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Supplementary Material

The supplementary materials include the following: first, the technical proofs for Theo-

rems 1–3, presented in Sections S1.1–S1.3, respectively; second, the high-dimensional extensions

in Section S2, including theoretical discussion in Section S2.1 and simulation results in Sec-

tion S2.2; and finally, additional numerical studies in Section S3, including conditional coverage

evaluation in Section S3.1 and supplementary simulation results in Section S3.2.

S1 Technical Proofs

S1.1 Proof of Theorem 1

Without loss of generality, assume the non-missing calibration set Dobs
c is

indexed by {1, . . . , n}, while the test data is indexed by {n + 1}. Define

the random variable Zi = (Xi, Yi) and its observed value zi = (xi, yi) for

i = 1, . . . , n + 1. According to the definition by Tibshirani et al. (2019),

the random variables {Zi, i = 1, . . . , n + 1} are referred to as weighted
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exchangeable if their joint density function can be factorized as

f(z1, . . . , zn+1) =
n+1∏
i=1

ϕi(zi) · g(z1, . . . , zn+1), (S1.1)

where ϕi(·) is a certain adjustment function, and g is a permutation-invariant

function; that is, for any permutation σ of the set {1, . . . , n+ 1},

g(zσ(1), . . . , zσ(n+1)) = g(z1, . . . , zn+1).

In our data setup, Z1 to Zn are observed data points drawn from the con-

ditional distribution f(z | δ = 1), while Zn+1 is drawn from the marginal

distribution f(z). Since all variables are independent, the joint density can

be factorized as:

f(z1, . . . , zn+1) =
n∏

i=1

f(zi|δ = 1)f(zn+1)

=
f(zn+1)

f(zn+1|δ = 1)

n+1∏
i=1

f(zi|δ = 1) = w(zn+1)
n+1∏
i=1

f(zi|δ = 1).

(S1.2)

Therefore, the distribution of our data satisfies the weighted exchangeability

definition (S1.1), where ϕi(z) = 1 for i = 1, . . . , n, and ϕi(z) = w(z) for

i = n+1, and g(z1, . . . , zn+1) =
∏n+1

i=1 f(zi | δ = 1) is permutation invariant.

We define the event EZ to indicate that two unordered collections are equal:

EZ =
{
[Z1, . . . ,Zn+1] = [z1, . . . , zn+1]

}
,

which means that each Zi takes a value from the set {z1, . . . , zn+1}, and the

collection {Z1, . . . ,Zn+1} matches {z1, . . . , zn+1} as a multiset, regardless
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of order. Let the nonconformity score of zi be defined as ri = R(zi) for

i = 1, . . . , n+ 1. By weighted exchangeability, we can calculate

P{Rn+1 = ri | EZ,Dt} = P{Zn+1 = zi | EZ,Dt}

=

∑
σ(n+1)=i f(zσ(1), . . . , zσ(n+1))∑

σ f(zσ(1), . . . , zσ(n+1))

(S1.2)
=

∑
σ(n+1)=i w(zσ(n+1))

∏n+1
j=1 f(zj|δ = 1)∑

σ w(zσ(n+1))
∏n+1

j=1 f(zj|δ = 1)

=
w(zi)∑n+1
j=1 w(zj)

,

where the summations are taken over permutations σ of the numbers 1, . . . , n+

1. Note that this conditional probability is well-defined, since Assumption

1 means that under both F (z|δ = 1) and F (z) it is almost surely that

w(z) < ∞. Therefore, the distribution of Rn+1 is

(Rn+1 | EZ,Dt) ∼ FR(r) =
n+1∑
i=1

w(xi, yi)∑n+1
j=1 w(xj, yj)

I (ri ≤ r) , (S1.3)

which depends on the true weight function w(x, y).

To establish the properties under the estimated weights, we generate a

new sample using the estimated weight function ŵ(x, y),

(X̃n+1, Ỹn+1) ∼ f̃(x, y) with f̃(x, y) = ŵ(x, y)f(x, y|δ = 1). (S1.4)

Since the expectation of ĝ(U) q(Y, γ̂) is finite under the theorem’s assump-

tion, the estimated weight ŵ(X, Y ) is finite almost surely. This implies that
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ŵ(X, Y ) can be normalized to have expectation one. Consequently, f̃(x, y)

defines a valid probability density function. Let Z̃n+1 = (X̃n+1, Ỹn+1), and

denote its nonconformity score by R̃n+1 = R(Z̃n+1). Define the event EZ̃ to

indicate that two unordered collections are equal: EZ̃ =
{
[Z1, . . . ,Zn, Z̃n+1] =

