Statistica Sinica: Supplement

Supplement to “ Exploratory Hierarchical Factor

Analysis with an Application to Psychological Measurement”

In the supplement, we provide technical proofs of all theoretical results, additional simulation
studies, and further details of the real data analysis presented in the main paper. In particu-
lar, Section provides the proof of Theorem [1 Section proves Proposition [2] Section
discusses how Condition [3|of Theorem [1|can be relaxed under a simple hierarchical factor struc-
ture, Section @ establishes Theorem 2] Section presents numerical results demonstrating
the convergence of Algorithm [3] to the global solution from multiple random starting points,
Section [S6] shows the numerical results of Algorithms[I]and [2]in learning the hierarchical factor
structure when cmax is underspecified, Section provides the construct of the data discussed
in the real data analysis, and Section [S8| presents the numerical results of the alternative models

discussed in the real data analysis.

S1 Proof of Theorem [

In this section, we give the proof of Theorem [I] For simplicity of notation,
for any matrix A € R™*" S C {1,...,m} and S, C {1,...,n}, we denote

by Ais 1 = Ais, 1,0y and Aps,) = A, m.8)-

Proof. Suppose that there exists a hierarchical factor model satisfying the
constraints C1-C4, and the corresponding loading matrix A and the unique

variance matrix U satisfy ¥ = AAT + ¥ and ¥ = ¥*. We prove Theorem



by induction on the depth of the hierarchy. It suffices to prove that Ch; =
Chi, v = v; for all £ € Ch] and A; = A] or A; = —AJ hold, where
vy, ...,V are the corresponding sets of variables for each factor according
to A, Chy,...,Chg are the child factors of each factor according to the
hierarchical factor model given A, and A; and A] are the first columns of A
and A* respectively.

First, we establish that for each k& € Chj, there exits i € Ch; such that
v C v;. By Condition [2] we have AAT = A*(A*)T and ¥ = ¥*. If Chj = 0,
the result holds trivially. Otherwise, suppose Ch] # (). For any k € Ch],
define By; = v; Nv;, ¢ € Chy.

If Ch; = (), consider the following cases:

1. We have |{i € Chy : |By;| > 1}| > 4, which implies the existence of
four distinct factors 4y, is, i3, iq such that v;, Nvj # 0 for j =1,... 4.
In this case, choose j1 € By, ..., ja € By, Consider X, jo},{js.ja}] =

X iad Ls.jay> Which is equivalent to

T * * T
Ao A g n) = Agugor ey A gsganwy) - (S11)

Observe that the left-hand side of (S1.1)) has rank at most 1, whereas,
by Condition[3] the right-hand side has rank 2. This contradicts (S1.1).

Hence, this case cannot occur.
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2. There exist i¢; and iy # ¢; such that |By,; | > 2 and |By,;| > 1.

In this case, choose distinct ji,jo € By, and js € By,,. Consider

Nl dnds} i dzdsd] = Do}l gas}]> Which is equivalent to

T * * T
A[{j1:j2,j3}’:](A[{jl,j%ji‘s}v:]) :A[{j1,j2,j3},{1,k}](A[{j1,j2,j3},{1,k}])' (81'2)

By Condition [3| the right-hand side of has rank 2. Moreover,
Condition (3| also implies that the submatrix Zf{jm}’ Gl has rank 2,
and hence the matrix Ay, j,3,; must have rank 2 as well. However,
observe that for any s € {is} U D;,, A\j, s = 0 and \;, ; = 0, whereas
Ajsy linyup,,) 7 0. Consequently, Ay, j, js},1 has rank 3. Thus, the
left-hand side of has rank 3, which contradicts . There-

fore, this case cannot occur.

3. |vi| = 3, and there exist distinct iy, 49,3 such that |By,| = |Bri,| =

|Bkﬂ'3| =1. Let {]1} = Bk,i17 {jg} = Bk,i27 and {]3} = Bkﬂ‘?’. Consider

Z[{jl,jz,js},{jhjmh}} - Zf{ﬁ J2,3 ) {d1,52,93 )

which is equivalent to (S1.2]). In this case, the left-hand side of (S1.2)

has rank 3, whereas, by Condition [3], the right-hand side has rank 2.

This contradicts (S1.2). Hence, this case cannot occur.

4. There exists a unique ¢ € Ch; such that By ;, = v}, which indicates

that v; C v;.



When Chj # (0, consider the following cases:

1. There exist s € Chj, and ¢ € Ch; such that |Bg; Nv}| > 2. In this case,

we claim that
|(Uir i, ey Bryir) N (Ugrs srecnzvy)| < 1, (51.3)

Otherwise, choose ji,j2 € Bi; N vl and js,ja € (Uipziiecn, Bri) N
(Usrzs,srecnpvy).  Consider i, iy sjal) = S ). (agay, Which is
equivalent to . The left-hand side of has rank 1, whereas
by Condition , the right-hand side has rank 2. This contradicts ,

and thus the claim in (S1.3) holds.

Now observe that |vf| > 3 for all ¥ # s,¢ € Ch;. Combined
with (S1.3), |Br; Nv%| > 2 for all ¢ € Ch;. By an analogous ar-

gument, we also have,
|(Usrtiirecn Bry) N i <1, (S1.4)
holds. Combining with yields
| (Usr,i0 ey Br,ir) 0 (Usrecn; ve)| < 2. (S1.5)

We now analyze the possible values of the left-hand side of (S1.5)).
If [(Upsiirecn Brar) N (Usecn: V)| = 2, there exists some s’ # s such

that (S1.3) is tight. We choose ji,j2 € B N vk, js,ja € Bri N0k,
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Js5 € (Uirziivecn, Be )Nk and jg € (Ui vecny Bri) Nk, Furthermore,
when Ch} # (), we require that ji, jo belong to different child factors of
factor s with j5. Similarly, when Ch%, # (), we require that j3, j, belong
to different child factors of factor s’ with js. Such a choice is always
possible due to the assumed structure of the hierarchical model. Now

consider (g, o isja} {is e} = 2 which is equivalent to

*
[{J1,92.33,34} {F5.d6

At gnisgad. (00 A deh ) |
(S1.6)

* * T

=M dagnir (ks Aiggs gy (1 kaey)
by the construction of ji, ..., jg. The left-hand side of (S1.6|) has rank
1. On the other hand, by Condition , the matrix Af{jl’j27j37j4}7{17k75’8,}]
has rank 4, and Af{j57j6}7{17k787s,}] has rank 2. By Sylvester’s rank in-

equality (see, e.g., Horn and Johnson, 2012]),

* * T

rank(A[{j1,j2,j3,j4},{1,k,s,s'}}(A[{js,js},{l,k,s,s'}}) )
Zrank(Ar{jlyj27j3»j4}»{17k7873/}}) + rank(Ar{j&jG}’{l’k»&s/H) - 4
=2

Y

which contradicts (S1.6). Hence, this case cannot occur.

If |(Uirsiirecn Brir) N (Useon;vy)| = 1. Without loss of generality,
assume (Uy i irecn, Brr) N (Usecnzvy) = Brg, Nl = {Jj}, where i, €
Chy,7; # i and s; € Chy,s; # s. Consider Bt = 2

TU,’; L which is



equivalent to

A[v;,:](A[v;;,:])T: fl;,{l,k}uD;;](Afy;,{1,k}uD;])T- (81-7)

By Condition , Afe\ 1. 1pupy) has rank 2+ [ Dy Thus, Ay (53, has
rank 2 + |D;:| Since A[{j},{h}] 7'é 0 and A[U,’Q\{j},{il}} = 07 A[”zﬁ] has rank

3 + |Dj|, which contradicts (S1.7). Hence, this case cannot occur.

If |(Uiri,irecny Brir) N (Usecn; vi)| = 0, there exists a unique i € Chy

such that By, = v}, which indicates v}, C v;.

. |BriNvi| <1foralli € Chy and s € Chy. If there exist some i € Chy
and s € Chy, such that |By; Nvi| = 1 and |By,; Nov%| = 0 for all
s' € Chy, s’ # s, assume {j} = By;Nv’. Similar to the proof in (S1.7)),
the matrices on both sides have unequal ranks. Thus, the assumption
does not hold. We assume that there exist ¢ € Ch;, s; € Chj, and
sy € Chy, sy # s such that |By;NvZ | = 1 and [By;NvZ| = 1. If there
further exists s3 € Chy, s3 # s1, 59 such that |By; NvZ,| = 0, we denote

by {j1} = Bri Nwv;, and {jo} = By; NvZ,. Consider Sz, (rgel] =

Zfox, L ad)

which is equivalent to
T * * T
Ay 0 A ) = Moz 1 (Mg o)

Noticing that the rank of the matrix on the left side is 1, while accord-

ing to Condition [3 the rank of the matrix on the right side is 2, the
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assumption does not hold.

Thus, for any i € Chy, if there exists some s € Chy, such that |Bg; N
v =1, then | By, Nv’| =1 for all s € Chy, which indicate that |v}| are
the same for s € Chy. If |Chi| > 3, let sq, 9,53 € Chy, and 41,149,143 €
Chy such that {j1} = By, NvZ, {j2} = B, N5, {Js} = By N VL,
{ja} = Bray Nwi,. Consider Xy, it fjsiu}] = S g s jay, Which is

equivalent to

T * * T
Aoy ) A g i) = AMyugon ey M gsganmy) - (51.8)

Since the left-hand side has rank 1, while by Condition [3] the right-

hand side has rank 2, the assumption does not hold.

