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In Section S1, we provide the proofs for all the theoretical results. In Section S2, we demonstrate

the applications of our proposed experimental schemes in both A/B testing and sequential

experiments. Finally, we present supplementary simulation results in Section S3.
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S1 Theoretical Proofs

Lemma S1. For any n × n positive definite matrices A, B, and n × p

column full-rank matrix X, we have:

a. If A ⪰ B, then for 1 ≤ s ≤ ∞, tr((A−B)s)1/s ≥ tr(As)1/s − tr(Bs)1/s.

b. For −∞ < s ≤ r < ∞, λmin(A) ≤ tr(As/n)1/s ≤ tr(Ar/n)1/r ≤

λmax(A), where λmin(A) and λmax(A) denote the minimum and maxi-

mum eigenvalues of matrix A, respectively.

c. κ(XTAX) ≤ κ(XTX)κ(A), where κ(A) is the condition number of A.

d. λmin(X
TX)λmax(A) ≤ λmax(X

TAX) ≤ λmax(X
TX)λmax(A).

Lemma S1 presents some fundamental results for positive definite ma-

trices, with proofs omitted. The following lemma establishes upper and

lower bounds for all ϕs-optimality criteria of any positive definite matrix.

Lemma S2. For any p× p positive definite matrix M, we have

C1tr(M/p)−1 ≤ tr((M)−s/p)1/s ≤ C2tr(M/p)−1, for 0 ≤ s ≤ ∞,

where when 0 ≤ s < 1, C1 = κ(M)−1; when s ≥ 1, C1 = max{p−(1−1/s), κ(M)−1},

and C2 = κ(M).

Proof of Lemma S2. Let λ1, λ2, · · · , λp denote the eigenvalues of matrix M
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sorted in descending order. Note that

tr(M−s) =

p∑
i=1

λ−s
i


≤ pλ−s

p = pκ(M)sλ−s
1 ≤ ps+1κ(M)str(M)−s,

≥ pλ−s
1 = pκ(M)−sλ−s

p ≥ ps+1κ(M)−str(M)−s,

(S1-1)

which holds for any s > 0. When s ≥ 1, we have a tighter lower bound:

tr(M−s) = p

(
p∑p

i=1 λ
−s
i

)−1

≥ p

(
tr(Ms)

p

)−1

≥ p2

tr(M)s
, (S1-2)

where the first inequality follows from Lemma S1, and the second inequal-

ity holds because for s ≥ 1, tr(Ms) =
∑p

i=1 λ
s
i ≤ (

∑p
i=1 λi)

s
= tr(M)s.

Combining (S1-1) and (S1-2) yields the conclusion of Lemma S2.

Proof of Proposition 1. For simplicity, denote [A]s = tr(As/p)1/s for a p×p

positive definite matrix A. Clearly, ∥A∥ = λmax(A) = lims→∞[A]s and

λmin(A) = lims→−∞[A]s. Note that

[cov(α̂(R0,T))]s − [cov(α̂(R,T))]s
[cov(α̂(R,T))]s

(i)

≤ [cov(α̂(R0,T))− cov(α̂(R,T))]s
[cov(α̂(R,T))]s

(ii)

≤ ∥cov(α̂(R,T))∥
[cov(α̂(R,T))]s

∥cov(α̂(R0,T))− cov(α̂(R,T))∥
∥cov(α̂(R,T))∥

(ii)

≤ κ(cov(α̂(R,T)))RT(R,R0,T)

(iii)

≤ κ(XTX)κ(R)RT(R,R0,T),

where inequalities (i), (ii), and (iii) follow from conclusions of Lemma S1

a, b, and c, respectively. Additionally, if the covariates matrix Z satisfies
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Assumption 4, we have

TTR−1T ⪰ TTΣ(R)T ⪰ µTTR−1T.

Thus, we have κ(cov(α̂(R,T))) ≤ µ−1κ(TTT)κ(R).

Proof of Theorem 1. To derive the upper bound of the loss, we need to pro-

vide upper bounds for the spectral norms of DTRD and L(XTR−1X)−1LT .

