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S1 Additional asymptotic results

S1.1 Regularity conditions

To establish the Theorem 1, we assume the following regularity conditions.
Define A(B,x) = E[D(x)I(3'x > 0)]. Let V,,A(B,x) denote the m-th
partial derivative operator with respect to 3, and define |V,,| A(8,x) =

0" AB.x)
2iveim | OBy 0B

.....

C1. The propensity score 7(x) is known and 0 < 7(x) < 1 for all x € X.

(2. The estimator 8 converges almost surely to a deterministic vector of

parameters 6, and n2 (é - 00> = 0,(1) and v(X, 0) is continuous
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with respect to 6.

C3. The objective function A(3, 8y) has a unique maximizer at 8 = 3, =
(Bot, - - -, Bop) With ||Bo]l = 1. And the parameter space B of 3 is

compact.

C4. (a) X has a continuously differentiable density function f(-). The an-
gular components of X, considered as a random element of the unit
sphere U in R?, has a bounded, continuous density with respect

to the surface measure on U.
(b) E[D(X)? < o0 and E [V(Z,0)?] < .

(c) {v(X,0):0 € B} is a VC class with envelope function C'(X) and

E[C*(X)] < oo.
C5. (a) The value function A(B,x) is twice differentiable w.r.t. 3.

(b) There is an integrable function Y (x) such that, for any x € X and
By and B, with [|B,[| = [[B2 = 1, [[V2A (81, %) — V2 A (8,,x)|| <
TX) (181 = Bl

(c) E{IViA (B, X)|*} < 0o and E {|Va| A (B, X)} < o0.

(d) V= =V2A(By, X) =[5 x_o[/(X)D(X) + DX) f(X)]'B,XX"dor
is positive definite, where o is the surface measure on the hyper-

plane {X : B,X = 0}. D(X) and f(X) denote the derivatives of
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D(X) and f(X) (the density function of X) with respect to X,

respectively.

C6. (a) The kernel function K(-) : R — R is a symmetric probability den-
sity function. K(s) is twice continuously differentiable and Lip-
schitz and the second derivative satisfies the Lipschitz condition.
[ K (u)du < 00, p2(K) = [w?K?*(u)du < .

(b) The bandwidth h satisfies h — 0,nh — oo and nh?* — 0 as

n — oo.
C7. Denote the density function of S = 3'X by fs(+) with the support S.

(a) The density function fs(-) and the regression function m(:) are

three times continuously differentiable with respect to s.

(b) fs(+)is everywhere positive for 3 € B,, where B, is a e-neighbourhood

of B, and ingf(s) > C' > 0 where C is a constant.
s€

Condition C1 is assumed to simplify the theoretical arguments, which
can be extended to the situation when the propensity score model is cor-
rectly specified. For example, by using a logistic regression, the parameters
in the propensity score model can be consistently estimated from data.
Condition C2 usually holds for the least squares estimator under mild con-

ditions. Conditions 3 and 4 are assumed to establish the consistency of
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estimators for 3. Condition C3 is an identifiability condition for 3, which
assumes the existence and uniqueness of population parameters that max-
imize the value function. Condition C4 is assumed to show the uniform
convergence of A(B,OO) to A(B,X). Condition C5 is assumed to ensure
the asymptotic property of B Condition C6 is a commonly used condi-
tion for kernel estimation, which requires undersmoothing of bandwidths
and is standard to obtain consistency of semiparametric estimators ([I'si2
afid, 2006). Conditions C4, C5, and C7 are often used to establish the large
sample properties of M-estimators (Sherman, 1993; Delsol"and Van Keile
gorm, 2020).

To establish the asymptotic results in Theorem S1, we make some

variations to the conditions C1 to C5 given previously as follows. Define

APR(B,a,x) = E [ X)_p(x)I(8'x = 0).

m(X,o)

C1’. The true and posited propensity scores satisfy 0 < m(x) < 1 and

0 < m(x,a) <1 forall x € X and ¢ in a compact space.

C2'. The estimators 6 and & satisfy NZD (@ — 90> —n2 Yo Yo, + op(1)
and v/n(a — ap) = n-: St Wi+ 0p(1), where 1y, s and 1, 's are

iid mean-zero random vectors with finite second moments.

C3'. The objective function APR(B, 6y, ) has a unique maximizer at 3 =
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Bo = (Bots - -+ Bop)” with [|Bo]l = 1. And the parameter space of B of

3 is compact.

C4'. (a) X has a continuously differentiable density function f(-). The an-
gular components of X, considered as a random element of the unit
sphere U in R?, has a bounded, continuous density with respect
to the surface measure on U.

(b) E{D(X)?*} < 0o and F [V (Z, 8y, ap)?] < .

(c¢) {v(X,0):0 € ®}isa VC class with envelope function C'(X) and

E[C?*(X)] < oo.

C5'. (a) The function APR(8, a,x) is twice differentiable with respect to
B.
(b) There is an integrable function TP%(x) such that, for any x € X

and B, and B, with |3, = |8, = 1,

HV2ADR(517 g, x) — VAP (B, a07X)H < TPH(x) |8, = B -

(c) E{WlADR(@O,aO,x)F} < 0o and E {|V,| APE(B, a0, %)} <

Q.

(@) VPR = [y 525 [ (X) D(X)+ D(X) (X)) 8, X X'do, the sec-

ond derivative matrix of —APE(3,, ap, X) with respect to 3 at 3,
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is positive definite, where o is the surface measure on the hyper-

plane {X : B,X = 0}.

S1.2 Asymptotic properties for doubly robust estimators

Here we will consider the asymptotic properties of the doubly robust esti-

mators under the situation that 7(X) is unknown similarly.

Theorem S1. Let GPR(t), GPR(t) and GL(t) be the mean-zero Gaus-
sian process with continuous sample paths. Under conditions C'1' — C¥
and C6 — C7, when either m(X, ) or v(X,80) is correctly specified, as
n,N — oo, & — p, A € [0,1] we have:

(a1) Boy 5 By7 (a2) By 5 Byr (a3) By 2 By,

(b1) né(Bij—ﬁo) % arg max ZPR(t), where the process ZPE(t) = GPR(t)—
St'VPERE Here GPE(t) has the covariance kernel function CovPR(-,-) (de-
fined in the proof of Theorem S1) and —V PR is the second derivative matriz
of E[V(Z, 0, ) I(B'X = 0)] with respect to B at B,.

(b2) né(BZR—ﬁO) % arg max ZIR(t), where the process ZJR(t) = GLR(t)—
sU'VPRL. Here GLE(t) has the covariance kernel function (Fpp)zCovDR(-, ).

(b3) n%(BfR—ﬂO) < arg max ZPR(t), where the process ZPE(t) = GPT(t)—
¢

St'VPRt Here GR(t) has the covariance kernel function [N+(1—X)2p?|CovPR(-, ).

The proof of Theorem K1l follows a similar structure to that of Theorem
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1, leading to comparable conclusions regarding covariance comparison.

S1.3 Additional notes on asymptotic variance comparisons

For some constant K > 0, let G(¢) be a mean-zero Gaussian process with
continuous sample paths and covariance kernel function Couv(-,-), Ga(t) be
a mean-zero Gaussian process with continuous sample paths and covariance
kernel function KCou(-,-). Since Go(t) is a scaled version of G1(t) in co-
variance, we can express Go(t) L VKG, (t), where £ denotes equality in
distribution. The asymptotic distribution of arg gnax Gs(t) — 3"Vt can be
written as arg {nax VEG(t) — 'Vt for some positive definite matrix V.

Let t = VKs, we have VKG(t) — 2Vt = VKG(VKs) — Es'Vs =
K (Gl(s) — %3’ Vs). Since K is a positive multiplicative constant, it does
not affect the location of the maximum. Thus by ¢t = v/Ks we have
arg 2{naux VEG(t) — 'Vt = VK argmax G (s) — 1'Vs.

