ

∗))
∥∥
F

=OP(1/
√
N).

(S4.47)

For i, j ∈ Ch∗
1, i ̸= j, by Lemma 3 and∥∥∥Λ̂[v∗i ,{1}]Λ̂

⊤
[v∗j ,{1}]

− Λ∗
[v∗i ,{1}]

(Λ∗
[v∗j ,{1}]

)⊤
∥∥∥
F
= OP(1/

√
N),

we have∥∥∥∥∥ Λ̂[v∗i ,{1}]∥∥Λ̂[v∗i ,{1}]
∥∥ −

Λ∗
[v∗i ,{1}]∥∥Λ∗
[v∗i ,{1}]

∥∥sign(Λ̂⊤
[v∗i ,{1}]

Λ∗
[v∗i ,{1}]

)∥∥∥∥∥ = OP(1/
√
N). (S4.48)



Then, we further have∥∥∥∥∥ Λ̂[v∗j ,{1}]∥∥Λ̂[v∗j ,{1}]
∥∥ −

Λ∗
[v∗j ,{1}]∥∥Λ∗
[v∗j ,{1}]

∥∥sign(Λ̂⊤
[v∗i ,{1}]

Λ∗
[v∗i ,{1}]

)∥∥∥∥∥ = OP(1/
√
N) (S4.49)

for all j ∈ Ch∗
1, which also leads to the fact that sign

(
Λ̂⊤

[v∗i ,{1}]
Λ∗

[v∗i ,{1}]

)
=

sign(λ̂
⊤
1 λ

∗
1) with probability approaching 1 as N grows to infinity. Accord-

ing to (S4.47), for each i ∈ Ch∗
1, we have

∥∥∥Λ̂[v∗i ,{1}] − Λ∗
[v∗i ,{1,i}∪D∗

i ]
R[{1,i}∪D∗

i ,{1}]

∥∥∥
F
= OP(1/

√
N).

Let

Pi =
Λ∗

[v∗i ,{1}]
(
Λ∗

[v∗i ,{1}]
)⊤(

Λ∗
[v∗i ,{1}]

)⊤
Λ∗

[v∗i ,{1}]

and Λ∗
Proj,i = (I − Pi)Λ

∗
[v∗i ,{i}∪D∗

i ]
. By Condition 3, σ1+|D∗

i |
(
Λ∗

Proj,i

)
> 0. We

have ∥∥∥Λ̂[v∗i ,{1}] − Λ∗
[v∗i ,{1,i}∪D∗

i ]
R[{1,i}∪D∗

i ,{1}]

∥∥∥
≥

∥∥∥∥∥
∥∥Λ̂[v∗i ,{1}]

∥∥∥∥Λ∗
[v∗i ,{1}]

∥∥Λ∗
[v∗i ,{1}]

sign(λ̂
⊤
1 λ

∗
1)− Λ∗

[v∗i ,{1,i}∪D∗
i ]
R[{1,i}∪D∗

i ,{1}]

∥∥∥∥∥
−
∥∥Λ̂[v∗i ,{1}]

∥∥∥∥∥∥∥ Λ̂[v∗i ,{1}]∥∥Λ̂[v∗i ,{1}]
∥∥ −

Λ∗
[v∗i ,{1}]∥∥Λ∗
[v∗i ,{1}]

∥∥sign(λ̂⊤
1 λ

∗
1)

∥∥∥∥∥
≥
∥∥R[{i}∪D∗

i ,{1}]
∥∥σ1+|D∗

i |
(
Λ∗

Proj,i

)
+OP(1/

√
N).

Thus, we have
∥∥R[{i}∪D∗

i ,{1}]
∥∥ = OP(1/

√
N) for all i ∈ Ch∗

i , which leads to∥∥R[{2,...,K},{1}]
∥∥ = OP(1/

√
N) and

∣∣R[{1},{1}] − sign(λ̂
⊤
1 λ

∗
1)
∣∣ = OP(1/

√
N).
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We then have∥∥λ̂1 − λ∗
1sign(λ̂

⊤
1 λ

∗
1)
∥∥

≤
∥∥λ̂1 − Λ∗R[:,{1}]

∥∥+ ∣∣R[{1},{1}] − sign(λ̂
⊤
1 λ

∗
1)
∣∣∥∥λ∗

1

∥∥
+
∥∥R[{2,...,K},{1}]

∥∥∥∥Λ∗
[:,{2,...,K}]

∥∥
F

=OP(1/
√
N).

(S4.50)

Finally, with (S4.50), we have

∥Λ̂[v∗i ,{i}∪D∗
i ]
Λ̂⊤

[v∗i ,{i}∪D∗
i ]
− Λ∗

[v∗i ,{i}∪D∗
i ]
Λ∗⊤

[v∗i ,{i}∪D∗
i ]
∥F = OP(1/

√
N),

for all i ∈ Ch∗
1. Then, Lemma 7 can be proved by recursively applying the

same argument to the factors in the tth layer, t = 2, . . . , T .

We now give the proof of Theorem 2.

Proof. The proof follows in a recursive manner. We first prove that with

probability approaching 1 as N grows to infinity,

Ĉh1 = Ch∗
1, and v̂i = v∗i for all i ∈ Ch∗

1, (S4.51)

and as a by-product, ∥λ̃1 − λ∗
1sign(λ

∗⊤
1 λ̃1)∥ = OP(1/

√
N), which further

implies ∥λ̃1λ̃
⊤
1 − λ∗

1λ
∗⊤
1 ∥F = OP(1/

√
N). Then Theorem 2 is proved by

applying the same argument to the factors in the tth layer, t = 2, . . . , T , in

conjunction with Lemma 7.

For simplicity of the notation, we denote c∗ = |Ch∗
1|. When c∗ = 0, the



proof of (S4.51) is trivial. When c∗ ≥ 2, the proof of (S4.51) consists of

two main steps:

1. For sufficiently large d such that Σ∗ ∈ Θ1(c, d), let Λ̄1,c and Ψ̄1,c be the

estimates according to (18) and v1,c1 , . . . , v1,cc be the sets of variables

belonging to the child factors of factor 1 decoded by Λ̄1,c. The possible

configurations for v1,c1 , . . . , v1,cc are:

A. For each k ∈ Ch∗
1, there exists some s ∈ {1, . . . , c} such that

v∗k ⊂ v1,cs .

B. There exists some j ∈ {1, . . . , J} such that

(v1,c1 , v1,c2 ) = ({1, . . . , J} \ {j}, {j}) and v1,cs = ∅ for s > 2.

2. c∗ = argminc=0,2,...,cmax
ĨC1,c and d̃

c∗
s = 1+ |D∗

1+s| for s = 1, . . . , c∗ with

probability approaching 1 as N grows to infinity.

Given v1,c1 , . . . , v1,cc , we prove the first part by showing that for arbitrary

Λ ∈ Ã1(c, d1 . . . , dc) and Ψ, there exists some constant C > 0 depending

only on Λ∗ such that ∥ΛΛ⊤ +Ψ−Σ∗∥F ≥ C if v1,c1 , . . . , v1,cc are not in case

A or B. Let Bi,s = v∗i ∩ v1,c
∗

s for i = 2, . . . , 1 + c∗ and s = 1, . . . , c. We first

claim that such a constant C exists if there exists i ∈ {2, . . . , 1 + c∗} such

that the following cases do not hold: (1) Bi,s = v∗i for some s ∈ {1, . . . , c}

and (2) v∗i = Bi,s1 ∪Bi,s2 , Bi,s1 ,Bi,s2 ̸= ∅ for s1, s2 ∈ {1, . . . , c} and |v1,cs2
| = 1.



