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In the Supplementary Materials, we first provide some properties of MSD index under Gaussian distribution,
the MSD Knockoffs procedure, more details on v-quantile knockoffs and the estimation of MSD index. Then we
provide the visual representation of the convolution-type smoothed quantile loss. Next, the detailed proofs of all

theoretical results are presented. We also provide additional results for numerical studies and real data analysis.

$1 Properties of MSD Index under Gaussian Distribution

The following proposition illustrates certain properties of the MSD index under the bi-

variate Gaussian copula distribution.

Proposition S1. If (X,Y) follows a bivariate Gaussian copula distribution such that, af-
ter transformation via a monotone function g, and a linear transformation gs, (g1(Y), g2(X))
is jointly normal with correlations p = Cor(g1(Y), g2(X)) and g1(Y"), g2(X) are marginally

standard normal. Then for any given quantile 0 < 7 < 1, we have the following three



conclusions
(1) MSD.(Y|X) =0 if p=0 and MSD,(Y|X) > 0 otherwise.

(ii) MSD,(Y'|X) can be expressed as

2 —z2/2

MSD, (Y |X) :/<@(px+ﬂ@l(7)) —T> e\/% d,

where @ is the cumulative distribution function for the standard normal distribution. Con-
sequently, MSD,(Y'|X) is a strictly increasing function in |p|.

(iii) MSD,(Y|X) = MSD,_, (Y |X).

For a visual representation of how MSD index varies with the correlation level, Figure
S1 provides an instance of (X,Y") following a bivariate normal distribution with mean zero
and correlation coefficient p. As expected, MSD.(Y|X) takes value zero at p = 0 and
shows larger values with higher correlations. Moreover, it is noteworthy from the left
panel in Figure S1 that, for a given p, MSD, (Y| X) varies across the quantile range, with
the difference becoming more pronounced as |p| increases. In contrast, the graphs exhibit
a flattening near 0, indicating that MSD, (Y| X) remains considerably small when |p| takes
small values. To enhance clarity, two zoomed-in versions of the left panel are presented,
focusing on regions where |p| < 0.7 and |p| < 0.1. The zoomed-in views reveal that the
graphs flatten near zero, indicating that MSD7(Y|X) remains small for small values of
|p|. These visualizations underscore that when 7 is close to zero, MSD, approaches zero

as |p| becomes particularly small.



$2. KNOCKOFFS FRAMEWORK
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Figure S1: The MSD index as a function of the correlation coefficient p for a bivariate normal distribution, with

p € [-1,1] (left), p € [-0.7,0.7] (middle) and p € [-0.1,0.1] (right).

$2 Knockoffs Framework

The key idea underlying knockoffs is to generate a knockoff copy X = (Xl, e ,Xp)
that satisfies two conditions: (i) Swap exchangeable: the joint distribution of (X,X) is
unchanging by swapping X; with its knockoff counterpart X j,forj=1,...,p. (ii) Nullity:
X I f|X. Condition (i) indicates that one can not tell whether the jth column is true
or a knockoff; Condition (ii) implies the knockoffs provide no further information about
latent factors, this is always satisfied if X is constructed without borrowing information

from f.

Remark 1. Constructing knockoff features that exactly satisfy Conditions (i) and (ii)
is challenging. Condition (i) also suggests that generating knockoff features requires the
joint distribution of X. If such distribution is available, Candes et al. (2018) proposed
a generic algorithm sequential conditional independent pairs to construct exact knockoff

features. If the distribution of X is unknown, Candes et al. (2018) also provided two



approaches to construct the second-order knockoffs, one is equicorrelated construction
and the other is semidefinite programme. Other practical construction methods can be

found in Romano et al. (2020), Fan et al. (2020) and Huang and Janson (2020).

$3 MSD Knockoffs (MSDK) Procedure

Intuitively, the MSD knockoff statistic W, . defined in (2.9) of the main text evaluates
the relative importance of the jth original variable by comparing the MSD statistic with
that of its knockoff copy. A large and positive W, would suggest strong evidence that
the original feature is relevant to the conditional quantile of f at the interested quantile.
Theoretically, the MSD knockoff is verified to be a valid construction of knockoff statistic
and satisfy the sign flip property in the Supplementary Materials. Thereby, W,  can
be utilized to calculate the data dependent knockoff thresholds that ensure finite sample
FDR control.

The empirical counterpart of the knockoff statistic is also defined in equation (2.10)

of the main text. Then we consider the relatively conservative knockoffs threshold

1 /W-T < -T
na:min{T>0: +#{_‘7A9’ = }ga}. (S3.1)
#{i: Wir 2T}
Once this threshold is calculated, the set of selected active features is given by
Ar(%) ={1<j<p:Wj; >na}. (S3.2)

Theorem S1. (FDR control) For any o € [0,1], the set of selected covariates A(ny) via



$4. MORE DETAILS ON v-QUANTILE KNOCKOFFS

MSDK procedure satisfies

<

A, (n2)| V1

$4 More Details on v-quantile Knockoffs

We introduce the v-quantile knockoffs procedure as follows. Suppose at the ¢-th round,
given the quantile level 7 > 0, the feature importance statistic W’ has been computed.
The v-quantile knockoffs algorithm starts by ordering the features according to the mag-

nitude of W?

2,77

that is,

Wi > W

> ... > ]Wfp for some permutation 4, ..., 1,

,TI

where 7,...,7, is a permutation of 1,...,p. Given a prespecified integer v, v-quantile
knockoffs looks each variable one by one from r; to r, according to the magnitude of
each feature importance statistic until the first time there are v negative Wj ’s. More

specifically, the stopping criterion is

2
Tor = min{k e{l,...,p}: ZI{W%,T <0} > v}.
j=1
The selected variable set is then defined to be

AL = {r;:j< Tor Wy o> 0}.

Ti,T

Below we provide some properties of v-quantile knockoffs.



Lemma S1. For any integer v > 1 and 7 € (0,1), the false discovery number V(1) :=
#{j:j€ AN AS} by the v-quantile knockoffs procedure is stochastically dominated by a

negative binomial variable N B(v,1/2).

Lemma S1 can be proved by using Lemma S21 and Lemma (3.1) in Janson and Su
(2016). Next we present the main result, which is immediate from Lemma S1 and the

negative binomial cumulative distribution function.

Lemma S2. For any integer k > 1 and 0 < o < 1, let v be the largest integer satisfying
Y oo (Z v ) <a. (S4.3)
i=k !

Then the v-quantile knockoffs procedure with parameter v controls the k-FWER at level

a, that is, P(V (1) > k) < a.

$5 Details for MSD Estimator

Let hy;(X;) = argminy, E[p,(fi — h(X;))], where p,(u) = u{r — I(u < 0)} is the quantile
loss function. It is known that hy;(X;) = Q,(fx|X;). For technical simplicity, we assume
that each X takes values on the interval [0, 1]. Let H, be the class of functions defined
in condition (C1) of Section 3. Let m(t) = (by(t),...,bs,11+1(t))"T denote a vector of
normalized B-spline basis functions of order [ + 1 with s, quasi-uniform internal knots
on [0,1]. Then hy;(t) can be approximated using a linear combination of B-spline basis

functions m(t)T 3, for some B € R+ The standard quantile regression estimator is



$5. DETAILS FOR MSD ESTIMATOR

defined as a solution to the convex optimization problem

min  n~! Z Pr (fzk — (X)) B).
i=1

I@eRsn +i+1

However, the empirical quantile loss is not smooth and differentiable. A natural way of
resolving this issue is to smooth the piecewise linear quantile loss using a kernel. Denote
by K(-) a kernel function that integrates to 1, and A > 0 a bandwidth, the convolution

type smoothed quantile loss function is defined as

(e 9]

Lon(w) = (pr*ICh)(u) = / pr (V) (v — u)dv, (S5.4)

—00

where * is a convolution operator and Ky, (u) = h™'K (u/h). Let Qrn(8) = n~ ' S0, Lo fin—
7 (X;;)"B) be the empirical convolution type smoothed quantile loss. Figure S1 indicates
that Q.,(8) is twice continuously differentiable and globally convex for any h > 0. Let

i = m(Xy;), Kn(u) := f:;/th(t)dt, and ¢(8) = fi — 7.3, the gradient and hessian
matrix of Q,,(8) are
VQri(B) = %Z{’@h(ﬁi(ﬁ)) — 7wy, VQn(B) = %Z’Ch(—ﬁi(ﬁ))ﬂ'wﬂ'g- (S5.5)
i=1

i=1

The smoothness and convexity of th ensure the computation efficiency of gradient based
algorithms for solving quantile regressions.

Let Bkj,h = argming y ., QT,h(B), and define ﬁkj(Xij) = ﬂ?;,ékxh Further define
Fp(x) = n 'S0 I{fi < 2} with I{-} being indicator function, thus n=* 321" I{fi <

hi;(X1;)} is a nonparametric estimator of ka(QT(fk]Xj)) Therefore, we obtain

A 1 n n ) ) 2 R .
5, = - Z {n—l Zl(fik < hij(Xi5)) — T} and 47 = max 0y ;. (S5.6)

1<k<K
=1 i=1

We expect 5; to be close to zero if X is independent of f.



1=0.50

1=0.75

Quantile loss
0.4
I

0.8
L

e

\\

0.6
L
AN
Quantile |

Quantile loss
04
L

0.2
L

7

7/

\

0.0
I

Figure S2: The convolution type

quantile loss with five commonly

0.05,0.50 and 0.75, respectively. h = 0.4.

used kernel functions under 7 =

$6 Figures for Convolution-type Smoothed Quantile Loss

The key difference between the convolution type smoothed quantile loss and classical

quantile loss is that the former is globally convex.

include: (a) uniform kernel K(u) = (1/2)I(Ju| < 1), (b) Gaussian kernel K(u) = ¢(u) :

Commonly used kernel functions

(2m) "2 exp(—u?/2); (c) logistic kernel K(u) = e7*/(1 + e™*)2, (d) Epanechnikov kernel

K(u) = (3/4)(1 —v?)I(u < 1), and (e) triangular kernel K(u) = (1 — |u|)I(Ju|] < 1).

Figure S2 provide the visual representation of the convolution-type smoothed quantile

loss with bandwidth A = 0.4 at 7 € {0.05,0.5,0.75}. It is observed that the smoothed

quantile loss with the triangular kernel is more close to the quantile loss. Therefore, we

use triangular kernel in our simulation studies and real data analysis.



$7. PROOFS OF LEMMAS, PROPOSITIONS AND THEOREMS

$7 Proofs of Lemmas, Propositions and Theorems

$7.1 Proofs of Propositions 1 and S1

Proof of Proposition 1. Results (i)-(iii) are obvious. To prove result (iv), define X =
a+bX, then it follows that E¢{Fy(Q.(Y|X))—7}? = Ex{Fy(Q.(Y|X)) =7} If g(-) is
nondecreasing, then Q-(g(Y)|X) = ¢(Q-(Y|X)), and Fy)[g(Q-(Y]X))] = F[Q-(Y]X)],
since P(Y < y|X) = P(g(Y) < g(y)|X). Therefore, Ex{F,y)(Q.(9(Y)|X)) —7}> =
Ex{Fy(Q-(Y]|X))—7}2, that is MSD,(g(Y)|aX +b) = MSD, (Y |X). If g(-) is nonincreas-
ing, then Q,(g(Y)|X) = g(Q1—-(Y|X)), and Fy[9(Q- (Y| X))] = 1 - Fy[Q-(Y|X)], since
P(Y < y|X) = P(g(Y) > g(y)|X). Therefore, Ex{Fyx)(Q-(9(Y)|X)) = 7}* = Eg{l -
Fy(Qu—-(Y|X)) = 7}* = Ex{Fy(Qu--(Y|X)) = (1L =7)}?, that is, MSD,(g(Y)|aX +b) =

MSD;_,(Y|X). This completes the proof. O

Proof of Proposition S1. Because MSD is invariant under monotone transformations, it
suffices to consider the case g;(t) = t, g2(t) = t, and hence X and Y are joint normal.
Let ¢(y) be the probability density function of Y, which is standard normal. For the first
conclusion, note that if p = 0, then X is independent of Y and MSD,(Y|X) = 0, for any
7. On the other hand, if p # 0, Y|X =z ~ N(px,1 — p?). Therefore, F(y|lz) = ®((y —
02 VT 1), Qu(Y o) = pr+- & (r) T 42, Fy (@Y [2)) = D{pw+ 7 (r) T 72).
It follows that MSD,(Y|X) > 0 for any 7.