For simplicity, let V0 = XTR−1
0 X and V = XTR−1X.

On the one hand, according to the properties of the spectral norm, we

have

∥DT∥ = ∥LV−1XTR−1 − LV−1
0 XTR−1

0 ∥

≤ ∥LV−1XT (R−1 −R−1
0 )∥+ ∥L(V−1 −V−1

0 )XTR−1
0 ∥

≤ (1 + ∥XV−1
0 XTR−1

0 ∥)∥LV−1XT∥∥R−1
0 −R−1∥

≤ (1 + ∥XV−1
0 XTR−1

0 ∥)∥LV−1XT∥∥R−1∥∥R−1
0 ∥∥R−R0∥,

(S1-3)

where the last two inequalities hold because

V−1−V−1
0 = V−1XT (R−1

0 −R−1)XV−1
0 and R−1

0 −R−1 = R−1(R−R0)R
−1
0 .

Denote

V−1 =

V11 V12

V21 V22

 ,

By the inverse formula for block matrices, we have

V11 = (TTΣ(R)T)−1 and V12 = −V 11TTR−1Z(ZTR−1Z)−1.
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Therefore,

∥LV−1XT∥ = ∥V11TT∥+ ∥V12ZT∥

= ∥V11TT∥+ ∥V11TTR−1/2R−1/2Z(ZTR−1Z)−1ZTR−1/2R1/2∥

≤ (1 + κ(R)1/2∥R−1/2Z(ZTR−1Z)−1ZTR−1/2∥)∥V11∥∥TT∥

= (1 + κ(R)1/2)∥V11∥∥TT∥,

(S1-4)

where the last equality holds because R−1/2Z(ZTR−1Z)−1ZTR−1/2 is an

orthogonal projection matrix, so its spectral norm equals 1. Similarly, we

have

∥XV−1
0 XTR−1

0 ∥ = ∥R1/2
0 R

−1/2
0 XV−1

0 XTR
−1/2
0 R

−1/2
0 ∥ ≤ κ(R0)

1/2. (S1-5)

Substituting (S1-4) and (S1-5) back into (S1-3), we obtain

∥D∥ ≤ (1 + κ(R0)
1/2)(1 + κ(R)1/2)

∥V11∥∥TT∥∥R−R0∥
λmin(R)λmin(R0)

. (S1-6)

On the other hand, under Assumption 4, note that

∥L(XTR−1X)−1LT∥ = ∥V11∥ ≤ (µλmin(T
TT)λmin(R

−1))−1. (S1-7)

Combining (S1-6) and (S1-7), we have

RT(R,R0,T) =
∥DTRD∥

∥L(XTR−1X)−1LT∥

≤ (1 + κ(R0)
1/2)2(1 + κ(R)1/2)2κ(TTT)κ(R)2

µλmin(R0)2
∥R−R0∥2.
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Note that λmin(R0) ≥ δλmin(Σ0) and κ(R) ≤ κ0 + δ−1r. Therefore, for any

(R,R0,T) ∈ Ωr × Ω0 ×Θ, we have

RT(R,R0,T) ≤ C1κ(T
TT)∥R−R0∥2,

where C1 = µ−1(δλmin(Σ0))
−2(1 + κ

1/2
0 )2(1 + (κ0 + δ−1r)1/2)2(κ0 + δ−1r)2.

Additionally, ∥R − R0∥2 ≤ (∥R − R∗∥ +
∑k

t=0 ∥Σt∥|σ2∗
t − σ2

t0|)2 ≤ (r +

C2∥σ∗2 − σ2
0∥1)2, where C2 = max0≤t≤k ∥Σt∥.