Finally, if |Chy| = 2, let {j1} = By, N 03, {j2} = Bra, NV, Js, Ja €
v, Js, ja # j1 and js, jg € v, Js, Jo 7 jo. Furthermore, when |Chy | #
0, we require that js3,74 belong to different child factors of factor
s; with j;. Similarly, when |Chi | # 0, js,js belong to different
child factors of factor s; with j;. Such a choice is always possible

due to the assumed structure of the hierarchical model. Consider

Do hlisdndsds}] = S(0j1 o) dissdas o) Which is equivalent to

Atgr g3 00 (M dags dor fy) |
(S1.9)

Ak * T
_A[{jlajz},{17k751732}]<A[{j37j47j57j6}7{17k751752}}) :



The left-hand side of (S1.9) has rank 1. On the other hand, by Condi-
tion , AF{]B7j4,j57j6}7{17k781782}] has rank 4 and Af{j17j2}7{17k»31752}] has rank

2. By Sylvester’s rank inequality,

* * T
rank (A[{]l 7j2}7{17k751752}] (A[{j39j47j57j6}7{17k751752}]) )

Zrank (Afg, o Lk sy)) + AN (A] ) —4 (SL10)

[{73,74,35,56 },{1,k,51,52}]
:2,

which contradicts (S1.9). Thus, the assumption does not hold.

From the previous proof, for any k € Chj, there exists ¢ € Ch; such
that vj C v;. For any i € Chy, define C; = {k € Chj : vj C v;}. Consider
Yloiw] = 2

which is equivalent to

*
[v,04]?

T * * T
Apr qripup) (M griund) - = Al (13uc0Ukee, ) Ao (1)U UULee, D)

According to Condition the matrix Arviy{l}UCiU(UkeCiDZ)] has rank 14|C;|+
> kec, |Dil- Thus, we must have 1+ |D;| > [Ci] + >, . |Di|. Summing
both sides over all ¢ € Chy, we have

K-1= ) (1+|Di) = ) (!QH > !DZ\) = ) (+|Djl)=K-1.

1€Chy 1€Chy keC; keCh3

Therefore,

L+ [Di| = |Ci| + ) IDjl., (S1.11)
keC;

for every i € Chy. According to Lemma 5.1 of |Anderson and Rubin| (1956)),
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there exists an orthogonal matrix R; such that

A[’U,’,{l,’i}UDi] == AE‘Ui,{l}UCiU(UkeCiDZ)]Ri‘ (S]_]_2>

On the other hand, for i,7 € Chy, consider X, ., = Ef‘vhv_l}, which is
equivalent to

Ap iy Ay = Aoy (Al o) (S1.13)

Combining (S1.12) with (SL.13), either Ay, 1y = Af‘%{l}] or A,y =

A e {11] holds. Without loss of generality, we assume A, (13 = AE‘% L
which further implies A; = AJ.

It remains to show that |C;| = 1 for all i € Chy. Suppose, for con-
tradiction, that there exists some i € Ch; such that |C;] > 2. Since
|D;| > 2, for s1, 55 € Chy, there exist ky, ko € C; such that v,, Ny, # 0 and
vs, Ny, 7# 0. Consider Z[vsmv}il wagy,] = ME o . Combined with

[vs, ﬂvkl Wsg ﬂvZQ]

A[vslmvzl,{l}] = Af‘vﬂmzl’{l}] and A[%m;yg}] = AE‘USZWZQ’U}]’ we have
[vsy ﬂvkl,{z}] [Vsq ﬁvk2,{z}]

Consequently, A[vsmvzl7{i}] =0 or A[v52mU227{i}] = 0, which contradicts the
definition of v;. Thus, |C;] = 1 for all ¢ € Ch;. Therefore, we have shown
that Ch; = Chj, v, = v} for all k € Chj.

Finally, combining A; = A] with ¥ = ¥*  the covariance equality de-



composes into |[Chj| independent equations

T * * T
A ey (Mg teyony)) - = Mor iun Moz teyuns)

k € Chj. By (S1.11), we have |Dy| = |Dj| for all k& € Chj. Thus, by
applying the same argument recursively to factors on the tth layer, t =

2,...,T, we conclude that A = A*Q) and ¥ = ¥* for some sign flip matrix

Q. O

S2 Proof of Proposition

In this section, we give the proof of Proposition

Proof. Since factor j and its descendant factors construct a hierarchical

factor structure that satisfies constraint C1-C4, it suffices to prove that
lvi| > 3+ | D7l (52.14)

Let L; be the factors that belong to the tth layer, t = 1,...,7. We
divide L; into L") = {k € L, : Ch! # 0} and L!¥ = {k € L, : Ch} = 0}
for t =2,...,T so that LV U L® = L, and L N L = 0. By definition,

(1) = (). By constraint C3, we first have

1
L] < E|Lt+1|J = L L+ 5 |Lﬁ)1J =2, T—=1 (5215
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Iterating (S2.15) for t +1 < 57 < T — 1 yields

T
1 I
L] < Z F|L§ ).

j=t+1

Consequently,

T
D= ILd
t=2

T
1
<DL+ D I (52.16)

On the other hand, constraint C4 implies
T
i >33 |LY). (S2.17)
t=2

Combining (S2.16) and (S2.17), we have |vi| > 2|Dj|. In particular, (S2.14)

holds when v} > 9. When |vf| = 7 or 8, |Dj| < 2 by constraint C4 and

(S2.14) holds. When 3 < |vf| < 6, |Di| = 0 by constraint C4 and ([S2.14))

holds. [l



S3 Further discussions of Condition 3l

In this section, we discuss the identifiability of a bi-factor model with two
group factors, which constructs a special case of a two-layer hierarchical
factor model. Let A* and U* be the true loading matrix and the unique
variance matrix. Let v, v5 and v; be the sets of variables loading on the
general factor (Factor 1) and the two group factors (Factors 2 and 3) such
that v; = v3 Uwvj and v3 Nvj = (. Lemma |1| provides a counterexam-
ple showing that Conditions [I] and the following Condition [ST}—the latter
being a sufficient condition for Condition [2| under this specific hierarchi-
cal structure—are not sufficient to guarantee identifiability of the model.

Theorem then establishes the identifiability under the additional Con-

dition [S2
Condition S1. |v;| > 3 and Aj,. . . is of full rank for ¢ € {2,3}.

Moreover, there exists g € {2,3} and disjoint partition E;, FEy such that

EiUE, = v;‘, EiNEy; =0, and AfEh{l?g}], ATEL{LQ}] are of full column rank.

Lemma 1. Suppose that Conditions [1 and [S1] hold. There exists another
hierarchical factor structure with the loading matriz A and the unique vari-

ance matriz U such that AANT + U = 2%,

Proof. 1t is easy to check that Condition is a sufficient condition for



S3. FURTHER DISCUSSIONS OF CONDITION

Condition [2] Thus, we have ¥ = ¥* and focus on constructing a loading
matrix A that produces the same covariance matrix X* but corresponds to
a different hierarchical factor structure. The hierarchical factor structure
decoded by A is still a bi-factor structure with two group factors. Let vy
and vz be the sets of variables belonging to Factor 2 and 3 according to A.
Moreover, let By o = v3 Mg, Bog = v5Nvs, By = v5Nvg and Bsg = v; N
and assume that |B; ;| # 0 for all ¢, j € {2,3}. Now we construct A* and A

by specifying their nonzero loadings as follows:

* 1 *
Ay 2,121 = 502, (000 M2y = A, o, (137 M2y = A[Bzz,{l}]

A, 5421 = 208, 5.1y MiBosi1y] = 208, 5 1y MiBost3y) = —Dis, s 1y
B3 2.(3)] = AB32{1}],A[332,{1} = _A[532{1} Ay 221 = Mg, 1))

Al 5431 = =iy 5,113 MBas 1)) = iy 5013 MiBaan3)) = A 5.1
(S3.18)

As long as |Bap| > 2 and |[Bys| > 2, A* satisfies Conditions (1| and
| However, AAT = A*A*T while A and A* produce different hierarchical

factor structures. O

To avoid the counterexample raised in Lemma [l we need the following

Condition 2

Condition S2. There exists g € {2,3} and 4, j, k € v; such that Af, ,,

Af{i,k},{l,g}] and Ar{j,k},{l,g}] are of full rank.



Theorem S1. Suppose that Conditions and[S hold. If there exists
some hierarchical factor structure with three factors such that its loading
matriz A and unique variance matriz V satisfy ©* = AAT + W, there exists
some sign flip matriz Q) € Q such that A = A*Q), where Q consists of all

the 3 x 3 diagonal matriz () whose diagonal entries take values 1 or —1.

Proof. We adopt the notation from the proof of Lemmall] By Condition [ST],

we have AAT = A*A*T and U = ¥*. We consider the following cases:
1. |Bs, s, # 0 for all s1, 55 € {2,3}.
2. Without loss of generality, v, = v5 but vs # vj.
3. v9 = v; and v3 = v;.

In the first case, since AFv;{LQ}] and Afy§7{1’3}] are of rank-2, all the

following submatrices are of rank-1:

(82212} A 121 DB 2 (133 Mo, 11,31
Aa 2,412 Mo, 11,815 Aibso, (1,23 AiBs s, (1,31
However, according to Condition [S2] there exists at least one of the matrices
AE‘BZ’%{MH,AE‘B2737{172}],A’[k83727{173}] and AFBs,s,{l,S}} such that it is of rank-2.
Thus, the first case is not allowed.