[z1, . . . , zn, z̃n+1]
}
. Using the same argument as for (S1.3), we have

(R̃n+1 | EZ̃,Dt) ∼FR̃(r) =
n∑

i=1

ŵ(xi, yi)∑n
j=1 ŵ(xj, yj) + ŵ(x̃n+1, ỹn+1)

I(ri ≤ r)

+
ŵ(x̃n+1, ỹn+1)∑n

j=1 ŵ(xj, yj) + ŵ(x̃n+1, ỹn+1)
I(r̃n+1 ≤ r),

which is well-defined, since ŵ(z) < ∞ almost surely under both F (z | δ = 1)

and F (z). LetQR̃(τ) denote the τ -th quantile of the distribution FR̃, defined

as QR̃(τ) = inf{r : FR̃(r) ≥ τ}. According to the proposed definition

of prediction set, we have {Ỹn+1 ∈ Ĉ(X̃n+1)} ⇔ {R̃n+1 ≤ QR̃(1 − α)}.

Therefore, by the definition of the quantile, it follows that:

P
{
Ỹn+1 ∈ Ĉ(X̃n+1) | Dt

}
= E

[
P
{
Ỹn+1 ∈ Ĉ(X̃n+1) | EZ̃ ,Dt

}]
= E

[
P{R̃n+1 ≤ QR̃(1− α) | EZ̃ ,Dt}

]
≥ 1− α. (S1.5)

Let dTV (F1, F2) denote the total-variation (TV) distance between distribu-

tions F1 and F2. Then according to the definition of TV distance,∣∣P{Yn+1 ∈ Ĉ(Xn+1) | Dt,Dc

}
− P

{
Ỹn+1 ∈ Ĉ(X̃n+1) | Dt,Dc

}∣∣
≤ dTV

(
F (x, y), F̃ (x, y)

)
,
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where F̃ (x, y) is the distribution function of f̃(x, y). Taking expectation

over Dc, we have

P
{
Yn+1 ∈ Ĉ(Xn+1) | Dt

}
≥ P

{
Ỹn+1 ∈ Ĉ(X̃n+1) | Dt

}
− dTV

(
F (x, y), F̃ (x, y)

)
(S1.5)

≥ 1− α− dTV

(
F (x, y), F̃ (x, y)

)
. (S1.6)

By the integral definition of TV distance,

dTV

(
F (x, y), F̃ (x, y)

)
=
1

2

∫
|dF (x, y)− dF̃ (x, y)|

=
1

2

∫
|ŵ(x, y)− w(x, y)|dF (x, y|δ = 1)

=
1

2
E|ŵ(X, Y )− w(X, Y )|

=
1

2
E
∣∣ĝ(U)q(Y, γ̂)− g(U)q(Y,γ)

∣∣, (S1.7)

where expectation is taken under (X, Y ) ∼ f(x, y|δ = 1). Finally, taking

expectation with respect to Dt in inequality (S1.6), we have

P{Yn+1 ∈ Ĉ(Xn+1)} ≥ 1− α− 1

2
E|ĝ(U)q(Y, γ̂)− g(U)q(Y,γ)|.

S1.2 Proof of Theorem 2

Let A = {Aj} be a partition of X , and let An(Xn+1) be the subset of the

calibration set whose covariates fall in the same partition element as Xn+1:

An(Xn+1) =
{
(Xi, Yi) ∈ Dobs

c : Xi ∈ Aj and Xn+1 ∈ Aj

}
. (S1.8)
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It follows that, conditional on Xn+1 ∈ Aj, the pair (Xn+1, Yn+1) and the

subset An(Xn+1) remain weighted exchangeable, with their joint distribu-

tion sharing the same form as in (S1.2). By applying the same argument

and derivation as in the proof of Theorem 1, we obtain a coverage guarantee

analogous to (S1.5):

P
{
Ỹn+1 ∈ Ĉ(X̃n+1) | X̃n+1 ∈ Aj

}
≥ 1− α, (S1.9)

where X̃n+1 and Ỹn+1 follow the same joint distribution as in (S1.4). By

the definition of the total variation (TV) distance, we obtain

P{Yn+1 ∈ Ĉ(Xn+1), Xn+1 ∈ Aj}

≥ P{Ỹn+1 ∈ Ĉ(X̃n+1), X̃n+1 ∈ Aj} − dTV(F (x, y), F̃ (x, y)).

(S1.9)

≥ (1− α)P{X̃n+1 ∈ Aj} − dTV(F (x, y), F̃ (x, y)).