For the second conclusion, again by Y|X ~ N(pX,1 — p?) and F(y|lr) = ®((y —



px)/+/1 — p?), we have

MSDT<Y|X)=/(<I>(px+ 1—,02(13_1(7'))—7->

For the third conclusion,

MSDI—T(Y|X) =

$7.2 Proof of Theorem 1

To derive Theorem 1, we introduce several additional conditions, which are outlined below.
(i). Letting U; = (u;,. .. ,Ui7d+K)T = (fit, - firc, €i1y - - - ,eid)T and (e;1,...,€q) =
(gi1y - -+ ia) $Y2 {u;5,i € [n],j € [d+ K]} are independent random variables satisfying
ot zn:dile‘uﬂlﬂu--|>L Vvn) =0
n(d+ K)o, <= = K v ’
where {¢,} is a given sequence of positive numbers satisfying ¢+, — 0 and ¢,, logn — +o0.

(ii). sup E (|u1j|6+7°) is bounded for all d for some 7, > 0.

(ili). d/n — w € (0,00) as n — oo.
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(iv). ||[diag(X)]"*®| < 1 and the limiting spectral distribution (LSD) H(t) of the
empirical spectral distribution (ESD) Hy_k(t) from the eigenvalues Mg y1(R), ..., Ag(R)

of R exists, where

Hy re(t) = ﬁ S 1(R) <)

j=K+1

(v). The number K of common factors is fixed.

Condition (i) is the Lindeberg condition. The truncation parameter ¢,, controls the tail
behavior, preventing heavy-tailed distributions from destabilizing the sample correlation
matrix. Such conditions are standard in random matrix theory to derive LSD. Condition
(ii) strengthens the control over tail probabilities, which is particular important in high-
dimensional settings where the number of variables d grows with n. Such conditions
are common in studies involving spiked covariance models and factor analysis. Condition
(iii) aligns with modern high-dimensional statistics frameworks and allows the application
of Marchenko-Pastur law for sample covariance/correlation matrices. The restriction
w € (0,00) avoids degenerate cases (e.g., w = 0 or w = 00) and ensures a non-trivial
LSD. Condition (iv) ensures that the scaled idiosyncratic covariance dose not dominate
the factor-driven signal, preserving the identifiable of the factor structure. The existence
of H(t) guarantees that the ESD of the noise components converges to a deterministic
limit, a cornerstone result in random matrix theory. Fixing K in Condition (v) simplifies
the theoretical analysis by separating the factor structure from the high-dimensional noise.

Extensions to growing K would require additional technical machinery.

Lemma S3. For the factor model in (2.1) satisfying Conditions (i)-(v), when Ag(R) >



1+ /w with w € (0,00), we have P(Kg =K) —1, asn,d — oo.

Proof of Lemma S3. Step 1. According to the results of Bai and Silverstein (2010), when
the weights v; are independent of Z;, and satisfy the moment condition, that is, F(v;) = 1,
var(v;) = 02 < oo and F(v}) < oo and when high-dimensional asymptotics are satisfied
— that is, as n,d — oo, with the dimension ratio d/n — w € (0, 00)— the ESD of the
weighted covariance matrix

2 =12 TVZ,
converges almost surely to the same LSD as that of the unweighted covariance matrix

S =n 'tz Tz

i.e., the Marchenko-Pastur distribution or its generalized form.

In our bootstrap setting, the weights v; ~ Exp(1) fully meet the moment conditions
for the weights in Theorem 3.10 of Bai and Silverstein (2010). Additionally, the conditions
of independence and high-dimensional asymptotics are also satisfied in the same manner.

For the unweighted covariance matrix 3, if the columns of Z* satisfy E(Z5) =0,
E(Z}?) = o} and E(Z;}) < oo, its ESD converges to the Marchenko-Pastur law. If

3 =1, the limiting spectral density is given by

fule) = YOZDC 0y ) = (1= VEP, b= (4 VB

2TwWx

For the weighted covariance matrix f]‘Z, define the Stieltjes transform

1 /. -1
m(z) = c_ltr (22 - zId> , z€eC,
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Using random matrix theory, the Stieltjes transform of the weighted covariance matrix

satisfies the equation

z =

m}Z) bw / Ht;m(Z)dH(t),

where H(t) is the limiting spectral distribution of the weights. Since the weights v; are
independent of the data and satisfy E(v;) = 1, their effect is only a linear scaling of the
sample covariance. Asymptotically, this scaling is absorbed into the dimension ratio w,
so the LSD remains the same as in the unweighted case. According to Theorem 3.10 in
Bai and Silverstein (2010), the ESD of the weighted covariance matrix converges to the

same LSD as the unweighted case. Specifically, for any continuous bounded function f,

1 d g a.s.
32 IO = [ r@dr.(a),

where F,(z) is the Marchenko-Pastur distribution. Through the above derivation, the
LSD of the bootstrap covariance matrix is shown to be identical to that of the original
covariance matrix. This equivalence forms the foundation for the subsequent analysis of
the correlation matrix R‘Z

Step 2. According to Theorem 1 in El Karoui (2008), assume that the entries of
3 satisfy moment conditions (e.g., finite fourth moments) and the diagonal elements of
D = diag(3) converge to 1 almost surely as d,n — co. Then, the ESD of R converges
almost surely to a deterministic LSD H (t), which depends only on w and the LSD of 3.

Specifically, if 3 has an LSD F(z), then R has an LSD H(t) satisfying

H(t)=F, (t : étr(D1)> :



When Str(D™!) — 1 (as d,n — o0), the LSD of R becomes H(t) = F,(t). The bootstrap
correlation matrix R‘Z is obtained by standardizing ig, by Theorem 1 of El Karoui (2008),

the LSD of f{i is given by

H(t)=F, (t : étr(Db_l)) :

where Dy, = diag(3%?). Since Ltr(D, ') — 1 as d,n — oo, we have H(t) = F,(t).

Step 3. We introduce Theorem 2.1 in Bai and Ding (2012). Assume taht the popula-
tion covariance matrix 3 has a spiked structure, meaning its top K eigenvalues A, ..., A\
are significantly larger than the remaining eigenvalues (noise eigenvalues). Let 3 be the
sample covariance matrix with sample eigenvalues M> > > S\d, as n,d — oo and

d/n — w € (0,00), the sample eigenvalues 5\j and the population eigenvalues A; satisfy

the following relationship
A=A () + 0,(1),

where () is the correction function defined as

B\ = 1+w/ﬁd}[(t),

and H (t) is the limiting spectral distribution (LSD) of the noise eigenvalues. The corrected

eigenvalues 5\]0 are defined via the inverse Stieltjes transform S\f = - (1;\_), then the
VANEY)

corrected eigenvalues 5\]() satisfy ijc = Aj + 0p(1). For the sample eigenvalues 5\2’ of RZ,

their relationship with the population eigenvalues \;(R) is

~

AL = X(R) - (N (R)) + 0,(1),
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where 1,(\) is the correction function in the bootstrap framework, defined as

B(\) = 1+w/ﬁde(t).

Here, Hy(t) is the LSD of R‘Z, which is identical to H(t). The Stieltjes transform my(2)
of Ry is defined as
1 /. -1
my(z) = Etr <RZ - ZIp> :

According to random matrix theory, m;(z) satisfies the equation

1 t
Z = —m +W/deb<t)

For the sample eigenvalues 5\2’ of f{i, the corrected eigenvalues are defined as 5\J0b =

- (&b). Since the LSD of EZ is identical to that of R, the correction function () is
i

the same as ¥(A):
w) =00 =1+ w [ ).

For signal eigenvalues (j < K), the corrected eigenvalues satisfy
AP = Ni(R) + 0p(1).

This is because

W= R Aj —w o _1: , 0
¢ 7(A) Ai(R) (1 /Aj(R)_th@)) Ai(R) 4 0,(1).

For noise eigenvalues (j > K), the corrected eigenvalues satisfy

APY <1+ Vw + 0,(1).

This is because the LSD H(t) of noise eigenvalues is supported on [0,1 + y/w], and the

correction process does not alter their asymptotic upper bound.



Step 4. Motivated by Theorem 6 in Fan et al. (2022), Let A" be the maximum noise

max

eigenvalue. Then by the Marchenko-Pastur law, the maximum limit of noise eigenvalues
is 14++/w. From random matrix theory, the sample maximum eigenvalue converges almost

surely to this limit, thus we have
Anotse < 14+ vw + 0,(1).

Let A8 — min,;<x A\;(R). By the assumptions of the factor model, signal eigenvalues

min

significantly exceed the upper bound of noise eigenvalues, then we have

asienal 1 4 Vw + 6.

Where 6 is a very small positive number. Combining the above results, we have
P(AL S 14 Ve +8) 2 P (e <1+ +6) > 1
and
P(X%b > 1+\/c_u+5> > P(Afﬁ}a‘ > 1+\/5+5) — 1.
Therefore,

p<K9:K>2P(X%b>1+\/E+(5and5\fgi1§1+\/c_u+5)—>1.

Thus we complete the proof of Lemma S3. O]

Proof of Theorem 1. Note that Lemma S3 holds for all ¢ = 1,...,G. Then Theorem 1

follows by taking the mode of K' ... KC. O
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To establish the consistency of K, in estimating the true number of factors when
the number of factors K diverges with the dimension d, as stated in Theorem S2, an
additional condition is required.

(vi). || BT [diag(S)]'B|| H(BT[diag(E)]*lB)_lH — 0(d%) for 0 < 1/3.

Condition (vi) is equivalent to requiring that the growth rate of the condition number
of the matrix B’ [diag(X)]™'B does not exceed d?, where g, < 1/3. This restriction
ensures that the minimum eigenvalue A, (B”[diag(2)]™'B) does not decay too rapidly.
As a result, this condition effectively rules out weak factors, i.e., those for which the
columns of the factor loading matrix B are nearly linearly dependent or have extremely

small norms.

Theorem S2. For the factor model (2.1) satisfying Conditions (i)-(iv) and (vi), consider
the case of K = o(d*/?). When Ag(R) > 1+ /w + T for a very small positive constant

T, we have P(Kb = K) — 1, asn,d — oo.
Proof of Theorem S2. Define
Sy 1= [diag()]/* £ [diag(2)] /2,

then Rj, = [diag (Ss)]"/* S, [diag (S;)] /% Under condition (vi), for each j € [d],

n

Si),; = % > Q(Uu.-0) (U-1) Q"]

where R = QQ" with Q = [diag(X)]~'/? (B, ¥!/?). Since E[v;] = 1 and Var(v;) = 1, by



Chebyshev’s inequality condition on the data, we have

Var (w QU -U) (U -T) Q] ﬁ) o),

2

ne

S,=n" Z[diag(ﬁ))]*l/2 (Z; - Z) (Z; - Z)T [diag(3)] /2

i=1

=1y Q (U, -U) (U, - U) Q7.

By Lemma S.8 of Fan et al. (2022), max;

[Sn]jj - 1‘ = Oa,s,(l). Thus, max;

Sl — 1| =
0p(1).

By the Weyl inequality, we have
max \(RY) = A (83)] < |[R] = 8.

As Ry — 8, = D_’S/D_/? - D-V25/D 12, where Dy, = diag(5{) and D = diag (),

rewrite

RZ _ S, = D;/Qﬁz <D;/2 B D—1/2> i (D;m B D—1/2> ﬁ]gD_l/Q,

then we have

s <oy 5

. -1/2 _ 1y-1/2 =1/2 =172 . ||sw9y—1/2
e N R |

D;/ > and D2 are all diagonal matrices, thus

.~ 71-1/2 N
= max [Ei] .
J Jj

ARG

—1/2g
oy

—1/2
<3

g

bl

Jj Jj

HD;/2 _ D—1/2H — max
j
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9]
In addition, % = [Sy],; and we have derived that max; |[Sy];; — 1‘ = 0,(1), as a result,
HDT1/2 B D—1/2‘ — max 1 1 < lmaX (X5 — (3] = 0,(1)
> : N -~ — ; 3/2 ?
J \/[Eg]jj \/[E]JJ 2 [E]jj
Then
|R) =84 £2:0,(1) - 0,(1) = 0,(1).
Thus )\k(f{i) and A (Sp) share the same limit behavior.
Define the bias-corrected eigenvalues for RZ as above: &Cb = (15\1,_). Under the

condition K = o(d'/?), which ensures that the rank-K perturbation Q,QY, with Q; =
[diag(3)]~Y/2B, does not affect the bulk spectrum asymptotics, and assuming Conditions
(v)—(vii) hold, Theorem 3 of Fan et al. (2022) can be extended to the setting of f{g
Specifically, we have that the empirical Stieltjes transform converges: |y;(z) — m(z)| — 0

a.s., where m(z) solves

t
oo T

For j < K, the sample eigenvalues of Rz satisfy

A= Ni(R) - (N (R)) + 0,(1),

J

where 1,()) is the correction function in the bootstrap framework, defined as

by(N) = 1—|—w/ﬁde(t).