Proof of Lemma 1. Let δ =
(
κ0 − κ(Σ0)λmin(Σ0)/

∑k
t=1 λmax(Σt)

)
. For any

R ∈ ∪j∈J [Ω
∗
j ], we have

κ(R) =
λmax(R)

λmin(R)
≤ κ(Σ0) +

∑k
t=1 λmax(Σt)

δλmin(Σ0)
= κ0,

i.e., R ∈ Ω0. On the other hand, for some j ∈ J with j0 = 0, let R0 =

σ2
0Σ0 + Σ1 ∈ Ω∗

j and s0 = xT
0Σ0x0, where x0 is a unit vector such that

xT
0Σ1x0 = 0. When σ2

0 → 0+, we have

κ(R0) ≥
λmax(Σ1)

σ2
0s0

→ ∞.

This contradicts the assumption that the condition number is bounded,

thus proving R ∈ ∪j∈J [Ω
∗
j ].

Proof of Theorem 2. By Theorem 1 and Lemma 1, for any j ∈ J , Problem

(3.8) is equivalent to

arg min
a0∈Aδ

max
a∈Aj

∥a− a0∥1, (S1-8)
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where Aδ = ∪j∈JAj.

On the one hand, for any j ∈ J , if j0 = 0, i.e., a ∈ Aj = {a | a0 ∈

[δ, 1); at = 1 if jt = 1; at ∈ [0, 1) if jt = 0, t ̸= 0}, we have

max
a∈Aj

∥a− a0∥21 = max
a∈Aj

(
k∑

t=0

|at − at0|

)2

= max
a∈Aj

(
|a0 − a00|+

k∑
t=1,jt=0

|at − at0|+
k∑

t=1,jt=1

|1− at0|

)2

=

(
max

a0∈[δ,1)
|a0 − a00|+max

a∈Aj

k∑
t=1,jt=0

|at − at0|+
k∑

t=1,jt=1

|1− at0|

)2

=

(
max{1− a00, a00 − δ}+

k∑
t=1,jt=0

max{1− at0, at0}+
k∑

t=1,jt=1

|1− at0|

)2

.

Therefore, maxa∈Aj
∥a−a0∥21 ≥

(
(1− δ)/2 +

∑k
t=1,jt=0 1/2

)2
, with equality

if and only if for t = 0, 1, · · · , k,

at0 =



(1 + δ)/2, t = 0;

1/2, jt = 0, t ̸= 0;

1, jt = 1,

(S1-9)

i.e., R0 = (1/2)
∑k

t=1,jt=0 Σt +
∑k

t=1,jt=1Σt + [(1 + δ)/2]Σ0.

If j0 = 1, i.e., a ∈ Aj = {a | at = 1 if jt = 1; at ∈ [0, 1) if jt = 0}, we



8 Shaohua Xu and Yongdao Zhou

have

max
a∈Aj

∥a− a0∥21 = sup
a∈Aj

(
k∑

t=0

|at − at0|

)2

= max
a∈Aj

(
|1− a00|+

k∑
t=1,jt=0

|at − at0|+
k∑

t=1,jt=1

|1− at0|

)2

=

(
|1− a00|+max

a∈Aj

k∑
t=1,jt=0

|at − at0|+
k∑

t=1,jt=1

|1− at0|

)2

=

(
|1− a00|+

k∑
t=1,jt=0

max{1− at0, at0}+
k∑

t=1,jt=1

|1− at0|

)2

.

Therefore, maxa∈Aj
∥a− a0∥21 ≥

(∑k
t=1,jt=0 1/2

)2
, with equality if and only

if for t = 0, 1, · · · , k,

at0 =


1/2, jt = 0;

1, jt = 1,

(S1-10)

i.e., R0 = (1/2)
∑k

t=1,jt=0 Σt +
∑k

t=1,jt=1Σt + Σ0.

On the other hand, for any T ∈ Θ, we have

κ(TTT) ≥ 1, (S1-11)

with equality if and only if TTT = nIn, i.e., T is a column-orthogonal

matrix. Combining (S1-8)− (S1-11), we obtain the conclusion of the theo-

rem.