Similarly, using the definition of the total variation distance, we have

P{X̃n+1 ∈ Aj} ≥ P{Xn+1 ∈ Aj} − dTV

(
F (x), F̃ (x)

)
.

By combining the results above, we conclude that

P
{
Yn+1 ∈ Ĉ(Xn+1), Xn+1 ∈ Aj

}
≥ (1− α)

{
P{Xn+1 ∈ Aj} − dTV

(
F (x), F̃ (x)

)}
− dTV

(
F (x, y), F̃ (x, y)

)
.

This implies that

P
{
Yn+1 ∈ Ĉ(Xn+1) | Xn+1 ∈ Aj

}
≥ 1− α− ∆̂loc,

∆̂loc =
(1− α)dTV

(
F (x), F̃ (x)

)
+ dTV

(
F (x, y), F̃ (x, y)

)
P{Xn+1 ∈ Aj}

. (S1.10)
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Let q̄(x, γ) =
∫
q(y,γ)dF (y|x, δ = 1) and q̄(x, γ̂) =

∫
q(y, γ̂)dF (y|x, δ = 1).

By the integral definition of TV distance, we have

dTV

(
F (x), F̃ (x)

)
=

1

2

∫
|dF (x)− dF̃ (x)|

=
1

2

∫ ∣∣∣ ∫ {w(x, y)− ŵ(x, y)}dF (y | x, δ = 1)
∣∣∣dF (x | δ = 1)

=
1

2

∫ ∣∣∣g(x)q̄(x, γ)− ĝ(x)q̄(x, γ̂)
∣∣∣dF (x | δ = 1)

=
1

2
EX∼f(x|δ=1)|g(X)q̄(X, γ)− ĝ(X)q̄(X, γ̂)|, (S1.11)

where the first equation holds because

dF (x) =

{∫
w(x, y)dF (y | x, δ = 1)

}
· dF (x | δ = 1).

By substituting equations (S1.11) and (S1.7) into (S1.10), we obtain an

exact lower bound for the local coverage. Alternatively, we can directly

apply the inequality dTV(F (x), F̃ (x)) ≤ dTV(F (x, y), F̃ (x, y)) to (S1.10)

and then substitute (S1.7), which yields the conclusion of Theorem 2.

S1.3 Proof of Theorem 3

Lemma 1. Let Gf (t | x) be the conditional CDF of f(Y | X), and let

Ĝf̂ (t | Ā(x)) be the local empirical CDF of f̂(Y | X) constructed from

Ā(x) := An(x) ∪ {(x, y)}, where An(x) is the calibration subset in (S1.8)
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from the same cluster as x. They are defined as

Gf (t | x) = P{f(Y | X) ≤ t | X = x},

Ĝf̂ (t | Ā(x)) =
∑

i∈Ā(x)

wi∑
j∈Ā(x) wj

I{f̂(Yi | Xi) ≤ t},
(S1.12)

where the weights wi are assumed to be known. These two CDFs are used to

construct the corresponding prediction intervals for Y given X as follows:

C(X;α) =
{
y ∈ Y : Gf (f(y | X) | X) > α

}
,

Ĉ(X;α) =
{
y ∈ Y : Ĝf̂ (f̂(y | X) | Ā(X)) > α

}
.

Under Assumptions 2–5, it follows that:

P{Y ∈ C(X;α)∆Ĉ(X;α)} = o(1).

Proof of Lemma 1. To evaluate the discrepancy between C(X;α) and Ĉ(X;α),

it is essential to quantify the deviation between the oracle CDF and its em-

pirical counterpart in (S1.12). Let Gf̂ (t | X) = P{f̂(Y | X) ≤ t | X} denote

the conditional CDF of f̂(Y | X). Then, by the triangle inequality,

sup
y∈Y

∣∣Gf (f(y | X) | X)− Ĝf̂ (f̂(y | X) | Ā(X))
∣∣

≤ sup
y∈Y

∣∣Gf (f(y | X) | X)−Gf̂ (f(y | X) | X)
∣∣

+ sup
y∈Y

∣∣Gf̂ (f(y | X) | X)−Gf̂ (f̂(y | X) | X)
∣∣

+ sup
y∈Y

∣∣Gf̂ (f̂(y | X) | X)− Ĝf̂ (f̂(y | X) | Ā(X))
∣∣

:= I1 + I2 + I3.
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Let Bn = {supy∈Y |f̂(y | X) − f(y | X)| ≥ ηn}, where ηn is from Assump-

tion 3. On the complement event Bc
n, it can be shown that:

I1 ≤ sup
z

∣∣Gf (z | X)−Gf̂ (z | X)
∣∣

= sup
z

∣∣∣ ∫
{y:f(y|X)≤z}

f(y | X)dy −
∫
{y:f̂(y|X)≤z}

f(y|X)dy
∣∣∣

≤ sup
z

∫
{y:f(y|X)≤z,f̂(y|X)>z}

f(y|X)dy + sup
z

∫
{y:f(y|X)>z,f̂(y|X)≤z}

f(y|X)dy

≤ sup
z

∫
{y:z−ηn≤f(y|X)≤z}

f(y|X)dy + sup
z

∫
{y:z<f(y|X)≤z+ηn}

f(y|X)dy

= sup
z

∣∣Gf (z|X)−Gf (z − ηn|X)
∣∣+ sup

z

∣∣Gf (z + ηn|X)−Gf (z|X)
∣∣

= oP (1),

where the last equality follows from the Lipschitz continuity of Gf in As-

sumption 4. Similarly, on the event Bc
n, we have:

I2 ≤ sup
|z1−z2|≤ηn

∣∣Gf̂ (z1 | X)−Gf̂ (z2 | X)
∣∣

≤ sup
|z1−z2|≤ηn

∣∣Gf (z1 + ηn | X)−Gf (z2 − ηn | X)
∣∣

≤ sup
z

∣∣Gf (z + 2ηn | X)−Gf (z − 2ηn | X)
∣∣ = oP (1).

Since Bn ⊂ {supx∈Ā(X) supy |f̂(y | x)− f(y | x)| ≥ ηn}, by Assumption 3,

P(Bn) ≤ P
(

sup
x∈Ā(X)

sup
y

∣∣f̂(y | x)− f(y | x)
∣∣ ≥ ηn

)
≤ ρn = o(1).

Consequently, I1 = oP (1) and I2 = oP (1).

9



Menghan Yi, Yingying Zhang, Yanlin Tang, and Huixia Judy Wang

For I3, let Gf̂ (t | Ā(X)) = P{f̂(Y | X) ≤ t | X ∈ Ā(X)} denote the

conditional CDF of f̂(Y | X) given Ā(X). By the triangle inequality,

I3 ≤ sup
z

∣∣Ĝf̂ (z | Ā(X))−Gf̂ (z | X)
∣∣

≤ sup
z

∣∣Ĝf̂ (z | Ā(X))−Gf̂ (z | Ā(X))
∣∣+ sup

z

∣∣Gf̂ (z | Ā(X))−Gf̂ (z | X)
∣∣.

For the first term, since the weights are a.s. bounded under Assumption

2, Lemma S.2 of Yi et al. (2025) (the weighted DKW inequality under

distribution shift) implies that for any ε > 0,

P
{
sup
z

∣∣Ĝf̂ (z | Ā(X))−Gf̂ (z | Ā(X))
∣∣ ≥ ε

}
≤2

{⌈ 2

(ε− rn)+

⌉
+ 1

}
exp{−Cn̄(ε− rn)

2
+},

where n̄ denotes the number of samples in the subset Ā(X), rn = O(n̄−1),

and the constant C depends on the upper bound of the weights. Under

Assumption 5, n̄ → ∞, it follows that supz

∣∣Ĝf̂ (z | Ā(X))−Gf̂ (z | Ā(X))
∣∣ =

oP (1). For the second term, by the law of iterated expectations, we have

sup
z

∣∣Gf̂ (z | Ā(X))−Gf̂ (z | X)
∣∣

= sup
z

∣∣∣E[Gf̂ (z | X′)−Gf̂ (z | X) | X′ ∈ Ā(X)
]∣∣∣

≤ sup
z

E
[∣∣Gf̂ (z | X′)−Gf̂ (z | X)

∣∣ | X′ ∈ Ā(X)
]

≤ sup
z

E
[∣∣Gf̂ (z | X′)−Gf (z | X′)

∣∣ | X′ ∈ Ā(X)
]

(S1.13)

+ sup
z

E
[∣∣Gf (z | X′)−Gf (z | X)

∣∣ | X′ ∈ Ā(X)
]

(S1.14)
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+ sup
z

E
[∣∣Gf (z | X)−Gf̂ (z | X)

∣∣ | X′ ∈ Ā(X)
]
, (S1.15)

where (S1.13) and (S1.15) converge to zero in probability by the local uni-

form consistency in Assumption 3, while (S1.14) also converges to zero due

to the Lipschitz continuity and diameter shrinking in Assumptions 4–5. It

then follows that I3 = oP (1). Putting all the pieces together, we have

sup
y∈Y

∣∣Gf (f(y | X) | X)− Ĝf̂ (f̂(y | X) | Ā(X))
∣∣ = oP (1).