Furthermore, the bias-corrected eigenvalues are consistent in the sense that: S\JCb /N(R) =

1 for j < K.



For j > K,);j(R) < 1 by Theorem 1 of Fan et al. (2022). Under the condition
that K = o(d"/?) and Conditions (iii), (v), the empirical spectral distribution (ESD) of

d

{)\j(f{i)}jKH converges to the same limit H (¢) as the original R. By Theorem 2 of Fan

et al. (2022), the Stieltjes transform my(z) of R;, satisfies

z= —;—Fw/;d]{(t)—kop(l),

my,(2) 1+ tmy(2)

The right edge of the support of H(t) is (1 + y/w)?. Thus, for j > K,

X< (1+ VW) +6+0,(1) Vs >0,

The bias correction for non-spiked eigenvalues satisfies (by Lemma S.9 and Theorems 4-5
of Fan et al. (2022))

AP <14+ Vwto,(l) for j> K.
Define s, = 1++/d/(n — 1), by Condition (iii), it follows that s, — 1+4+/w. Moreover,
we have Ag(R) > 14 /w + Y. For j = K, we have established that A" £ Ag(R) >
1+ w+ T, thus
P (;\%b > sb> — 1,

For j = K +1, A%, <1+ /w+ 0,(1). Since s, — 1+ 1/,
P <5\%5)rl < Sb) — 1,

The estimator is A9 = max {j : S\JCb > sb}. Thus

P(K=K) 2P (A > snAfh <s) =1
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Note that the above results holds for all g = 1,...,G. Then Theorem S2 follows by

taking the mode of K, ..., KC. O

$7.3 Technical Proofs for the Oracle Procedure

We next examine the oracle procedure under the assumption that the latent factors are
known. Specifically, we assume that the loading matrix B is known and the factors
{f:}, are observable, which serves as a heuristic device. Given a quantile 7 > 0, denote
by 57’ oracle _ 1 Ly 1{n*1 S (fzk < th(le ) _ 7_} and 5Toracle — maXicr<r §T Joracle
the estimators of MSD( f|X;) and MSD(f|X;), respectively. The corresponding selected

subsets are denoted as Ai”,ﬁde and Agmde,

Theorem S3. Under Conditions (C1)-(C7) in the main text, we have

(1) For any C' > 0 and 0 < 7 < 1, there exist positive constants cy and ¢y such that

P(gﬁg};@’or“le—éﬂ > On™") < Kp{ exp(—cyn' " +logn)+exp(—cys, *n' > +logn)}
(S7.7)

for all n sufficiently large.
(2) (Sure screening property) If k < 1/4, s2n*~1 = o(1), take the threshold n, =

c*n~" for some constant c*, then
P(A, C A7 (1)) 2 1 — A {exp(—chn' ™ +logn) + exp(—cjs, *n' " +logn)}

for all n sufficiently large, where |A;| is the cardinality of A.. Therefore, P(A, C

Acrede) — 1 as n — oo.



The results of Theorem S3 imply that we can handle the dimensionality logp =
o(n'=% + s2n172%) which relies on the number of basis functions s, and the strength of
marginal signals. If we take s, = n'/(?*)( the optimal rate for spline approximation),
then for k < min(1/4, (2r —1)/(4r+2)), we can handle the ultrahigh dimensionality, that
is, p can grow at the exponential rate. To investigate the ranking consistency property of
MSDS, we additionally assume the following condition.

(vii). (Condition on the minimum signal strength) minjea, , 0r; — maxeac, Opg =
2¢on™", for some 0 < k < 1/2 and some positive constant cg.

Condition (vii) requires the MSD index is able to separate active and inactive covari-

ates well in the population level. The following theorem justifies the ranking consistency

property of MSDS.

Theorem S4. (Rank consistency property) Replace Condition (C4) with Condition (vii),

we have

P( min ST’OT“Cle—mix SJT.’OT“Cle > O) > 1—Kp{ exp(—cjn'~""+log n)+exp(—dcss;, *n' > +logn) },
JjEA, JEAS

where ¢y and ¢ are some positive constants. If logp = o(n'=% + s 2n'=2%) and logn =

o(n'=4" + s 2n!72%) with 0 < k < 1/4, then we have

) . .o I A I
lim inf {min ;""" — max 0"} > 0, a.s.
n—oo jEA; J JEAS J ’

We will now prove the two theorems stated above, beginning with the introduction

of the following lemmas.

Lemma S4. (Hoeffding’s Inequality) Let X, ..., X, be independent random variables.
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Assume that P(X; € [a;,b;]) = 1 for 1 < i@ < n, where a; and b; are constants. Let

X =n"'3"" | X;. Then the following inequality holds

P(|X —E(X)| >1t) <2exp { — Z”f&t— PE } (S7.8)

where t is a positive constant and E(X) is the expected value of X.

Lemma S5. (Bernstein’s Inequality) Let X,..., X, be independent random variables

with bounded support [—B, B] and zero means, then the following inequality holds

P(]X1+~--+Xn|>t)§2exp{—m}, (S7.9)

forv>wvar(Xy+ -+ X,).

The following notations are needed for next lemma. Let g;; = g(fi, X;) = [F(Q-(fx]|X;))—

2 9 = 9(fies Xig), gu(@) = I(fi < @), g (2) = [(fue < 2) fori=1,...,n.

Lemma S6. For any € € (0,1), the following inequalities hold for X,

1
P[5 s - o
i=1

> e} < 2exp{—2ne’}; (S7.10)

P{ ‘% é 9 () — Egi(w)

> 6} < 2exp{—2ne’}; (S7.11)

Proof of Lemma S6. Since |g(X;, fr)| = [F(Q-(fe|X;)) — 7]> < 1 and |¢g*(z)| < 1, the

inequalities follow by using Hoeffding’s inequality. m

For simplicity, we write 67 ; = dy, 5,273. = &w‘? Q-(fxlX;) = Qu(Xj), Lo = L

hereinafter. Let Kj(u) := f:;/th(t)dt, and €;,(8) = fix — w(Xi;)" B, the gradient and



hessian matrix of Q,,, »(8) are

VQr,.4(8) = %Z{’@h(ei(ﬁ))—Tm}W(Xij)a V2Qs,. n(8) = %Z’Ch(—ﬁi(ﬁ))ﬂ(xi‘)ﬁ(Xi')T-

i=1

Denote VQ-,, 1(8) = E(VQr, 4(8)), and V2Q., 1(8) = E(V?Q-,, 4(8)).

Let Bo(8) = n ' S0, Lo (fu—m(X18)), Bu(B) = E(L(fy—m(X,)78), and B(8)
Ep,(fi — m(X;)TB). Then By; = argmingepeniis1 Bu(8), Br; and B); are the unique
minimizers of By (8) and B(3), respectively. We can bound the difference || Bkj — Byl
by 1B — Biyll + 18 — Biyll- 18Y; — Byl is dominated by O(h) following Lemma ST7.

18r; — Bl can be bounded by their respective objective functions.

Lemma S7. (Smoothing bias) Under Conditions (C1), (C6), and (C7), as long as n is

large enough, |18y, — Bl = O(2).
The proof of Lemma S7 can refer to online appendix in Fernandes et al. (2021).

Lemma S8. For any 6 > 0,

Pl ~BL 200 < P swp  B(B)-BuB) 25 it (BB~ BulB) ).
18k B35 1<6 1Bk —By11=8

(S7.12)

Lemma S8 is a direct application of Lemma 2 of Hjort and Pollard (2011) making use
of the convexity of the objective function.
The lower bound of the right-hand side of (S7.12) can be explicitly evaluated for a

given 9 > 0. This is specified in the following lemma.

Lemma S9. Let C > 0 be an arbitrary constant. Assume that s,"n" = o(1), then there
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exists a constant a, such that

inf (Bu(B) - Bu(By;)) > ain ™,

1Br;—By, |I=Csn/*

for n sufficiently large.
Proof of Lemma S9. We consider 8 = B, + Cs}/zn_“u, where u € R*»T*1 satisfying
|lu|| = 1. We have
Bi(B) — Bu(Biy) = B{L-(fu — m(X;)" By; — Cs,*n " w) — Lo(fi — m(X;)" Bry) }

= E[-VQuu(m(Xi)"Bi))Cs)/*n " u] + E[V?Qr(m(Xyy)T Bi;) (Csy*n™")? ]

= Cs,/*n "E|(r — Ku(e&:(B5,))m(X;) u] + BlKn(—e(By;)m(X;)m (X)) (Cs,/*n "))

= Ji+ Jo,
where € (8;;) = fr. — (X j)TB,*;j. By Hoélder’s inequality, we have

[ < OsPn (B (X) u)?) P[E(r — Ka(e(Bi;)))
< Csn7"0(s; %) 0(s;") = O(s;,"n™").

The second inequality holds by the properties of spline basis, see He et al. (2013) and

Sherwood and Wang (2016).
Jo = E[Ka(—e(B5,))m(X;)m(X;)" (Cs)/*n™)?] = O(n~").
Note that .J is nonnegative and J; = o(.J;). This completes the proof of Lemma S9. [

Lemma S10. Assume that s,n**~' = o(1). For any C > 0, there exist positive constants

as and as such that for n sufficiently large

P(||By; — By, Il = Csi/>n™) < 2exp(—asn' ™) + exp(—azs, *n' ).



Proof of Lemma S10. Following Lemma S8 and Lemma S9, there exists some ¢ > 0, for

all n sufficiently large,

P(||By; — Biyll = Cs/*n™)

<p( s B@-BE )
188, I<Csp/ *n—r
1
< P(|B.(Bi;) — B(B;)| > 50”_%)

(s BB - BBL) -~ Bu(B)+ BB = en )

188y, 1 <Csy/ *nr
= L1+ L.
First, we evaluate Ly. Let W; = L.(fix — w(Xi;)"Bs;). Then B,(8;;) — Bu(By;) =
n~' Y (Wi — EW;). Note that [Wi| < C|w(Xy;)"8;;| for some positive constant c.
By the argument of Lemma 3.1 of He et al. (2013), sup, |h;(t) — w(Xi;)" Bo;| < ¢*s,,"
It follows that |W;|’s are uniformly bounded by a constant and var(W;) < o2 for some

0% > 0. Applying Bernstein’s inequality, we have

n 2, 1-4t1
_ 1-2k ¢ /4 1-4k
Ly = P(] ;:1 Wi| > en ™% /2) < 2exp (— 507+ Ccn—2”/3) < 2exp(—agn ™).

Then we consider L,. To evaluate Lo, we employ the Massart’s concentration theorem

(Massart, 2000). Let V; = L, (fu — w(Xi;)"B) — L-(fir — 7(Xi;)" Bf;). Then
Vi = VQralei(Bi;))m(Xiy) (B = Biy) + V2Qrnlei(Bry)) (w(Xiy) T (B — By)))*.

Thus, |V;| < 2|7 (X;)" (8 — B;;)| < cspn™" for some ¢ > 0.

Next, let ey, ..., e, be a Rademacher sequence (i.e., iid sequence taking values of +1
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with probability 1/2) independent of V;,...,V,. We have

B I@M—mw}sw{ sup \ZVI}

18=By,1<Csy/ *nr 18-8g,I<Csy/*n—r

<anf l\zem (8~ B} < A0S Bl (X))
188, II<Csp/ *n—r i—1
n 1/2
< 4CsY*n~FE||n” Zem’ il?] |12 = 405,1/271_“{n‘zE(Ze?ﬂ'(Xij)Tﬂ'(Xij))}

i=1
< Oslf2p—r1/2,

for some constant C, where the first inequality holds by the symmetrization theorem
(Lemma 2.3.1, Van Der Vaart and Wellner, 1996), the second inequality holds by employ-
ing the contraction theorem (Ledoux and Talagrand, 1991), and the last inequality holds
since E(b2(Xy;)) < cosptfor 1 <k <s,+1+1,1<i<nand1<j<p (Stone, 1985).

Finally, we apply Massart’s concentration theorem to calculate L. Let

188y, 1<Csp/ *n=r

A= sup _IIZ(V;—E(V
i=1
Then

Ly=P(A>cen/2)=P(Z>EZ+ (en /2 - EZ)) < exp(—azs,, *n' ")

n

for some positive constant a3 and n sufficiently large. This completes the proof. n

Next, we evaluate the term |Qk(Xj) — Qr(Xj)| = |QT(fk‘Xj) — Q- (fe| X5)|-

Lemma S11. Under Conditions (C1)-(C7), we have

~

P(IQk(z) — Qu(z)| = Cn™) < 2exp(—aon' ™) + exp(—azs, *n' 7).



Proof of Lemma S11.