Proof of Theorem 3. By Theorem 1 and Lemma 1, Problem (3.9) is equiv-
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alent to

arg min
a0∈Aδ

max
a∈Aδ

∥a− a0∥1, (S1-12)

where Aδ = ∪j∈JAj. When k = 1, we have

max
a∈Aδ

∥a− a0∥21 = max

{
max

a∈A(1,0)

∥a− a0∥21, sup
a∈A(0,1)

∥a− a0∥21, max
a∈A(1,1)

∥a− a0∥21

}

= max{A1(a0), A2(a0)}

=


A1(a0), if a00 = 1, a10 ≥ 1− δ/2 or a10 = 1;

A2(a0), if a00 = 1, a10 ≤ 1− δ/2,

where A1(a0) = (|1 − a00| + max{1 − a10, a10})2 and A2(a0) = (max{1 −

a00, a00 − δ}+ |1− a10|)2. Therefore, maxa∈Aδ
∥a− a0∥21 ≥ (1− δ/2)2, with

equality if and only if a00 = 1 and a10 = 1− δ/2, i.e.,

R0 = Σ0 + (1− δ/2)Σ1. (S1-13)

If k ≥ 2, let J0 = {j | j0 = 0, j ∈ J} and J1 = {j | j0 = 1, j ∈ J}. For

j ∈ J0, we have

max
a∈Aj

∥a− a0∥1 = max{1− a00, a00 − δ}+
k∑

t=1,jt=0

max{1− at0, at0}+
k∑

t=1,jt=1

|1− at0|

≤ max{1− a00, a00 − δ}+
k∑

t=1,t̸=t∗

max{1− at0, at0}+ |1− at∗0|,

where t∗ ∈ argmint∈[k]{at0}, and equality holds if and only if jt = 0 for
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t ̸= t∗ and jt = 1 for t = t∗. Similarly, for j ∈ J1, we have

max
a∈Aj

∥a− a0∥1 =
k∑

t=1,jt=0

max{1− at0, at0}+
k∑

t=0,jt=1

|1− at0|

≤
k∑

t=1

max{1− at0, at0}+ |1− a00|,

with equality if and only if j = (1, 0, · · · , 0).

DefineB1(a0) = |1−a00|+max{1−at∗0, at∗0}+A(at0), B2(a0) = max{1−

a00, a00 − δ}+ |1− at∗0|+A(at0), and A(at0) =
∑k

t=1,t ̸=t∗ max{1− at0, at0}.

Thus, we obtain

max
a∈Aδ

∥a− a0∥1 = max

{
max
j∈J0

{
max
a∈Aj

∥a− a0∥1
}
,max
j∈J1

{
max
a∈Aj

∥a− a0∥1
}}

= max{B1(a0), B2(a0)}

=


B1(a0), if a00 = 1, at0 ≥ at∗0 ≥ 1− δ/2 or at0 = 1, t ∈ [k];

B2(a0), if a00 = 1, at∗0 ≤ 1− δ/2, at∗0 ≤ at0, t ∈ [k].

Therefore, maxa∈Aδ
∥a − a0∥21 ≥ (1 + k/2 − δ)2, with equality if and only

if, for k > 2, a00 = 1 and at0 = 1/2; for k = 2, a00 = 1, a10 = a20 = 1/2 or

a00 = 1, a10 = a20 = 1− δ/2, i.e.,

R0 =


Σ0 + (1− δ/2)(Σ1 + Σ2) or Σ0 + (1/2)(Σ1 + Σ2), k = 2;

Σ0 + (1/2)
∑k

t=1Σt, k > 2.

(S1-14)

Combining (S1-11)− (S1-14), we derive the conclusion of the theorem.
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Proof of Theorem 4. For any positive definite matrices R and R0, our goal

is to prove that when the response variable Y satisfies E(Y) = Xθ and

cov(Y) = R, the estimators

θ̃ = (XTR−1X)−1XTR−1Y and θ̃0 = (XTR−1
0 X)−1XTR−1

0 Y

are equivalent if and only if R ∈ [ΩR0 ].