Denote random variables W < arg Inax Gy (t)—%t’ Vit and W5 < arg :nax Go(t)—
st'Vt, then W, 2L VKW;. Define Var(Wy) = X, we have Var(W) =
Var(VKW,) = KX.

Based on this explanation, the results presented in Theorem 1 can be
directly obtained by setting K = ({£5)* for B, and K = A2+ (1 — \)?p?

for B/\.
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S2 Theoretical proofs

S2.1 Supporting Lemma

Let fs(-) is the density of s = (@'x with ing fs(s) = C > 0 where S
se
is the support of s and C is a constant. And let fn(s) = fn(ﬁ'x) =

%Z:’L:l Kh{,B/(XZ — X)} = %Z?:l Kh(Sz — 8), where Sl = B,Xz

Lemma S1. Suppose that condition C6.(a) holds. Let E[g(X,U)|U = u]
be continuous and twice differentiable at u and E|g(X,U)|> < oco. If the
second derivative of f(x) are continuous and bounded, then as n — oo, we

have:

sup 1 ZKh(Ui —u)(

n
ueU i—1

U4, U) — ) Blg(X, U)U = )

=0(c,) a.s.

where U is the support of U, py = fukK(u)du and ¢, = h* + \/ —lognh_l-

Proof. The proof may be constructed along the lines of Lemma A.2 in Xia

and 1 (1999). O
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S2.2 Proof of Lemma 1

E{Y*(1) = Y*(0)}d(X)] = E[E{Y"(1) — Y(0)|X}d(X)]
= E[E{Y"(1) - Y"(0)[X, A}d(X)]
= E{E[Y|X,A=1] - E[Y|X, A = 0]}d(X)]

— E[DX)d(X)].

Note that the first ‘=" holds by the law of iterated expectation, the second

¢ )

=’ holds by the no-unmeasured-confounders assumption and the third ‘=
holds by the stable unit treatment value assumption. This completes the

proof.

S2.3 Proof of Theorem 1 (al)-(a3)

For simplicity of notation, we write S = 3'X and S; = 3'X;. Recall that

A . 1-) & .
A\(B.0) =~ > VI(Zi,0)I1(S; = 0) + ~ > (S8, 0)I(S;i = 0),
=1 i=n-+1
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Note that for M-estimate, we only need to prove sup |A (3, 0)—Ax(3, 6,)| R
B

0 as n — oo to get the conclusion in Theorem 1 (al)-(a3).

s%p|A,\(B,é) — Ax(B,60)|

1 & X
<Asup | = > V(2. 0)1(S; > 0) — E[V(Z,60)] (S > 0)]
B =1
R )
+ (L= N)sup [ Y (S, 0)1(S; > 0) — E[m(S,80)I (S > 0)]
B N i=n+1
=M+ (1= NI,
where
1 — X
B =1
1 U )
B i=n+1

For I and by condition C2, there exists a constant ¢ small enough, such

that:
sup ! i V(Z:,0)I(S; > 0)— E[V(Z,00)I (S > 0)]
I
coup s | LS V(Z0) — V(Z00)1 (S, > 0) — B(V(Z.6) ~ V(Z,6)1 (S > 0)
B 6—60|<s |1 i=1
+sup sup |E[V(Z,0)I(S > 0)] - E[V(Z,00)I(S > 0)]|
B ||6—0¢|<s
boup |25V, 80)1 (S, > 0) - EV(Z.0)T (5 > 0)
I K

::Il + [2 + 137
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where

n

N (V(Z:,6) - V(2 00)1 (i 2 0) ~ FI(V(Z,0) = V(Z,0)I (S > 0)].

I, =sup sup
B ]|6—06¢]|<s

Iy =sup sup |E[V(Z,0)](S>0)]—E[V(Z,00)I(S>0)],

B 6—60]<s
B =1
Write
Ai — Xz ,
f(Z:,8,6) = X0 i(ﬁ(})c)}u(Xi,O)I(B X, > 0),

where v(X;,0) = E(Y|X;, A =0). By the Conditions C4 (b) and (c)

B <{{Y = v(X, %)} {4 ~ mX)} ]) < 00, B[C3(X)] < oo,

m(X){1 - 7(X)}
there exists an envelope function

A —m(X)
m(X{1 = 7(X)}

Y

F(X, A) = C(X)

with

E[F*(X, A)] < .

Then the function class {f(Z,3,0) : B € B,0 € ©} is an Euclidean class
with a square integrable envelope F(X, A). In addition, I(S > 0) also is
Euclidean. By the Condition C2 and equicontinous theorem of the empirical
process then I = 0,(n"2) = 0,(1) ( See Lemma 2.17 in Pakes and Pallard

(T989) ). By the continuity of E[V(Z,0)I (S > 0)] with respect to 8 and
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Condition C2, I, =

0p(1). By the Condition C4(b), then the function

class {V(Z,00)I(8'X; > 0) : B € B} is an Euclidean class with a square

integrable envelope V(Z,0,). Then I3 = Op(n_%) = 0,(1) by Lemma 2.8

in Pakes and Pollard

For I] we have:

+ sup
B

22111 +[IQ +][3,

where
1 M
sy S
i=n+1
1 M
th=sw| g Y
1=n+1
1 M
s =sw |5 2
i=n+1

(T98Y). Hence I = 0,(1).

(S, 0)I (S; > 0) — E[m(S,00)I (S > 0)

(S:,0)I (S; > 0) — % Z m(S;, 0)I (S; > 0)
1=n-+1

m(S,0)1 (S; > 0) — % S m(Si,00)1 (S: > 0)

M
i=n-+1
) 1 Y
m(S:,0)1 (S > 0) — i:;lm(si, 60)1 (S; > 0)|,

Then we will show that /1, 15 and I3 are all 0,(1) terms respectively.
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For the first term I1;, we have

1 . .
Ih=sup|= > |i(S;,0) —m(S;,0)| (S >0)
iy 2| ]
1 M
<sup  sup (S, 0) —m(S;, 0)] — 1(S; > 0)
B l6—8o]<5 N i;l
= O(cy).

Note that the last equation is a direct conclusion of Lemma §1. And the
second term [y is a o,(1) since the continuity of m(S,0)I (S > 0) with
respect to @ and the third term I/; is 0,(1) simply by Lemma 2.8 in Pakes
and Pollard (T989), which are similar to I and I3 respectively. Therefore,
IT =o0,(1).

Now we get that sup IAN(B,0) — AN(B,80)| = M + (1 — \)IT = o0,(1).

The proof of consistency for ,(3 ) is completed.

S2.4 Proof of Theorem 1 (b1)

Denote 9(7/870) = V(Z,O)[(/BIX = 0)7 E= (,6,(5), o= (/60a0>7 where § =
0 — 007 and h(a ﬁv 6) = V(Za 90 + 5)I(ﬁlx > O) - V(Z7 90 + 5)[(/66}( > 0)
= arg max P,h(-, 3, 0 — 0,). Note that P, denotes the empirical

BeB
expectation and Pg(-,3,0) = E[V(Z,0)I(3'X > 0)] = E[D(X)I(B,X >

Then B

sup

0)] where D(X) is the CATE defined in Section 2.2. Thus Ph(-,3,6) =

EDX)I(BX > 0) — I(B,X = 0))] := H(B). We notice that when
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h(-,B,0) is taking expectation over X, it is unrelated to the nuisance pa-
rameter § anymore. Next we do the Taylor expansion of H(3) around 3,

that

Ph(8,6) = —3 (8~ Bo)V(B ~ B) +ol(B - Boll)),  (s2.)

where —V is the second derivative matrix of H(3) at 3,.