Qu(X;) — Qu(X;)| = |7 (X;)" Br; — Qu(X))]
= |m(X;) By — w(X;) By, + |m(X;) By — m(X;) By + |7 (X)T By — Qu(X;))

- T1—|—T2+T3.

By the result of Schumaker (1981), it follows that sup,c(o ) |Qk(X;) — 7(X;)" 8| =

O(s,,"). Next we evaluate T} and T5.

Ty = {(n(X;)" (Bry — Br,)*H? = {(Bry — Bi,) m(X;)m (X)) (Bes — Bry) /2.
Then sup, 77 < Op(s;1/2)||[§kj — By, due to the fact that there exist two positive con-
stants a} and aj such that ajs,;! < Apin(Em(X;)7w(X;)7)) < Anax(E7(X;)w(X;)T)) <
ass,"', Vj, (Zhou et al., 1998). Similarly, we have supy, T = Op(sn'?h2) = 0,(n"1/2) by

Condition (C7). Thus,

~

P(IQr(z) = Qu(x)| > Cn™") < P(Ty > Cn™"/3) + P(Ty > Cn™"/3) + P(T3 > Cn™"/3)
< P(|By; — Byl = Csy/*n™"/3)

< 2exp(—agn' ™) + exp(—ass;, *n' 7).

The second inequality holds because P(Ty, > Cn~"/3) = 0, and P(T5 > Cn~"/3) = 0,

since 0 < kK < 1/2 and s,,"n" = o(1) by Condition (C5). O

Lemma S12. Under Conditions (C1)-(C7), there exist positive constants ¢y and cy such

that

P(|6r; — 0r;] > Cn™F) < O(n) exp(—cyn' ™) + O(n) exp(—cys; 2n=2). (S7.13)

n
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Proof of Lemma S12. According to the definitions of ¢ ; and 5k,j, we have

n

s =0k = 3 (@) =P [ Qutw) P aFy o

= [ 1P (@u@) = 7 = (FR(Quo) = 7PJafs (o) + [ 1P (@Qula) = Pd(Fy (o) = F(2)

= I+1I.

We first deal with the term 1.

1 < 2 / B (Qul@)) ~ Fi(Qula))|dF(@) <2 sup [F(Qu(a)) ~ Fi(@u(e)

< 2 iép ’ka(QAk(aj)) ka Qk |+2 Seﬁp ‘ka Qk( ))_ka(Qk(x))‘

- 2([1 —|— [2),

where the first inequality holds by }ka(Qk(x)) + Fr, (Qr(x)) — 27| < 2, and the second
inequality holds by [ dpj(:c) = 1. Then, we first deal with the term I;, by applying

(S7.11), we can obtain that

P(|L| =€) = P(sup |Fp(Qu(x)) = Fy, (Qu(@))| = €) < 2(n + 1) exp(—2ne?).

J’JERX

Next we deal with I,

P(L|2¢) < P(sup |F;(Qu(2)) = F5(Qu(2))] 2 € |Qu(x) — Qu(x)] < Cn™™)

IL’ERX

+P(|Qi(x) — Qu(x)] > Cn™™)

IN

P(sup | fi(Qu(2)|Qu(z) = Qu(@)l| = €) + P(|Qx(z) — Qu(2)| = Cn™")

J?ERXj
2

IN

2(n + 1) exp(—ajne®) + (n + 1) exp(—ajs, *ne?)

1—4&) -2, 1— 25)
9

+ 2exp(—asn + exp(—ass,,“n



for some constant a3 > 0 and a3 > 0. In addition, by (S7.11), we have
P(IT > ¢€) < 2exp(—2né?).
Take e = n™", then by the above three results, we have

P(|kj = 8yl = On™)
< (4n + 6) exp(—ain' ™) + (2n + 3) exp(—ais, *n' ") + (4n + 6) exp(—2n' ")

< O(n) exp(—cyn' ™) + O(n) exp(—cys, 2n' =),

n

for some constants ¢, > 0 and ¢4 > 0. This completes the proof. ]

With the above preparation, next we prove Theorem S3.

Proof of Theorem S3. (1). By lemma S12 it follows directly that

P(1n<l?<}; 10k — Ok j| = Cn™%) < O(pn) exp(—cyn' %) + O(pn) exp(—cys; 2nt ). (S7.14)

A._ > —k — S L > —K
P(max |0; — 6;| 2 Cn™") P(max max |0; — Okl = Cn")

< O(pnK) exp(—cyn' =) + O(pn) exp(—cys, 2n'=2%).

n

(2). The results follow by using the first result of Theorem S3. If A, ¢ AT,k, then
there must exist some j € A, such that 5kj < ¢yn~". Tt follows from Condition (C4)

that |(§;w — k4| > cin™" for some j € A.j. Hence, {max;jcq,, |5k7j — 0l <anr} C
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{A.r C A.,}. Consequently,
P(A.; C /lTk) > P{max |5k] — 0| <ean™"} =1— P{ min |5k] — Ok >cin™"}
JGAT,]C ]G.AT,;C
= 1= Ak P{[dkj = Gyl > ern ™"}
< 1= O(J Az kl{exp(—con' ™ +log n) + exp(—cgs,*n' > +logn)}),
Similarly, the result for Theorem S3(2) can be obtained. This completes the proof. [

Proof of Theorem Sj.

P{( min 5,@] — max (5;”) <dn “}

]eArk jGATk

< P Opi — Op.i) — Op i — 0ri) < —cin™"
< P ain B~ s )~ (i, s — g ) < e}
< P{|(jr€rﬂn 5;w —jrenjx 5,@]) — ( min 0y ; — mjLX 51@])’ > dn “}

T,k -]G'AT k J€ T,k

< P(Q max |0 ; — Ok ;| > c’ln_”)

1<j<p

< O(pn) exp(—can'™"") + O(pn) exp(—css, *n' =)
for some constants ¢; > 0 and ¢5 > 0. If we further assume logp = o(n'~4" + s 2nl=2F),
thus p < exp{cyn'~*/2} for large n and p < exp{css,?n'=2"/2} for large n, sim-
ilarly by assumption logn = o(n'™* + s 2n'=2%) we have ¢yn'~*/2 > 2logn and
¢55,°n' 7" /2 > 2logn for large n. Then we have for some ng, Y~ nplexp(—csn'~*") +
exp(—css,*n' )] < 3007 exp(logn—cyn' = /2)+exp(logn—css, *n' 727 /2) <2377 n?

< OQ.

Therefore, by Borel Contelli Lemma, we obtain that

lim inf { min ¢ —max5 > 0, a.s.
n—)oo{jEA k.j Al /w}



Similarly, by the same technique, we can obtain another result for 5]-.

$7.4 Technical Proofs when Loading Matrix B is Known

Next, we examine the scenario where we estimate f; under the assumption that the loading
matrix B is known. Assume that B is known, we estimate f; by solving the optimization

problem

~

d
fi(B) € arg min Y "¢ (Zy; — f1; — b] f), (S7.15)
7j=1

FERK <
where ji; = argmingeg >, Vw,(Zij —0), w = w(n,d) > 0 is a robustification parameter.
The screening statistics based on f(B) are denoted as oy, ;(B) and ;(B). The subsets
selected by these statistics are accordingly denoted as flT,k(B) and AT(B).

The following Lemma S14 reveals an exponential type deviation inequality for fZ(B)

Lemma S13. (Lemma C.3 in Fan et al., 2019) For every 1 < j < d and for any t > 1,

the estimator ji; with w = a(n/t)"/? and a > a;jp satisfies that as long as n > 8t,

<ot (S7.16)

. 1 <
V(i — py) — NG ;%(uzj) Tn

t

with probability greater than 1 — 3e™", where w;; = Z;; — p; and C > 0 is an absolute

constant, ¢p(u) = min(|u|, w)sign(u) is the derivative of Y (u).

Lemma S14. Under Condition (C8), for anyt > 0, the estimator f(B) given in (S7.15)

with @ = wo(d/t)/? for wy > 0. = max;<j<q O'El/]i satisfies that with probability greater
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than 1 — (2eK + 1)e™*,

1£:(B) = fillo < Caog(Kt)?d"?  and  max |fi(B)— fir| < Coot/2d~? (S7.17)

1<k<K

as long as d > max{||p||3/02, (||p|1/c-)*t, K?t}, where C > 0 is constant depending on

the constants in (C8).

Proof of Lemma S14. To begin with, we introduce the following notation. Define the
loss function L. (6) = d_lz;l:l Uo(Zi; — f1; — bTO) for @ € RE, 0 = f; and 0 =
arg mingcprx Lo (0). Without loss of generality, we assume ||B||max < 1 for simplicity.
Define an intermediate estimator 8, = 6* + (6 — 6*) such that [|6, — 6|, < r for
some 7 > 0 to be specified below (S7.24). We take n = 1 if ||é,7 — 0*||2 < r; otherwise, we
choose 77 € (0,1) so that ||@, — 8*|| = r. Then it follows from Lemma A.1 in Sun et al.

(2020) that
(VLe(60,) — VLg(0%),0, — 0%) < n(VLy(8) — VL, (6%),0 — 6*), (S7.18)

where VL. (0) = 0 by the Karush-Kuhn-Tucker condition. By the mean value theorem

for vector-valued functions, we have

1
VL6, —VL,(6*) = / V2Leo((1 —)0* + t6,)dt(0, — 6*).
0

If, there exists some constant a.,;, > 0 such that

min  Apin(VLo(8)) > amin, (S7.19)

OCRE || 0—0* |2 <r

then it follows amw||@, — 0*|2 < —n(VLo(6),0 — %) < |[VLo (6|0, — 6> or



equivalently,

tmin]| 0y — 0%]l2 < VL (87)]|2, (S7.20)

where VL, (0*) = —d! Z?:l Gw (115 + €ij) by

First we verify (S7.19). Write S = d"'BB and note that
ijbe ~b'0| < @),

where Z;; — b]TO = b?(@* —0) + pj + ;5. Then for any w € S¥~1 and 6 € R¥ satisfying

160 — 67l <,
u''V?L,(0)u
1 1
>l Su— STz ] > /2) - 52 w?I{[b7 (6 — )] > =/2}

v

d
1 4
ul Su — max Hbjug{a > Iley + pyl > @/2) + —lor - ouguTsu}.

Jj=1

By assumption 1, Apin(S) > ¢ for some constant ¢ > 0 and maxij<j<q||b;[3 < K.

Therefore, as long as @ > 2rv K we have

K d
min )\min(szw(e)) Z (1 doo™ 7’2K Cl EZ |5ij +,u]| > W/Q) (8721)

OERK:||0—0*|]2<r
To bound the last term of the above inequality, by using Hoeffding’s inequality, for any

t >0,
1< : t
C_ZZ (leij + pil > @/2) < dz (leij + pil > @/2) + 2%

| —

with probability at least 1 — e~*. This, together with (S7.21) and the inequality

d

1
Ez P(leij + pjl > @/2) <

J=1

‘ -
&

d
Z 13 + Bef) = 4o (d 7 |pll3 + 0c )
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t
)

implies that, with probability greater than 1 — e~

| 3 [ 4K ||ul3
)\min Z‘I]we >-—aq—K\|—— €,J7
BERK:TSI—HB*HaST (V0=(9)) 2 4 2d w2( d 7=s)

(S7.22)

as long as w > VK.

Next we bound ||V?W,(6%)||5. For each 1 < k < K, we write &) = d~* Z;l:l Gjr =
d—! Z;l:l @ pe (p54€i5 )i, such that | V2, (8%)]]2 < VK| V2V 4(0%)] 0o = wV K max;<p<x |Ppl.
Since for each u € R, —log(1 —u + u?) < w ¢, (wu) < log(l + u + u?). After some

simple algebra, we obtain that

e < {ld @ (g + eig) F @ (1 )Py )
H1 =@y + eig) + @ 2y + gyy)7} ok OO

< 1wy +ey) + @ (i)
Taking expectation on both sides gives
B(e*) < 1+ @ iyl + @ (1 + 0-55)°.