In the second case, we assume vy = v3 while v3 # v} without loss of

* T
[v3,

generality. Since A[U;{l,g}}/\g};,{l,z}] = AFU§7{172}]A (1,23 there exits some
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orthogonal rotation matrix R € R?*? such that
Aps 12y = Mg 1o B (S3.19)

With A[v;{l}]A[TBg,g,{m = AE‘U;{l}]A’{BT&S’{l}], there exists some constant a such
that Aps 1y = aAEZ;,{l}}- Combined with , a = 1 or —1 since
AE‘U; 1,2y 18 of rank-2. Without loss of generality, we assume Ap; (1) =
Afs iy and Apg (2 = Af,; 5y further. Then, consider A[U;{LQHA[%&%{LQ}] =
Afvéy{l}}AFBTs;,m{l}]’ which leads to Az, , {23 = 0. Thus, the second case is not
allowed.

In the third case, similar to the proof in the second case, there exists

two orthogonal rotation matrices R;, Ry € R?*? and such that
A[vg,{l,Q}} = AFU}{L?}]Rl and A[v;{l’g}} = AF,U§7{173}]R2. (S320)

Combined with A[v;,{1}]/\[1§7{1}] = AFvS,{l}]ATv;{I}}’ there exists some sign flip

matrix () € Q such that A = A*Q. n

Remark S1. Theorem establishes the identifiability of the bi-factor
model with two group factors. Compared to the general hierarchical identi-
fiability result in Theorem (1], it requires fewer structural assumptions, but
still needs the additional rank condition (Condition[S2). The proof of The-
orem is based on the specific hierarchical structure and we believe the

requirement for Condition |3 can be simplified based on the true hierarchical



factor structure.

S4 Proof of Theorem 2

We first introduce some notations and lemmas needed for the proof of
Theorem [2 Suppose that A,e € R™*". We denote by oy(A) > ... >
Omin(m,n)(A) > 0 are the singular values of A, and Uy, ..., Unpin(m,n) are
the corresponding right(left) singular vectors. Similarly, we denote by
o1(A+¢e) > ... 2 Ominmn) (A +€) > 0 as the singular values of A 4 ¢

and Uj,..., U]

min(

m.ny the corresponding right(left) singular vectors. We use

||All2 denote the spectral norm of a matrix A.

Lemma 2 (Weyl’s bound, [Weyl| (1912)).

max  |0;(A) — o;(A+¢e)| < ez

1<i<min(m,n)
We further assume that the rank of A is r. We denote by U =
(U,...,U;) and U" = (Uy,...,U}), 1 < j < r. The following Lemma

is a modification of Wedin’s Theorem (Wedin| 1972).

Lemma 3. There exists some orthogonal matriz R such that

23/271/2 HE

d

IUR—U'|lr < Ie

when § = O'j(A) — O'j+1(A) > 0.
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Lemma 4. Given a J x K dimensional matriz A following a hierarchical
structure that satisfies constraints C1-C4 and a J x J dimensional diagonal
matric ¥ = diag(y,...,¢05) with ¢; > 0,5 = 1,...,J. Assume that A
satisfies Condition [J and Condition [§ If there exist a series of J X K
dimensional random matrices {KN}]O\?:l and a series of J x J dimensional
diagonal random matrices {0y }3_,, where Uy = diag(lZJ\NJ, . ,@NJ) with

{U\ij >0,7=1,...,J, such that {/A\N}?Vozl satisfies Condition@ and
IANAL + Uy — AAT — 0|y = Op(1/VN). (S4.21)
Then we have ||[ANAL—AAT||p = Op(1/V/N) and ||y —T||p = Op(1/V/N).

Lemma [4 is a generalization of Theorem 5.1 in [Anderson and Rubin

(1956)), and its proof proceeds along the same lines.

Proof. For j =1,...,J, by Condition[5] there exist Ey, E5 € {1,..., J}\{j}
with |Ey| = |Ey| = K and Ey N Ey = () such that Aig, j and Ag, ) are full-
rank matrices. Without loss of generality, we assume that A and KN can

be expressed as

A, Rns
by R A,

A= ! ) AN = ! )
Ay AN




where we denote by Ay = Ajg, 5, A2 = Aig,, Aj = Ay, is the jth row of
A, A3 consists of the remaining rows in A with a slight abuse of notation.
The blocks KNJ, KN,Q, XNJ, and /A\N73 are defined analogously for /A\N, with

the same row partitioning. Thus, we have
A A] Al}\jT A AS
.
ApopuraAposogy) = | AL NN NAT |
AoAT M) AsA]

and

~ ~ ~ ~T ~ ~
T T
ANJAN,I AN,l)‘N,j AN,IAN,Q

T o~ ~ T ~ 0~
(AN)[EluEQU{j},:](AN)[EluEgu{j},:}: )‘NJAL,l >‘N,j>‘N,j )‘NJALQ

AvoAly Awady, AnoAls
According to (S4.21]), we have
[AAT = Ray | = O(1/VN),
[42A] = oAy | = O(1/VN), (84.22)
A1y — KNJKLQHF = Op(1/VN).

Since each of the following (K + 1) x (K + 1) matrices has rank at most K

-~ ~T -~ ~
T T T

and ,

~ ~T ~ ~
T T T
}‘j >‘j }‘j A2 AN J /\N, j AN J AN,Q



S4. PROOF OF THEOREM 2

we have

~ ~T ~ o~
Al)\jT A1A2T ANJ)\N,]- AN,lA}’2
det = det = 0.

~  ~T ~ o~
Aj}‘jT )‘jA; )‘N,jAN,j )\NJAJTV,z
Then, we have
(=15 XA det(A1Ay) + F(AA], AjA7)
— SV Av AT Ao XL X AT (S4.23)
=(—1) >‘N,j/\N,j det(AN,lAN,Q) + f(ANJ)‘N,j7 )‘N,jANQ) )
where f(-) is a scalar-valued function. Both f(-) and the determinant func-

tion det(:) are Lipschitz continuous with respect to the entries of their

matrix arguments, with Lipschitz constants depending only on K and 7.

Combined with and , we have
AAT = XA [l det(A14)]
U] AAT) = FRrady Ak
+ Ryl det(814]) — det(Ry R
=0p(1/VN).
Noticing that |det(A;A] )| > 0, we have \)\j)\jT — XNJX;J] = Op(1/V/'N).
Combined with

~ ~T ~
INAT 15— AviAn, — Ol = Op(1/V/N),

we have [1); — TZN,J" = Op(1/+/N) for j =1,...,J. Thus, we have H(I\IN —



U||p = Op(1/+/N) and furthermore we have |AxAL—AAT ||z = Op(1/vV/N).

]

* ke * *

For Factor k € L;q, t > 3, let X, := Zi:f()\i)[vz]()\i)[z;] when
k€ L,y and X} = ()\Z)[v;](kzmz] + ZieD;(Af)[v;](A:)[TUZ] + U We
further define
Olc, d) ={X = ApA] + Ty € RIEXPE: A, ¢ RIviIx(ted)

|>\k,ij| S T, >\k,z‘j/\k,ij’ = O, fOI‘ 1= 1, ey |UZ|,] - Bs,j, c BS/,S 7é S,

and W = diag(r1, - - - Prjor)) With k1 <oy < kg for i =1, |ugl},
(S4.24)

where By =24 (s —1)d,..., 1+ sd for s =1,...,¢, and 7, k; and ks are
those specified in Condition Given a symmetric positive semi-definite

matrix Xy o serving as an estimator of ¥ ;, we define

ik = argmin [ <ik70 + X, Sk> . (S425)

EkE@k(C,d)
The following Lemma [5] and [6] establish the consistency and convergence

rate of ik

Lemma 5 (Consistency). Suppose d is sufficiently large such that ¥} €

O (e, d) and ||§]k70 =X ollr = op(1). If C’onditz’onsﬂ and@ hold, Sy = 5.

Proof. The proof of Lemmalj| follows Theorem 2.1 in [Newey and McFadden

(1994). First, we show that ©y(c, d) is a compact set in RIU*I"il. By defini-
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tion, we directly have that ©(c, d) is a bounded set. To prove that O (c, d)
: (n) _ A AT (n)yoo i
is also a closed set, we assume {¥,"” = AVAY + ¥,}°%°  is an arbi
trary convergent sequence in O(c,d). Since {A,(gn)}j’f:l and {\I/lgn)}le are

bounded sequences, there exists subsequence {A,(C"m)}f,?:l and {\D,(Cnm) ©

such that

lim AU = A% and lim 0" = we,

m—0o0 m—ro0

Since )\"m.)\Z’;}, =0, lim,,, o0 A77 = A

. i\ oo
kyij kij k,ij and limy, A,ﬂj/ = )\k,ij,, we have

Aoy = 0fori=1,... |vi|, j € By, j' € By, 1 < s < s <c Thus,

lim S = ARAXT + U5 € O,(c, d).

n—o0

Then O(c,d) is a compact set.

Second, let

ak(:v; Ek, ik,O) = log det(ik,g + Ek) + tr (m[vz}ﬁ[Tvz](ik,O + Ek)*1>
Mk(Zk, ikp) = log det(ik,o + Ek) + tr <Sk(ik70 + Zk)_l>

Mo (S, Sio) = log det(Spo + i) + tr (S + ) (Sko + Z4) ™)
($4.26)

We directly have

ik = arg min Mk(Zk, ikﬂ). (8427)
Y €Ok (c,d)



Moreover,

0
— My (2. 2
o5, ok (X, Xr0)

=(Sk + 25 0) 7 = (B + Sho) NS+ Dho) (B + Sh) (S4.28)

=0,

when ¥, = ¥} € Oy(c, d). Thus, Mo (X, X} o) reaches its unique minimum
at Xj.