Let λn = o(1) be a sequence such that Dn = {supy∈Y |Gf (f(y|X) |

X)−Ĝf̂ (f̂(y|X) | Ā(X))| > λn} and P(Dn) = o(1). Therefore, on the event

Dc
n, it follows from the definition of the prediction set that

C(X;α)∆Ĉ(X;α) =
{
y : Gf (f(y | X) | X) > α, Ĝf̂ (f̂(y | X) | Ā(X)) ≤ α

}
∪
{
y : Gf (f(y | X) | X) ≤ α, Ĝf̂ (f̂(y | X) | Ā(X)) > α

}
⊆

{
y :

∣∣Gf{f(y | X) | X} − α
∣∣ ≤ λn

}
.

Under Assumption 4, where Gf is Lipschitz continuous, we have

P
{
Y ∈ C(X;α)∆Ĉ(X;α)

}
≤ P

{
Y ∈ C(X;α)∆Ĉ(X;α), Dc

n

}
+ P (Dn)

≤ P (|Gf{f(Y | X) | X} − α| ≤ λn) + o(1)

≤ 2λn + o(1) = o(1).
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Lemma 2. Define the weighted empirical CDFs based on the true weights

and the estimated weights of f̂(Yn+1|Xn+1) as follows:

Ĝf̂ (t) =
n∑

i=1

w(Xi, Yi)∑n
j=1 w(Xj, Yj) + w(Xn+1, y)

I{f̂(Yi | Xi) ≤ t}

+
w(Xn+1, y)∑n

j=1 w(Xj, Yj) + w(Xn+1, y)
I{f̂(y | Xn+1) ≤ t},

G̃f̂ (t) =
n∑

i=1

ŵ(Xi, Yi)∑n
j=1 ŵ(Xj, Yj) + ŵ(Xn+1, y)

I{f̂(Yi | Xi) ≤ t}

+
ŵ(Xn+1, y)∑n

j=1 ŵ(Xj, Yj) + ŵ(Xn+1, y)
I{f̂(y | Xn+1) ≤ t},

where y is a candidate test point for Yn+1. Then, under Assumption 2,

sup
y∈Y

∣∣Ĝf̂

(
f̂(y | Xn+1)

)
− G̃f̂

(
f̂(y | Xn+1)

)∣∣ = oP (1).

Proof of Lemma 2. To simplify notation, let

wi = w(Xi, Yi), ŵi = ŵ(Xi, Yi), i = 1, . . . , n,

wn+1(y) = w(Xn+1, y), ŵn+1(y) = ŵ(Xn+1, y).

Define Sn+1(y) =
∑n

i=1wi + wn+1(y) and Ŝn+1(y) =
∑n

i=1 ŵi + ŵn+1(y).

Based on the definitions of Ĝf̂ (t) and G̃f̂ (t), we have

sup
y∈Y

|Ĝf̂

(
f̂(y | Xn+1)

)
− G̃f̂

(
f̂(y | Xn+1)

)
|

≤ sup
y∈Y

n∑
i=1

∣∣∣ ŵi

Ŝn+1(y)
− wi

Sn+1(y)

∣∣∣︸ ︷︷ ︸
II1(y)

+sup
y∈Y

∣∣∣ŵn+1(y)

Ŝn+1(y)
− wn+1(y)

Sn+1(y)

∣∣∣︸ ︷︷ ︸
II2(y)

.
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Furthermore, we can compute II1(y) and II2(y) as follows.

II1(y) =
n∑

i=1

∣∣∣∣ŵi Sn+1(y)− wi Ŝn+1(y)

Ŝn+1(y)Sn+1(y)

∣∣∣∣
=

n∑
i=1

∣∣∣∣ŵi {Sn+1(y)− Ŝn+1(y)}+ Ŝn+1(y)(ŵi − wi)

Ŝn+1(y)Sn+1(y)

∣∣∣∣
≤ Ŝn |Sn+1(y)− Ŝn+1(y)|+ Ŝn+1(y)

∑n
i=1 |ŵi − wi|

Ŝn+1(y)Sn+1(y)

≤ |Sn+1(y)− Ŝn+1(y)|
Sn+1(y)

+

∑n
i=1 |ŵi − wi|
Sn+1(y)

≤ 2
∑n

i=1 |ŵi − wi|
Sn+1(y)

+
|wn+1(y)− ŵn+1(y)|

Sn+1(y)
.

Similarly, we can derive that:

II2(y) ≤
∑n

i=1 |ŵi − wi|
Sn+1(y)

+
2|wn+1(y)− ŵn+1(y)|

Sn+1(y)
.