Moreover, by independence and the inequality 1 4t < ef, we get

d d d
_ 1 1 E’ +
F(e?®) = | | E(e?*) < exp {— E || + 2 (155 Us,jj)}

j=1 = =
(L D ) (i Ll 2
@ ¥ nw w © nw

where 02 = max;(o. ;). For any t > 0, by Markov’s inequality it follows that

o2d
— - 215) <exp(l—1),

2
P(d®), > 2t) < e 2 E(e9®) < exp (Hulll N ||u2H2 N
w ) nw



if

o> maX{HuH oy /o + 4] ”} (57.23)

Then it can be similarly proved that P(—d®; > 2t) < e'~*. With all the above results,

we conclude that

P{Ivva0) = VEES |

K
2
< P{||v\1/ (0*)||oozﬂ} " P(lddy| > 20) < 2eK exp(—t).  (S7.24)
k=1

With the above preparation work, then we can prove the final conclusion. It follows
(S7.22) that (S7.19) holds with ap;, = ¢ /4 with probability greater than 1 — e, as
long as @ > 4v/K max{r, ¢, "/*(||u|2/d + 02)"/2} and d > 8¢; 2K?t. Therefore, combining
(S7.20) and (S7.24) with r = T vields that, with probability at least 1 — (1 + 2eK)e™"
||6377 — 0*||, < 8¢,'VKd 'wt < r provided that d > 32¢; ' Kt. By the definition of én,
we must have 7 = 1 and hence 8 = 8, that is, || fi(B) — filla < Cwo(Kt)"/2d~"/? holds.
Similarly, we have max;<z<f | fir(B) — fir] < Cwot'/2d~/2. This completes the proof of

Lemma S14. O

Theorem S5. Under Conditions (C1)-(C9), given a quantile level 0 < 7 < 1, let w =
wo{d/log(n)}/? with wy > 0., we have

(1) For any C > 0, there exist positive constants ¢y and ¢ such that

T T —K 1 4k 2 1 2K
P(11£1Ja<>§7|5 (B)— 67| > Cn™") < Kp{ exp(—c} +logn) +exp(—c +logn)}

(S7.25)

for all n sufficiently large.
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(2) (Sure screening property) If k < 1/4, s2n*~' = o(1), take the threshold v, =

c*n~" for some constant c*, then
P(A, C A, (B,1,)) > 1 — |A|{ exp(—cyn' ™ +logn) + exp(—cys, *n' =2 +logn) }

for all n sufficiently large, where |A;| is the cardinality of A.. Therefore, P(A, C

A.(B)) = 1 as n — co.

We will now prove Theorem S5 by beginning with the introduction of the following

lemmas.

Lemma S15. For any § > 0,

Py -G =0 < P s |B(B) BB > 5 | inf (BB~ Bu(B,) ).

1Bk —By,1<6 1B =B 11=3
(S7.26)
Lemma S15 is a direct application of Lemma 2 of Hjort and Pollard (2011) making
use of the convexity of the objective function.
The lower bound of the right-hand side of (S7.26) can be explicitly evaluated for a

given 9 > 0. This is specified in the following lemma.

Lemma S16. Suppose that Conditions (C8)-(C9) hold. Let C' > 0 be an arbitrary con-
stant. Assume that s7'n" = o(1), @ = wo{p/log(n)}/? then there exists a constant a,

such that

~inf (Bh(ﬁ) - Bh(ﬁ2j>) > ain~ ",
1Bk; B I=Cs3/?

for n sufficiently large.



Proof of Lemma S16. We consider 8 = B}, + Cs,ll/2n_"u, where u € R+ satisfying

|lu|| = 1. We have

Bi(B) = Bu(Biy) = E{L(fu — m(X;)" Bi; — Csi/*n™"u) — L. (fi — m(X;)" Bi))}
= B{LA(fs = fi) + fio = w(X)) B, — Csi/n (X)) — Lo (fo — w(X,)"Biy) }
= E{L,(fr — w(X,)"Bi; + Cwod " log(n)"/? — Cs)/*n~"m(X;) w) — L. (fr — 7(X;)"Bi)}
= E[-VQu(m(Xyy) Biy)(Cs/*n " u — Caod ™ log(n)"/?)]
+E[VQr(w(Xyy)" By (Cs)/*n" — Camod ™ log(n)'/?)? |u]
= (Cs)/>n™" = Cwod ™ log(n)'/*) E[(T — Kn(ei(Br))w(X;) ]
+ECh(—€(Bi,))m (X;)m(X;) " (Csy/*n " = Cogd ™ log(n)'/2)?]

= Ji+J,
where €;(8;;) = fr — w(X;)"B;;. By Holder’s inequality, we have

[Jil < Clsy/*n™ — @od ™ log(n)?|(B(m(X;) u)®) 2 [E(r — Ki(ei(B5))*?
< OSTIL/QTL_KO(S;I/Q)O(S_T) =0(s, ' n™").

n

The second inequality holds by the properties of spline basis and Condition (C9), see He

et al. (2013) and Sherwood and Wang (2016). Similarly, by Condition (C9)
Jy = BlICu(—ei(Bi))m (X)) (X;)" (Cs,/*n ")) = O(n ).
Note that .J;, is nonnegative and J; = o(.J}). This completes the proof of the lemma. [

Lemma S17. Assume that s,n**~' = o(1) and Conditions (C8)-(C9) hold. For any



$7. PROOFS OF LEMMAS, PROPOSITIONS AND THEOREMS

C > 0, there exist positive constants as and as such that for n sufficiently large
P(IB; — Byl = Csy/*n™) < 2exp(—agn' ™) + exp(—ass, *n' ).

Proof of Lemma S17. Following Lemma S15 and Lemma S16, there exists some ¢ > 0,

for all n sufficiently large,

P(|Br; — Bill = Cs,/*n™")

< p( s BBz )
188, 1<Csp/ *n=r
1
< P(|Bn(/6;:]) - B(/BZ])‘ = §Cn72n)

p( s BB - Bl - Bu(B)+ BB = on )
18—B;,1<Cs/ 0=~

= [y + Lo.
First, we evaluate Li. Let W; = L (fx — w(Xi;)"Bs;). Then Bn(Bf;) — Bu(Bi,;) =
n~' Y (Wi — EW;). Note that [Wi| < C|w(Xy;)" 8| for some positive constant c.
By the argument of Lemma 3.1 of He et al. (2013), sup, |h;(t) — w(X;;)" Bo;| < ¢*s;,"
It follows that |W;|’s are uniformly bounded by a constant and var(W;) < o2 for some

0% > 0. Applying Bernstein’s inequality, we have

=47 /4
202+ Cen=2/3

Ly = P(] ZWZ\ > cn1_2“/2) < 2exp (

) < 2exp(—ayn' ™).
i=1

Then we consider Ly. To evaluate Lo, we employ the Massart’s concentration theorem.

Let V; = L, (fir — m(X5)"B) — Lo(fir — w(Xi;)" B5;). Then

Vi = VQrn(ei(Biy))w(Xij)" (B = Bfy) + V2Qrn(ei(By)) (w(Xiy)" (B — By))*.



Thus, |V < 2|7 (X;)" (8 — B;;)| < espn™* for some ¢ > 0.
Next, let ey, ..., e, be a Rademacher sequence (i.e., iid sequence taking values of +1

with probability 1/2) independent of Vi, ..., V,,. We have

E{ sip 07 z:]vi - E(m)|} < 2E{ sup  n7| Z::eiVil}

18-85, 1<Csy! *n=~ 18—By,1I<Csy/ *n—r
< 4E{ sup n'| Zem’ )" (B — By;) V}} < 4Cs*n"E|n~ 12@7‘( Xii)|l
18—y, 1<Csy/ *n=r =1

n n 1/2
< ACs P Bl e (X |72 = 4083/%—%[ B w(XmTw(Xij))}
=1 i=1
< Csifrpr1/2
for some constant C', where the first inequality holds by the symmetrization theorem
(Lemma 2.3.1, Van Der Vaart and Wellner, 1996), the second inequality holds by employ-
ing the contraction theorem (Ledoux and Talagrand, 1991), and the last inequality holds

since E(b3(Xi;)) < cos,t for 1 <k <s,+1+1,1<i<nand1<j<p (Stone, 1985).

Finally, we apply Massart’s concentration theorem to calculate L. Let

A= sup n D (Vi— B(V;
188y, 1<Csy/ *nr —

Then

Ly=P(A>cn)2)=P(Z>EZ+ (ecn */2— EZ)) < exp(—ass, *n' ")

n

for some positive constant a3 and n sufficiently large. This completes the proof of Lemma

S17. 0

Next, we evaluate the term |Qx(X;) — Qu(X;)| = |Q-(fil X;) — Q- (fxX;)]-
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Lemma S18. Under Conditions (C1)-(C7), we have
P(|Qr(z) — Qr(z)| > Cn™*) < 2exp(—agn'™*) + exp(—ags, *n' ).
Proof of Lemma S18.
|Qr(X)) = Qu(X)| = |7 (X;) " Bry — Qu(X;))]
= |7(X;) By — m(X;) By | + 1w (X)) By — m(X;) B + |m(X;)T 8y, — Qr(X;)]
= T+ T +1Ts.

The terms 75 and T3 are the same as in Lemma S11.

T = {(n(X;)"(Br; — Bry))*}"* = {(Brs — By,) m(X)m(X;)" (B — Bi) 2
Then sup,, 77 < Op(sn Y B — Bl due to the fact that there exist two positive con-
stants a} and aj such that ajs,! < Apin(E7(X;)7w(X;)7)) < Apax(E7(X;)w(X;)T)) <
a3s 1, Vi, (Zhou et al., 1998). Hence
P(|Qk(z) — Qi(z)| > Cn™™) < P(T] > Cn™"/3) + P(Ty > Cn~"/3) + P(T3 > Cn~"/3)
< P8y = Byl = Cs;*n"/3)

< 2exp(—ayn' ™) + exp(—ass, *n' ).

The second inequality holds because P(T, > Cn="/3) = 0, and P(T5 > Cn™"/3) = 0,

since 0 < k < 1/2 and s;"n" = o(1) by Condition (C5). O

With the above preparation work, next we prove Theorem S5.



Proof of Theorem S5. (1). By Lemma S18, and analogous to the proof of Theorem S3, it

follows directly that

P(mas [6¢5(B) = bis| > Cn*) < O(pn) exp(~cin ™) + O(pn) exp(—cjs; n' ).

1<j<p

(S7.27)

Pl () = i 2 Cn™) = PG e 50s(B) = bl 2 O™
< O(pnK) exp(—cyn' ™) + O(pn) exp(—cfs; *n' 7).

(2). The results follow by using the first result of Theorem S5. If A, ) ¢ AT,k(B),
then there must exist some j € A, such that (%-(B) < cin~®. It follows from Condition
(C4) that |6 ;(B) — 6] > c;n " for some j € A, . Hence, {maxjca, , 10k,;(B) — 014] <
cin~*} C {A., C A, ,(B)}. Consequently,
P(Arx C Arp(B)) > P{ max 05,3 (B) — G < cin "} =1 - P{ min 0,5 (B) = 0| < ern ™"}
= 1 [Ak|P{|0k5(B) = bryl < cin™™}
< 1-O(J Ak [{exp(—cin' ™ +log n) + exp(—cjs, *n' 7> +logn)}),

n

Similarly, the result for Theorem S5(2) can be obtained. This completes the proof. [

$7.5 Proof of Theorem 2
We now proceed to prove Theorem 2 presented in the main text. To begin, we introduce
Lemma S19 and Proposition S20.

Lemma S19. Suppose Conditions (C8),(C10) and Condition (2.3) in the main text hold.

Suppose that w; = tj\/n/log(nd), @, = tjr\/n/log(nd?) witht; > le-j/z, tjp > var (ij)l/Q
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for 1 < 4,k <d. Then, there exist positive constants Cgy and Cps independent of n and

d such that as long as n > Cp log(nd),

max
1<j<d

iy < Ch {(n/ log(nd))—1/2 + d—1/2}

with probability greater than 1 — 4n~!, where l;j and b; are the jth row ofB and B.
The proof of Lemma S19 can refer to online appendix in Fan et al. (2019).

Lemma S20. Under identifiable condition (2.3), Conditions (C8) and (C10) of the main

text, when n,d — oo with log(nd)/n — 0 and K/d — 0, for w =< \/d/logn, the estimator

~

f:(B) given in Algorithm 2 satisfies that

fi(B) -

Proof of Lemma S20. Define the loss function

v (2o - -] ).