In order to calculate the matrix —V', we consider the transformation

Ts = (I = IBII7*BB") (I — BuBy) + 18I ~*BB%.

such that B'(TsX) = B,X. Thus T maps A(B) = {B'X > 0} onto A =

{B,X > 0}, and JA(B) = {B'X =0} onto VA = {B;X = 0}. Similar to

the Example 6.4 in Kim and Pollard ([990), the surface measure og on
0A(B) has the constant density pg(x) = % with respect to the image

of the surface measure 0 = og under 7. The outward pointing normal to

X
op

A(B) is the standardized vector —% and along 0A(3) the derivative

reduces to —||3]|~2[BX” + (87 X)I]. Thus similar to the proof of Theorem

2 in Cheng and Yang (2024)), we can calculate

V= [ XD+ DX)FX)]8XK do

where D(X) and f(X) denote the derivatives of D(X) and f(X), the density

function of X, with respect to X respectively.
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By the condition C4 (b) we can apply the Lemma 4.1 of Kim and
Paollard (I990) that for a given constant M and any e > 0, uniformly for

|I= — Zo|| < M, we have
Puh(-,B,8) < Ph(-,B,8) + (|8 = Byl> + 6*) + Op(n"%),  (S2.2)

where we also apply the Cauchy-Schwarz inequality that |2 —Z|> < |8 —
Boll? + 6%. Combining (8ZT) and (82) together with conditions C2 and
C5 (d), we can derive that

Puh(-,8.6) < ~(5 Awin(V) — )18 — Boll* + e + Oyl 1),

and

A ~

0= Puh(-, By, 0 — 00) < Poh(:, By 0 — 60)

sup?
1 - 2
< _(E)an(v) _€)||ﬁsup_60||2+0p(n 3)7

where A, (V) is the smallest eigenvalue of the positive definite matrix

V. Then by taking € = 1X,:n(V) we can get the conclusion that ||3

1 —
4 sup

~

Byl = O,(n~3). Next we will show that P,h(-, B,,,,0) = sup P,h(-, 3,0) —

pes
0,(n"3), which is the first condition of Theorem 1.1 in Kim and Pallard

sup?

(T990). It follows from Lemma 4.6 of Kim and Pollard (T990) that uni-
formly in a Op(n_%) neighborhood of By, W, (-, n3 (8 — B,),n3 (0 — 8,)) —

W, (-,n3(8 — By),0) = 0,(1) which is the stochastic equicontinuity con-

dition (ii) of Theorem 2.3 in Kim and Pollard (I'990), where the process
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W (-, t1,t2) = n3 (P, — P)h(-, By +t1n "3, tan~3). By the form of Taylor ex-
pansion in (821, Ph(-, 3, 0— 0y) — Ph(-,3,0) = 0 uniformly in a Op(n*%)

neighborhood of 8,,. Denote ﬁo = arg max P,h(-,3,0), therefore
BeB

2

Pnh('aBsup’ O) = Pnh('wésup? é - 00) - Op(n_§>
> P,h(-, By, 0 — 6,) — op(n_g)
WA, By, 0) = 0p(n5)

= sup P,h(-,8,0) — op(n’%).
BeB

In order to calculate the limiting covariance kernel function Cov(Cy, Cy),

we use the local coordinates as in Example 6.4 of Kim and Paollard (T990).
Define B(u W o + u where u is orthogonal to B, and ranges
over a neighborhood of the origin. Such a decomposition can be get simi-
larly by taking u = u(8) = Ty3 with Ty = I — 3,3,- Then we can write
B = (8,8)8, + ToB such that 3,8 = /1 — |Ju||? and Byu = B,T,8 = 0
since the parameter space is on the sphere (||3]| = 1,||Bo|| = 1). Also,

u(By + &) = Th<t and u(B, + £2) = T, since TyB, = 0. Decompose X
similarly into r3, + v, with v orthogonal to 3, for some random variable

r and random vector v. Denote C} = T,C, and C5 = T,Cy, we can obtain
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that

(IBU+%) XZ( 1- HCﬁPﬁoJF%) (rBo +Vv)

t2
ICT* | Ci'v
=1 - =2+ 2
" t2 + t

Then by the identity ab = 3(a® + b*> — (a — b)?), we first calculate that

2

C
’h(-,ﬁo + 210 = B 8y + 2,0)
=V?*(Z,00)|I ((ﬁo + %)’X > 0) —1 (([30 + %)’X > o) :

and

C
tP ‘h(vﬁo + 7170) - h(-,ﬁo + 770)

=tPV?*(Z,0,)

(182 Sy 0) -1 (15, o)

*||2 */ * |2 */
1<r el +Olv>0>—[<r 1 +02V>o>

=tPq(X) 2 ;

where ¢(X) = E[V*(Z,00)|X] = 7 {(X)E[(Y — v(X,00)))X,A = 1)] +
(1 —7X)TE[(Y — v(X,800))*X,A = 0)]. Denote p(r,v) be the joint

density function of (r,v). With a change of variable w = tr, we have
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q(X) = q(rBy +v) = q($By + v) and

1CTI* | CY'v 1C51* | C5'v
I 1l—-—4 > — 1 l1l—— = >
(r 12 + : 0 T 2 + ; 0

*/ */

* (12 * (12 t
1 — letll 1 — lesll

2 2

Oy C*/

+ I ——2——— < w 5 +v)p dwdv.
// L NamGE " (t ")
t2 T

Integrate over w, then let t — co to get

tPq(X)

/ [(C1 — C2)'v]q(v)p(0,v)dv := L(Cy — Cy)

as the limit of the sum of the two terms with L(C') # 0 for C' # 0. There-
fore the limiting covariance kernel can now be calculated as Cov(Cy, Cy) =
3(L(C1) + L(Cy) — L(C1 — Cy)).

Then the asymptotic distribution of n%(ﬁsup — 3,) follows by applying

the Main Theorem of Kim and Pollard (990). This completes the proof.

S2.5 Proof of Theorem 1 (b2)

In this part, we try to derive the asymptotic distribution of sz similar to

the 3,,,- A direct idea is to consider g,,(,3,8) = m(8'X,0)I(8X > 0),

hm(')ﬁvé) = gm('nB790 + 5) - gm('aﬁOaOO + 5) with § = 6 — 00 and

Bm = arg max Pth(-,,B,é — 6y). In implementation, however, we can
BeB

not get B,, directly since we need to estimate m(8'X,0,) by its NW
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estimator m(8'X, @) first. Then it is sufficient to show the convergence
rate of m(,B’X,é) —m(B'X,0y). By the asymptotic property of NW es-

timator, m(8'X,0) — m(8'X,0) = O,((nh)"2). From the condition C6

D=

(b) we can derive that (nh)™2 = o(n"3). And from condition C2 that
60— 6, = Op(n_%), then by the continuous derivability of m(3'X, 6) with
respect to @, it follows that m(8'X, 0) —m(8'X, 8,) = O,(n"2) = 0,(n"3).

Thus

m(B'X,0) —m(B'X, )

=m(8'X,0) —m(B'X,0) + m(3X,0) —m(B'X,0,)

=0p(n"3).

Then consider gy (-, 3,m) = mI(B'X > 0), hy(-,B,0) = gu(-, B, mo + ) —
Gpi(+, By, mo + &) with 6 = m — mg and sz = ar%?llgaxPMhpl(-,ﬁ, m — mg),
where m = m(8'X, 0), mg = m(8X,0,) and 1 = m(38'X, ).

Similar to the proof of Lemma 4.5 in Kim and Pollard (1990), let
Zn(t) = ngPMhpl(~,ﬁO +tn~3,0) if B, + tn~5 € B and zero otherwise.
And the corresponding centered process is W, (t) = Z,(t) — n%Phpl(-, By +
tn=s, 0) if 3, +tn~s € B and zero otherwise. With fixed ¢, B, is an interior

point of B ensures that 3, +in"3 € Bforn large enough. Condition C5.(a)
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implies that as n goes to infinity, we have
2 _1 1 /
n3 Phy(-, By +tn"3,0) — _Qt Voit,

which contributes the quadratic trend to the limit process for Z,(t). Note
that —V,; is the second derivative matrix of E[m(3'X,0,)I(8'X > 0)] with
respect to 3 at B, which is equal to —V/, the second derivative matrix of
E[V(Z,0,)I(3'X > 0)] with respect to 3 at 3, calculating in the proof of

Theorem 1 (bl) in section 82-4. Then by the Lindeberg condition,

W (t) = 13 (Py — P)hy(-, By + tn”3,0)
M
S0 8 (X, By + tn3,0) — Phy(-, By + tn~3,0)]

=1

N
1+p

— Gpl(t).
Here G(t) is a mean-zero Gaussian process with continuous sample paths

and covariance kernel function (ﬁ)QCO’U(Ch Cy), where Cov(Cy, Cy) was

defined in section 82-4. Thus, we could drop the conclusion that
1 d
ns3 (,E)‘pl — By) — argmax Zy(t),
t

where the process Z(t) = Gu(t) — 3t'Vi.