S4. PROOF OF THEOREM 2

We then claim that such a constant C exists if the second case holds for

some i but case B does not hold.

Now we give the proof of the first claim. Let Σ = ΛΛ⊤ + Ψ. For

i = 2, . . . , 1 + c∗, consider the following cases where Ch∗
i = ∅:

1. |{s : |Bi,s| ≥ 1}| ≥ 4. Let s1, . . . , s4 ∈ {1, . . . , c} such that |Bi,s1| ≥

1, . . . , |Bi,s4| ≥ 1 and j1 ∈ Bi,s1 , . . . , j4 ∈ Bi,s4 . We have

Σ[{j1,j2},{j3,j4}] = Λ[{j1,j2},{1}](Λ[{j3,j4},{1}])
⊤,

has rank 1, while by Condition 3,

Σ∗
[{j1,j2},{j3,j4}] = Λ∗

[{j1,j2},{1,i}](Λ
∗
[{j3,j4},{1,i}])

⊤,

has rank 2. By Lemma 2, we have

∥Σ− Σ∗∥F

≥
∥∥Σ[{j1,j2},{j3,j4}] − Σ∗

[{j1,j2},{j3,j4}]
∥∥
F

≥σ2
(
Λ∗

[{j1,j2},{1,i}](Λ
∗
[{j1,j2},{1,i}])

⊤)
>0.

(S4.52)

2. There exists some 1 ≤ s ≤ c such that |Bi,s| ≥ 2 and |v∗i \ Bi,s| ≥ 2. In

this case, choose j1, j2 ∈ Bi,s and j3, j4 ∈ v∗i \ Bi,s, (S4.52) also holds.

3. There exists some 1 ≤ s ≤ c such |Bi,s| = 1 and |v1,cs | > 1. Let



{j} = Bi,s and we have

∥Σ− Σ∗∥F

≥ 1√
2

(∥∥Σ[v∗i \{j},{j}] − Σ∗
[v∗i \{j},{j}]

∥∥+ ∥∥Σ[v∗i \{j},v
1,c
s \{j}] − Σ∗

[v∗i \{j},v
1,c
s \{j}]

∥∥
F

)
.

(S4.53)

Notice that Σ[v∗i \{j},v
1,c
s \{j}] = Λ[v∗i \{j},{1}](Λ[v1,cs \{j},{1}])

⊤, and Σ∗
[v∗i \{j},v

1,c
s \{j}] =

Λ∗
[v∗i \{j},{1}]

(Λ∗
[v1,cs \{j},{1}])

⊤. We denote by

δ =
∥∥Σ[v∗i \{j},v

1,c
s \{j}] − Σ∗

[v∗i \{j},v
1,c
s \{j}]

∥∥
F
.

By Lemma 3,∥∥∥∥∥ Λ[v∗i \{j},{1}]∥∥Λ[v∗i \{j},{1}]
∥∥ −

Λ∗
[v∗i \{j},{1}]∥∥Λ∗
[v∗i \{j},{1}]

∥∥
∥∥∥∥∥ ≤ 23/2δ∥∥Λ∗

[v∗i \{j},{1}]

∥∥∥∥Λ∗
[v1,cs \{j},{1}]

∥∥ ,
(S4.54)

or ∥∥∥∥∥ Λ[v∗i \{j},{1}]∥∥Λ[v∗i \{j},{1}]
∥∥ +

Λ∗
[v∗i \{j},{1}]∥∥Λ∗
[v∗i \{j},{1}]

∥∥
∥∥∥∥∥ ≤ 23/2δ∥∥Λ∗

[v∗i \{j},{1}]

∥∥∥∥Λ∗
[v1,cs \{j},{1}]

∥∥
holds. Without loss of generality, we assume that (S4.54) holds. On

the other hand, notice that

Σ[v∗i \{j},{j}] = λj,1Λ[v∗i \{j},{1}],

and

Σ∗
[v∗i \{j},{j}]

= λ∗j,1Λ
∗
[v∗i \{j},{1}]

+ λ∗j,iΛ
∗
[v∗i \{j},{i}]

.
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Let

Pi =
Λ∗

[v∗i \{j},{1}]
(
Λ∗

[v∗i \{j},{1}]
)⊤(

Λ∗
[v∗i \{j},{1}]

)⊤
Λ∗

[v∗i \{j},{1}]

and µ = (I − Pi)Λ
∗
[v∗i \{j},{j}]

. According to Condition 3, µ ̸= 0. Ac-

cording to Condition 8, we have

∥∥Σ[v∗i \{j},{j}] − Σ∗
[v∗i \{j},{j}]

∥∥
=
∥∥λj,1Λ[v∗i \{j},{1}] − λ∗j,1Λ

∗
[v∗i \{j},{1}]

− λ∗j,iΛ
∗
[v∗i \{j},{i}]

∥∥
≥|λ∗j,i|∥µ∥ − |λj,1|

∥∥∥∥∥Λ[v∗i \{j},{1}] −
∥∥Λ[v∗i \{j},{1}]

∥∥∥∥Λ∗
[v∗i \{j},{1}]

∥∥Λ∗
[v∗i \{j},{1}]

∥∥∥∥∥
≥|λ∗j,i|∥µ∥ −

23/2τ 2δ(|v∗i | − 1)1/2∥∥Λ∗
[v∗i \{j},{1}]

∥∥∥∥Λ∗
[v1,cs \{j},{1}]

∥∥ .
(S4.55)

Combining (S4.53) and (S4.55), we have

∥Σ− Σ∗∥F ≥ min

(√
2

4
,

∥∥Λ∗
[v∗i \{j},{1}]

∥∥∥∥Λ∗
[v1,cs \{j},{1}]

∥∥
8τ 2(|v∗i | − 1)1/2

)
|λ∗j,i|∥µ∥ > 0.

4. |v∗i | = ∪k=1,2,3Bi,sk with {jk} = Bi,sk for k = 1, 2, 3. If there exists

some k such that |v1,csk
| > 1, with a similar argument from (S4.53) to

(S4.55), we have

∥Σ−Σ∗∥F ≥ min

√
2

4
,

∥∥Λ∗
[v∗i \{jk},{1}]

∥∥∥∥Λ∗
[v1,csk

\{jk},{1}]

∥∥
8τ 2(|v∗i | − 1)1/2

 |λ∗jk,i|∥µ∥ > 0,

where µ is defined similarly in (S4.55). Otherwise, {jk} = v1,csk
for



k = 1, 2, 3. Consider i′ ∈ Ch∗
i and i′ ̸= i. We have

∥Σ− Σ∗∥F

≥ 1√
2

(∥∥Σ[v∗i \{jk},{jk}] − Σ∗
[v∗i \{jk},{jk}]

∥∥+ ∥∥Σ[v∗i ,v
∗
i′ ]]

− Σ∗
[v∗i ,v

∗
i′ ]]

∥∥
F

)
.

(S4.56)

With a similar argument from (S4.53) to (S4.55), we have

∥Σ− Σ∗∥F ≥ min

(√
2

4
,

∥∥Λ∗
[v∗i \{jk},{1}]

∥∥∥∥Λ∗
[v∗

i′ ,{1}]

∥∥
8τ 2(|v∗i | − 1)1/2

)
|λ∗jk,i|∥µk∥ > 0,

where µks are defined similarly in (S4.55) for k = 1, 2, 3.