Third,

|ak (; Zk, T o)

<[logdet(X} o + Xp)| + ‘tr <$[Uz]x[zm(2,’;,0 + Zk)—1> ‘

=

<|vi|max (|log(omin (X% o + k)|, | 10g(0max (27 g + 2 +
g e (108{0r T+ 500 oot D + BN + i

<|vg| max (|10gf<¢1|, 2

1
log (|v,§| ((1 + cd)? + KZ) 2+ fig) D + = ||$[v;;]

(S4.29)

Since E (H[E[v;] H2> < 00, by Lemma 2.4 of [Newey and McFadden| (1994))

sup | My(Sk, 2f0) — Mox(S, St o)| = 0. (S4.30)
3 €Ok (c,d)
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Now we have

Mo x(Sk, B o)

=Mox(Sis Zho) + (Mor(Ex, i) = Mor(Ek, Ero)) + (Mor(Ek, Zro)
— My(Zk, Zh0)) + (Mi (S, To) — Mi(S5, Sr0)) + (Mi(Z5, Sho)
— Mo k(5 So)) + (Mok(Sh, ko) — Mok(Sh, Sho))

<Mop(S5, Sh0) +2 sup [Mog(Sh, Bho) — Mos(Sk, Sieo)]
EkGQk(C,d)

+2 sup  [Mor(Zk Zko) — Mi(Zk, Bro) — Mo (i, o) + My(Xg, X1 0)]
EkEQk(c,d)

+2 sup ’Mk<2k7 z]7;,0) - MO,k(EkH ZZ,O)’
EkEGk(C,d)

(54.31)
For arbitrary ¥, € ©4(c, d), according to Taylor’s expansion there exists

some 1 € (0, 1) such that

| Mok (Zk, X 0) — Mor(Zk, Yol

<

~ ~ -1
tr ((mo — Th0) (B + (L= m)Tio +18h0)  (Sio+Z0) (Zh + (L - 0)Tg

~ -1 ~ ~ -1
+772k,o> ) ’ + [tr ((Ek,o — Y%o) ((1 — )20+ Uzkp) ) ‘
|UF| K272 + kg + K1, = .

<k e 12%,0 — Zxoll e,
1

(54.32)

where the last inequality follows Ruhe’s trace inequality (Ruhe, |1970). Sim-



ilarly, with probability approaching 1 as N grows to infinity,
| Mi(Sk, 57.9) — Mi(S, Eo)|

~ ~ -1 ~ —1
<|tr ((Ek,o —X%o0) (Ek + (1 =)o+ UEk,o) Sk (Ek + (1 =n)Xpo+ UEk,0> ) ‘

_|_

~ ~ -1
tr(Era - 320) (B1+ (- 0po +150a) )

2 (Jop| K72 + Kg) + K1 & .
< g 2 ”Zk‘,O - Zk,OHF’
1
(54.33)
With (S4.32) and (S4.33)
sup | Mox(Sh, 2ho) — Mos(Zk, Sio)| = 0p(1), (S4.34)

Ek e@k (Cvd)

and

sup | Mo r(Xk, ik,o) — My (Zy, ik,o) — Mo x(3k, X5 0) + Mr(3g, X o)
Ekeek(c,d)

IOﬂm(l).
(54.35)
For arbitrary € > 0, let
A(E) = inf MO,k(Zk, EZ:,O) — Movk(Z}:, Z;::,O) > 0.

Yr€OK(c,d),|IZr =25 | F e

Combined with (S4.30)), (S4.31)), (S4.34)) and (S4.35)), with probability ap-

proaching 1 as N grows to infinity,
Mok (Sk, Bho) < Mor(Sh, Sio) + Ale),

which indicates |5, — St||r < e. Thus, Sy, — 7. 0
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Lemma 6 (Convergence rate). Suppose d is sufficiently large such that
i € Ox(e,d) and [|So—Siollr = Op(1/V/N). If Conditions|7] and|d hold,

15 = Sillr = 0:(1/VN).
Proof. Consider

Mi(Sk, Sro) — Mi(Sh, 57 )
:MO,k(iky ik,[)) — Mo,k(ZZ, EZ,O) + Mk(ik, ilc,O) - MO,k(ika ik,O) (8436>

- Mk(zz’ El’::,O) + MOJf(EZ:? EZ,O)'

Let Aik,ik,o =S+ ik,o — X, — Xko- By Taylor’s expansion, there exists

some 7 € (0, 1) such that

Mo i (Sks Bro) — Mos(5, Sho)

-1

1 * * -1 * *
:§tr (Aikaik,o (Ek + Zkvo + 77A§k1§k,0> Aik,ik’o <Ek‘ + Ek,O + nA/Z\k,ik,(])

-1
(2 (3% + ko) <Z; + 5o+ ”Aik,ik,fJ) — I)) :
(S4.37)

For simplicity of the notations, let

-1
Ay = Ai,ﬁik’o (EZ +Xko + nAik,ikﬁ) Aik,ik,ov

-1
<2 (5 +Z50) (EZ + 350+ 'r]Agbgm) - I>

Ay = (EZ + X0+ TIAik,ik’O)

According to Lemma ik R ¥%. Combined with Lemma , with proba-



bility approaching 1 as N grows to infinity,

1A, 5,17
’UZ’K272 + K2
1 N « \—1
§§0min <<Zk + Ek,O) ) “Aikiko”%
§tr(A1)
* * -1
SZO-H’I&X <(2k + Ek,O) > ||A§k,§]k0|’%

<2|Ag, 5, I7/51,

and
1 _1 1
min A > = min( DI 2 ) > T %1109 .
Tmin(B2) 2 27 ( ( k’o) = Ui K272 + Ry
_ 2
UmaX<A2) S 2O-maux ((ZZ + E]4;70) 1> S H_
1

By the Ruhe’s trace inequality, we have

18g, 5,5 = Or (Mox(Ek, So) = Mos(Si, Tho) )

Next, by Taylor’s expansion, there exists some 1 € (0,1) such that

My(Zk, Zr0) — Mok(Srs Zio) — Mi(S5,550) + Mo k(S ko)

1
=tr (Aik,ik,o <Z;; + EZ,O + nAik,ik,o> (Sk - E(UI:’U:]>

—1
(Si+ 30 +nds, 5, ) .

(S4.38)

(S4.39)

(S4.40)

(S4.41)

Combined with Condition[7, Lemma[2 and the Ruhe’s trace inequality, with
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probability approaching 1 as N grows to infinity,

My (k, Sro) — Mog(Shs Sio) — Mi(Sh, ko) + Mos(S5, 22,0)‘

—0p(||Ag, 5, ,|lr/VN),
(S4.42)

Similarly, let Ay, 5 = S + g0 — Tf — Tig = Sko — 5jp. We have

My (3, Bro) — Mi(Z5, Zh0) = Op((|As: 5, 17) + Op(llﬁgz,gwllp/\/ﬁ)

= Op(1/N)
(84.43)
Thus, we have
0 <Mox(Sk, Sho) — Mor(Z5, ko)
<Mu(Sk, Sio) — Mi(S5, i) + O (HAik,ik 0HF/\/N)
’ (S4.44)

SM(S;, Sro) = Mu(h i) + Or (185, 5,17/ V)
~0:(1/N) + O (I8g, 5, 17/ V) .

Combined with (S4.40)), we have ||A§k5;k,0||% = Op(l/N)—}—O]p(HAik’ik’O l7/vVN),

which leads to |Ag ¢ [IF= Op(1/v/N). Furthermore, we have

1€k = Sillr < 14g, 5, I + 1560 — Siolle = Op(1/VN).

When the true hierarchical factor structure is known, the estimates of



the loading matrix and the unique variance matrix are defined as follows:

A, U = argmin [(AAT + ¥; S)
AW

st. ikl <Tand A\jy=0for k=1,...,K,i €v},j ¢ vy,

U =diag(¢y, ..., %), k1 < || < kgyj=1,...,.J
(S4.45)

Lemma 7. Suppose that the hierarchical factor structure is known. If Con-

ditions (1}, [3, [3, [ and [§ hold, we have
IA — A*Q||lr = Op(1/VN) and |V — W*||p = Op(1/V/N),  (S4.46)

where @ is the diagonal matrixz with diagonal entries consisting of the signs

of the corresponding entries of ATA* defined in Theorem @

Proof. Similar to the proof of Lemma |§|7 we have HK?\\T +U— r =
Op(1/v/N). Furthermore, according to Lemma, we have [|[AAT—A*A*T||p =
Op(1/VN) and ||¥ — U*|p = Os(1/V/N).

To prove that ||A—A*Q|» = Op(1/v/N), we first show that there exists
some orthogonal rotation matrix R such that ||[A — A*R||p = Op(1/vVN).
Second, we show that ||3\1 — )\Tsign(XIX[)HF = Op(1/V/N). Third, we
conclude the proof by recursively applying the same argument to the factors
in the tth layer, t =2,...,T.