S2.6 Proof of Theorem 1 (b3)

Recall that 3, = argmaxAP,h(-, 3,0 — 0y) + (1 — \)Py_y, hpi(-, B,m —
BeB

m), where Py;_, represents the empirical expectation of samples in {n +



S52. THEORETICAL PROOFS

1,...,M}. According to the previous discussions, B/\ also has the cube
root convergence rate. And applying the Theorem 6.6 in Chapter 6 of Guf

(2009), we have

~

(By — By) % arg max Z3(1),

ol

n

where the process Z,(t) = G (t)—3t'Vt. Here G, (t) is a mean-zero Gaussian

process with continuous sample paths and covariance kernel function [A? +

(1 = N)?p?|Cov(Cy, Cy).

S2.7 Proof of Theorem S1 (al)-(a3)

As has discussed before that to maximize E{D(X)I(3'X > c¢)} is equivalent
to maximize E{D(X)g(X)I(B8'X > ¢)} for any positive function ¢(-), under
the class of monotonic increasing index models for D(X). Recall that for
M-estimate, we only need to prove s%p ]A,\DR(B, 0, a) — APE(B,00, )| R
0 as n — oo to get the conclusion in Theorem S1 (al)-(a3). Following
similar arguments by Cavanagh and Sherman (T99%), we can show that for
any given (0, a), APT(3,0, a) has a unique maximizer at 3 = B,. The
consistency of BfR can be similarly derived as for 3 \ given in the proof of

Theorem 1.
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S2.8 Proof of Theorem S1 (bl)-(b3)

Similar to the proof for Theorem 1 (b1)-(b3), let § = (0, ) — (09, o)’ =
O,(n~2) rather than 6 — 6 in the proof of Theorem 1 (bl) when the
propensity score is unknown, then the conclusion Theorem S1 (b1) can be
dropped, where CovP®(Cy, Cs) = limy_o0 th(-, By + <L, 0)R(-, By + £2,0) for
each (4, Cy in RP. When it comes to the proof of Theorem S1 (b2), we
can also derive that m(8'X, 0, &) — m(8'X, 0y, ag) = 0,(n"3). Then (b2)
holds. The conclusion of Theorem S1 (b3) obviously holds when (bl) and

(b2) are both proved.

S3 Justification for variance estimation procedure

S3.1 Estimating procedure for X,

1. Generate iid perturbation &; from Beta(v/2 —1,1) fori=1,...,n.

2. Perturb the value function. Let 6° = argmin £ 3 &(1 — A)[Y; —
0

v(Xi,0))?, then for linear decision dg(X) = I(8'X > 0), we perturb the

value function by

A (8.0') =1 v (2.0') dsx)

3. Re-estimate 3. We use the iterative algorithm derived in Remark 2 to

A ~b
obtain the new estimator that ﬁsup = ar% g;ax Agup (ﬁ, 0 )
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4. Estimate the variance. Repeat the above steps for B times and compute
- ~b
the empirical variance matrix ¥, of {8,,,,0 = 1,..., B} to estimate the

population variance X,

S3.2 Estimating procedure for X,

1. Generate iid perturbation &; from Beta(v/2 —1,1) fori=1,...,n+ N.

2. Perturb the value function. Let éb = arg min%ZLl &1 — A)Y: —
)

5 P LEKR(BX—B'X)V(Z,,0 .
v(X;,0))* and m*(8'X;,0) = 2 i?:lszh(ﬁ,Xi—Z;)/X(j) ) then for lincar de-

cision dg(X) = I(3'X > 0), we perturb the value function by

1
n-+ N

Ay (8,8") = %Vsjmb (8%,.8") do(X,)
j=1

3. Re-estimate 3. We use the iterative algorithm derived in Remark 2 to
~b ~ ~b
obtain the new estimator that 3, = ar% nr[;ax Azl <B, (7] )
€
4. Estimate the variance. Repeat the above steps for B times and compute

. ~b
the empirical variance matrix X, of {8,,b = 1,..., B} to estimate the

population variance ¥,,.

S3.3 Theoretical guarantees for variance estimation procedures

As the notation in section 824, denote that g(-,3,0) = V(Z,0)I(3'X > 0),
== (8,9), Zo = (8y,0), where 6 = 6 — 6y, and h(-,3,0) = V(Z,0, +

)(I(B'X >0)—1(B,X >0)). Recall that Z; = (X;,Y;, A;) fori=1,...,n
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and

~ A

Asup(B;0) =

3 |-
=
N
=
=
X
e
Y
=

Thus, Asup(,B, 0) is a U-process of degree 1 with symmetric kernel function
9(Z.3,0) = V(Z,0)I(3X > 0) with respect to Z. By the definition, Bsup
is the maximizer of Asup(ﬁ, 9) Let {& i = 1,...,n} be n iid copies

from the nonnegative perturbation variable ¢ with mean p and variance p?.

Consider the stochastic perturbation process
AL (B, Z& (Zi,6)1(B'X; > 0) = P.&g(Z: 8,9),

and let B be the maximizer of A (3, é) Following Jin et al. (2001), we

sup

assume without loss of generality that the mean and variance of £ are both 1
for simplicity, as other cases can be handled through appropriate rescaling.
Then we have 3,, the maximizer of Pg(Z, (3, 9), is also the maximizer

of P¢g(Z,[3,0). Similar to the proof of Theorem 1 (b1), || sup — Boll =

O, (n~%), thus |3, Op(n™3) since || B, — Boll = Op(n~5). This

sup sup H =

implies that there exists a constant vector C such that Bsup =B+ n-3C.

For fixed t; € R? such that ,3 + n_%tl belongs to the parameter space B

sup
for n large enough, we denote ¢t = t; + C, then ngPﬁh(-, Bsup + N, ) =
nngh(-,Bo + n~3,+) converges to —3t'Vt, where V is defined the same

as that in Theorem 1. Moreover, since P|Eh(-,Z1) — Eh(-, Z2)| = O(||Z1 —
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Zs||) for Z; and =5 near =y and together with condition C4, the process
Tul-s 1 ta) = 08 (B = PYER( By +1in™5, tyn™5) = 05 (Py = PYS(-, By +

n=3,t,n3) satisfies the stochastic equicontinuity condition (i) in Theorem

2.3 of Kim and Pollard (I990). By Lemma 4.6 in Kim _and Pollard (1990),

~b ~
then we have J,, (-, ns (55up - ﬁsup)’ n

A

(0 —60)) = Ju(-,m

0p(1). Define ,30 = argmax P,£h(-, 3,0), thus
BeB

A ~

15 By — Boup), 0) =

ol
C»\»—A

15 Poth(-, Bl 0) = 13 Puh(-, By 0 — 80) — 0,(1)
2 n%Pngh'(HBg? é - 00) - Op(]‘)
= 13 Pugh(-, By 0) — 0,(1)

= nisup P, ER(-,B,0) — o0,(1).
BeB

By Lemma 4.5 of Kim_and Paollard (I'990), we can derive that the limit
distribution of the finite-dimensional projections of the process Z,(t) =
n%Pnﬁ h(-, Bsup—l—tn_%, 0) correspond to the finite-dimensional projections of

aprocess Z(t) = G()—1¢'V{, where G(-) and V are defined the same as that

in Theorem 1. Therefore, applying Theorem 2.7 of Kim and Pollard (T990),

A

~b N
we can derive that n%(ﬁsup ~ Bup) <% arg max Z(t). Hence n%(ﬁsup )
¢

b
has the same asymptotic distribution as that of n%(ﬂsup

,Bsup) And we
can complete the justification of our resampling-based variance estimation

procedure in a similar way to the proofs of Theorem 1(b2) and (b3).
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S4 Additional numerical results