Under Assumption 2, there exists a constant C1 > 0 such that the weight

function is a.s. bounded below by C1. Combining II1(y) and II2(y) gives

sup
y∈Y

∣∣Ĝf̂ (f̂(y | Xn+1))− G̃f̂ (f̂(y | Xn+1))
∣∣

≤ 3
(∑n

i=1 |ŵi − wi|
Sn

+
supy∈Y |ŵn+1(y)− wn+1(y)|

Sn

)
≤ 3

C1

( 1

n

n∑
i=1

|ŵi − wi|︸ ︷︷ ︸
II3

+
1

n
sup
y∈Y

|ŵn+1(y)− wn+1(y)|︸ ︷︷ ︸
II4

)
.

By the Cauchy–Schwarz inequality, we obtain

E(II3) = E|ŵ(X, Y )− w(X, Y )| ≤ (E|ŵ(X, Y )− w(X, Y )|2)1/2.

13
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Let En = {supy∈Y |ŵ(X, y)−w(X, y)| ≥ η
1/3
n } andHn = {E[supy∈Y |ŵ(X, y)−

w(X, y)|2 | ŵ] ≥ ηn}. Under Assumption 2, there exists a constant C2 > 0

such that |ŵ(X, Y )− w(X, Y )|2 ≤ C2 almost surely. Hence,

E |ŵ(X, Y )− w(X, Y )|2 = E
{
|ŵ(X, Y )− w(X, Y )|2 · I(Hn)

}
+ E

{
|ŵ(X, Y )− w(X, Y )|2 · I(Hc

n)
}

≤ C2ρn + ηnP(Hc
n) → 0.

Therefore, by Markov’s inequality, we have for any ε > 0,

P(II3 ≥ ε) ≤ E(II3)
ε

≤ 1

ε

(
E|ŵ(X, Y )− w(X, Y )|2

)1/2 → 0.

Moreover, by the consistency assumption in Assumption 2, we obtain

P(En) = E{P(En | ŵ)I (Hn)}+ E{P(En | ŵ)I (Hc
n)}

≤ P (Hn) + E

[
E
[
supy∈Y |ŵ(X, y)− w(X, y)|2 | ŵ

]
η
2/3
n

I (Hc
n)

]

≤ ρn + η1/3n = o(1).

Therefore, for any ε > 0 and sufficiently large n, we have P(II4 ≥ ε) ≤

P(En) = o(1). Combining all the above results, we obtain

sup
y∈Y

∣∣Ĝf̂ (f̂(y|Xn+1))− G̃f̂ (f̂(y|Xn+1))
∣∣ = oP (1).

Proof of Theorem 3. Define the local empirical CDF of f̂(Yn+1 | Xn+1) over

14



S1. TECHNICAL PROOFS

the local dataset Ā(Xn+1) in (S1.8) as

Ĝf̂ (t | Ā(Xn+1)) =
∑

i∈An(Xn+1)

ϖi(y) I{f̂(Yi | Xi) ≤ t}

+ϖn+1(y) I{f̂(y | Xn+1) ≤ t},

where y is a candidate of Yn+1. The normalized weights are defined as

ϖi(y) =
w(Xi, Yi)∑

j∈An(Xn+1)
w(Xj, Yj) + w(Xn+1, y)

,

ϖn+1(y) =
w(Xn+1, y)∑

j∈An(Xn+1)
w(Xj, Yj) + w(Xn+1, y)

.

By a basic property of distribution functions, the prediction set proposed

by Algorithm 2 can be expressed as:

Ĉ(Xn+1;α) =
{
y ∈ Y : Ĝf̂ (f̂(y | Xn+1) | Ā(Xn+1)) > α

}
.

It follows from Lemma 1 that P{Yn+1 ∈ C(Xn+1;α)∆Ĉ(Xn+1;α)} = o(1).

Furthermore, according to Lemma 28 in Izbicki et al. (2022), we obtain that

Ĉ(Xn+1;α) satisfies asymptotic conditional validity. That is, there exists a

sequence of sets Λn ∈ X such that P (Xn+1 ∈ Λn) = 1− o(1), and

sup
xn+1∈Λn

∣∣∣P{Yn+1 ∈ Ĉ(Xn+1;α) | Xn+1 = xn+1

}
− (1− α)

∣∣∣ = o(1).

Therefore, the conclusion of Theorem 3 is established under the true weight

function. Lemma 2 further shows that replacing the true weight function

with its estimator preserves asymptotic validity.
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S2 High-Dimensional Extensions

S2.1 Theoretical Discussion

Our method relies on estimating two components: (1) the propensity score

P(δ = 1 | X, Y ), and (2) the conditional density f(y | x). In the main paper,

we focus on finite-dimensional covariate settings, and here we discuss how

to estimate these components in high-dimensional scenarios and the related

theoretical properties.