Let A* = U*diag (o1(A*),...,0x(A*)) V*T be the singular value decom-
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position of A* and A= ﬁdiag (01 (K), . ,UK(K)> VT be the singular value
decomposition of A. Then A*A*T = U*diag (62(A%),...,0%(A*))U*T and
AAT = Odiag (03(R), ... 0% (X)) 07, By Lemma , 02(A%) — 02(R)| =
Op(1/V/N) for i = 1,..., K, which further leads to |o;(A*) — o;(A)| =
Op(1/v/N) for all i. By Lemma , there exits some orthogonal rotation
matrix R such that |[U — U*R||p = Op(1/v/N). Moreover, R satisfies
Rdiag (01(A%), ..., ok (A*)) = diag (01 (A%), ..., ox(A*)) R with probability
approaching 1 as N grows to infinity. Taking R = V*E‘A/T, we have
IA = A"R|r
- Hﬁdiag (al(K), . ,aK(?\)) VT~ Utdiag (01(A), ... ., oxc (A7) PLVTHF
—(|Udiag (01 A),... ,aK(K)) — U*Rdiag (01 (A*), . . ., o (M) ||
< Hﬁ (diag (al(JA\), . ,JK(K)> — diag (o1 (A*), ... ,UK(A*))> HF + ||([7 — U*R)
diag (o1 (AY), ..., 0k (A"))

=0Op(1/VN).
(S4.47)

For i, j € Chj, i # j, by Lemma [3 and

-~

HA[U;‘,{l}]A[Z;,u}] = Ay Fv;*,{l}])THF = Op(1/VN),

we have

§[v2‘,{1}] Ay
el 1A%l

. AT *
sign (A{v:,{lﬂA[vz,{l}])

‘ = Op(1/VN). (S4.48)



Then, we further have

for all 7 € Chj, which also leads to the fact that sign (/AX[L,{I}]A’["m{l}]) =

Mgy Moy
s

~

sign (A[vry{m/\[v:’{l}])

‘ = Op(1/V'N)  (S4.49)

[ Aps.canl eyl

~T
sign(A; A]) with probability approaching 1 as N grows to infinity. Accord-

ing to (S4.47)), for each i € Ch}, we have

HA[U* = Aoz uups Brouiun; {1}H Op(1/VN).
Let
_ Ay (M)
(Mor ) Moy
and A, = (I - B)Af‘v:’{i}uD;]. By Condition , o140 (Afross) > 0. We
have

HA[M 1~ A uayups Biizupg H

M * si H(A A) AF Riet s )
= 1 gl e napun; Rigiup; (1)

~

Apr {13)

for 1] .
51gn()\ AD)
Rl 8%yl

> || Rigiyops. ]| o1+ 1071 (Aproyi) + Op(1/VN).

— [ A anl

Thus, we have HR[{Z'}UD*,{l} H = Op(l/\/ﬁ) for all i € Ch}, which leads to

|Bige....icr.ipl] = Oe(1/VN) and |y — sign(A, X)) = Ox(1/VN).

.....
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We then have
HXl - /\isign(XITX{)”

~ ~T
<||A = ARy || + | Ry, oy — sign(dy AD[[A7

(S4.50)
+ || Bree, oy e || 1AL 2y |

=0s(1/V/'N).
Finally, with (S4.50)), we have

r = Op(1/VN),

N AT * x T
[Awr giyups A iy — Mpr o Afr fuD:]

for all ¢ € Ch]. Then, Lemma [7| can be proved by recursively applying the

same argument to the factors in the tth layer, t =2, ... T. O]
We now give the proof of Theorem [2

Proof. The proof follows in a recursive manner. We first prove that with

probability approaching 1 as N grows to infinity,
Ch, = Chj, and v; = v} for all i € Ch], (S4.51)

and as a by-product, |[A; — Aisign(ATA))|| = Op(1/v/N), which further
implies HXIXI — XA lF = Op(1/v/N). Then Theorem [2] is proved by
applying the same argument to the factors in the tth layer, t =2,...,7T, in
conjunction with Lemma [7]

For simplicity of the notation, we denote ¢* = |Chj|. When ¢* = 0, the



proof of (S4.51)) is trivial. When ¢* > 2, the proof of (S4.51)) consists of

two main steps:

1. For sufficiently large d such that ¥* € ©4(c, d), let f_\l,c and \I/Lc be the
estimates according to and vi’c, ...,v¢ be the sets of variables
belonging to the child factors of factor 1 decoded by A, .. The possible

1,c

configurations for v, ... v} are:

? Ve

A. For each k € Chj, there exists some s € {1,...,c} such that
vp C bl

B. There exists some j € {1,...,J} such that
(01 0%) = ({1,..., J}\ {5}, {j}) and v} = @ for 5 > 2.

2. ¢ =argmin._g, . IC,. and d¢ =1+ |Di | for s =1,...,¢" with

probability approaching 1 as N grows to infinity.

Given vi “ ..., ub¢ we prove the first part by showing that for arbitrary
A e .Zl(c, dy...,d.) and W, there exists some constant C' > 0 depending
only on A* such that |[AAT + U — ¥*||p > C if v, ..., v} are not in case
AorB. Let By =vinovb fori=2...,1+c* and s =1,...,c. We first
claim that such a constant C' exists if there exists i € {2,...,1+ ¢*} such

that the following cases do not hold: (1) B; s = v} for some s € {1,...,c}

and (2) vf = B 5, UBi sy, Bis,, Bis, # 0 for s1,s2 € {1,..., ¢} and \vsl;\ = 1.
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We then claim that such a constant C' exists if the second case holds for

some ¢ but case B does not hold.
Now we give the proof of the first claim. Let ¥ = AAT + U. For

i=2,...,1+c* consider the following cases where Ch; = {):

L. |{s: |Bis| > 1} > 4. Let sq1,...,54 € {1,...,c} such that |B; | >

L...,|Bis,| > 1and ji € Big,,...,Js € Bis,. We have

.
SiniehUsdsl] = MGraeh ) A gagan)

has rank 1, while by Condition [3]

* Y * T
(o s = Mg 100 Mgy i)
has rank 2. By Lemma 2] we have
12— X"|r

EHE[{jl,jz},{js,MH - Er{j1,j2}a{j3,j4}} HF (84 52)
* * T
>02 (A, oy iy Aoy in) )

>0.

2. There exists some 1 < s < ¢ such that |B; 5| > 2 and |v} \ B; 5| > 2. In

this case, choose ji,j2 € B;s and js, js € v} \ B,s, (S4.52)) also holds.

3. There exists some 1 < s < ¢ such [B;s| = 1 and |v}¢| > 1. Let



{j} = Bis and we have
[RIE I V3

1 . .
Zﬁ <||Z[v:\{j}7{m = Sl + 1 Zenoretamm = Zagreta oy ||F> :

(54.53)
Notice that Zp,e\ i3 1oy = Apvin o Appey ) s and Bpo gy o) =
Afvf\{j}v{l}](AFv;’c\{j},{l}])T' We denote by
0= Zungrataon ~ Zhgnete e
By Lemma [3]
‘ Apngy.on Afngnin H 23/2§
HA[vZ\{j}7{1}1H A[v “\{i1{1}] H a HA[v \{j},{l}]H ”Arvng\{j}7{1}}H
(S4.54)
or
‘ Apgy.oy Ay, H 23/2§
HA[vZ‘\{j},{l}]H HAFvZ\{j},{l}]H B HA[v “\ {5}, {1}]||HA[U \{j},{mH

holds. Without loss of generality, we assume that (S4.54) holds. On

the other hand, notice that

Zpn\GhiH = N Apn\ G
and

Yoy = Aadengrnon T A e gy
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Let

% T
(Ao .qan)
) A

Absv Gy
(A

rvf\{j},{l}] rvf\{j},{l}]
and p = (I — B)A’[*U;\{j}7{j}]. According to Condition , p# 0. Ac-

cording to Condition [§, we have

IZeninon — Shononion |l

=X = Ao gna — Nl iongnall

A el (84.55)

R T | eroan
EnRe)

2/272(Jug] — 1)

Z[AGalllell = [l

>INl = = . '
! 1A% AL e Gy

Combining ((S4.53|) and (S4.55)), we have

Q ||A>[kvf\{j},{1}} ||A>[kv§’c\{j}:{1}]”> ’)\*H“,l,” >0
gi ’

Y —Y*|p > mi
| I = min < 4 87%(|vf| — 1)1/2

4. |vf| = Ugz123Bis, with {ji} = Bis, for B = 1,2,3. If there exists
some k such that [v}¢| > 1, with a similar argument from (S4.53) to

(S4.55)), we have

V2 Mgl ||Afv;,f\{jk},{1}} |

S—5*|p > min | =
|%=2" e 2 min { ==, 8r2(Jor] — 1)172

[Aalllell >0,

Jk»t

where g is defined similarly in (S4.55). Otherwise, {ji} = vl for



k =1,2,3. Consider i € Ch; and ¢’ # i. We have

[ 17
1 , .
NG (=i binn = Srrgonll + 1Btz = Sig aznll) -

(S4.56)

With a similar argument from (S4.53)) to (S4.55)), we have

i} (v2 M },{1}]||HAfv;*,7{1}}H .
X = E*||F = min (T? 873;(\@3\ 1)1 A alllell >0,

where ;s are defined similarly in (S4.55) for £ = 1,2, 3.
5. The rest of the cases are included in the two cases of our first claim.
When Ch! # ), consider the following cases:

1. There exist k € Ch] and s = 1,...,c such that |[B; s Nv}| > 2. If we

further have
|(Ur<sr<e,sr£5Bisr) N (Uprzirecn: V)| > 2,

choose jl,jg S B@sﬂvz and jg,j4 < (Ulgs’gc*,s’;ésBi,s’)ﬂ(Uk’;«ék,k’eChIUZ/)-
We have

.
SindehGsds)] = MGraeh ) A gagan)

which has rank 1, while by Condition

* * * T
(ot Uaial] = NMunga i) AGsan (L)
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has rank 2. By Lemma [2] we also have
1% =Xr

[ Signsod el = Ditgisad s ||
>0 (A son 10y Aoy 0m) )
>0.