S4.1 Iterative algorithm

I[terative algorithm for cestimating B y and similarly for sz‘

begin
calculate 8 =argmin 237" (1 — 4;)[V; — 0'X;]%.
0
for i=1 to n do

calculate V(Z;,0).

calculate B,

= argmax Ag,p (8, 0) .
B

P O N
set tZO; )\:mx /8 _Bsup'

for j=n+1 to n+N do
step 1
calculate m(,ia(”'xi,é);
PN O S ;
plug Mm(B " Xi,0) in Ax(B,6);
step 2

1)

calculate B(H :argmaXAA(ﬂ,@).
B

if 187 = 8" > 1071 do
t=t+1;
B(t):,é(t_l) and iterate step 1 and step 2;
else do
BA:B(HI)-

end
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S4.2 Simulation description and additional results

Under all the cases, the optimal I'TR that maximizes the value function
and the optimal ITR that in our interested decision class D are the same,
which is given by d°P*(x) = [ (ﬁ&stdx > O) with B 4 after imposing the
constraint H BO,sth = 1. Note that the true interception here is zero which is
contained in our estimating procedure as discussion in remark 1, but what
we are most interested in is the efficiency improvement of the covariate
coefficients, thus we do not report the intercept term in our tables. In
the simulation, we evaluate the performance of three estimation methods,
namely the supervised (sup), semi-supervised (SS) with the optimal tuning
weight A = %, and pooled (pl) estimators respectively. We conduct 1000
simulation runs for each case. All the tables report the mean bias (Bias)
of the estimators, the standard error (SE) for the estimators, the standard
deviation (SD), eatimated by S°19% S D;, with each SD; calculated from
200 bootstrap samples as described in section 4 in the ¢-th simulation run,
using the perturbation variable & ~ Beta(\/§ —1,1). Additionally, we report

the relative efficiency (Eff) of the proposed SS and pl estimators in terms

of mean squared error (MSE) compared to the supervised (sup) estimator
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which is calculated by the following formula:

MSE of sup estimator

Eff = .
MSE of SS (pl) estimator

For asymmetric distributions, directly using the 2.5-th and 97.5-th per-
centiles to construct a 95% confidence interval is inappropriate, as it may
result in an overly wide interval. Therefore, we adopt a confidence interval
based on adaptively skewness-adjusted quantiles. Specifically, for a confi-
dence level of 7, we define ¢; = 7/(2+2K -|skewness|) and ¢ = 7—¢q;. If the
skewness is positive, the confidence interval is constructed using the ¢;-th
percentile and the (1 — (7 —¢1))-th percentile. Conversely, if the skewness is
negative, the interval is based on the ¢o-th percentile and the (1—(7—g2))-th
percentile. Here, K is a tunable positive parameter that controls the degree
to which skewness influences the quantile levels. A larger K increases the
impact of skewness on the adjustment. In our numerical studies, we set
K = 3. In simulation studies, we use a Gaussian kernel with bandwidth
h, = 0.5n~'/3 which satisfies the condition C6 (b). The optimization in
the proposed methods is done by the ‘optim’ function in R with the default

method ‘Nelder-Mead’ for searching the maximizer.

Remark S1. Due to the non-smooth nature of the value function con-
taining indicator functions, conventional gradient-based optimization meth-

ods are unsuitable for our problem. We instead employ the derivative-free
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Nelder-Mead simplex algorithm (Nelder and Mead, T965) implemented via
R’s ‘optim‘ function, which is particularly well-adapted to handle non-
differentiable and non-convex objective functions. This method operates
by iteratively evolving a simplex through reflection, expansion, contraction
and shrinkage operations, systematically guiding the search toward local
optima without requiring gradient information. The algorithm’s robust-
ness to discontinuous functions and its ability to perform reasonably well
in avoiding local optima make it particularly suitable for our estimation

problem.

When the PS is unknown, we set as follows. For correctly specified
baseline treatment-free effect model for v(X), we generate the true model
as that in case 1 and case 2. For misspecified model for v(X), we use the
same setting as case 3 and case 4. For correctly specified PS model, we
generate m(X) by a logistic regression model, and for misspecified scenario,
we set m(X) = 5(—0.5 + X7 4+ X3), where s(z) = == is the sigmoid

function.

S4.3 Real data description and additional results

The AIDS Clinical Trials Group Protocol 175 (ACTG 175) dataset com-

prises clinical data from a randomized controlled trial designed to evaluate
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the efficacy of different antiretroviral therapies in HIV-infected patients.
The study included a total of 2139 participants, who were randomly as-
signed to one of four treatment arms: zidovudine (ZDV) monotherapy, di-
danosine (ddI) monotherapy, combination therapy with ZDV and ddI, and
combination therapy with ZDV and zalcitabine (ddC). Baseline character-
istics X of participants include seven binary variables, haemophilia (0, no;
1, yes), homosexual activity (0, no; 1, yes), history of intravenous drug use
(0, no; 1, yes), race (0, white; 1, non-white), gender (0, female; 1, male),
antiretroviral history (0, naive; 1, experienced) and symptomatic status (0,
asymptomatic; 1, symptomatic), and four continuous variables, age (years),
weight (kg), CD4 T cell count at baseline and CD8 T cell count (cells per
cubic millimetre) at baseline.

To investigate the validity of the MCAR assumption, we first report
some summary statistics including mean and standard deviation (SD) of
these covariates X in Table 811, along with the p-values of the Kolmogorov-
Smirnov (K-S) test for continuous covariates or Chi-Square (x?) test for
discrete covariates to evaluate the equality of these distributions.

We standardize the four continuous covariates by subtracting the mean
and dividing by the standard deviation before estimating procedure. The

PS estimated by the logistic regression model is 0.5, which is the same as
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that directly set in Fan_ef"all (2017). The bandwidth h = 0.28 in kernel

estimator is selected using the ‘npregbw’ function from the np package in R

and the tuning weight A is chosen as the optimal value ; _ﬁ; = 0.5 derived
in section 3.

To further validate the performance of our method, we conducted ad-
ditional analyses using a train-test splitting approach. The dataset was
randomly divided into training (70%) and testing (30%) sets, with this pro-
cess repeated 50 times to account for variability in random splitting. The
results consistently showed that the point estimates of optimal ITR param-
eters aligned closely with our original findings (Table 2 in the main text),
demonstrating the robustness of our semi-supervised approach. Notably,
while the supervised method continued to produce statistically insignificant
confidence intervals at both 0.05 and 0.1 levels, our semi-supervised estima-
tors achieved significant interval estimates for several covariate coefficients,
attributable to their reduced asymptotic variance. These findings further
reinforce the advantages of our proposed method in real-world applications,
particularly in terms of estimation precision and inferential reliability. The
detailed results are presented in Tables 814 and 8T4, which summarize the

averaged outcomes across all repetitions.