5. The rest of the cases are included in the two cases of our first claim.

When Ch∗
i ̸= ∅, consider the following cases:

1. There exist k ∈ Ch∗
i and s = 1, . . . , c such that |Bi,s ∩ v∗k| ≥ 2. If we

further have

|(∪1≤s′≤c,s′ ̸=sBi,s′) ∩ (∪k′ ̸=k,k′∈Ch∗i
v∗k′)| ≥ 2,

choose j1, j2 ∈ Bi,s∩v∗k and j3, j4 ∈ (∪1≤s′≤c∗,s′ ̸=sBi,s′)∩(∪k′ ̸=k,k′∈Ch∗1v
∗
k′).

We have

Σ[{j1,j2},{j3,j4}] = Λ[{j1,j2},{1}](Λ[{j3,j4},{1}])
⊤,

which has rank 1, while by Condition 3

Σ∗
[{j1,j2},{j3,j4}] = Λ∗

[{j1,j2},{1,i}](Λ
∗
[{j3,j4},{1,i}])

⊤,
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has rank 2. By Lemma 2, we also have

∥Σ− Σ∗∥F

≥
∥∥Σ[{j1,j2},{j3,j4}] − Σ∗

[{j1,j2},{j3,j4}]
∥∥
F

≥σ2
(
Λ∗

[{j1,j2},{1,i}](Λ
∗
[{j1,j2},{1,i}])

⊤)
>0.

If

|(∪1≤s′≤c,s′ ̸=sBi,s′) ∩ (∪k′ ̸=k,k′∈Ch∗i
v∗k′)| ≤ 1, (S4.57)

since |v∗k′ | ≥ 3 for k′ ̸= k, k′ ∈ Ch∗
i , by (S4.57) we also have |Bi,s∩v∗k′ | ≥

2 for all k′ ∈ Ch∗
i . Similar to (S4.57), we have

|(∪1≤s′≤c,s′ ̸=sBi,s′) ∩ v∗k| ≤ 1. (S4.58)

Combining (S4.57) and (S4.58), we have

|(∪1≤s′≤c,s′ ̸=sBi,s′) ∩ (∪k′∈Ch∗i
v∗k′)| ≤ 2.

First, if |(∪1≤s′≤c,s′ ̸=sBi,s′)∩(∪k′∈Ch∗i
v∗k′)| = 2, we denote by k′ ̸= k such

that (S4.57) is tight. Choose j1, j2 ∈ Bi,s ∩ v∗k, j3, j4 ∈ Bi,s ∩ v∗k′ , j5 ∈

(∪1≤s′≤c,s′ ̸=sBi,s′) ∩ v∗k and j6 ∈ (∪1≤s′≤c,s′ ̸=sBi,s′) ∩ v∗k′ . Furthermore,

we require that when Ch∗
k ̸= ∅, j1, j2 belong to different child factors

of factor k with j5 and when Ch∗
k′ ̸= ∅, j3, j4 belong to different child

factors of factor k′ with j6. Such a choice is always possible due to the



assumed structure of the hierarchical model. It is easy to check that

Σ[{j1,j2,j3,j4},{j5,j6}] = Λ[{j1,j2,j3,j4},{1}](Λ[{j5,j6},{1}])
⊤

has rank 1. On the other hand,

Σ∗
[{j1,j2,j3,j4},{j5,j6}] = Λ∗

[{j1,j2,j3,j4},{1,i,k,k′}](Λ
∗
[{j5,j6},{1,i,k,k′}])

⊤.

According to Condition 3, the rank of Λ∗
[{j1,j2,j3,j4},{1,i,k,k′}] is 4 and the

rank of Λ∗
[{j5,j6},{1,i,k,k′}] is 2. By Sylvester’s rank inequality,

rank
(
Λ∗

[{j1,j2,j3,j4},{1,i,k,k′}](Λ
∗
[{j5,j6},{1,i,k,k′}])

⊤)
≥rank

(
Λ∗

[{j1,j2,j3,j4},{1,i,k,k′}]
)
+ rank

(
Λ∗

[{j5,j6},{1,i,k,k′}]
)
− 4

=2.

Thus, by Lemma 2,

∥Σ− Σ∗∥F

≥
∥∥Σ[{j1,j2,j3,j4},{j5,j6}] − Σ∗

[{j1,j2,j3,j4},{j5,j6}]
∥∥
F

≥σ2
(
Λ∗

[{j1,j2,j3,j4},{1,i,k,k′}](Λ
∗
[{j5,j6},{1,i,k,k′}])

⊤)
>0.

Second, if |(∪1≤s′≤c,s′ ̸=sBi,s′)∩ (∪k′∈Ch∗i
v∗k′)| = 1, let (∪1≤s′≤c,s′ ̸=sBi,s′)∩

(∪k′∈Ch∗i
v∗k′) = Bi,s1 ∩ v∗k1 = {j} without loss of generality. When

|v1,cs1
| = 1, the second case of our first claim holds. Otherwise, it is easy
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to check that

∥Σ− Σ∗∥F

≥ 1√
2

(∥∥Σ[v∗i \{j},{j}] − Σ∗
[v∗i \{j},{j}]

∥∥+ ∥∥Σ[v∗i \{j},v
1,c
s1

\{j}] − Σ∗
[v∗i \{j},v

1,c
s1

\{j}]

∥∥
F

)
.

(S4.59)

Notice that

Σ[v∗i \{j},v
1,c
s1

\{j}] = Λ[v∗i \{j},{1}](Λ[v1,cs1
\{j},{1}])

⊤,

while

Σ∗
[v∗i \{j},v

1,c
s1

\{j}] = Λ∗
[v∗i \{j},{1}]

(Λ∗
[v1,cs1

\{j},{1}])
⊤.

We denote by δ =
∥∥Σ[v∗i \{j},v

1,c
s1

\{j}] − Σ∗
[v∗i \{j},v

1,c
s1

\{j}]

∥∥
F
. By Lemma 3,

either∥∥∥∥∥ Λ[v∗i \{j},{1}]∥∥Λ[v∗i \{j},{1}]
∥∥ −

Λ∗
[v∗i \{j},{1}]∥∥Λ∗
[v∗i \{j},{1}]

∥∥
∥∥∥∥∥ ≤ 23/2δ∥∥Λ∗

[v∗i \{j},{1}]

∥∥∥∥Λ∗
[v1,cs1

\{j},{1}]

∥∥ ,
(S4.60)

or ∥∥∥∥∥ Λ[v∗i \{j},{1}]∥∥Λ[v∗i \{j},{1}]
∥∥ +

Λ∗
[v∗i \{j},{1}]∥∥Λ∗
[v∗i \{j},{1}]

∥∥
∥∥∥∥∥ ≤ 23/2δ∥∥Λ∗

[v∗i \{j},{1}]

∥∥∥∥Λ∗
[v1,cs1

\{j},{1}]

∥∥ .
holds. Without loss of generality, we assume that (S4.60) holds. On

the other hand, notice that

Σ[v∗i \{j},{j}] = λj,1Λ[v∗i \{j},{1}],

and

Σ∗
[v∗i \{j},{j}]

= Λ∗
[v∗i \{j},{1,i}∪D∗

i ]
(Λ∗

[{j},{1,i}∪D∗
i ]
)⊤.