Let Ỹ = R−1/2Y, X̃ = R−1/2X, and R̃0 = R−1/2R0R
−1/2. Then, θ̃ =

(X̃T X̃)−1X̃T Ỹ, θ̃0 = (X̃T R̃−1
0 X̃)−1X̃T R̃−1

0 Ỹ, E(Ỹ) = X̃θ, and cov(Ỹ) =

In. By Lemma 5a in Rao (1967), θ̃ and θ̃0 are equivalent if and only

if R̃ = In + X̃D1X̃
T + ṼD2Ṽ

T , where D1,D2 are arbitrary symmetric

matrices such that R̃ is positive definite, and Ṽ is any full-rank matrix

satisfying XTR−1
1 V = 0 and X̃T Ṽ = 0. Equivalently, we have R = R0 +

XD1X
T +VD2V

T .

Proof of Proposition 2. By the construction of Algorithm 1 and Theorem

3.4.2 from Ben-Tal and Nemirovski (2001), we know that E[vjv
T
j ] =

2
π
arcsin[S∗]

for j ∈ [p], where arcsin[X] denotes the matrix with entries arcsin(Xij).

On the one hand, it’s clear that Tr = (v1,v2, · · · ,vp) ∈ Tp with proba-

bility one, meaning Tr is indeed a feasible solution for Problem (4.11). On
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the other hand, the properties of expectation and trace imply that

E(tr(TT
r Σ(R∗)Tr)/p) = E(tr(Σ(R∗)TrT

T
r )/p)

= tr(Σ(R∗)E(TrT
T
r )/p)

=
2

π
tr(Σ(R∗) arcsin[S

∗])

≥ 2

π
tr(Σ(R∗)S

∗),

where the inequality holds because Theorem 3.4.2 from Ben-Tal and Ne-

mirovski (2001) shows that arcsin[X] ⪰ X for any semi-positive definite

matrix X with |Xij| ≤ 1. Furthermore, note that Problem (4.12) is a relax-

ation of Problem (4.11), and thus tr(Σ(R∗)S
∗) ≥ tr(TT

r Σ(R∗)Tr)/p, which

completes the proof.

Proof of Theorem 5. For simplicity, let Mr = TT
r Σ∗Tr, M

∗ = T∗TΣ∗T
∗,

M∗
s = T∗T

s Σ∗T
∗
s, es = tr(M∗)/tr(M∗

s), and κs(M
∗
s) = κ(M∗

s) if s < 1 and

κs(M
∗
s) = min{p1−1/s, κ(M∗

s)} if s ≥ 1. Clearly, Mr, M
∗, and M∗

s are all

positive semi-definite matrices, and es ≥ 1. By the definition of ϕs-efficiency

and Lemma S2, we have

ϕs(α̂(R∗,T
∗
s))

ϕs(α̂(R∗,Tr))
≥ 1

κs(M∗
s)κ(Mr)

tr(Mr)

tr(M∗
s)

=
es

κs(M∗
s)tr(M

∗)

tr(Mr)

κ(Mr)
.

(S1-15)

By Taylor expansion, we obtain

E

(
tr(Mr)

κ(Mr)

)
=

E(tr(Mr))

E(κ(Mr))
− E(tr(Mr)(κ(Mr)− E(κ(Mr))))

[E(κ(Mr))]2
+O2,
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where O2 = E
(

tr(Mr)[κ(Mr)−E(κ(Mr))]2

η3

)
≥ 0 and η is a random variable

between κ(Mr) and E(κ(Mr)). Thus, we have

E

(
tr(Mr)

κ(Mr)

)
≥ 2E(tr(Mr))

E(κ(Mr))
− E(tr(Mr)κ(Mr))

[E(κ(Mr))]2

≥ (4/π − 1)tr(M∗)

E(κ(Mr))
,

(S1-16)

where the last equality holds because E(tr(Mr)) ≥ (2/π)tr(M∗) (Proposi-

tion 2) and tr(Mr) ≤ tr(M∗). Taking expectations on both sides of (S1-15)

and combing with inequality (S1-16), we get

E

(
ϕs(α̂(R∗,T

∗
s))

ϕs(α̂(R∗,Tr))

)
≥ es(4/π − 1)

κs(M∗
s)E(κ(Mr))

> 0,

which proves the desired lower bound.