L<fi>—§

IIM&

The estimator fz(]g) satisfies the following gradient condition

o~

f (Zz'j - ﬂj —EJsz(E)) bj =0,

HM&

VL (£.8)) = —é

where (., (u) = min(w, |u|) - sign(u) is the derivative of the Huber loss. The expression
within the parentheses can be expanded as
- 1T £ /(P A =\7 T [ £(F
Zij — fi; = bj fi(B) = (u; — ;) + (bj - bj) fi+eij — b; (fi(B) - fi) :
——

———
Ak AbT £,
J k2



Note that the Huber estimator fi;’s satisfy maxi<j<q |ft; — p;| = Op(y/log(nd)/n). Sub-

stitute the expanded residuals into the gradient condition, we have

ézdsz (A,uj + Ab! fi + e —/I;JT (f,(B) — fl>> Ej —0.
j=1

Assume fz(]%) is close to f; and expand /., around f; to first order
éw (rij - 8?51> ~ gw (Tij) - aﬂ (Tij) 3?51

where 7;; = Ap; + Ab]Tfi + 5,0, = fz(]%) — fi, and ¢ equals 1 if |r;;| < w and 0

otherwise. Substituting the above result into the gradient condition, we have

i [ (i) (?"Z])/I;;‘F(Sl} /I;j ~ 0,

&.I*—‘

By Rearranging we can yield a linear equation

d
( > rmaa>l DAL

Define the matrix
d

~ 1 ~ o~
HZ-:EZK (i) b;b]

J=1

Assume /¢ (r;;) > ¢ > 0 (when residuals lie mainly in the quadratic region) and

Amin (é ijl bijT> > ¢ > 0 (assumption (C8) in the main text). According to the

;1| in lemma S19, we have,
2

2
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Since [((r)] < @ and ||b;

< C (according to the result of lemma S19), applying
2
Hoeffding’s inequality gives

d

1 ~ Klogd

y > e (1) by|| = Op (w dg ) :
i=1 2

For term Ap;, we have max; |Ap;| = Op(y/log(nd)/n).

For term Ab! f;, we have by Cauchy-Schwarz inequality, max; ‘Ab]T fz} < Ifilly -

max; | Ab; |, = Op {\/E ((n/log(nd))~V/? + d~1/?) }

Thus we have

I8l = || £:(B) - £,

< Czl'OP {w\/Klggd N \/logind) 1+ VE ((n/log(nd)) ™ +d_1/2)} '

Considering w =< /d/logn and assuming n,d — oo with log(nd)/n — 0 and K/d — 0,

we have

~

£i(B) - f;

== OP(l).

2

This completes the proof of Lemma S20. m

Proof of Theorem 2. Based on Lemma S20, the proof of Theorem 2 follows a similar
approach to that of Theorem S4 and Theorem S5 presented above, therefore, we omit the

details here. N

The convergence property and sure screening property results presented in Theorem 2
are identical to those in Theorem S3. This similarity arises from the fact that the crucial
step in proving these properties is the convergence between Bkj and O;, where Bkj =

argmingn =ty ", Lo(fi — 7m(X;B)) and B;; = argming E(L-(fi — w(X;)"B). Based



on the consistency results between fz and f; in Lemma S20, the convergence property
in the Euclidean norm of ||B; — Bl is identical to that of ||,[§k] — B, where Brj =
argmingn" > " | L. (fi—7(X[B)). Consequently, the result in Theorem 2 is consistent
with the result in Theorem S3. Additional details can be found in Lemmas S15-S18 of
the Supplementary Materials. Therefore, similar to the result under Theorem S3, it can
be concluded that MSDS can handle the NP-dimensionality logp = o(n'=% + s 2n!=2%)

for unknown f.

$7.6 Proofs of Theorem S1 and Theorem 3

In this section, we present the theoretical proofs for Theorem S1 and Theorem 3, focusing

on the control of the FDR, per family error rate, and k family-wise error rate.

Lemma S21. For a given 7(0 < 7 < 1), let X be an exact knockoff copy of X, and
A¢ ={j1,...,4r}. Then

(i) W, =0 for all j, € AS.

(i1) Conditioning on |\/7\\7T| = ((Wisl, ..., Wi )T, Ly, . . ., I, follow i.i.d. Bernoulli(0.5),

where I;, =1 if ij,T > 0 and 0 otherwise.
Hereafter, we denote W = W_, W, =W, for j =1,...,p.
Proof of Lemma S21. (i) For any j, let (X, X)(j) be a vector by swapping the entries X

and Xj in (X,X). Forany S C {1,...,p}, let (X, X)g be a vector by swapping the entries

X; and X; in (X, X) for all j € S. Now consider j € A¢, denote gf)z(-|7) the conditional
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density of f, then

gf\(x,X)(j)(UKua u)) = 9r1(x,X) (v](u, @) (7)) = gr1a(ylu), (57.28)

where v’ = (u}, ..., u) is the first p elements in (u, @)y, i.e., uj, = uy, if k # j and v, = 1y,

if k = j. The second equality holds because f is independent of the knockoff copy X. Let

X(—j) be a vector excluding the element X; in X. From the definition of active features,

we know f is independent of X; given X(_;). We have

/

9p(yl) = gpa(vlul,. .. up)
= Gla(V|ur, . U, Uy, Uy - Up)
= Yfle, (VU5
= 9rle(vfu)
= 95l (v|(u, @)
These equations together with (S7.28) implies that

Ip1x.%), (01, @) = g4x %) (V] (u, @)).
This shows that
o i
FIX, X)) = FIX, X).

By the definition of knockoffs, we know (X, 5()(]-) L (X,X). As a result, we have

(f. (X, X)) = (. (X, X)),

which suggests that (f, X;) < (f,X;). Hence, MSD,(f|X;) = MSD,(f|X;) and W;, =

0.



(i) Let W = (Wy,...,W,). Let m(-) : R¥*+X — R? be a function such that

W =m((X,X), f).

We define €, ... ¢, such that ¢; = 1 for j € A, and ¢; ~ {+1,—1} for j € AS. By

repeating the arguments in part (i), we can show that
(F.(X,X)) £ (f,(X,X)s) forany S C A

Now let S = {j : ¢;, = —1}, a subset of A°, then we observe that

(Wi, ..., W,) =m((X,X), ) £ m((X,X)s, f) = (W1, ..., e,W,).

A

Hence (Wl, o ,Wp) 4 (e, W1, ... ,epr). This completes the proof. ]

Proof of Theorem S1. Without loss of generality, we assume ]Wﬂ > |ﬁ/\2| > > |/I/I7d| >

0 and |Wd+1| — ... =|W,| = 0. Observe that
r Y c . : . c 2 . >
L |-A7'(77a)| vl #{] VS A(%)} vl
_ E_ #{j:j€ A and W; > n,} 1—|—#{j:j€A§ande§—na}]

|1+ #{j:j€ A and Wj < —Nat #{j:j€ fl(na)} V1
14+ #{j:W; < —noy #{j:je€ A and W; >, } }
L # W2} V1 1+ 9{j:j € AL and W; < —na}
< £la #{J:JEATand%Zna} }
L 1+ #{j:je A and W; < —n,}

IN
&

(S7.29)

In order to find 7,, one can simply try different values of ¢ starting from the smallest
value, say t = |Wy41| = 0, then move to the second smallest value t = [IW,], then move

to t = |Wd_1|, and so on. This process terminates only if it finds a value ¢ satisfying
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(2.10). Thus, 7, can be regarded as a stopping time. More rigorously, we define, for

k=d+1,dd—1,...,1

N(k) = #UJGA%MMZEH%Q _ #ﬁqugmu%?ngm
I+#{j:jeAcand W; < —|Wi|} 1+ #{j:je Acand W; <0,j <k}
M (k)
1+ Mo (k)

Let Fi be the o-algebra generated by {M>=(d + 1), M=(d), ..., M*(k), 131, 1g, ..., I},
where ;11 = 0 and I; = 1if j € A; and 0 otherwise. Consequently, we have the idea
whether k is in the active set A, or not given Fy.

Next we show that the process N,(d+ 1), N,(d), ..., N,(1) is a supermartingale run-
ning backward in terms of Fy 1 C Fy C -+ C Fy. If k € A, we have M (k) = M (k—1),

M- (k) = M (k—1) and it follows that N, (k) = N,(k —1). If k € AS, then

T

Nk 1) = MR —IWe20) M (k) ~I(W 2 0)
' L+ Mz (k) = I(Wi <0) (M (k) + I(Wy > 0)) V1

Let dy = #{j : j € A°}. From the result (ii) of Lemma S21, {j € A¢ : I(W; > 0)} are

iid Bernoulli(0.5) random variables. Thus conditional on Fj, we have

M (k)

T




Thus in the case where k € A,

MR M-l MR MAR)
BN =DIAL = Som T amm - =1 T 30 + M08 M= (R) v 1
MA{;;’“L if M- (k) > 0,

MF(k)—1, if M-(k) = 0.
\
)

N(k), if M- (k) >0,

N(k)—1, if M-(k)=0.
\
Thus, E[N(k—1)|Fx] < N(k), implying that N(k), k = d+1,d,...,1is a supermartingale

with respect to {F;}. By the optional stopping theorem for supermartingale, we can

obtain that

#{j:j € A and W, > 0} }_ Z

E[N(ky,)] < E[N(kg41)] :E{l—}-#{jijEAi andVVj <0} N 1+d0—Z]’

where Z = #{j : j € A, Wj > 0}. Since Z ~ Binomial(dy,0.5), we have
do

El——| = 0.50.5%"" ———
{1+do—Z} Z(l) 1+dy—1

=1

do
dO l do—l
= 0.5'0.5%
> ()
do—1
- OZ (dlo> 0.5710.5%

!
< 1
Therefore, E[N(k,,)] < 1. Thus, it follows that

A, (na) N A
|A;(a)] V 1

FDR, = E[ } < aFE[N(k,,)] < .
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]

Proof of Theorem 3. (i) By Markov inequality, we have E[V(7)] < v/n directly. Then it

follows that

BV = B| ¥ 105, 2 m)| = 3 P, 2 m) < Y 2Bl ] = 1B WG] < o
jeAs jeAs JEAS

where V(1) denotes the number of false discoveries in S'i(v) defined in Algorithm 1.

(ii) The proof of this the k-FWER control is straightforward by using the first result,

since we have

(EV(T)] < lyv
k - k-

P(V(r) > k) <

When the pmf of V(1) is skewed to the left of k£ in the sense that

iP(V(T) €[k —uk]) > PV(r) € [k k+u),

then P(V (1) > k) < LE[V(7)]/k always holds with | = 1/2.

In particular, by Markov’s inequality, we have [ = 1 and consequently,

PV(T) > k)

A
|

$8 Additional Simulation Examples

Example S1: serial dependent factor-nonparametric model. Consider a similar joint model

as in example 1, except that fi;’s are generated from a stationary VAR(1) model, that is



for i € [n]

fan = ’7’1Tfi—1 + (1+ Xi,1)2 + &,
fio = '72Tfi—1 +XZ-33+§2,
fizs = 74 fiir +exp(l + Xis) + &is.

We set fo =0, and I = (71, 72,73). The (j, k)th entry of I' is set to be 0.4 when j = k and

0.3 otherwise. We consider the following cases: Case (3a): & “ N(0,1) for k = 1,2,3;

Case (3b): &1 = (y/1+E2,,) G, with & = 0 and Gy, ~ N(0,1) for k = 1,2, 3.

In all the settings of example S1, X;, X35 and X5 are active covariates. Simulation
results are provided in Tables S1 and S6 of the Supplementary Materials. All screening
methods perform well when the covariates follow a multivariate normal distribution, while
NIS, DCSIS and RVSIS fail to screen out inactive covariates in the presence of heavy-tailed

covariates.

Example S2: factor-additive model. Consider a similar three factor model as in ex-

ample 1, except that fp;’s are randomly sampled from {0,0.5,0.8} for 1 < j < d,
g; ~ t3(0,3.), where 3. has the same form as in example 1, and f;;’s are assumed

to follow nonlinear additive models

fil = 2(1 + Xi1)2 + 2X122 + 2 exp(l =+ Xz3) + filu
fio = exp(2Xio) 4+ (1 — X4)® + &,

fis = 3XAI(Xi3>0)+3/Xuy +4X3% + &is.

In this example, we also consider X; drawn from one of the two distributions: N(0,1,)



$8. ADDITIONAL SIMULATION EXAMPLES

and N (0, Xx) with Xx = (0.5/77),.; ;<,. The errors & = (&1, &, &i3)T in this model are

generated from one of the following three scenarios as in example 1: (1)&; LN (0,1) for

k=1,2,3; (2) &k i ts for k = 1,2,3; (3) heteroscedastic error, &, = eXp(Z;?:l Xo715)Giks
where (i YN (0,0.7%) for k = 1,2,3. Simulation results are shown in following table
S2-S3.

For the factor-additive model, when the covariates are functionally related to the
latent factors, all the other six methods completely fail. In contrast, MSDS works reason-
ably well in all the scenarios and outperforms the other six methods in both MMS and
screening probability.

In terms of determining the number of latent factors, K, as our proposed method is
a bootstrap-based eigenvalue method, we denote the proposed estimation method “BE”.
We compare BE with four other approaches mentioned in Section 2.5: ON (Onatski,
2009), ER (Wang, 2012), GR (Ahn and Horenstein, 2013) and ACT (Fan et al., 2022).
As detailed in Tables S6-S7, methods ER, ON, and GR perform poorly in estimating the

number of latent factors, as they significantly overestimate this number. Our method

outperforms these competing methods across all settings.