Let

Pi =
Λ∗

[v∗i \{j},{1}]
(
Λ∗

[v∗i \{j},{1}]
)⊤(

Λ∗
[v∗i \{j},{1}]

)⊤
Λ∗

[v∗i \{j},{1}]

and Λ∗
Proj,i = (I−Pi)Λ

∗
[v∗i \{j},{i}∪D∗

i ]
. By Condition 3, σ1+|D∗

i |
(
Λ∗

Proj,i

)
>

0. By Condition 8,∥∥Σ[v∗i \{j},{j}] − Σ∗
[v∗i \{j},{j}]

∥∥
≥− |λj,1|

∥∥∥∥∥Λ[v∗i \{j},{1}] −
∥∥Λ[v∗i \{j},{1}]

∥∥∥∥Λ∗
[v∗i \{j},{1}]

∥∥Λ∗
[v∗i \{j},{1}]

∥∥∥∥∥
+
∥∥Λ∗

[{j},{i}∪D∗
i ]

∥∥σ1+|D∗
i |
(
Λ∗

Proj,i

)
≥
∥∥Λ∗

[{j},{i}∪D∗
i ]

∥∥σ1+|D∗
i |
(
Λ∗

Proj,i

)
− 23/2τ 2δ(|v∗i | − 1)1/2∥∥Λ∗

[v∗i \{j},{1}]

∥∥∥∥Λ∗
[v1,cs1

\{j},{1}]

∥∥ .
(S4.61)

Combining (S4.59) and (S4.61), we have

∥Σ− Σ∗∥F

≥min

(√
2

4
,

∥∥Λ∗
[v∗i \{j},{1}]

∥∥∥∥Λ∗
[v1,cs \{j},{1}]

∥∥
8τ 2(|v∗i | − 1)1/2

)∥∥Λ∗
[{j},{i}∪D∗

i ]

∥∥σ1+|D∗
i |
(
Λ∗

Proj,i

)
>0.

(S4.62)

Finally, when |(∪1≤s′≤c∗,s′ ̸=sBi,s′) ∩ (∪k′∈Ch∗i
v∗k′)| = 0, the first case of

our first claim holds.

2. |Bi,s ∩ v∗k| ≤ 1 for all 1 ≤ s ≤ c and k ∈ Ch∗
i . First, consider the

case when there exist some 1 ≤ s ≤ c such that |Bi,s ∩ v∗k1| = 1 and

|Bi,s ∩ v∗k2 | = 1 for some k1, k2 ∈ Ch∗
i . we denote {j1} = Bi,s ∩ v∗k1
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and {j2} = Bi,s ∩ v∗k2 . Moreover, choose j3, j4 ∈ v∗k1 and j3, j4 ∈ v∗k2 .

Furthermore, if |Ch∗
k1
| ̸= 0, we further require that j3, j4 belong to

different child factors of factor k1 with j1. Similarly, if |Ch∗
k2
| ̸= 0,

j5, j6 belong to different child factor of factor k2 with j2. Such a choice

is always possible due to the assumed structure of the hierarchical

model. It is easy to check that

Σ[{j1,j2},{j3,j4,j5,j6}] = Λ[{j1,j2},{1}](Λ[{j3,j4,j5,j6},{1}])
⊤,

has rank 1. By Condition 3, Λ∗
[{j3,j4,j5,j6},{1,i,k1,k2}] has rank 4 and

Λ∗
[{j1,j2},{1,i,k1,k2}] has rank 2. By Sylvester’s rank inequality,

rank
(
Λ∗

[{j1,j2},{1,i,k1,k2}](Λ
∗
[{j3,j4,j5,j6},{1,i,k1,k2}])

⊤)
≥rank

(
Λ∗

[{j1,j2},{1,i,k1,k2}]
)
+ rank

(
Λ∗

[{j3,j4,j5,j6},{1,i,k1,k2}]
)
− 4

=2.

By Lemma 2,

∥Σ− Σ∗∥F

≥
∥∥Σ[{j1,j2},{j3,j4,j5,j6}] − Σ∗

[{j1,j2},{j3,j4,j5,j6}]
∥∥
F

≥σ2
(
Λ∗

[{j1,j2},{1,i,k1,k2}](Λ
∗
[{j3,j4,j5,j6},{1,i,k1,k2}])

⊤)
>0.

(S4.63)

Second, for each 1 ≤ s ≤ c, if |Bi,s ∩ v∗k| = 1 for some k ∈ Ch∗
i ,

|Bi,s ∩ v∗k′ | = 0 for all k′ ∈ Ch∗
i , k

′ ̸= k, which indicates |Bi,s ∩ v∗i | ≤ 1



for 1 ≤ s ≤ c. Since |v∗i | ≥ 7 by constraint C4, choose s1, s2, s3, s4 such

that {jk} = Bi,sk ∩v∗i for k = 1, . . . , 4 . Moreover, we require that j1, j2

and j3, j4 belong to different child factors of Factor i. We have

Σ[{j1,j2},{j3,j4}] = Λ[{j1,j2},{1}](Λ[{j3,j4},{1}])
⊤,

has rank 1, while by Condition 3,

Σ∗
[{j1,j2},{j3,j4}] = Λ∗

[{j1,j2},{1,i}](Λ
∗
[{j3,j4},{1,i}])

⊤,

has rank 2. By Lemma 2, we have

∥Σ− Σ∗∥F

≥
∥∥Σ[{j1,j2},{j3,j4}] − Σ∗

[{j1,j2},{j3,j4}]
∥∥
F

≥σ2
(
Λ∗

[{j1,j2},{1,i}](Λ
∗
[{j3,j4},{1,i}])

⊤)
≥0.

Now the first claim is proved, and we focus on our second claim. We

assume that there exist i1 ∈ {2, . . . , 1 + c∗} and s1, s2 ∈ {1, . . . , c} and

s1 ̸= s2 that satisfy v∗i1 = Bi1,s1 ∪ Bi1,s2 and v1,cs2
= {j1} for some j1 ∈

{1, . . . , J}. Furthermore, for each i2 ∈ {2, . . . , 1+c∗} and i2 ̸= i1, we denote

by v∗i2 = Bi2,s3 ∪ Bi2,s4 for some s3, s4 ∈ {1, . . . , c} that satisfy Bi2,s4 = ∅

or Bi2,s4 = v1,cs4
= {j2} for some j2 ∈ {1, . . . , J}. We will first show that

s3 = s1 for all i2 ̸= i1 and second, show that Bi2,s4 = ∅ for all i2 ̸= i1, which

finally leads to case B.



S4. PROOF OF THEOREM 2

First, when s3 ̸= s1 for some i2, it is easy to check that

∥Σ− Σ∗∥F

≥ 1√
2

(∥∥Σ[v∗i1
\{j1},{j1}] − Σ∗

[v∗i1
\{j1},{j1}]

∥∥+ ∥∥Σ[v∗i \{j1},Bi2,s3
] − Σ∗

[v∗i \{j1},Bi2,s3
]

∥∥
F

)
.

(S4.64)

Similarly to the proof in (S4.59) to (S4.62), we have

∥Σ− Σ∗∥F

≥min

(√
2

4
,

∥∥Λ∗
[v∗i1

\{j1},{1}]

∥∥∥∥Λ∗
[Bi2,s3

,{1}]

∥∥
8τ 2(|v∗i | − 1)1/2

)∥∥Λ∗
[{j1},{i1}∪D∗

i1
]

∥∥σ1+|D∗
i1
|
(
Λ∗

Proj,i1

)
>0.

(S4.65)

Second, when Bi2,s4 ̸= ∅ for some i2

∥Σ− Σ∗∥F

≥ 1√
2

(∥∥Σ[v∗i1
\{j1},{j1}] − Σ∗

[v∗i1
\{j1},{j1}]

∥∥+ ∥∥Σ[v∗i \{j1},Bi2,s4
] − Σ∗

[v∗i \{j1},Bi2,s4
]

∥∥
F

)
.