Tt

|(U1§s’§c,s’7ﬁsBi,s’) N (Uk’;«ék,k’ECh;‘UZ/N S 17 (8457>

since |v},| > 3 for k' # k, k' € Ch], by (S4.57)) we also have |B; sNvy,| >

2 for all ¥’ € Ch;. Similar to (S4.57)), we have
|(U1§5/§C75/¢SB¢,31) M 'UZ| S 1. (8458)

Combining ((S4.57)) and (S4.58)), we have
I(UISS,SC,S,7£SB7;,S/) N (Uk’ECh;‘U]:/” S 2.

First, if [(Ui<s<e,s2sBis) N (Urwecn:vfy)| = 2, we denote by k" # k such
that is tight. Choose j1,72 € Bis NV}, j3,J4 € Bis NV, J5 €
(Ut<si<esr2sBis) Nup and jg € (Ur<y<esr2sBis) Nvjy. Furthermore,
we require that when Chj # 0, j1, j» belong to different child factors
of factor k with j;5 and when Chj, # 0, js, j4 belong to different child

factors of factor k& with j5. Such a choice is always possible due to the



assumed structure of the hierarchical model. It is easy to check that

.
Xl ndardsiahUsiiel] = Mngandsiat {0 (A s. e {13])

has rank 1. On the other hand,

* * * T
Sl davdada b Uswol] = NMUsaisiadLidked ) AN Us o} Ll }]) -

According to Condition , the rank of Af y is 4 and the

[{J1.92.93.34 {15,k K’

rank of Af‘{jmﬁ}’{l’i’k’k,}] is 2. By Sylvester’s rank inequality,

rank (A7, oo oy g1k Mg or riary) )
Zrank (Af, o o,y (i) TR (AT, oy i) — 4
—2,
Thus, by Lemma 2
12— 2*r
>||S51, i dat el — Sl dongsngah ol ||
>02 (Mg o 1k Mts s trikiy) )

>0.

SGCOIld, if |(U1§s’§c,s’7ﬁsBi,s’) N (Uk’ECthZ/)l = 17 let (Ulgs’gc,s’islgi,s’) N
(Urecn:viy) = Bis, Nwy, = {j} without loss of generality. When

|vi:¢] = 1, the second case of our first claim holds. Otherwise, it is easy
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to check that

HE—E*HF

> 75 <||2[v Ao~ Zhaananl + IBeagranon ~ Snanonle)-
(54.59)

Notice that

— B n T
Spngreingy = AenoranApiagran)

while
* * * T
E[U \{5}ve \gH A[”?\{J},{l}}(A[vi’f\{j}a{l}]) '

We denote by & =[S0y 3 vt 5y = Do (0t oy |- BY Lemma ,

either
‘ A[v;‘\{j},{l}] [v \{5},{1}] H 93/2§
||A[®;\{j}’{1}]H A[U AH{1}H H HA[v \{j},{l}]H HAFvi’f\{j},{l}}
(S4.60)
or
Apr\iininy Af Gy H 93/25 |
[Aeaaonll ™ 180l 18noran H||Av;f\{j},{1}1”

holds. Without loss of generality, we assume that m holds. On
the other hand, notice that

EpnGhE = AnApnoron
and

* A * T
Ehauhoy = Moo Ay aaun:)



Let
Ay ay (A

* T *
(Afrvgram) Moono

. T
[UE‘\{j}a{l}])

)

0. By Condition [§

IS enonom — Zengnon |l

Aol .

Z = ial | Appvianon = [EEmv ealahs
vi\{7}s

+ 1Ay gaopa lop: (Abwy)

252726 (Juy] — 1)1/?

N1} H HAFUsl’lc\{j}v{l}} H
(S4.61)

> || Ay aons o+ (Abrogs) — |

A

Combining ((S4.59)) and (S4.61)), we have

1X = 3"p
. V2 ”Afvf\{ i} {1}] HA*vi’c i}, H * %
2 min (T’ E;TQ(IU*‘\ _[1>1\/{2j} b HA[{j},{i}uD;‘] 01+\D;‘|(Aproj,i)
>0.

(94.62)
Finally, when [(Uicy<er s2sBis) N (Uwecn:vfy)| = 0, the first case of

our first claim holds.

2. |BisNuj| <1foralll <s < candk € Ch]. First, consider the
case when there exist some 1 < s < ¢ such that |B;; Nv; | = 1 and

|Bis Nwy,| = 1 for some ki, ky € Chy. we denote {j1} = B, Ny,
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and {j»} = Bis Nvg,. Moreover, choose js, jy € v;, and js, js € vy, .
Furthermore, if [Chy | # 0, we further require that js,j; belong to
different child factors of factor k; with j;. Similarly, if |Chy | # 0,
Js, J6 belong to different child factor of factor ks with j,. Such a choice
is always possible due to the assumed structure of the hierarchical

model. It is easy to check that

S e o Uaasiol] = Mg (0 Al gasoh (1))

)

has rank 1. By Condition , A dais o} (ki key has Tank 4 and

*

A[{jm}’{l’i,km}] has rank 2. By Sylvester’s rank inequality,

* * T
rank(/\[{jl,jg},{l,i,kl,kzz}] (A[{jg,n,js,je},{l,am,ka}]) )
Zrank(Af{jl,ja},{l,i,kl,kz}]) + rank(Af{j37j47j5,j6},{1,i,k1,RZH) —4
=2.

By Lemma [2]

132 =2 r

*

ZHE[{j1,j2},{j3,j4,j5,j6}} B E[{Jl,j2}7{js,j47j5,j6}] ||F

(54.63)

* * T
202(A[{j17j2}7{17i7k1,k2}}( [{jB7j47j57j6}:{17i7k17k2}]) )
>(.
Second, for each 1 < s < ¢, if |B;; Nv;| = 1 for some k € Ch;,

|B; s Nvjy| =0 for all & € Chy, k' # k, which indicates |B; s Nv}| <1



for 1 < s < e¢. Since |vf| > 7 by constraint C4, choose s1, $2, 3, 4 such
that {ji} = B;s,Nv} for k =1,...,4. Moreover, we require that ji, j

and 73, 74 belong to different child factors of Factor i. We have

S el = Mg A isgarny) s

has rank 1, while by Condition [3]

* _ * * T
(Gndeh sl = Mgy 0 MGy )
has rank 2. By Lemma [2, we have

1% =2 r

*

>[|Z 510,055,350~ i tzmai ||
205 (At 0.0 Misaanan) )
>0.

Now the first claim is proved, and we focus on our second claim. We
assume that there exist iy € {2,...,1 4+ ¢*} and s1,80 € {1,...,c} and
51 # sy that satisfy v, = B; ,, U B;, s, and v;j = {j1} for some j; €
{1,...,J}. Furthermore, for each iy € {2,...,1+¢*} and iy # i1, we denote
by vf, = Bi, s, U By, s, for some s3, 54 € {1,...,c} that satisfy B, ,, = 0
or Bi,s, = vi¢ = {j»} for some j, € {1,...,J}. We will first show that

s3 = s; for all iy # 7, and second, show that B;, 5, = 0 for all is # 41, which

finally leads to case B.
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First, when s3 # s; for some iy, it is easy to check that

HE—EﬂF

=V (HE[%\{M}M Sttt + 1S\ 60,8 = Zhir gl ) -
(S4.64)

Similarly to the proof in (S4.59)) to (S4.62)), we have

1% = 27|
(2 Mool A, 0l )
= min (T’ : 87'12(|vj| _ 1)1?23 HA[{]l} {in}uDy ] ‘UHIDZ}I (AProj,il)
>0.

(S4.65)
Second, when B;, 5, # () for some i

1% =2 r

¢_<H2mlbﬂﬁﬂl EMAUﬂ{n}H+”ZWWUﬂBmM] Ew\@ﬁBQM}’>'
(S4.66)

Again, similarly to the proof in (S4.59) to (S4.62), we have

12 = 3"p

(2 Mol s, ] )
2mm(4’ 1é;q%‘ y24 ATy tiyong lloeins, | (v )
~0.

(S4.67)

Now we have finished the first part of our proof.