$9 Additional Simulation Results for Screening of the Main

Text

In this simulation section, we mainly provide the simulation results for examples 1-2 of
the main documents in Tables S4-S5 and Tables S7-S8. These include the results for

screening and estimating the number of latent factors.

$10 Simulation Results for FDR Control

This section presents the simulation results for examples 3 and 4 in Tables S9-S10 , which
are used to evaluate the FDR control of the main text. For both examples 3 and 4, we
consider 7 € {0.50,0.75,0.90}. To evaluate the FDR control of MSDK procedure, we take
a € {0.15,0.2,0.3}. To further reduce the variability of MSDK procedure and yield a more
stable result, we employ DMSDK procedure and take 7" = 50,1 = 0.5, and v € {1,2,3}.
Thus by Theorem 3, the PFER can be controlled at v, that is, E[V(7)] < yv. Referring to
Ren et al. (2023), v ~ 1.02 is obtained via linear programming. We also evaluate k--FWER
control at nominal level 0.2, similarly by Theorem 3, it suffices to control v < 0.4k /~ if
we take ¢ = 1/2, we take k € {3,4,5} for contrast analysis. In this scenario, v ~ 1.02 can
also be computed. Besides, when v is not an integer, let [v| be the integer part of v and
sample a random variable U ~ Bernoulli(v — |v]). If U = 1, run the (|v] 4 1)-knockoffs

and |v|-knockoffs otherwise.



$11. ADDITIONAL RESULTS FOR REAL DATA ANALYSIS

$11 Additional Results for Real Data Analysis
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Figure S3: Trend of two latent factors associate with the selected genes at different quantiles. The first row

denotes the selected genes at 7 = 0.75; The Second row denotes the selected gene at 7 = 0.9.
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Table S2: Simulation results for example S2 when X; ~ N(0,1,), p* denotes the true model size

MMS
Error Method p* Median(MAD) Mean(SD) P1 P2 P3 Pa Ps Ps Po  Pio Pau
N(0,1) MSDSoso 5  6.00(1.48) 10.16(22.13) 1.00 1.00 1.00 1.00 098 - - - 098
QaSISp.50 5 22.50(24.46) 67.31(109.39) 1.00 1.00 1.00 0.98 0.60 - - - 0.60
NIS 5 1418.00(490.66) 1451.57(418.55) 0.32 0.78 0.66 0.30 0.14 - - - 0.10
SIRS 5 447.50(452.19) 467.36(319.36) 1.00 1.00 1.00 1.00 0.10 - - - 0.10
DCSIS 5 94.50(119.34) 175.52(182.57) 0.92 0.98 0.99 0.94 0.23 - - - 0.23
RVSIS 5 1596(519.50) 1552.68(580.37) 0.42 0.79 0.77 0.38 0.06 - - - 0.02
PC-Screen 5 95.00(106.00) 150.90(148.81) 1.00 1.00 1.00 1.00 0.23 - - - 0.23
ts MSDSop.50 5 5.50(0.74) 10.94(23.98) 1.00 1.00 1.00 1.00 0.98 - - - 0.98
QaSISp.50 5 26.00(31.13) 68.27(95.89) 1.00 1.00 1.00 1.00 0.58 - - - 0.58
NIS 5 2630.00(2305.44) 2609.88(1626.94) 0.25 0.61 0.57 0.28 0.14 - - - 0.04
SIRS 5 2290.00(1949.61) 2364.88(1433.97) 1.00 1.00 1.00 f1.00 0.03 - - - 0.03
DCSIS 5 155.00(192.73) 218.56(201.61) 091 092 096 0.91 0.25 - - - 0.23
RVSIS 5 3140.00(1616.03) 2960.94(1413.97) 0.36 0.65 0.67 0.34 0.08 - - - 0.02
PC-Screen 5 87.00(108.97) 150.20(150.08) 1.00 1.00 1.00 1.00 0.33 - - - 0.33
hetero MSDSp.50 5 5.00(0) 5.08(0.36) 1.00 1.00 1.00 1.00 1.00 1.00
MSDSp.75 8 11.00(1.48) 19.35(23.50) 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.96 0.95
MSDSp.90 8 18.50(12.60) 46.51(77.73) 1.00 1.00 1.00 1.00 1.00 0.96 0.93 0.87 0.84
QaSISp.50 5 10.00(7.41) 37.82(57.31) 1.00 1.00 1.00 1.00 0.75 0.75
QaSISg.75 8 1046.00(935.37) 1181.56(1062.48) 1.00 1.00 1.00 1.00 0.61 0.32 0.32 0.17 0.03
QaSISp.00 8 2830.00(1393.64) 2754.47(1177.24) 0.41 0.63 0.83 0.42 0.10 0.25 0.30 0.17 0.00
NIS 8 3777.50(1215.73) 3438.55(1226.07) 0.50 0.75 0.73 0.46 0.11 0.15 0.21 0.17 0.00
SIRS 8 2282.50(1174.96) 2264.64(1142.64) 1.00 1.00 1.00 1.00 0.93 0.11 0.12 0.09 0.00
DCSIS 8 1067.50(1060.05) 1415.65(1174.22) 0.98 0.98 0.98 0.98 0.89 0.39 0.47 0.28 0.07
RVSIS 8 3395.00(1286.15) 3135.19(1224.47) 0.72 0.80 0.81 0.56 0.23 0.17 0.17 0.15 0.00
PC-Screen 8 3657.50(1004.46) 3552.25(1005.02) 1.00 1.00 1.00 1.00 0.23 0.05 0.02 0.05 0.00

Table S3: Simulation

results for example S2 with 3x = (0.5/" ), <, ;<p,, p*

denotes the true model size

MMS
Error Method p* Median(MAD) Mean(SD) P1 P2 Ps Pa Ps Ps Po  Pio  Pau
N(0,1) MSDSps0 5  5.00(0) 5.18(0.57) 1.00 1.00 1.00 1.00 1.00 - - - 1.00
QaSISy 50 5 5.00(0) 16.18(45.80) 1.00 1.00 1.00 1.00 0.92 - - - 0.92
NIS 5 1480.00(1355.09) 2013.33(1671.58) 0.44 0.70 0.63 0.41 0.12 - - - 0.11
SIRS 5 5.00(0) 9.78(11.01) 1.00 1.00 1.00 1.00 0.97 - - - 0.97
DCSIS 5 5.00(0) 33.87(80.11) 0.96 0.99 0.98 0.98 0.86 - - - 0.84
RVSIS 5 1350.00(1275.24) 1705.83(1451.77) 0.61 0.78 0.74 0.51 0.18 - - - 0.17
PC-Screen 5 5.00(0) 5.95(2.68) 1.00 1.00 1.00 1.00 1.00 - - - 1.00
ts MSDSo50 5 5.00(0) 5.35(2.14) 1.00 1.00 1.00 1.00 1.00 - - - 1.00
QaSISp.50 5 6.00(1.48) 9.62(11.47) 1.00 1.00 1.00 1.00 0.98 - - - 0.98
NIS 5 1860.00(1651.61) 2294.00(1671.65) 0.40 0.68 0.56 0.31 0.12 - - - 0.10
SIRS 5 5.00(0) 8.33(11.53) 1.00 1.00 1.00 1.00 0.98 - - - 0.98
DCSIS 5 6.00(1.48) 37.63(80.95) 0.96 096 096 094 0.81 - - - 0.81
RVSIS 5 1742.50(1567.85) 1972.88(1432.59) 0.57 0.70 0.66 0.38 0.10 - - - 0.09
PC-Screen 5 5.00(0) 7.35(9.15) 1.00 1.00 1.00 1.00 0.98 - - - 0.98
hetero MSDSo.50 5 5.00(0) 6.36(4.39) 1.00 1.00 1.00 1.00 1.00 1.00
MSDSp.75 8 12.00(2.96) 29.02(50.42) 1.00 1.00 1.00 1.00 1.00 0.97 095 0.88 0.84
MSDSp.90 8 25.00(20.75) 47.91(58.16) 1.00 1.00 1.00 1.00 1.00 0.83 0.86 0.75 0.67
QaSISg 50 5 7.00(2.96) 21.78(45.35) 1.00 1.00 1.00 1.00 0.87 0.87
QaSISp.75 8 1518.00(1165.32) 1532.00(878.40) 0.95 1.00 1.00 1.00 0.54 0.22 0.25 0.15 0.05
QaSISp.90 8 1842.00(1423.29) 1983.42(1023.22) 0.34 0.71 0.55 0.31 0.08 0.27 0.28 0.25 0.00
NIS 8 3682.50(1260.21) 3445.83(1157.10) 0.53 0.77 0.71 0.38 0.05 0.14 0.14 0.21 0.00
SIRS 8 2036.00(1165.32) 1974.22(901.87) 1.00 1.00 1.00 1.00 0.92 0.05 0.12 0.06 0.00
DCSIS 8 518.00(521.87) 620.28(463.37) 0.97 0.97 0.98 0.97 0.82 0.41 0.45 0.23 0.11
RVSIS 8 3745.00(1204.61) 3381.44(1261.98) 0.68 0.80 0.78 0.55 0.14 0.10 0.10 0.07 0.00
PC-Screen 8 2462.50(1389.93) 2396.58(1145.88) 1.00 1.00 1.00 1.00 0.96 0.12 0.10 0.05 0.00
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Table S4: Simulation results for example 1 with Ix = (0.5/°771);<; j<,, p* denotes the true model size

MMS
Error Method p* Median(MAD) Mean(SD) P1 Po Ps Pa Ps Ps Py Pio Pau
N(0,1) MSDSos0 5  5.00(0) 5.00(0) 1.00 1.00 1.00 1.00 1.00 - - - 1.00
QaSISo 50 5 5.00(0) 5.07(0.47) 1.00 1.00 1.00 1.00 1.00 - - - 1.00
NIS 5 5.00(0) 5.01(0.10) 1.00 1.00 1.00 1.00 1.00 - - - 1.00
SIRS 5 5.00(0) 5.00(0) 1.00 1.00 1.00 1.00 1.00 - . - 1.00
DCSIS 5 5.00(0) 5.00(0) 1.00 1.00 1.00 1.00 1.00 - - - 1.00
RVSIS 5 5.00(0) 5.00(0) 1.00 1.00 1.00 1.00 1.00 - - - 1.00
PC-Screen 5 5.00(0) 5.00(0) 1.00 1.00 1.00 1.00 1.00 - - - 1.00
ts MSDSo50 5 5.00(0) 5.03(0.22) 1.00 1.00 1.00 1.00 1.00 - - - 1.00
QaSISp.50 5 5.00(0) 5.54(2.09) 1.00 1.00 1.00 1.00 1.00 - - - 1.00
NIS 5 10.00(7.41) 102.90(127.06) 0.74 0.86 0.87 0.86 0.76 - - - 0.70
SIRS 5 5.00(0) 5.01(0.10) 1.00 1.00 1.00 1.00 1.00 - - - 1.00
DCSIS 5 5.00(0) 5.00(0) 1.00 1.00 1.00 1.00 1.00 - - - 1.00
RVSIS 5 5.00(0) 42.75(137.20) 0.93 0.93 0.92 0.93 0.91 - - - 0.90
PC-Screen 5 5.00(0) 5.00(0) 1.00 1.00 1.00 1.00 1.00 - - - 1.00
hetero  MSDSos0 5 5.00(0) 5.73(2.12) 1.00 1.00 1.00 1.00 1.00 1.00
MSDSp.75 8 10.00(2.96) 22.40(36.01) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.87 0.87
MSDSp.90 8 29.00(25.20) 81.06(132.80) 0.93 1.00 1.00 0.98 0.85 1.00 1.00 0.78 0.61
QaSISp 50 5 6.00(1.48) 7.67(6.51) 1.00 1.00 1.00 1.00 0.98 0.98
QaSISp.75 8 28.50(24.46) 85.52(145.71) 0.94 1.00 1.00 0.98 0.80 1.00 1.00 0.76 0.57
QaSISp.90 8 2607.50(1126.77) 2693.38(1071.41) 0.03 0.05 0.04 0.05 0.02 0.97 1.00 0.80 0.00
NIS 8 3680.00(1071.17) 3581.50(981.38) 0.13 0.12 0.07 0.08 0.07 0.54 0.56 0.33 0.00
SIRS 8 36.50(30.39) 67.92(79.09) 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.54 0.53
DCSIS 8 10.00(2.96) 30.64(64.79) 0.97 098 0.98 0.96 0.86 1.00 1.00 0.98 0.85
RVSIS 8 3285.00(1245.38) 3022.44(1169.79) 0.21 0.31 0.17 0.18 0.08 0.46 0.50 0.34 0.00
PC-Screen 8 27.00(23.72) 43.05(40.86) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.63 0.63