(S4.66)

Again, similarly to the proof in (S4.59) to (S4.62), we have

∥Σ− Σ∗∥F

≥min

(√
2

4
,

∥∥Λ∗
[v∗i1

\{j1},{1}]

∥∥∥∥Λ∗
[Bi2,s4

,{1}]

∥∥
8τ 2(|v∗i | − 1)1/2

)∥∥Λ∗
[{j1},{i1}∪D∗

i1
]

∥∥σ1+|D∗
i1
|
(
Λ∗

Proj,i1

)
>0.

(S4.67)

Now we have finished the first part of our proof.

For the second part, we mainly focus on case A and omit the proof



when v1,c1 , . . . , v1,cc are included in case B for two reasons: (1) case B does

not satisfy constraint C4 and will never be selected in our algorithms and

(2) by a similar argument below, the information criterion brought by such

case will be strictly larger than the optimal solution with probability ap-

proaching 1 as N grows to infinity. We also assume that dmax is sufficiently

large to avoid further discussions.

Now, we focus on case A and we only discuss the case when v1,cs are

nonempty for s = 1, . . . , c. First, we show that when c = c∗ in case A,

ĨC1,c∗ =
∑

k∈Ch∗1

(|v∗k|(|D∗
k|+ 1)− |D∗

k|(|D∗
k|+ 1)/2) logN +OP(1). (S4.68)

In such a case, we have v1,c
∗

s = v∗1+s for s = 1, . . . , c∗. We claim that Step 6

of Algorithm 2 outputs d̃c
∗
s = 1 + |D∗

1+s| for s = 1, . . . , c∗ with probability

approaching 1 as N grows to infinity. When s = 1, for d1 ≥ 1 + |D∗
2|, let

Λd1
and Ψd1

be the solution to

ĨC1(c, d1,min(|v∗3|, d), . . . ,min(|v∗1+c∗|, d)). (S4.69)

Similar to the proof of Lemma 6,
∥∥Λd1

Λ⊤
d1
+Ψd1

−Σ∗
∥∥
F
= OP(1/

√
N), and
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we further have

ĨC1(c, d1,min(|v∗3|, d), . . . ,min(|v∗c∗|, d))

=l
(
Λd1

Λ⊤
d1
+Ψd1

;S
)
+ p1

(
Λd1

)
logN

=OP(1) +
(
|v∗2|d1 − d1(d1 − 1)/2

)
logN +

∑
2≤s≤c∗

(
|v∗s+1|ds − ds(ds − 1)/2

)
logN,

(S4.70)

where we define ds = min(|v∗1+s|, d), s = 2, . . . , c∗ for simplicity. Noticing

that the third term of (S4.70) is independent of the choice of d1 and the

second term is strictly increasing with respect to d1 for 1 + |D∗
2| ≤ d1 ≤

min(|v∗2|, d), we then have

1 + |D∗
2| = argmin

1+|D∗
2 |≤d1≤min(|v∗2 |,d)

ĨC1(c, d1,min(|v∗3|, d), . . . ,min(|v∗c∗ |, d)),

(S4.71)

with probability approaching 1 as N grows to infinity.

When d1 < 1+|D∗
2|, for any Λ ∈ Ã1(c∗, d1,min(|v∗3|, d), . . . ,min(|v∗1+c∗|, d))

and Ψ, we denote by Σ = ΛΛ⊤ +Ψ. According to Condition 6, there exist

E1, E2 ⊂ v∗2 with |E1| = 2 + |D∗
2|, |E2| = 1 + |D∗

2| and E1 ∩ E2 = ∅ such

that Λ∗
[E1,{1,2}∪D∗

2 ]
and Λ∗

[E2,{2}∪D∗
2 ]

are of full rank. We further denote by

B1 = {2, . . . , 1 + d1}. First we have

∥Σ−Σ∗∥F ≥ 1√
2

(∥∥Σ[v∗2 ,v
∗
i ]
− Σ∗

[v∗2 ,v
∗
i ]

∥∥
F
+
∥∥Σ[E1,E2] − Σ∗

[E1,E2]

∥∥
F

)
, (S4.72)



for any i = 3, . . . , 1+ c∗.We denote by δ =
∥∥Σ[v∗2 ,v

∗
i ]
−Σ∗

[v∗2 ,v
∗
i ]

∥∥
F
. Notice that

Σ[v∗2 ,v
∗
i ]
= Λ[v∗2 ,{1}](Λ[v∗i ,{1}])

⊤,

and

Σ∗
[v∗2 ,v

∗
i ]
= Λ∗

[v∗2 ,{1}]
(Λ∗

[v∗i ,{1}]
)⊤.

According to Lemma 3, either∥∥∥∥∥ Λ[v∗2 ,{1}]∥∥Λ[v∗2 ,{1}]
∥∥ −

Λ∗
[v∗2 ,{1}]∥∥Λ∗
[v∗2 ,{1}]

∥∥
∥∥∥∥∥ ≤ 23/2δ∥∥Λ∗

[v∗2 ,{1}]

∥∥∥∥Λ∗
[v∗i ,{1}]

∥∥ , (S4.73)

or ∥∥∥∥∥ Λ[v∗2 ,{1}]∥∥Λ[v∗2 ,{1}]
∥∥ +

Λ∗
[v∗2 ,{1}]∥∥Λ∗
[v∗2 ,{1}]

∥∥
∥∥∥∥∥ ≤ 23/2δ∥∥Λ∗

[v∗2 ,{1}]

∥∥∥∥Λ∗
[v∗i ,{1}]

∥∥ ,
holds. Without loss of generality, we assume that (S4.73) holds. On the

other hand, notice that

Σ[E1,E2] − Σ∗
[E1,E2]

=Λ[E1,{1}](Λ[E2,{1}])
⊤ + Λ[E1,B1](Λ[E2,B1])

⊤ − Λ∗
[E1,{1}](Λ

∗
[E2,{1}])

⊤

− Λ∗
[E1,{2}∪D∗

2 ]
(Λ∗

[E2,{2}∪D∗
2 ]
)⊤

=Λ[E1,{1}](Λ[E2,{1}])
⊤ −

∥∥Λ[v∗2 ,{1}]
∥∥2∥∥Λ∗

[v∗2 ,{1}]

∥∥2Λ∗
[E1,{1}](Λ

∗
[E2,{1}])

⊤

+ Λ[E1,B1](Λ[E2,B1])
⊤ −

1−
∥∥Λ[v∗2 ,{1}]

∥∥2∥∥Λ∗
[v∗2 ,{1}]

∥∥2
Λ∗

[E1,{1}](Λ
∗
[E2,{1}])

⊤

− Λ∗
[E1,{2}∪D∗

2 ]
(Λ∗

[E2,{2}∪D∗
2 ]
)⊤.