We then computed the pseudo-outcome value using the doubly robust
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score to construct an estimate of the counterfactual difference Y*(1)—Y*(0):

oy 1Y —v(Xi, 0)H{A — 7(X)}
V(Z:6) = —— X0 —a X0t

for each individual in the full sample, which provides an estimate of the
CATE D(X;). We summarize the overall performance using the median
of these individual pseudo-outcome values. In the full dataset, the median
value of V' (Z;, é) is approximately 5, indicating a substantial treatment ben-
efit. We repeated this analysis under the 50 random sample splits. Across
these repetitions, the average of the medians of the pseudo-outcome values
is approximately 1.11, and the median of these 50 medians is approximately
2.51. These positive values suggest that the treatment ZDV +ddI generally
provides greater benefit than the alternative ZDV + ddC for a majority of
individuals in the dataset. This finding further validates the rationality
of the semi-supervised treatment recommendations in the main text and

aligns with the clinical literature.
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Table S1: Results under case S2 with known propensity score

Method N  Statistics B s B3 Ba Bs Be
sup Bias - 0.018 0.032 -0.049 -0.021 -0.065 -0.037
SE 0.121 0.116 0.117 0.116 0.163 0.316
SD 0.111 0.111 0.112 0.111 0.162 0.280
CP(%) 95.2 92.7 91.4 94.8 94.4 91.4
SS 200 Bias 0.009 0.021 -0.002 0.007 -0.009 -0.021
SE 0.066 0.051 0.059 0.058 0.056 0.057
SD 0.055 0.048 0.054 0.056 0.052 0.052
CP(%) 97.7 98.1 97.6 98.3 98.8 99.2
Eff 3.419 4.922 4.314 4.000 9.007 28.640
500 Bias 0.007 0.020 -0.008 0.004 -0.012 -0.007
SE 0.051 0.044 0.060 0.050 0.058 0.058
SD 0.056 0.047 0.065 0.056 0.059 0.062
CP(%) 97.4 98.8 96.5 98.1 98.0 97.7
Eff 5.774 6.536 4.053 5.531 8.320 28.831
pl 200 Bias 0.004 0.024 -0.016 -0.001 -0.011 -0.008
SE 0.044 0.040 0.065 0.047 0.053 0.068
SD 0.055 0.047 0.072 0.055 0.058 0.069
CP(%) 98.6 99.1 92.9 98.8 94.3 97.0
Eff 7.603 7.484 3.376 6.161 9.838 21.658
500 Bias 0.001 0.018 -0.015 -0.003 -0.012 -0.007
SE 0.040 0.031 0.062 0.038 0.047 0.066
SD 0.048 0.041 0.068 0.048 0.053 0.065
CP(%) 98.0 99.2 90.8 99.3 92.8 92.8
Eff 9.093 12.303 3.796 9.372 12.770 23.171
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Table S2: Results under case S3 with known propensity score

Method N Statistics Bl Bg Bg B4 Bs Bﬁ
sup Bias 0.003  0.011  -0.004 0.000  -0.007 -0.003
SE 0.050  0.037  0.047 0.041 0.050  0.083
SD 0.046  0.036 0.043 0.038 0.048  0.082
CP(%) 96.0 97.4 95.5 98.7 96.9 94.6
SS 200 Bias 0.006  0.017  -0.004 0.006  -0.005  0.008
SE 0.037  0.030  0.034 0.033 0.032  0.033
SD 0.032  0.028 0.029 0.030 0.030 0.033
CP(%) 96.8 96.5 97.8 97.9 99.6 99.3
Eff 1.816 1.361 1.912 1.523 2.387 6.301
500 Bias 0.005  0.014  -0.004 0.005  -0.005  0.009
SE 0.026  0.020  0.023 0.022 0.025  0.029
SD 0.025  0.022 0.024 0.023 0.027  0.033
CP(%) 98.1 96.1 97.8 98.8 99.6 98.7
Eff 3.686 2.790 3.963 3.378 3.943 7.697
pl 200 Bias 0.007  0.014  -0.004 0.005  -0.006 0.011
SE 0.016  0.015 0.017 0.015 0.019  0.029
SD 0.020  0.020  0.022 0.020 0.023 0.034
CP(%) 98.4 96.6 96.1 99.0 99.2 97.8
Eff 9.420 4.386 7.139 7.023 6.926 7.752
500 Bias 0.005  0.011  -0.003 0.005  -0.006  0.010
SE 0.012  0.011 0.014 0.012 0.016  0.026
SD 0.013  0.012 0.016 0.013 0.016  0.029
CP(%) 99.1 96.9 97.9 99.2 99.7 97.9
Eff 15.496 7.733 11.638 10.527 8.780 9.897
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Table S3: Results under case S4 with known propensity score

Method N Statistics Bl Bg Bg B4 Bs Bﬁ
sup Bias -0.001 0.011  -0.002  0.003 -0.004  0.002
SE 0.041 0.038 0.033 0.031 0.036 0.062
SD 0.037 0.034 0.030 0.031 0.035 0.059

CP(%) 98.0 96.1 96.8 99.4 98.0 94.9

SS 200 Bias -0.002 0.019 0.001 0.003  -0.004  0.010
SE 0.033 0.029 0.026 0.029 0.030 0.032
SD 0.029 0.027 0.024 0.026 0.027 0.030

CP(%) 98.3 92.2 98.4 98.8 99.6 99.3

Eff 1.540 1.400 1.623 1.140 1.412 3.556
500 Bias -0.002 0.015 0.002 0.003  -0.004 0.011
SE 0.022 0.020 0.018 0.018 0.022 0.028
SD 0.022 0.020 0.019 0.020 0.023 0.028

CP(%) 99.0 91.7 99.1 98.9 99.8 98.6

Eff 3.451 2.781 3.285 2.881 2.532 4.590
pl 200 Bias 0.000 0.015 0.001 0.003  -0.003  0.010
SE 0.013 0.013 0.014 0.013 0.017 0.025
SD 0.017 0.017 0.017 0.017 0.019 0.029

CP(%) 99.0 92.8 99.3 99.5 99.5 98.2

Eff 9.444 5.495 5.281 5.828 4.306 5.773
500 Bias -0.001 0.012 0.001 0.003  -0.003  0.009
SE 0.011 0.010 0.011 0.010 0.013 0.021
SD 0.013 0.013 0.014 0.013 0.016 0.026

CP(%) 99.9 89.5 98.9 99.6 100.0 97.9

Eff 13.060 8.895 9.037 8.736 7.580 7.891
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Table S4: Results under case S5 with known propensity score

Method N  Statistics B Bs B3 Ba Bs Be
sup Bias - 0.004 0.032 -0.024 -0.011 - 0.059 - 0.025
SE 0.122 0.093 0.116 0.101 0.134 0.252
SD 0.107 0.090 0.105 0.094 0.128 0.226
CP(%) 95.9 94.6 92.7 97.8 93.2 92.0
SS 200 Bias 0.020 0.035 - 0.003 0.013 - 0.039 0.011
SE 0.078 0.061 0.074 0.076 0.072 0.067
SD 0.068 0.058 0.067 0.067 0.066 0.062
CP(%) 97.5 98.6 98.5 99.0 97.3 99.5
Eff 2.369 2.080 2.500 1.761 3.323 14.183
500 Bias 0.010 0.039 - 0.023 0.007 - 0.039 0.016
SE 0.079 0.057 0.089 0.066 0.078 0.080
SD 0.073 0.060 0.082 0.071 0.078 0.079
CP(%) 97.8 974 95.5 98.3 92.2 96.7
Eff 2.383 2.282 1.684 2.335 2.894 9.868
pl 200 Bias 0.002 0.044 - 0.030 0.000 - 0.044 0.024
SE 0.073 0.056 0.089 0.067 0.083 0.090
SD 0.063 0.054 0.082 0.062 0.074 0.081
CP(%) 99.7 99.6 99.4 99.9 95.7 99.3
Eff 2.800 2.247 1.640 2.274 2.476 7.520
500 Bias - 0.002 0.036 - 0.031 -0.003 -0.041 0.025
SE 0.061 0.049 0.081 0.060 0.070 0.088
SD 0.054 0.048 0.077 0.054 0.067 0.079
CP(%) 99.9 99.6 99.6 99.9 95.5 98.6

Eff 4.054 3.002 1.976 2.894 3.426 7.876
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Table S5: Results under case S6 with known propensity score