(1). Propensity Score Estimation

Since nonignorable missingness causes identification issues even in low-

dimensional settings, estimating the propensity score in high dimensions

becomes even more challenging. Existing methods can address this problem

primarily under low-dimensional structural assumptions (such as sparsity),

via a two-step strategy: first performing screening or dimension reduction,

and then estimating the model in the reduced space. For example, Ding

et al. (2020) identifies covariates associated with δ using a Pearson χ2 statis-

tic, whereas Wang et al. (2021) employs sufficient dimension reduction to

simplify both the Y | X and δ | (X, Y ) models. After dimension reduc-

tion, both studies construct their propensity score estimators within the

instrumental-variable framework of Shao and Wang (2016). In the simu-
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S2. HIGH-DIMENSIONAL EXTENSIONS

lation studies in Section S2.2, we adopt the dimension reduction approach

of Wang et al. (2021) following an initial feature screening. Under stan-

dard regularity conditions (e.g., conditions for kernel estimation) and a

dimension-reduction step with accuracy guarantees, the resulting estima-

tors are consistent and satisfy Assumption 2 in the main paper.

(2). Conditional Density Estimation

In the main paper, we develop a conditional density estimator that is

reformulated in terms of the conditional quantile Q̂Y (τ | x, δ = 1) esti-

mated from the observed data, as given in equations (2.8) and (2.10). This

reformulation enables us to leverage existing conditional quantile estima-

tion methods to accommodate high-dimensional settings, and the choice

of estimator does not affect the validity of the coverage guarantee. We

may use the classical ℓ1-penalized quantile regression of Belloni and Cher-

nozhukov (2011), which achieves an estimation error of OP (
√
(s log p)/n)

under standard conditions and a sparsity assumption. Here, p is the num-

ber of covariates, s is the number of nonzero coefficients in the true model,

and s ≪ p. Building on this work, Wang et al. (2012) and Tan et al. (2022)

achieve notable theoretical and computational improvements by introduc-

ing nonconvex penalties such as SCAD and MCP, with the latter further

enhanced by convolution smoothing and multi-step weighted ℓ1. We can
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also use generalized random forests (Athey et al., 2019), which can handle

relatively large p, but their theoretical guarantees are derived under the as-

sumption that p is fixed. In addition, we may incorporate recent methods

in high-dimensional quantile regression reviewed in Qiu et al. (2026) into

our framework in appropriate settings.

Another efficient strategy in ultrahigh-dimensional settings is to per-

form feature screening before fitting the regression model. Zhang et al.

(2020) show that under nonignorable missingness with a logistic propensity

model, the pseudo-response Y δ can be used for screening because the active

set of Y | X is contained in that of Y δ | X. Therefore, under standard reg-

ularity conditions and using a screening procedure with the sure-screening

property, any downstream regression estimator will remain consistent when

the selected model contains the true active set. Following this strategy, in

the simulation studies in Section S2.2, we first perform feature screening and

then fit linear quantile regression (Koenker, 2005) and quantile regression

forests (Athey et al., 2019) using the reduced covariates.

The above methods yield consistent estimates of the conditional quan-

tiles in high-dimensional settings under the regularity conditions specified

in their respective papers. Consequently, under these conditions, our con-

ditional density estimator can be shown to satisfy Assumption 3 in the
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main paper. In addition, by directly using a conditional density estimator,

one can implement Algorithm 2 in high-dimensional settings using K-means

clustering based on the profile distance Izbicki et al. (2022). If the number

of clusters satisfies Kn → ∞ and Kn = o(n), then under mild regularity

conditions, such as the marginal density of X being bounded away from

zero and infinity on a compact set, the partition produced by Algorithm 2

can be shown to satisfy Assumption 5 with probability tending to one.

S2.2 Simulation Results

This section presents simulation studies to evaluate our method in high-

dimensional settings. We employ a two-step strategy: first performing fea-

ture screening to reduce the dimensionality to a finite set of covariates,

and then estimating the propensity score and conditional density in the

resulting reduced space.