(S4.74)
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Combined with (S4.73), we have∥∥∥∥∥∥Λ[E1,{1}](Λ[E2,{1}])
⊤ −

∥∥Λ[v∗2 ,{1}]
∥∥2∥∥Λ∗

[v∗2 ,{1}]

∥∥2Λ∗
[E1,{1}](Λ

∗
[E2,{1}])

⊤

∥∥∥∥∥∥
F

≤

∥∥∥∥∥
(
Λ[E1,{1}] −

∥∥Λ[v∗2 ,{1}]
∥∥∥∥Λ∗

[v∗2 ,{1}]

∥∥Λ∗
[E1,{1}]

)
(Λ[E2,{1}])

⊤

∥∥∥∥∥
F

+

∥∥Λ[v∗2 ,{1}]
∥∥∥∥Λ∗

[v∗2 ,{1}]

∥∥
∥∥∥∥∥∥Λ∗

[E1,{1}]

(
Λ[E2,{1}] −

∥∥Λ[v∗2 ,{1}]
∥∥∥∥Λ∗

[v∗2 ,{1}]

∥∥Λ∗
[E2,{1}]

)⊤
∥∥∥∥∥∥
F

≤
23/2δ

∥∥Λ[v∗2 ,{1}]
∥∥∥∥Λ∗

[v∗2 ,{1}]

∥∥∥∥Λ∗
[v∗i ,{1}]

∥∥
(∥∥Λ[E2,{1}]

∥∥+ ∥∥Λ[v∗2 ,{1}]
∥∥∥∥Λ∗

[v∗2 ,{1}]

∥∥∥∥Λ∗
[E1,{1}]

∥∥)

≤ 25/2τ 2|v∗2|δ∥∥Λ∗
[v∗2 ,{1}]

∥∥∥∥Λ∗
[v∗i ,{1}]

∥∥ .

(S4.75)

We denote by

Λ⊤
E =

(
Λ∗

[E1,{1,2}∪D∗
2 ]

)−1
Λ[E1,B1](Λ[E2,B1])

⊤,

whose rank is at most d1 < 1 + |D∗
2|, and

Λ∗
E =

( (
1−

∥∥Λ[v∗2 ,{1}]

∥∥2∥∥Λ∗
[v∗2 ,{1}]

∥∥2

)
Λ∗

[E2,{1}], Λ∗
[E2,{2}∪D∗

2 ]

)
.

By Condition 6, Λ∗
[E2,{2}∪D∗

2 ]
has rank 1 + |D∗

2|. Thus, by Lemma 2

∥ΛE − Λ∗
E∥F

≥
∥∥∥(ΛE

)
[:,B1]

−
(
Λ∗

E

)
[:,B1]

∥∥∥
F

≥σ1+|D∗
2 |
(
Λ∗

[E2,{2}∪D∗
2 ]

)
.

(S4.76)



Combined with (S4.74), (S4.75) and (S4.76), we have∥∥Σ[E1,E2] − Σ∗
[E1,E2]

∥∥
F

≥σ2+|D∗
2 |
(
Λ∗

[E1,{1,2}∪D∗
2 ]

)
σ1+|D∗

2 |
(
Λ∗

[E2,{2}∪D∗
2 ]

)
− 25/2τ 2|v∗2|δ∥∥Λ∗

[v∗2 ,{1}]

∥∥∥∥Λ∗
[v∗i ,{1}]

∥∥ .
(S4.77)

Combined with (S4.72) we further have

∥Σ− Σ∗∥F

≥min

(√
2

4
,

∥∥Λ∗
[v∗2 ,{1}]

∥∥∥∥Λ∗
[v∗i ,{1}]

∥∥
16τ 2|v∗2|

)
σ2+|D∗

2 |
(
Λ∗

[E1,{1,2}∪D∗
2 ]

)
σ1+|D∗

2 |
(
Λ∗

[E2,{2}∪D∗
2 ]

)
.

Thus, the derived information criterion satisfies

ĨC1(c, d1,min(|v∗3|, d), . . . ,min(|v∗c∗|, d)) = OP(N).

Thus, with probability approaching 1 as N grows to infinity, we have

1 + |D∗
2| = argmin

1≤d1≤1+|D∗
2 |
ĨC1(c, d1,min(|v∗3|, d), . . . ,min(|v∗c∗ |, d)). (S4.78)

Combining (S4.71) with (S4.78), we have d̃c
∗
1 = 1 + |D∗

2|. Similarly, we

have d̃c
∗
s = 1 + |D∗

1+s|, for s = 1, . . . , c∗. Then we have

ĨC1(c
∗, 1 + |D∗

2|, . . . , 1 + |D∗
1+c∗ |)

=
∑

k∈Ch∗1

(|v∗k|(|D∗
k|+ 1)− |D∗

k|(|D∗
k|+ 1)/2) logN +OP(1),

and (S4.68) holds.

Second, when c < c∗ in case A. We will show that the d̃cs given by

Step 6 of Algorithm 2 satisfies d̃cs =
∑

v∗i ⊂v1,cs
1 + |D∗

i | for s = 1, . . . , c with
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probability approaching 1 as N grows to infinity.

For s = 1, when d1 ≥
∑

v∗i ⊂v1,cs
1 + |D∗

i |, let Λd1
and Ψd1

be the solution to

ĨC1(c, d1,min(|v1,c2 |, d), . . . ,min(|v1,cc |, d)).

Similarly to Lemma 6, we have
∥∥Λd1

Λ⊤
d1
+Ψd1

−Σ∗
∥∥
F
= OP(1/

√
N) and by

Taylor’s expansion, we have

ĨC1(c, d1,min(|v1,c2 |, d), . . . ,min(|v1,cc |, d))

=l
(
Λd1

Λ⊤
d1
+Ψd1

;S
)
+ p1

(
Λd1

)
logN

=OP(1) +
(
|v1,c1 |d1 − d1(d1 − 1)/2

)
logN +

∑
2≤s≤c

(
|v1,cs |ds − ds(ds − 1)

)
logN,

(S4.79)

where we denoted by ds = min(|v1,cs |, d), s = 2, . . . , c for simplicity. Notice

that the third term in (S4.79) is independent of the choice of d1 and the

second term is strictly increasing with respect to d1 when
∑

v∗i ⊂v1,c1
1+|D∗

i | ≤

d1 ≤ min(|v1,c1 |, d). Thus, with probability approaching 1, as N grows to

infinity, we have

∑
v∗i ⊂v1,c1

1 + |D∗
i |

= argmin∑
v∗
i
⊂v

1,c
1

1+|D∗
i |≤d1≤min(|v1,c1 |,d)

ĨC1(c, d1,min(|v1,c2 |, d), . . . ,min(|v1,cc |, d)).

(S4.80)

When d1 <
∑

v∗i ⊂v1,c1
1 + |D∗

i |, similar to the proof in (S4.72)-(S4.77), we



have

∑
v∗i ⊂v1,c1

1+|D∗
i | = argmin

1≤d1≤
∑

v∗
i
⊂v

1,c
1

1+|D∗
i |
ĨC1(c, d1,min(|v1,c2 |, d), . . . ,min(|v1,cc |, d)),

(S4.81)

with probability approaching 1 as N grows to infinity. Combining (S4.80)

with (S4.81), we have d̃c1 =
∑

v∗i ⊂v1,c1
(1 + |D∗

i |). Similarly, we also have

d̃cs =
∑

v∗i ⊂v1,cs
(1 + |D∗

i |), s = 1, . . . , c. However, it is obvious that

c∑
s=1

(
|v1,cs |d̃cs − d̃cs(d̃

c
s − 1)/2

)
>
∑
i∈Ch∗i

(
|v∗s |(|D∗

s |+ 1)− |D∗
s |(|D∗

s |+ 1)/2
)
,

when d̃cs =
∑

v∗i ⊂v1,cs
(1 + |D∗

i |), s = 1, . . . , c. Thus, with probability ap-

proaching 1 as N grows to infinity, the derived ĨC1(c, d̃
c
1, . . . , d̃

c
c) is larger

than (S4.68).

Finally, when v1,c1 , . . . , v1,cc are not included in case A or B, the de-

rived information criterion is strictly larger than (S4.68) with probability

approaching 1 as N grows to infinity by the first part of our proof. Thus,

the second part is proved.