Method N  Statistics B Bs B3 Ba Bs Be
sup Bias - 0.010 0.024 -0.022 -0.002 -0.053 - 0.017
SE 0.109 0.100 0.100 0.095 0.118 0.237
SD 0.096 0.091 0.091 0.087 0.114 0.212
CP(%) 959 942 94.4 97.1 95.2 91.3
SS 200 Bias 0.007 0.032 - 0.009 0.012 - 0.027 0.014
SE 0.074 0.062 0.068 0.069 0.069 0.067
SD 0.067 0.057 0.063 0.064 0.061 0.060
CP(%) 98.2 97.9 99.0 98.9 98.9 99.0
Eff 2.149 2.330 2.247 1.833 3.015 12.427
500 Bias -0.003 0.035 - 0.020 0.007 - 0.030 0.022
SE 0.075 0.057 0.077 0.063 0.072 0.084
SD 0.069 0.057 0.073 0.066 0.071 0.073
CP(%) 98.2 97.0 96.1 99.1 94.3 94.9
Eff 2.106 2.673 1.702 2.243 2.720 7.752
pl 200 Bias 0.001 0.038 -0.032 0.003 - 0.036 0.029
SE 0.063 0.050 0.084 0.062 0.074 0.084
SD 0.058 0.049 0.074 0.057 0.067 0.076
CP(%) 99.9 99.7 99.7 99.9 97.5 98.1
Eff 2.990 3.203 1.381 2.317 2.481 7.509
500 Bias - 0.003 0.032 - 0.031 -0.003 - 0.034 0.032
SE 0.048 0.043 0.075 0.049 0.069 0.084
SD 0.050 0.043 0.068 0.049 0.061 0.074
CP(%) 100.0 99.9 99.8 100.0 96.4 98.9
Eff 5.090 4.313 1.693 3.798 2.884 7.452
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Table S6: Results under case S1 with both model correctly specified

Method N  Statistics B Bs B3 By Bs Be
sup Bias -0.001 0.014 - 0.009 0.000 0.000 0.001
SE 0.053 0.048 0.050 0.053 0.063 0.114
SD 0.051 0.048 0.049 0.052 0.061 0.114
CP(%) 97.2 96.6 96.7 97.9 95.9 94.3
SS 200 Bias 0.002 0.024 - 0.006 0.006 -0.002  0.009
SE 0.045 0.038 0.038 0.040 0.041 0.042
SD 0.039 0.035 0.036 0.036 0.037 0.040
CP(%) 98.0 93.8 97.7 98.8 99.5 98.7
Eff 1.351 1.415 1.759 1.748 2.337 7.290
500 Bias 0.002 0.020 - 0.007 0.002 -0.003 0.011
SE 0.031 0.028 0.032 0.030 0.033 0.044
SD 0.032 0.029 0.033 0.030 0.036 0.041
CP(%) 99.2 95.0 96.1 99.7 99.3 96.2
Eff 2.952 2.432 2.394 3.192 3.715 6.577
pl 200 Bias 0.001 0.021 - 0.006 0.000 -0.006 0.018
SE 0.024 0.021 0.026 0.023 0.027 0.042
SD 0.028 0.026 0.032 0.027 0.031 0.043
CP(%) 99.4 93.6 96.3 99.0 99.2 94.8
Eff 4.928 3.630 3.591 5.271 5.560 6.851
500 Bias 0.000 0.018 - 0.006 0.000 -0.006 0.017
SE 0.018 0.016 0.025 0.018 0.021 0.041
SD 0.022 0.020 0.027 0.022 0.026 0.039
CP(%) 99.6 91.3 94.6 99.5 99.4 92.8
Eff 8.202 5.567 4.115 8.229 8.662 7.259




S4. ADDITIONAL NUMERICAL RESULTS

Table S7: Results under case S2 with both model correctly specified

Method N  Statistics B Bs B3 B4 Bs Be
sup Bias -0.005 0.027 -0.032 -0.021 -0.066 - 0.036
SE 0.111 0.108 0.106 0.116 0.158 0.285
SD 0.107 0.106 0.106 0.114 0.151 0.263

CP(%) 96.6 95.0 93.1 95.6 93.0 91.5

SS 200 Bias 0.006  0.030 -0.007 0.005 -0.011 -0.003
SE 0.064  0.058  0.075 0.068 0.062 0.057

SD 0.060  0.052  0.060 0.059 0.056 0.056

CP(%) 98.5 96.9 98.1 98.7 98.8 99.7

Eff 2.973 3.126 2.087 2.972 6.986 25.364

500 Bias -0.004 0.032 -0.021 -0.003 -0.012 0.006
SE 0.067  0.052  0.090 0.070 0.070 0.076
SD 0.063  0.052  0.078 0.062 0.064 0.068

CP(%) 98.4 97.6 94.2 99.0 97.2 98.2

Eff 2,719 3.723 1.409 2.769 5.411 13.991

pl 200 Bias -0.007  0.035 -0.028 -0.007 -0.012 0.015
SE 0.068  0.054  0.094 0.060 0.061 0.077
SD 0.064  0.054  0.087 0.063 0.064 0.074

CP(%) 98.6 98.0 92.8 98.9 94.1 96.5

Eff 2.614 3.363 1.290 3.757 7.289 13.627

500 Bias -0.009  0.030 -0.028 -0.010 -0.015 0.015
SE 0.062  0.046  0.093 0.059 0.052 0.078
SD 0.057  0.048  0.082 0.057 0.059 0.071

CP(%) 98.1 98.5 89.2 99.4 92.2 96.7

Eff 3.108 4.693 1.318 3.915 9.734 13.104
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Table S8: Results under case S5 with baseline treatment-free effect model misspecified

Method N  Statistics Bl Bg B3 B4 Bs Bs
sup Bias 0.039 0.011 -0.026 -0.004 -0.065 -0.034
SE 0.101  0.088  0.111 0.103 0.109 0.220

SD 0.095 0.083  0.101 0.095 0.107 0.200

CP(%) 94.5 96.3 95.0 96.7 93.3 91.2

SS 200 Bias 0.061 0.038 -0.024 0.016 -0.041 -0.026
SE 0.095 0.074  0.094 0.094 0.076 0.081
SD 0.077  0.062  0.078 0.077 0.069 0.069
CP(%) 89.0 99.3 99.3 98.1 98.6 99.9
Eff 1.058 1.211 1.399 1.191 2.080 7.138
500 Bias 0.037 0.040 -0.033 -0.001 -0.049 -0.019
SE 0.100 0.072  0.092 0.087 0.089 0.094
SD 0.088 0.067  0.085 0.084 0.079 0.083
CP(%) 91.1 99.7 99.8 99.4 98.2 99.7

Eff 1.023 1.242 1.420 1.396 1.510 5.387

pl 200 Bias 0.029 0.046 -0.032 -0.010 -0.049 -0.015
SE 0.092 0.070  0.085 0.092 0.082 0.094

SD 0.093 0.070  0.086 0.087 0.079 0.088

CP(%) 92.1 99.8 99.8 99.7 96.8 100.0

Eff 1.223 1.245 1.663 1.243 1.766 5.410

500 Bias 0.022 0.039 -0.038 -0.014 -0.046 -0.011

SE 0.093 0.066  0.082 0.084 0.080 0.094

SD 0.085 0.065  0.078 0.080 0.074 0.085

CP(%) 88.1 99.8 99.7 99.8 93.7 99.6

Eff 1.237 1.443 1.718 1.484 1.860 5.468
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Table S9: Results under case S1 with propensity score model misspecified

Method N  Statistics B Bs 33 B4 Bs Be
sup Bias 0.001 0.016 -0.009 -0.002 -0.009 -0.008
SE 0.060 0.061 0.051 0.054 0.067 0.121
SD 0.062 0.061 0.051 0.052 0.066 0.124

CP(%) 97.1 95.9 96.8 98.0 96.7 94.8

SS 200 Bias 0.007 0.019 -0.003  0.003 -0.003 0.001
SE 0.038 0.037 0.036 0.040 0.038 0.039
SD 0.033 0.031 0.033 0.035 0.035 0.037