S2 Two Special Cases

S2.1 A/B Testing

In this subsection, we discuss the case of A/B testing, that is, p = 1. In this

scenario, we represent the treatment vector as t = (t1, · · · , tn)T ∈ {−1, 1}n,

and the loss RT(R,R0, t) defined in (2.3) is simplified to the relative error

of the estimated treatment effect variance:

var(α̂(R0, t))− var(α̂(R, t))

var(α̂(R, t))
.
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Therefore, the upper bounds in Theorem 1 and Corollary 1 provide a

method to control these relative errors. At this time, RT(R,R0, t) =

C1κ(t
T t)(C2∥σ∗2 − σ2

0∥1 + r)2 can provide theoretical guidance for finding

a robust working covariance structure, such as the minimax robust covari-

ance structures in Theorems 2 and 3. However, for all treatment vectors,

κ(tT t) = 1. In this subsection, our goal is to find a treatment vector that is

optimally matched with the robust covariance structure based on the ran-

dom matching method in Section 4. When p = 1, all ϕs-criteria are equal to

the variance, that is, ϕs(α̂) = (tTΣ(R∗)t)
−1 = var(α̂). Therefore, Problem

(4.11) is equivalent to Problem (4.10), and the output of Algorithm 1 can

provide a 2/π approximation of the optimal solution of Problem (4.10) (this

is a lower bound independent of the scale of the problem!). The conclusion

in this special case generalizes the result about the independent and iden-

tically distributed covariance structure in Bhat et al. (2020) to the general

covariance structure.

Corollary S1. When the number of treatments is p = 1, the expected

relative efficiency E(var(α̂(R∗, tr))) ≥ (2/π)var(α̂(R∗, t
∗)).
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S2.2 Sequential Experiments

Based on the SDRM scheme proposed in this paper, this subsection pro-

vides a robust sequential experiment scheme, and its detailed process is

summarized in Algorithm S1.

In the initial stage of the sequential experiment, based on the minimax

robust covariance structure R∗ in Theorem 3, Algorithm 1 is used to gen-

erate the initial design T(0), and the response Y(0) in the initial stage is

Algorithm S1: Robust Sequential Experiment Scheme

Input: R∗: Minimax robust covariance structure, B: Total number of stages.

Output: {α̂(b)}Bb=0: Estimated treatment effects.

1 Initial stage: Based on R∗, use Algorithm 1 to generate the initial design T
(0)
∗ ;

2 Observe the response Y(0) of the subjects in the initial stage;

3 Obtain the maximum likelihood estimates of α̂(0) and σ̂2(0) by solving the

equations in (S2-17).

4 for b = 1, · · · , B do

5 Based on the estimated covariance R(σ̂2(b−1)), use Algorithm 1 to generate

T
(b)
∗ ;

6 Observe the response Y(b) of the subjects in the b-th stage;

7 Obtain the maximum likelihood estimates of α̂(b) and σ̂2(b) by solving the

equations in (S2-17).

8 end

9 Return the estimated treatment effects {α̂(b)}Bb=0;
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observed. Then, the maximum likelihood estimates α̂(0) of the treatment

effect and σ̂2(0) = (σ̂
2(0)
0 , · · · , σ̂2(0)

k )T of the variance components are ob-

tained by solving the following estimation equations (Searle et al., 2009,

Chapter 6):


X(0)TR(σ2)−1X(0)θ = X(0)TR(σ2)−1Y(0),

tr(Σ
(0)
t R(σ2)−1) = (Y(0) −X(0)θ)TQ(Y(0) −X(0)θ), t = 0, · · · k,

(S2-17)

whereX(0) = (T(0),Z(0)),R(σ2) =
∑k

t=0 σ
2
tΣ

(0)
t ,Q = R(σ2)−1Σ

(0)
t R(σ2)−1,

and θ = (αT ,βT)T . In the (b+1)-th stage (b ≥ 0), based on the estimated

covariance structure R(σ̂2(b)) =
∑k

t=0 σ̂
2(b)
t Σt in the b-th stage, Algorithm

1 is used to generate the treatment matrix T(b+1) in the b-th stage, and the

response Y(b) in the b-th stage is observed. Subsequently, the estimated

treatment effect α̂(b+1) and variance components σ̂2(b+1) in the (b + 1)-th

stage are updated using the formula in (S2-17). Repeat the above process

until all the experimental trials are used up.