For the second part, we mainly focus on case A and omit the proof



1,c

when v, ..., v}¢ are included in case B for two reasons: (1) case B does

)’ Ve

not satisfy constraint C4 and will never be selected in our algorithms and
(2) by a similar argument below, the information criterion brought by such
case will be strictly larger than the optimal solution with probability ap-

proaching 1 as N grows to infinity. We also assume that d,. is sufficiently

large to avoid further discussions.

l,c

Now, we focus on case A and we only discuss the case when v,

are

nonempty for s = 1,..., c. First, we show that when ¢ = ¢* in case A,

ICre- = Y ([o;l(ID;] + 1) — |Dl(IDg] +1)/2) log N + Op(1).  (S4.68)

keCh}

In such a case, we have v} = v}, for s =1,...,c¢". We claim that Step 6
of Algorithm 2 outputs d=° = 1 + |Di | for s = 1,...,c¢* with probability
approaching 1 as N grows to infinity. When s = 1, for d; > 1 + |D}|, let

A4, and ¥, be the solution to

1Cy (¢, dy, min([v3], d), . .., min(|v}, .|, d)). (S4.69)

Similar to the proof of Lemma |§|, HA@A; +¥, -

P Op(1/v/N), and
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we further have

IC, (¢, dy, min(|vi], d), . .., min(|v’

,d))
=1(Ag,AJ, + P45 S) +pi(Ay,) log N

=0p(1) + (Jv3]dy — di(dy — 1)/2) log N + > (|viy;|ds — du(d, — 1)/2) log N,
o (54.70)

where we define d; = min(|vf,,|,d), s = 2,...,c* for simplicity. Noticing

that the third term of is independent of the choice of d; and the

second term is strictly increasing with respect to dy for 1+ |Dj| < dy <

min(|vi|, d), we then have

1+ |Dj| = arg min 1C, (e, dy, min(|v3|,d), ..., min(|vk
14| D3| <ds <min(ju3 . d)

,d)),
(54.71)
with probability approaching 1 as N grows to infinity.

When d; < 1+|Dj], for any A € A(c*, dy, min(|v3], d), . .. ,min(|v}, .|, d))
and W, we denote by ¥ = AAT 4+ ¥. According to Condition @ there exist
Ei, Ey C v with |Ey| = 2+ |D}|, |Es] = 1+ |Dj| and E; N Ey = () such
that AFEl, (1,2}uDs] and A’["E% {2yupy] A€ of full rank. We further denote by

By ={2,...,14d;}. First we have

2774

* 1 *
X=X > 7 (HE[U;U;] - X

NG sonlle I Smm) = S el ) - (8472)



forany i =3,...,14+c*.We denote by 6 = HZ[U;,U;] — va;,w]

i Notice that

.
Epoger) = Mg, 00y Az, 131)

and
* Ak * T
s 2] = Mo ) (Ao qayy) -

According to Lemma [3] either

EN Al iy H 23/2§5
: 5 < . (S4.73)
‘”AMﬂM [Pt LY 1 e
or
‘ M%m1+_A%ﬂHH 2526
|‘A[v§7{1}]H HAFU;,{H]H a HA[v2 {1}]HHA[U A1)

holds. Without loss of generality, we assume that (S4.73) holds. On the
other hand, notice that
Z[ELEQ} - EE(El,EQ}
=A (A )"+ A s (Meas) | = Mgy (M, )
(B, {1\ B2, {1}] [Er,B1]\{ME2, B ] (B, {1} \“}MEs {1}]

(1 {2}UDs 1 (Afg, {Q}UDQ])

A S4.74
=N 1y (Ao ay) ' — H[{MH Aley g1y Aeaay) | ( )
1A% I
A” * *
+ A[E1,B1](A[E2,B1])T —|1- HA[ HEL H [El,{l}}(/X[Eé,{l}])—r
3. {1}]

* * T
(21, (2yun3) (Me, (230D;))
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Combined with (S4.73]), we have

Av*’ ’ * *
A[E1,{l}] (A[EQ,{l}])T - HIXLQ%A[EL{I}] (A[Ez,{l}])T
ool )
Aps. .
= (A[El’“” N MAUELHH) (Azaquy)
[v3,{1}] F
-
A”*’ * Av*y *
" ;’A—Ef {1}1H Afe, ) (A[Ez,{l}l - }‘ S {1}]I|A[E2’{1H) (5475)
o3 {1} o3 {1} -
226 || Apg. 11| ( [ Aps,onll
< v Aoyl + 1 IA B,
[ R G L A o Lol
2°/272|v3|6
S * * :
We denote by
Ag = (AFEl,{1,2}UD§})_IA[El,Bﬂ(A[EQ,Bﬂ)T?
whose rank is at most d; < 1+ |Dj|, and
Apyx ’
Ap = ( (1 o :AiT{l—}]Hz) AFE%{l}]’ AFE%{Z}UD;] ) :
[v3.{1}]
By Condition @, Alg, 123upy) has rank 1+ |D%|. Thus, by Lemma
|Ae — A%l 5
Z H (AE)[:,Bl] B (A*E)[:,Bl] F (8476>

2014 |pj| (AFEQ,{Q}UDS}) :



Combined with (S4.74)), (S4.75)) and (S4.76)), we have

=1, = S

25/272|v35|6

ot Snguapoms) e Oiewons) = e g o
vy ,{1 v, {1
’ (S4.77)
Combined with we further have
12— X*p
. \/§ HAFU*,{I}]HHAFv;‘,{I}]H * *
> min (T’ 2 1672[03] 0'2+|D§\( [E1,{1,2}UD§])01+|D§|(A[Ez,{2}UD§]>'

Thus, the derived information criterion satisfies

1C, (¢, dy, min([v],d), . .., min(|v?

,d)) = Op(N).

Thus, with probability approaching 1 as N grows to infinity, we have

1+ |Di| = argmin ICi(c,dy, min(|vi],d), ..., min(jv%],d)). (S4.78)

1<d; <1+|Dj|
Combining (S4.71) with (S4.78), we have CEZ* = 1+ |Dj}|. Similarly, we

have d© =1+ |Di |, for s =1,...,¢". Then we have

ICy(c¢*, 1+ |Dj],..., 1+ |Dby o

)

= > (0El(IDE| +1) = [DEI(IDE| +1)/2) log N + Os(1),

keCh;
and (S4.68) holds.

Second, when ¢ < ¢* in case A. We will show that the Jg given by

Step 6 of Algorithm [2] satisfies d° = 3" ,_ 1.1+ |D;| for s =1,...,c with

*
v; Cus
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probability approaching 1 as N grows to infinity.

For s =1, when d; > > . 1.1+ |D}[, let A; and ¥, be the solution to
ICy (¢, dy, min(jvy ], d), ..., min([v}*], d)).

Similarly to Lemma@, we have ||Ay Ay +¥, — E*”F — Op(1/V/'N) and by

Taylor’s expansion, we have

IC, (¢, dy, min(|vi®|, d), . .., min(|v>*|, d))

=1(Ag, A, + 4,3 5) +p1(Ay,) log N

=0p(1) + (|v1“|dy — di(dy — 1)/2) log N + Y (|v}*|ds — dy(ds — 1)) log N,
o (54.79)

where we denoted by dy = min(|v}¢|,d), s = 2,...,c for simplicity. Notice

that the third term in is independent of the choice of d; and the

second term is strictly increasing with respect to d; when ZU; cote 14 |Dx| <

dy < min(|v;°],d). Thus, with probability approaching 1, as N grows to

infinity, we have

> 1+(Dj|
v Cop°

= arg min IC, (¢, dy, min(|vy®|, d), . .. ,min([v}¢|, d)).

Zvef@}vc 14| D |<dy <min(|v; ‘| ,d)
1

(S4.80)

When d; < ZU*CU%,C 1 + |Df]|, similar to the proof in (S4.72)-(S4.77)), we



have

> 14D = argmin  1Cy(c, dy, min([v}°],d), . .., min(|jv>¢|, d)),

oo ISR e TP

(S4.81)
with probability approaching 1 as N grows to infinity. Combining (S4.80))
with (S4.81)), we have d° = Zv;@i,c(l + |D}|). Similarly, we also have
de = Y vrcote(L+ D7), s =1,...,c. However, it is obvious that

> (loietds = di(ds = 1)/2) > > (Wi(D3]+1) = D310 +1)/2),
s=1 1€Ch}
when d°¢ = Zv;cu}c(l +|D}f|),s = 1,...,c. Thus, with probability ap-
proaching 1 as N grows to infinity, the derived fél(c, cAl;{, e ,cAl;é) is larger

than (S4.68)).

: 1
Finally, when v, ... v}e

’ Ve

are not included in case A or B, the de-
rived information criterion is strictly larger than with probability
approaching 1 as N grows to infinity by the first part of our proof. Thus,
the second part is proved.

At the end of the proof, we conclude that with the same argument in
Lemmalg, | X — Alsign(A!"X0)|| = Op(1/v/N), which indicating || X, —
XX |p = Op(1/v/N). Then Theoremis proved by applying the same ar-
gument to the factors in the tth layer, ¢t = 2,..., T, together with Lemmal[7]

]
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S5 Simulation studies for Algorithm 3] with correctly

estimated number of child factors

As discussed in Section [3| Algorithm [3] may converge only to a local opti-
mum, and the local solution may not satisfy constraint C4. In this section,
we examine the performance of Algorithm (3| to find a global optimum and
decode the structure of the child factors of Factor k given ¢ = |Chy| with
multiple random starts in detail. We consider the hierarchical structure
shown in Figure |S1| with J € {24,36}, v = {1,...,J}, v; = {1,...,J/3},
vy ={1+J/3,...,2J/3}, v ={1+2J/3,...,J}, vi ={1,...,J/6} and

v ={1+J/6,...,J/3}.

J J 2J 2J
3 +3 +

|
J
6 3 3

J
+6

Figure S1: The hierarchical factor structure in the simulation studies of Section



In the data generation model, A* is generated by

p
Ujk if kzl,

Ae=19q 0 if k>1,j¢uv; (S5.82)

| (1- 2z )uje if k> 1,7 €,
for j =1,...,J, and k = 1,..., K. Here, u;;s are ii.d., following a
Uniform(0.5,2) distribution and z;s are i.i.d., following a Bernoulli(0.5)
distribution. W* is either an identity matrix or ¥* = diag(¢i?,...,¢%)
with 7,7 =1,...,J i.id following a Uniform(0.5, 1.5) distribution.