At the end of the proof, we conclude that with the same argument in

Lemma 7, ∥λ̃1 − λ∗
1sign(λ

∗⊤
1 λ̃1)∥ = OP(1/

√
N), which indicating ∥λ̃1λ̃

⊤
1 −

λ∗
1λ

∗⊤
1 ∥F = OP(1/

√
N). Then Theorem 2 is proved by applying the same ar-

gument to the factors in the tth layer, t = 2, . . . , T , together with Lemma 7.
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S5 Simulation studies for Algorithm 3 with correctly

estimated number of child factors

As discussed in Section 3, Algorithm 3 may converge only to a local opti-

mum, and the local solution may not satisfy constraint C4. In this section,

we examine the performance of Algorithm 3 to find a global optimum and

decode the structure of the child factors of Factor k given c = |Ch∗
k| with

multiple random starts in detail. We consider the hierarchical structure

shown in Figure S1 with J ∈ {24, 36}, v∗1 = {1, . . . , J}, v∗2 = {1, . . . , J/3},

v∗3 = {1 + J/3, . . . , 2J/3}, v∗3 = {1 + 2J/3, . . . , J}, v∗5 = {1, . . . , J/6} and

v∗6 = {1 + J/6, . . . , J/3}.

· · ·· · ·· · ·· · ·

v∗1

v∗2 v∗3 v∗4

v∗5 v∗6

1+
J

6
1

J

6

J

3
1+

J

3

2J

3
1+

2J

3
J

Figure S1: The hierarchical factor structure in the simulation studies of Section S5.



In the data generation model, Λ∗ is generated by

λ∗jk =


ujk if k = 1;

0 if k > 1, j /∈ v∗k;

(1− 2xjk)ujk if k > 1, j ∈ v∗k,

(S5.82)

for j = 1, . . . , J , and k = 1, . . . , K. Here, ujks are i.i.d., following a

Uniform(0.5, 2) distribution and xjks are i.i.d., following a Bernoulli(0.5)

distribution. Ψ∗ is either an identity matrix or Ψ∗ = diag(ψ∗2
1 , . . . , ψ

∗2
J )

with ψ∗
j , j = 1, . . . , J i.i.d following a Uniform(0.5, 1.5) distribution.

Let Λ̂ and Ψ̂ be the estimates of Λ∗ and Ψ∗ given by Algorithm 3 and

{v̂1+i}ci=1 be the estimated set of variables belonging to child factors of

factor 1. To define a global optimal solution to the optimization problem

in (18), we consider the ideal case when S = Σ∗. It is easy to notice that

the objective function

l̃
(
ΛΛ⊤ +Ψ,Σ∗)

= log(det(ΛΛ⊤ +Ψ)) + tr(Σ∗(ΛΛ⊤ +Ψ)−1)− log(det(Σ∗))− J

reach its global minimum at 0. Thus, for each optimization result from a

random starting point, we define the following criterion

1. GS(Global Solution): a binary variable equal to 1 if |l̃(Λ̂Λ̂⊤+Ψ̂,Σ∗)| <

δ and 0 otherwise, where δ is a tolerance parameter.

2. CR(Correctness Rate): a binary variable equal to 1 if {v̂1+i}ci=1 =
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{v∗2, v∗3, v∗4} and 0 otherwise.

We apply Algorithm 3 with c = 3 and d = 5 and further denote v̂2,

v̂3, and v̂4 as the estimated set of variables belonging to the child factors of

factor 1. In this simulation study, we consider 4 simulation settings, given by

the combinations of J = 24, 36 and two generation processes of Ψ. For each

setting, 100 independent simulations are generated, and in each simulation,

we use 100 random starting points with the tolerance parameter δ = 10−4.

The numerical results are given in Table S1. As shown in Table S1, when

J = 24, around 57% of the random starting points converge to a global

optimum and 15% of the estimation results correctly decode the underlying

hierarchical factor structure. When J = 36, there exists a decrease in

both GS and CR, with around 38% and 11% of the random starting points

converging to a global optimum, respectively.

Table S1: The mean value and standard deviation of GS and CR in the simulation study.

Ψ∗ J GS CR

Identity 24 57.55(16.32) 15.42(5.39)

36 37.52(12.11) 11.19(4.23)

Heterogeneous 24 56.48(15.61) 14.88(5.48)

36 39.49(12.29) 11.58(4.18)



Remark S2. We emphasize that when the optimization problem (18)

reaches a global solution, the estimated sets of variable v̂2, v̂3, v̂4 are not

necessarily equal to v∗2, v
∗
3, v

∗
4. In the current setting, the following con-

figurations can yield equivalent covariance structures while satisfying the

constraints of the optimization problem:

A. v̂2, v̂3, v̂4 are equal to {1, . . . , 2J/3}, {1 + 2J/3, . . . , J}, ∅.

B. v̂2, v̂3, v̂4 are equal to {1, . . . , J/3, 1+2J/3, . . . , J}, {1+J/3, . . . , 2J/3},

∅.

C. v̂2, v̂3, v̂4 are equal to {1, . . . , J/3}, {1 + J/3, . . . , J}, ∅.

D. v̂2, v̂3, v̂4 are equal to {1, . . . , J}, ∅, ∅.

E. v̂2, v̂3, v̂4 are equal to {1, . . . , J} \ {i}, {i}, ∅ for some i ∈ {1, . . . , J}.

These cases correspond precisely to the cases discussed in the proof of The-

orem 2. To be more exact, case A, B, C are the cases when two of v∗2, v
∗
3, v

∗
4

are merged into one set, and Case D is the case when v∗2, v
∗
3, v

∗
4 are merged.

Case E constructs the following parametric space for the loading matrix Λ:

{Λ ∈ RJ×16 : λjk = 0 for j ̸= i, 7 ≤ k ≤ 16 and λik = 0

for k = 2, . . . , 6, 12, . . . , 16}.

Given an arbitrary Λ∗ ∈ RJ×6 and unique variance matrix Ψ∗, we construct

the loading matrix Λ̃ and unique variance matrix Ψ̃ = diag(ψ̃1, . . . , ψ̃J)
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belonging to the parametric space defined in Case E such that Λ̃Λ̃⊤ + Ψ̃ =

Λ∗Λ∗⊤ +Ψ∗ as follows:

1. Let R ∈ R6×6 be an orthogonal matrix such that R⊤
[{1,...,6},{1}}] =

Λ∗
[{i},{1,...,6}]∥∥∥Λ∗
[{i},{1,...,6}]

∥∥∥ .
2. Let Λ̃[{1,...,J}\{i},{1,...,6}] = Λ∗

[{1,...,J}\{i},{1,...,6}]R and Λ̃[{i},{1}] =
∥∥∥Λ∗

[{i},{1,...,6}]

∥∥∥.
3. Let Λ̃[{i},{7,...,11}] be an arbitrary vector such that

∥∥∥Λ̃[{i},{7,...,11}]

∥∥∥2 < ψ∗
i ,

ψ̃j = ψ∗
j for j ̸= i and ψ̃i = ψ∗

i −
∥∥∥Λ̃[{i},{7,...,11}]

∥∥∥2.
This construction shows that Case E also yields a global minimizer of the

objective function. However, all cases A-E have at least one empty set

among v̂2, v̂3 and v̂4. Since our goal is to recover the structure of three

non-empty child factors of factor 1, such solutions violate the intention of

the modeling and are excluded in Steps 5–8 of Algorithm 2.