The initial design of Algorithm S1 is optimally matched with the mini-

max robust covariance structure. Therefore, while utilizing the effectiveness

of the optimal design, it ensures the robustness against the misspecification

of the true covariance structure. In the subsequent experimental stages,

Algorithm S1 uses the experimental data to update the covariance struc-
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ture, thus continuously approaching the optimal design in the case where

the true covariance structure is known.

S3 Supplementary Simulation Results

S3.1 Comparison of Experimental Designs under A/B Testing

In this subsection, we compare the performance of different experimental

schemes in the case of A/B testing. Bhat et al. (2020) considered the fixed

effects of covariates when the random error follows an independent and

identically distributed structure, and obtained the optimal experimental

design by minimizing the variance of the estimated treatment effect:

t∗ = arg min
t∈{−1,1}n

tT (R−1
0 −R−1

0 Z(ZTR−1
0 Z)−1R−1

0 )t, (S3-18)

where the working covariance structure R0 = σ2
0In. The above experimen-

tal scheme is denoted as OPTc, where the subscript c emphasizes the role

of the covariates. Zhang and Kang (2022) further considered the network

connections between different subjects (the working covariance structure

R0 = σ2
0Σ0), and obtained the experimental design by solving the opti-

mization problem in (S3-18). This experimental scheme considering net-

work correlations is denoted as OPTn.

In the simulation, we assume that the relationship between the response
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and the covariates satisfies the one in (5.13). We set Z = (U1, · · · ,Um0)

with m0 ≤ k, that is, only the first m0 groups of covariates have fixed ef-

fects. The true covariance structure is randomly sampled form R1-R4 in

Section 5. Figure S1 shows the AMSEs of various experimental schemes

in 100 repetitions. From this, we can draw the following conclusions: the

experimental schemes based on the completely randomized design (BI, BM)

are less efficient because they ignore the information such as covariates and

network structures. The design in the OPTc scheme utilizes some covariates

information, which significantly reduces the uncertainty of the estimation.

The OPTn scheme further improves its performance by using the informa-

tion of the network connections between subjects. When the true covariance

structure has a parametric form (Figure S1 (a) and (c)) and when m0 = k,

both the OPTn and SDRM schemes can achieve the same estimation accu-

racy as the ORACLE scheme, because when all covariates have fixed effects,

the true covariance structure R ∈ ΩΣ0 and R ∈ ΩR∗ . When m0 is small,

the performance of the OPTc and OPTn schemes becomes unacceptable.

It is worth noting that the experimental schemes based on the minimax

covariance structure (BM, SDRM) are robust to the number of covariates

with fixed effects, and the SDRM scheme can achieve the best results in

various situations.
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Figure S1: AMSEs of various experimental schemes under A/B testing.

When the random error follows an AR structure, there is a significant

performance gap between the OPTc and OPTn schemes, and when m0 = k,

the performance of the BM scheme is significantly better than that of the

BI scheme, and the performance of the OPTn scheme is better than that

of the OPTc scheme. However, when the random error follows a CAR

structure, the above differences are not obvious. As discussed in Section 5,

the difference caused by different structures of the random error is because
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the CAR structure is closer to the independent and identically distributed

structure than the AR structure.