Let A and U be the estimates of A* and ¥* given by Algorithm 3 and
{v11:}5_, be the estimated set of variables belonging to child factors of
factor 1. To define a global optimal solution to the optimization problem

in (18]), we consider the ideal case when S = ¥*. It is easy to notice that

the objective function
T(AAT + W, %)

=log(det(AAT + W)) + tr(Z*(AAT 4+ T) 1) — log(det(X*)) — J
reach its global minimum at 0. Thus, for each optimization result from a

random starting point, we define the following criterion

1. GS(Global Solution): a binary variable equal to 1 if [[(AAT + W, £%)| <

0 and 0 otherwise, where ¢ is a tolerance parameter.

2. CR(Correctness Rate): a binary variable equal to 1 if {v14;}5, =
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{vi, v}, vi} and 0 otherwise.

We apply Algorithm [3| with ¢ = 3 and d = 5 and further denote 75,
U3, and v, as the estimated set of variables belonging to the child factors of
factor 1. In this simulation study, we consider 4 simulation settings, given by
the combinations of J = 24,36 and two generation processes of V. For each
setting, 100 independent simulations are generated, and in each simulation,
we use 100 random starting points with the tolerance parameter § = 1074
The numerical results are given in Table As shown in Table [S1| when
J = 24, around 57% of the random starting points converge to a global
optimum and 15% of the estimation results correctly decode the underlying
hierarchical factor structure. When J = 36, there exists a decrease in
both GS and CR, with around 38% and 11% of the random starting points

converging to a global optimum, respectively.

Table S1: The mean value and standard deviation of GS and CR in the simulation study.

v J GS CR

Identlty 24 5755(1632) 1542(539)
36 37.52(12.11) 11.19(4.23)
Heterogeneous 24  56.48(15.61) 14.88(5.43)

36 39.49(12.09) 11.58(41s)




Remark S2. We emphasize that when the optimization problem ([18])
reaches a global solution, the estimated sets of variable vy, v3, U4 are not
necessarily equal to v3,v;,v;. In the current setting, the following con-
figurations can yield equivalent covariance structures while satisfying the

constraints of the optimization problem:
A. Uy, 03, Uy are equal to {1,...,2J/3}, {1+2J/3,...,J}, 0.

B. U, 03, 0y areequal to {1,...,J/3,14+2J/3,...,J}, {14+J/3,...,2J/3},

0.
C. 0y,03, Uy are equal to {1,...,J/3}, {1+ J/3,...,J}, 0.
D. Uy, 03, Uy are equal to {1,...,J}, 0, 0.
E. 0,03, Uy are equal to {1,...,J}\ {i}, {i}, 0 for some i € {1,...,J}.

These cases correspond precisely to the cases discussed in the proof of The-
orem 2] To be more exact, case A, B, C are the cases when two of v3, v3, v}
are merged into one set, and Case D is the case when v3, vi, v] are merged.
Case E constructs the following parametric space for the loading matrix A:
{AeR N =0forj#4,7<k<16and \y =0
for k=2,...,6,12,...,16}.
Given an arbitrary A* € R7*% and unique variance matrix U*, we construct

the loading matrix A and unique variance matrix ¥ = diag(%, . ,QZ J)
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belonging to the parametric space defined in Case E such that ANT + 0 =
A*A*T + U* as follows:

66 . T _
1. Let R € R”*® be an orthogonal matrix such that R[{l _____ 613 =

Altiy 1,63
Aty 6}]“

2. Let Aqquon @bt = Mpgingo,on B and Ay = HAF{Z-},{L.‘.,GH H
3. Let K[{i}7{77__,,11}] be an arbitrary vector such that H/N\[{i},{7,...,11}] H2 <7,
b = Y5 for j # 1 and i = YF — HK[{i},{z...,n}} H2
This construction shows that Case E also yields a global minimizer of the
objective function. However, all cases A-E have at least one empty set
among U», 03 and v4. Since our goal is to recover the structure of three

non-empty child factors of factor 1, such solutions violate the intention of

the modeling and are excluded in Steps 5-8 of Algorithm [2|

S6 Simulation studies for underestimated number of

child factors

In this section, we examine the performance of Algorithm [I] and [2] when
Cmax, the upper bound for the possible number of child factors of each
factor, is underestimated. We adopt the same hierarchical structure and

data generation model used in Section [S5 As illustrated in Figure[S1] cpax



should be at least 3. However, in this simulation study, we deliberately set
Cmax = 2 and dpax = 5 when applying Algorithms([Ijand[2] In this simulation
study, we consider 8 simulation settings, given by the combinations of J =
24,36, two sample sizes N = 500, 2000 and two generation processes of W
used in Section [S5l For each setting, we generate the loading matrix and
the unique variance matrix once, and then 100 independent simulations are

generated.

|
J J 2.J 2J]
3

J J
1 |.--] < 1420 122 2L 2 g
6 +6 +3 +

Figure S2: The hierarchical factor structure learned with underestimated cpax-

Figure[S2| displays the most frequently estimated hierarchical structure,
which is selected in more than 60% of the 100 replications across all set-
tings. As shown, Algorithms [I] and [2] recover a correctly specified but less
parsimonious representation of the true hierarchy. To be more exact, a re-
dundant factor, whose sets of variables vy = v U v}, is learned due to the

choice of ¢.x = 2 in the current simulation settings.
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S7 Real Data Analysis: Agreeableness Scale Item Key

Table S2: Agreeableness Item Key

Item Sign Facet Item detail
1 + Trust(Al) Trust others.
2 + Trust(Al) Believe that others have good intentions.
3 + Trust(Al) Trust what people say.
4 - Trust(Al) Distrust people.
5 — Morality(A2) Use others for my own ends.
6 - Morality(A2) Cheat to get ahead.
7 — Morality(A2) Take advantage of others.
8 - Morality(A2) Obstruct others’ plans.
9 + Altruism(A3) Love to help others.
10+ Altruism(A3) Am concerned about others.
1 - Altruism(A3) Am indifferent to the feelings of others.
12 - Altruism(A3) Take no time for others.
13 - Cooperation(A4) Love a good fight.
14 - Cooperation(A4)  Yell at people.
15 - Cooperation(A4) Insult people.
16— Cooperation(A4)  Get back at others.
17 - Modesty(A5) Believe that I am better than others.
18 - Modesty(A5) Think highly of myself.
19 - Modesty(A5) Have a high opinion of myself.
20 - Modesty(A5) Boast about my virtues.

21+ Sympathy(A6) Sympathize with the homeless.
22 + Sympathy(A6) Feel sympathy for those who are worse off than myself.
23 - Sympathy(A6) Am not interested in other people’s problems.

24 - Sympathy(A6) Try not to think about the needy.




S8 Real Data Analysis: Additional Results

In this section, we present the estimated loading matrix and correlation
matrix of the three competing models. The estimated correlation matrix
of the three models, denoted by @CFA, ZI\DCBF, @EBF, are shown in (S8.83)),

(S8.84)), and (S8.85)). The estimated loading matrix of the three models,

denoted by /AXCFA, /A\CBF, /A\EBF, are shown in (S8.86)), ((S8.87)), and (|S8.88)).

1 0.33 044 043 —0.06 0.37
0.33 1 042 062 025 0.37

. 0.44 042 1 039 0.15 0.80
Dopp =

(S8.83)

043 0.62 039 1 0.11  0.30

—-0.06 0.25 0.15 0.11 1 0.16

0.37 0.37 0.80 0.30 0.16 1

0 1 001 024 003 —0.07 0.25
0 001 1 012 027 034 022
pr=| 0 024 012 1 008 018 074 |- (58.84)
0 003 027 —0.08 1 025 005

0 —0.07 0.3¢ 0.18 0.25 1 0.17

0 1 012 018 024 012 —0.02
0 012 1 050 011 095 033
Pppr=| 0 018 050 1 013 074 024 |- (S8.85)
0 024 011 013 1 009 —0.14

0 012 095 0.74 0.09 1 0.31

0 —0.02 0.33 0.24 -0.14 0.31 1



S8. REAL DATA ANALYSIS: ADDITIONAL RESULTS

085 0 0 0 0 0
073 0 0 0 0 0
076 0 0 0 0 0
087 0 0 0 0 0
0 08 0 0 0 0
0 064 O 0 0 0
0 092 0 0 0 0
0 039 0 0 0 0
0 0 051 O 0 0
0 0 061 O 0 0
0 0 067 O 0 0
Rom — 0 0 057 0 0 0 , (88.86)
0 0 0 071 0 0
0 0 0 081 0 0

0 0 0 071 O 0

0 0 0 0 0 0.70
0 0 0 0 0 071

0 0 0 0 0 0.65

0 0 0 0 0 0.65



ACBF =

0.42

0.24

0.43

0.41

0.28

0.54

0.68

0.66

0.30

—0.14

—0.03

0.38

0.15

0.16

0.38

0.27

0.73

0.64

0.72

0.69

0.83

0.41

0.71

0.11

0.60

0.51

0.41

0.70

0.43

0.41

(98.87)
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0.27 0 0 0 0 0 073

0.45 0 0 0 0 0 074

0.55 0.32 0 0 0 0 0
0.69 0.61 0 0 0 0 0
0.45 0 010 0 0 0 0
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