S6 Simulation studies for underestimated number of

child factors

In this section, we examine the performance of Algorithm 1 and 2 when

cmax, the upper bound for the possible number of child factors of each

factor, is underestimated. We adopt the same hierarchical structure and

data generation model used in Section S5. As illustrated in Figure S1, cmax



should be at least 3. However, in this simulation study, we deliberately set

cmax = 2 and dmax = 5 when applying Algorithms 1 and 2. In this simulation

study, we consider 8 simulation settings, given by the combinations of J =

24, 36, two sample sizes N = 500, 2000 and two generation processes of Ψ

used in Section S5. For each setting, we generate the loading matrix and

the unique variance matrix once, and then 100 independent simulations are

generated.

v∗1

· · ·· · ·

v∗2

v∗5 v∗6

1+
J

6
1 J

6

J

3
· · ·· · ·

vf

v∗3 v∗4

1+
2J

3
1+

J

3

2J

3
J

Figure S2: The hierarchical factor structure learned with underestimated cmax.

Figure S2 displays the most frequently estimated hierarchical structure,

which is selected in more than 60% of the 100 replications across all set-

tings. As shown, Algorithms 1 and 2 recover a correctly specified but less

parsimonious representation of the true hierarchy. To be more exact, a re-

dundant factor, whose sets of variables vf = v∗3 ∪ v∗4, is learned due to the

choice of cmax = 2 in the current simulation settings.
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S7 Real Data Analysis: Agreeableness Scale Item Key

Table S2: Agreeableness Item Key

Item Sign Facet Item detail

1 + Trust(A1) Trust others.

2 + Trust(A1) Believe that others have good intentions.

3 + Trust(A1) Trust what people say.

4 − Trust(A1) Distrust people.

5 − Morality(A2) Use others for my own ends.

6 − Morality(A2) Cheat to get ahead.

7 − Morality(A2) Take advantage of others.

8 − Morality(A2) Obstruct others’ plans.

9 + Altruism(A3) Love to help others.

10 + Altruism(A3) Am concerned about others.

11 − Altruism(A3) Am indifferent to the feelings of others.

12 − Altruism(A3) Take no time for others.

13 − Cooperation(A4) Love a good fight.

14 − Cooperation(A4) Yell at people.

15 − Cooperation(A4) Insult people.

16 − Cooperation(A4) Get back at others.

17 − Modesty(A5) Believe that I am better than others.

18 − Modesty(A5) Think highly of myself.

19 − Modesty(A5) Have a high opinion of myself.

20 − Modesty(A5) Boast about my virtues.

21 + Sympathy(A6) Sympathize with the homeless.

22 + Sympathy(A6) Feel sympathy for those who are worse off than myself.

23 − Sympathy(A6) Am not interested in other people’s problems.

24 − Sympathy(A6) Try not to think about the needy.



S8 Real Data Analysis: Additional Results

In this section, we present the estimated loading matrix and correlation

matrix of the three competing models. The estimated correlation matrix

of the three models, denoted by Φ̂CFA, Φ̂CBF, Φ̂EBF, are shown in (S8.83),

(S8.84), and (S8.85). The estimated loading matrix of the three models,

denoted by Λ̂CFA, Λ̂CBF, Λ̂EBF, are shown in (S8.86), (S8.87), and (S8.88).

Φ̂CFA =



1 0.33 0.44 0.43 −0.06 0.37

0.33 1 0.42 0.62 0.25 0.37

0.44 0.42 1 0.39 0.15 0.80

0.43 0.62 0.39 1 0.11 0.30

−0.06 0.25 0.15 0.11 1 0.16

0.37 0.37 0.80 0.30 0.16 1



, (S8.83)

Φ̂CBF =



1 0 0 0 0 0 0

0 1 0.01 0.24 0.03 −0.07 0.25

0 0.01 1 0.12 0.27 0.34 0.22

0 0.24 0.12 1 −0.08 0.18 0.74

0 0.03 0.27 −0.08 1 0.25 0.05

0 −0.07 0.34 0.18 0.25 1 0.17

0 0.25 0.22 0.74 0.05 0.17 1



, (S8.84)

Φ̂EBF =



1 0 0 0 0 0 0

0 1 0.12 0.18 0.24 0.12 −0.02

0 0.12 1 0.50 0.11 0.95 0.33

0 0.18 0.50 1 0.13 0.74 0.24

0 0.24 0.11 0.13 1 0.09 −0.14

0 0.12 0.95 0.74 0.09 1 0.31

0 −0.02 0.33 0.24 −0.14 0.31 1



. (S8.85)
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Λ̂CFA =



0.85 0 0 0 0 0

0.73 0 0 0 0 0

0.76 0 0 0 0 0

0.87 0 0 0 0 0

0 0.89 0 0 0 0

0 0.64 0 0 0 0

0 0.92 0 0 0 0

0 0.39 0 0 0 0

0 0 0.51 0 0 0

0 0 0.61 0 0 0

0 0 0.67 0 0 0

0 0 0.57 0 0 0

0 0 0 0.55 0 0

0 0 0 0.71 0 0

0 0 0 0.81 0 0

0 0 0 0.71 0 0

0 0 0 0 0.71 0

0 0 0 0 0.90 0

0 0 0 0 1.12 0

0 0 0 0 0.33 0

0 0 0 0 0 0.70

0 0 0 0 0 0.71

0 0 0 0 0 0.65

0 0 0 0 0 0.65



, (S8.86)



Λ̂CBF =



0.42 0.73 0 0 0 0 0

0.35 0.64 0 0 0 0 0

0.30 0.72 0 0 0 0 0

0.53 0.69 0 0 0 0 0

0.46 0 0.83 0 0 0 0

0.49 0 0.41 0 0 0 0

0.57 0 0.71 0 0 0 0

0.47 0 0.11 0 0 0 0

0.25 0 0 0.45 0 0 0

0.24 0 0 0.60 0 0 0

0.43 0 0 0.51 0 0 0

0.41 0 0 0.41 0 0 0

0.28 0 0 0 0.70 0 0

0.54 0 0 0 0.43 0 0

0.68 0 0 0 0.41 0 0

0.66 0 0 0 0.27 0 0

0.30 0 0 0 0 0.73 0

−0.14 0 0 0 0 0.93 0

−0.03 0 0 0 0 1.09 0

0.38 0 0 0 0 0.35 0

0.15 0 0 0 0 0 0.73

0.16 0 0 0 0 0 0.75

0.38 0 0 0 0 0 0.52

0.27 0 0 0 0 0 0.58



, (S8.87)
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Λ̂EBF =



0.35 0 0 0 0 0 0.77

0.29 0 0 0 0 0 0.67

0.27 0 0 0 0 0 0.73

0.45 0 0 0 0 0 0.74

0.65 0.65 0 0 0 0 0

0.55 0.32 0 0 0 0 0

0.69 0.61 0 0 0 0 0

0.45 0 0.10 0 0 0 0

0.18 0 0.52 0 0 0 0

0.19 0 0 0 0 0.57 0

0.37 0 0 0 0 0.55 0

0.32 0 0.52 0 0 0 0

0.50 0 0 0 0.18 0 0

0.68 −0.27 0 0 0 0 0

0.80 −0.21 0 0 0 0 0

0.69 0 0 0 0 0 0.10

0.38 0 0 0 0.67 0 0

0.01 0 0 0 0.93 0 0

0.13 0 0 0 1.09 0 0

0.44 0 0 0 0.29 0 0

0.20 0 0 0.74 0 0 0

0.18 0 0 0.75 0 0 0

0.29 0 0 0 0 0.62 0

0.27 0 0 0.59 0 0 0



, (S8.88)
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