S3.2 Comparison of Experimental Designs under Sequential Ex-

periments

In this subsection, we compare the performance of different experimental

schemes in the sequential setting. The baseline scheme uses a completely

randomized design to obtain the response in the initial stage, abbreviated

to as “Balance”. The sequential design in Algorithm S1, that is, using the

robust experimental scheme (T∗,R∗) in Theorem 3 to obtain the response

in the initial stage, is referred to as “Robust”. For the convenience of com-

parison, the experimental scheme that uses the true covariance structure

as the input of Algorithm 1 to generate the optimal design is referred to

as “Optimal”. In the subsequent stages, all designs are the same as in Al-

gorithm 1. Therefore, the only difference among the above three schemes

is the initial design. In the simulation, we set the total number of stages

to B = 2, the run size in each stage n = 100, and use the model (5.13) to

generate the response. For each sequential scheme, the AMSE based on 100

groups of randomly generated true covariance structures from R1, is calcu-

lated. Figure S2 shows the AMSEs of various schemes in 100 repetitions.
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Figure S2: AMSEs of various sequential experimental schemes.

From this, we can draw the following conclusions: in the B = 1 and B = 2

stages, both the “Robust” and “Balance” schemes can achieve the same es-

timation accuracy as the “Optimal” scheme. It is worth noting that due to

the use of an effective initial design, the “Robust” scheme greatly reduces

the uncertainty of the estimation of the treatment effect in the initial stage.

This result illustrates the effectiveness of the proposed robust experimental

scheme.
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S3.3 Supplementary Simulation Results in The Main Text

Following the simulation Section in the main text, we set p = 5, q = m =

34, k = 7, and consider the following covariates distribution: u1i ≡ 1,

u2i
i.i.d.∼ MN(2; 0.9, 0.1), u3i

i.i.d.∼ MN(10; 0.1 × 1T
10×1), u4i

i.i.d.∼ (χ2
4, χ

2
4, χ

2
4)

T ,

u5i
i.i.d.∼ t3(0, I5), u6i

i.i.d.∼ N(0, I6), u7i
i.i.d.∼ N(0,S),i ∈ [n],where Sjl =

(0.7)|j−l|, j, l ∈ [7], and χ2
f represents the chi-squared distribution with de-

grees of freedom f , tf (µ,Σ) represents the multivariate t distribution with

location parameter µ, scale matrix Σ and degrees of freedom f , andN(µ,Σ)

represents the multivariate normal distribution with location parameter µ

and scale matrix Σ.

The Summary table across various 128-run experimental schemes are

listed in Table S1. This results show that when covariates distributions ex-

hibit greater complexity, the advantages of the proposed approaches become

more pronounced.
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Table S1: Summary table across various 128-run experimental schemes.

BI BM OM RSM SDRM

Average regret (standard deviation)

R1 2.56(1.98) 1.23(0.45) 1.46(0.62) 0.81(0.24) 0.52(0.17)

R2 2.00(1.37) 1.52(1.32) 1.40(1.10) 1.17(1.23) 1.06(1.52)

R3 0.53(0.12) 0.53(0.12) 0.43(0.08) 0.39(0.10) 0.35(0.07)

R4 0.94(0.54) 0.94(0.54) 0.78(0.57) 0.73(0.49) 0.69(0.49)

Average ϕ0-efficiency (standard deviation)

R1 0.02(0.02) 0.04(0.02) 0.05(0.03) 0.07(0.04) 0.94(0.12)

R2 0.02(0.02) 0.02(0.02) 0.03(0.03) 0.04(0.04) 0.40(0.34)

R3 0.33(0.06) 0.33(0.06) 0.36(0.06) 0.57(0.05) 1.00(0.07)

R4 0.15(0.11) 0.16(0.11) 0.16(0.12) 0.26(0.18) 0.46(0.32)

Average MSE-efficiency (standard deviation)

R1 0.54(0.06) 0.61(0.06) 0.65(0.07) 0.72(0.06) 0.97(0.07)

R2 0.54(0.05) 0.57(0.05) 0.62(0.06) 0.66(0.06) 0.88(0.10)

R3 0.80(0.05) 0.51(0.05) 0.84(0.05) 0.92(0.06) 1.00(0.05)

R4 0.72(0.05) 0.72(0.05) 0.74(0.04) 0.82(0.05) 0.87(0.06)
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Figure S3: Average Frobenius-norm.
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Figure S4: AMSEs in the case study when random errors follow an iid structure.
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Figure S5: AMSEs in the case study when random errors follow an AR structure.
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