Table S5: Simulation results for example 2 with Ix = (0.5°771);<; j<,, p* denotes the true model size

MMS (p* = 5)

Eik Method Median(MAD) Mean(SD) P1 P2 Ps Py Ps Paii
N(0,1) MSDSy 5 6.00(1.48) 7.09(2.86) 1.00 1.00 1.00 1.00 1.00 1.00
QaSISp .5 6.00(1.48) 8.06(9.69) 0.99 1.00 1.00 1.00 1.00 0.99

NIS 2472.50(2142.35) 2464.70(1551.20) 0.18 0.24 0.45 0.52 1.00 0.04

SIRS 12.00(10.37) 66.64(128.47) 0.67 1.00 1.00 1.00 1.00 0.67

DCSIS 271.00(327.65) 353.86(377.82) 0.47 0.54 0.76 0.89 1.00 0.33

RVSIS 1875.00(1890.31) 2095.95(1450.50) 0.19 0.23 0.46 0.73 1.00 0.06

PC-Screen 6.00(1.48) 8.46(8.67) 0.98 1.00 1.00 1.00 1.00 0.98

Cauchy MSDSo 5 6.00(1.48) 9.34(11.42) 1.00 1.00 0.98 1.00 1.00 0.98
QaSISp 5 6.00(1.48) 10.43(12.29) 0.97 1.00 1.00 1.00 1.00 0.97

NIS 2232.50(1719.81) 2325.80(1391.02) 0.23 0.19 0.32 0.49 0.98 0.04

SIRS 20.00(22.23) 77.29(122.12) 0.60  1.00 099  1.00  1.00  0.60

DCSIS 218.00(265.38) 355.24(369.26) 0.39 0.56 0.72 0.92 1.00 0.28

RVSIS 1637.50(1556.73) 1990.95(1383.97) 0.22 0.21 0.37 0.66 0.99 0.06

PC-Screen 6.00(1.48) 14.12(29.72) 0.94 1.00 1.00 1.00 1.00 0.94




Table S6: Determining the numbers of factors for example S1 by various method.

Case BE ACT ER ON GR BE ACT ER ON GR
Xi~N(0,1,) Xi ~t3(0,1;)

ave(f() 3.00 297 199.00 199.00 10.36 2.53 242 132.12 110.63 7.05

med(f() 3.00 3.00 199.00 199.00 3.00 3.00 3.00 199.00 199.00 3.00

Case (3a) P(K <3) 0.00 0.03 0.00 0.00 0.00 0.46 0.52 0.23 0.16  0.00
P(k >3) 0.00 0.00 1.00 1.00 0.03 0.00 0.00 0.66 0.55 0.03

P(k =3) 1.00 0.97 0.00 0.00 0.97 0.54 048 0.11 0.29 097

ave(K) 3.00 3.00 199.00 199.00 8.27 2.85 2,67 142.02 112.63 7.85

med(k) 3.00 3.00 199.00 199.00 3.00 3.00 3.00 199.00 199.00 3.00

Case (3b) P(k <3) 0.00 0.00 0.00 0.00 0.00 0.21 0.33 0.14 0.13 0.01
P(k >3) 0.00 0.00 1.00 1.00 0.02 0.00 0.00 0.71 0.56 0.04

P(k =3) 1.00 1.00 0.00 0.00 0.98 0.79 0.67 0.15 0.31 0.95
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Table S7: Determining the numbers of factors for example 1 and example S2 by various methods. “hetero”

denotes the heteroscedastic error case.

Example 1 Example S2
X Ei BE ACT ER ON GR BE ACT ER ON GR
N(0,1) ave(f() 3.00 3.00 199.00 199.00 14.23 2.92 2.91 195.04 195.04 47.95

med(R) 3.00 3.00 199.00 199.00 3.00 3.00 3.00 199.00 199.00 3.00
P(R’ <3) 0.00 0.00 0.00 0.00 0.00 0.06 0.06 0.02 0.02 0.00
P(K >3) 0.00 0.00 1.00 1.00 0.05 0.00 0.01 0.98 0.98 0.25
P(K =3) 1.00 1.00 0.00 0.00 0.95 0.94 093 0.00 0.00 0.75

t3 ave(f() 3.00 3.00 199.00 199.00 43.11 2.95 2.93 199.00 199.00 42.51

med(R’) 3.00 3.00 199.00 199.00 3.00 3.00 3.00 199.00 199.00 3.00
N(0,1,) P(I:{ <3) 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.00 0.00 0.01
P(K >3) 0.00 0.00 1.00 1.00 0.11 0.00 0.00 1.00 1.00 0.18
P(K 3) 1.00 1.00 0.00 0.00 0.89 0.97 096 0.00 0.00 0.81

hetero ave( A) 3.00 3.00 199.00 199.00 20.64 2.97 2.94 197.02 197.02 32.13
med(R’) 3.00 3.00 199.00 199.00 3.00 3.00 3.00 199.00 199.00 3.00
P(K <3) 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.00 001 0.00
P(K >3) 0.00 0.00 1.00 1.00 0.06 0.00 0.00 0.99 0.99 0.15
P(K 3) 1.00 1.00 0.00 0.00 094 0.98 0.96 0.00 0.00 0.85

N(0,1) ave( A) 3.00 3.00 199.00 199.00 31.52 2.99 2.98 197.02 197.02 66.60
med(f{) 3.00 3.00 199.00 199.00 3.00 3.00 3.00 199.00 199.00 3.00
P(K <3) 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.01 001 0.00
P(K >3) 0.00 0.00 1.00 1.00 0.13 0.00 0.02 0.99 099 0.30
P(R’ =3) 1.00 1.00 0.00 0.00 0.87 099 095 0.00 0.00 0.70

t3 ave(K) 3.00 3.00 199.00 199.00 19.67 3.01 2.99 199.00 199.00 60.37

med(f() 3.00 3.00 199.00 199.00 3.00 3.00 3.00 199.00 199.00 3.00
N(0,2x) P(Ii( <3) 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.00 0.00 0.00
P(K >3) 0.00 0.00 1.00 1.00 0.07 0.04 0.03 1.00 1.00 0.28
P(K=3) 1.00 1.00 0.00 0.00 0.93 094 092 0.00 0.00 0.72

hetero ave( A) 3.00 2.98 199.00 199.00 4.96 2.98 2.96 199.00 199.00 52.10
ed(f() 3.00 3.00 199.00 199.00 3.00 3.00 3.00 199.00 199.00 3.00
<3) 0.00 0.02 0.00 0.00 0.00 0.04 0.05 0.00 0.00 0.01
>3) 0.00 0.00 1.00 1.00 0.01 0.02 0.03 1.00 1.00 0.23
=3) 1.00 098 0.00 0.00 0.99 094 092 0.00 0.00 0.76




Table S8: Determining the numbers of factors for example 2 by various method.

Ein BE ACT ER ON GR BE ACT ER ON GR
X; ~N(0,1,) X; ~N(0,%x)

ave(K) 222 215 195.04 195.04 59.18 222 2.18 197.02 197.02 74.59

med(K) 2.00 2.00 199.00 199.00 1.00  2.00 2.00 199.00 199.00 3.00

N(0,1) P(K<3) 055 060 002 002 066 064 066 001 001 043
P(K>3) 001 000 098 098 027 000 000 099 099 0.33

P(K=3) 044 040 000 000 0.07 036 034 000 000 0.24

ave(K) 256 252 199.00 199.00 35.20 249 245 197.02 197.02 56.07

med(K) 3.00 3.00 199.00 199.00 3.00  3.00 3.00 199.00 199.00 3.00
Cauchy(0,1) P(K <3) 032 035 000 000 036 044 048 001 001 0.18
P(K>3) 000 000 100 1.00 013 000 000 099 099 025

P(K=3) 068 065 000 000 051 056 052 000 000 0.57
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Table S9: Simulation results for example 3 via MSDK, PC-Knockoff and DMSDK procedures

MSDK procedure FDR, control
T ! Py Pa Ps Pa Ps Ps Pr Ps  Pay  V(r)(FDR)  Power

0.50 0.15 091 091 088 091 093 091 091 093 0.70 1.81(0.161) 0.91
0.20 0.88 098 095 095 095 095 098 090 0.71 1.76(0.180) 0.94
0.30 098 098 098 098 098 096 1.00 1.00 0.90 4.90(0.311) 0.98
0.75 0.15 0.80 0.84 0.75 0.80 0.81 0.74 0.84 0.77 0.41 1.87(0.162) 0.79
0.20 0.83 093 087 092 091 086 091 0.76 0.51 2.90(0.212) 0.87
0.30 093 098 093 095 096 091 0.98 0.88 0.68 5.92(0.299) 0.94
0.90 0.15 0.22 031 0.24 0.28 027 027 027 023 0.00 1.25(0.296) 0.26
0.20 0.43 047 046 044 048 0.40 0.55 032 0.05 2.90(0.272) 0.44
0.30 0.63 0.76 0.65 0.78 0.78 0.64 0.69 054 0.14 9.67(0.361) 0.68

PC-Knockoff procedure FDR, control
! Py P Ps Pa Ps Ps Pz Ps  Pau V(ﬁ{) Power

0.15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.34(0.114) 1.00
0.20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.20(0.159) 1.00
0.30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 4.16(0.284) 1.00

DMSDK procedure PFER control
Py P Ps Pa Ps Ps Pz Ps Par  V(7) (Fﬁ) Power

T v
0.50 1 096 1.00 096 1.00 1.00 0.96 0.99 0.95 0.90 0.40(0.048) 0.97
2 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.96 0.92 1.33(0.142) 0.98
3 096 1.00 097 1.00 1.00 1.00 1.00 0.98 0.94 1.48(0.156) 0.99
0.75 1 090 095 0.87 094 093 086 092 083 045 0.74(0.085) 0.90
2 090 098 097 098 097 094 095 095 0.71 1.29(0.139) 0.96
3 093 098 093 1.00 1.00 0.89 098 096 0.73 2.45(0.234) 0.96
0.90 1 0.47 077 050 068 0.72 0.63 0.76 0.51 0.07 0.66(0.076) 0.63
2 0.63 0.80 0.65 0.73 0.78 0.54 0.82 0.63 0.11 1.39(0.148) 0.69
3 0.70 0.83 0.66 0.80 0.82 0.60 0.82 0.66 0.24 2.47(0.236) 0.73

DMSDK procedure k-FWER control at 0.20
T k(v) P, P» Ps Ps Ps Ps Pr Ps  Pa V(r)(FWER) Power

0.53 0.67 0.52 0.77 0.70 0.72 0.87 0.59 0.06 1.27(0.067
0.62 0.71 0.60 0.79 0.74 0.74 0.89 0.59 0.09 1.84(0.078

0.67
0.71

0.50 3(1.17) 0.97 1.00 097 098 099 0.99 1.00 096 091 0.78(0.000) 0.98
4(1.56) 096 1.00 0.97 1.00 1.00 1.00 1.00 0.99 0.92 0.81(0.000) 0.99
5(1.96) 0.97 1.00 1.00 0.99 0.99 0.99 1.00 0.99 0.96 1.35(0.019) 0.99

0.75 3(1.17) 0.92 097 091 091 098 0.90 094 0.78 0.50 0.63(0.011) 0.90
4(1.56) 0.86 0.97 092 097 096 0.92 096 0.86 0.60 0.77(0.011) 0.93
5(1.96) 0.87 098 093 1.00 0.98 094 097 0.90 0.67 1.33(0.020) 0.95

090 3(1.17) 049 0.66 053 0.75 0.65 0.69 083 0.54 0.06 0.81(0.056) 0.64
(1.56) (0.067)
(1.96) (0.078)




Table S10: Determining the numbers of factors for examples 3-4 by various methods

Example 3 Example 4

BE ACT ER ON GR BE ACT ER ON GR

ave(K) 3.00 3.00 199.00 199.00 14.58 3.00 298 199.00 199.00 46.65
) 3.00 3.00 199.00 199.00 3.00 3.00 3.00 199.00 199.00 3.00
3) 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00
3) 0.00 0.00 1.00 1.00 0.05 0.00 0.00 1.00 1.00 0.20
3) 1.00 1.00 0.00 0.00 0.95 1.00 0.98 0.00 0.00 0.80
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Table S12: Coefficients of Linear quantile regression with selected genes by DMSDK method as inputs

at each quantile

LOC650238 LOC650436 XRCC6BP1 MED28 KIAA1598 ASCL2

=02  fr 0.59 -0.50
13 0.47 0.18
=050  fr 0.43 0.07
fs 0.42 0.34
=075  ff 0.32 -0.19 -0.18
f 0.42 -0.47 -0.21
=090  fr -0.24

I3 -0.19