CP(%) 98.6 97.0 99.0 98.5 99.9 99.9

Eff 2.428 2.532 2.031 1.832 3.148 9.925
500 Bias 0.006 0.016 -0.003  0.002 -0.003 0.002
SE 0.027 0.024 0.027 0.028 0.031 0.038
SD 0.027 0.026 0.030 0.029 0.033 0.038

CP(%) 99.1 97.4 98.3 98.9 99.5 99.1

Eff 4.733 5.441 3.513 3.630 4.509 10.337
pl 200 Bias 0.006 0.017 -0.003 0.000 - 0.005 0.008

SE 0.019 0.019 0.024 0.021 0.024 0.037

SD 0.025 0.024 0.028 0.025 0.029 0.040

CP(%) 99.5 97.1 98.3 99.2 99.7 99.0

Eff 9.139 7.840 4.553 6.504 7.725 10.569
500 Bias 0.004 0.014  -0.002  0.000 -0.004 0.006

SE 0.014 0.013 0.019 0.016 0.019 0.035

SD 0.017 0.015 0.021 0.017 0.021 0.035

CP(%) 99.3 96.8 97.3 99.7 100.0 97.4

Eff 16.621 14.518 7.150 11.575 12.283 11.684
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Table S10: Results under case S2 with propensity score model misspecified

Method N  Statistics B Bs 33 B4 Bs Be
sup Bias -0.036 0.048 -0.057 -0.030 -0.064 -0.056
SE 0.160 0.158 0.126 0.121 0.181 0.323
SD 0.149 0.148 0.120 0.118 0.171 0.293

CP(%) 94.7 92.6 89.2 94.8 92.6 91.8

SS 200 Bias 0.008 0.033 -0.007  0.004  -0.012  -0.004
SE 0.076 0.064 0.062 0.071 0.066 0.058

SD 0.058 0.050 0.056 0.058 0.055 0.054

CP(%) 98.5 98.4 99.7 99.1 99.4 99.9
Eff 4.513 5.624 4.596 2.988 7.841 32.115

500 Bias 0.003 0.029 -0.019  0.000  -0.013  -0.006

SE 0.065 0.056 0.077 0.067 0.059 0.070

SD 0.057 0.048 0.066 0.058 0.060 0.063

CP(%) 98.8 97.9 97.4 99.0 97.4 98.7

Eff 6.289 7.468 2.855 3.371 9.796 21.750
pl 200 Bias 0.003 0.029 -0.027  -0.003  -0.017 0.016
SE 0.053 0.041 0.084 0.060 0.055 0.078
SD 0.056 0.048 0.073 0.056 0.060 0.069

CP(%) 98.0 99.0 95.6 98.8 94.1 97.3

Eff 9.321 12.227 2.355 4.168 11.136 17.079
500 Bias 0.001 0.025 -0.026  -0.003  -0.016 0.015
SE 0.046 0.041 0.078 0.049 0.052 0.073
SD 0.049 0.042 0.068 0.049 0.054 0.066

CP(%) 98.2 99.0 94.3 99.3 93.5 96.4

Eff 12.599 13.236 2.751 6.241 12.259 19.944
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Table S11: Testing of the MCAR assumption for ACTG 175 study

Labeled Data  Unlabeled Data
Predictors Mean SD  Mean SD P-value of Test
hemo 0.073 0.260 0.098  0.297 0.9071
homo 0.706 0.456 0.621  0.485 0.5271
drugs 0.115 0.319 0.170  0.376 1
race 0.233 0.432 0.317  0.466 1
gender 0.839 0.368 0.822  0.383 0.2671
str2 0.598 0.491 0.589  0.493 0.2157
symptom  0.195 0.397 0.159  0.366 0.6103
age 35.59 8.830 35.08  8.669 0.5378
wtkg 74.65 1251 7593 @ 14.16 0.0686
cd40 353.9 119.7 347.6  126.3 0.0938
cd80 986.0 450.9 1002 489.7 0.8804




Table S12: CI of estimated paramters for ACTG 175 study

Method sup SS pl

CI 95% CI 90% CI 95% CI 90% CI 95% CI 90% CI
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intercept  (-0.038, 0.097)  (-0.025, 0.075)  (-0.057, 0.158) (-0.031, 0.135) (-0.177, 0.204) (-0.127, 0.197)
hemo  (-0.949,0.323) (-0.925, 0.101) (-0.854, -0.590) (-0.839, -0.631) (-0.859, -0.611) (-0.852, -0.650)
homo  (-0.658, 0.422) (-0.586, 0.333) (-0.338, -0.049) (-0.324, -0.082) (-0.271, -0.126) (-0.257, -0.133)
drugs  (-0.647, 0.449)  (-0.605, 0.348)  (-0.290, 0.103) (-0.283, 0.058)  (-0.219, -0.082) (-0.218, -0.099)
race  (-0.217,0.626) (-0.146, 0.564)  (0.194, 0.508)  (0.218, 0.463)  (0.240, 0.495)  (0.245, 0.476)

gender  (-0.650, 0.505) (-0.589, 0.474)  (-0.284, 0.082) (-0.236, 0.049) (-0.146, 0.065) (-0.119, 0.058)
str2  (-0.175, 0.528)  (-0.126, 0.483)  (0.141, 0.378)  (0.160, 0.354)  (0.176, 0.304)  (0.184, 0.281)

symptom  (-0.529, 0.284)  (-0.450, 0.217)  (-0.368, 0.022)  (-0.330, -0.032) (-0.249, -0.122) (-0.242, -0.141)
age (-0.147,0.321)  (-0.117, 0.280)  (0.055, 0.263)  (0.087, 0.253)  (0.072, 0.209)  (0.074, 0.195)
weight  (-0.164, 0.270) (-0.122, 0.208)  (0.011, 0.208)  (0.032, 0.187)  (0.027, 0.175)  (0.028, 0.150)
cd40  (-0.420, 0.082) (-0.367, 0.066) (-0.383, -0.146) (-0.364, -0.158) (-0.284, -0.193)  (-0.273, -0.204)

cd80  (-0.135,0.313) (-0.084,0.251)  (0.072, 0.290)  (0.102, 0.276)  (0.089, 0.206)  (0.096, 0.193)
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Table S13: CI length of estimated paramters for ACTG 175 study

CI 95% CI 90% CI

Length sup SS pl sup SS pl

intercept 0.135 0.214 0.381 0.100 0.166 0.324
hemo 1.272  0.263 0.247 1.026 0.208 0.202
homo 1.080 0.289 0.145 0.919 0.241 0.124
drugs 1.096 0.392 0.137 0.953 0.341 0.120
race 0.843 0.314 0.255 0.710 0.246 0.231
gender  1.154 0.366 0.211 1.064 0.285 0.178
str2 0.703 0.237 0.128 0.609 0.194 0.097

symptom 0.813 0.390 0.127 0.667 0.298 0.102

age 0.468 0.208 0.137 0.398 0.166 0.121
weight  0.434 0.197 0.148 0.330 0.155 0.121
cd40 0.502 0.237 0.091 0.432 0.206 0.069

cd80 0.448 0.218 0.117 0.335 0.174 0.096
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Table S14: Estimated parameters of optimal ITR with sample splitting

Mehods sup SS pl

Predictors Est SD Est SD Est SD

intercept  0.013  0.037 0.017 0.061 0.027 0.260
hemo -0.567 0.359 -0.548 0.084 -0.516 0.159
homo -0.104 0.265 -0.104 0.066 -0.099 0.132
drugs -0.130 0.291 -0.103 0.089 -0.105 0.126
race 0.269 0.205 0.302 0.074 0.308 0.134
gender -0.141 0.294 -0.137 0.078 -0.110 0.162

str2 0.199 0.175 0.210 0.064 0.226 0.127
symptom -0.232 0.204 -0.198 0.074 -0.214 0.138
age 0.124 0.107 0.125 0.059 0.136 0.134
weight 0.020 0.103 0.024 0.057 0.028 0.120
cd40 -0.199 0.115 -0.203 0.059 -0.208 0.137

cd80 0.121 0.104 0.121 0.058 0.123 0.132
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