We follow the data-generating mechanism in Section 4 of the main

paper but increase the covariate dimension to p = 300. The covariates are

generated as Uij ∼ N(Zi/10, 1), j = 1, . . . , 300, where Zi is an instrumental

variable. As in Section 4, we consider both linear and nonlinear models,

with the true outcome Yi and the missingness indicator depending only

on the first 10 components of Ui. In the feature screening step, we fit
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a penalized linear regression of Y on X using the observed training data

with an Elastic Net penalty, and directly retain the 15 covariates with

the largest estimated coefficients. We then proceed in this reduced low-

dimensional space as in Section 4 of the main paper: the propensity score

is estimated using the method of Wang et al. (2021), and the conditional

density is obtained via equations (2.8) and (2.10). For conditional quantile

estimation, we use linear quantile regression (LQR) in the linear model and

quantile random forests (QRF) in the nonlinear model, respectively.

We compare the four methods considered in the main paper, namely

OMNI, Naive, MAR-CP, and MNAR-CP. The results for the linear model

with a sample size of n = 1000 are presented in Table S1, while those for

the nonlinear model with a sample size of n = 4000 are presented in Table

S2. Consistent with the low-dimensional findings, the Naive and MAR-CP

methods usually fail to reach the nominal coverage because they do not

correctly adjust for the bias caused by nonignorable missingness, either by

ignoring it or by applying a misspecified correction. Both OMNI and the

proposed MNAR-CP method achieve the nominal coverage. However, our

intervals tend to be wider because OMNI uses fully observed samples and

avoids weight estimation, which is unrealistic in practice. In contrast, our

method relies on a smaller effective sample size and has additional estima-
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tion error that becomes more pronounced in high-dimensional settings. As

the sample size increases, our interval lengths become closer to those of

OMNI, as shown in Table S2.

Table S1: Average Coverage percentages (AC%) and Average Length (AL) for 90%

prediction sets in the high-dimensional setting with p = 300 and n = 1000, averaged over

500 new subjects and 500 repetitions under the linear model using the LQR estimator.

Miss.(%) OMNI Naive MAR-CP MNAR-CP

(a) Homoskedastic

AC%
(SE×100)

40 90.12(0.08) 88.29(0.11) 87.79(0.24) 89.68(0.12)

50 90.12(0.08) 87.94(0.13) 87.09(0.36) 89.76(0.14)

60 90.12(0.08) 87.40(0.15) 85.75(0.47) 89.61(0.15)

AL
(SE)

40 3.48(0.01) 3.51(0.01) 3.67(0.06) 5.45(0.12)

50 3.48(0.01) 3.55(0.01) 3.67(0.02) 6.29(0.15)

60 3.48(0.01) 3.61(0.01) 3.82(0.05) 6.78(0.16)

(b) Heteroscedastic

AC%
(SE×100)

40 90.00(0.09) 84.01(0.15) 82.91(0.41) 88.80(0.18)

50 90.00(0.09) 83.23(0.17) 82.02(0.43) 89.14(0.20)

60 90.00(0.09) 82.47(0.20) 81.01(0.48) 89.34(0.21)

AL
(SE)

40 2.73(0.01) 2.29(0.01) 2.52(0.05) 7.93(0.21)

50 2.73(0.01) 2.31(0.03) 2.63(0.07) 8.96(0.23)

60 2.73(0.01) 2.45(0.06) 2.94(0.09) 10.11(0.23)

OMNI: Standard conformal prediction applied to the complete data. Naive: Standard

conformal prediction applied to the observed data. MAR-CP: Weighted conformal pre-

diction with MAR weights. MNAR-CP: Proposed weighted conformal prediction with

MNAR weights. Values in parentheses are standard errors.
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Table S2: Average Coverage percentages (AC%) and Average Length (AL) for 90%

prediction sets in the high-dimensional setting with p = 300 and n = 4000, averaged

over 500 new subjects and 500 repetitions under the nonlinear model using the QRF

estimator.

Miss.(%) OMNI Naive MAR-CP MNAR-CP

(a) Homoskedastic

AC%
(SE×100)

20 90.01(0.07) 84.16(0.08) 88.01(0.31) 90.89(0.11)

30 89.99(0.06) 82.71(0.09) 87.50(0.41) 90.90(0.12)

40 90.02(0.07) 81.12(0.09) 85.58(0.63) 90.40(0.12)

AL
(SE)

20 11.07(0.01) 9.33(0.01) 13.51(0.42) 11.72(0.06)

30 11.06(0.01) 9.01(0.01) 14.78(0.51) 11.86(0.09)

40 11.05(0.01) 8.68(0.01) 14.27(0.49) 11.65(0.06)

(b) Heteroscedastic

AC%
(SE×100)

20 89.92(0.07) 82.34(0.09) 86.64(0.52) 90.84(0.12)

30 89.94(0.06) 80.57(0.09) 87.18(0.59) 90.82(0.13)

40 89.93(0.06) 78.55(0.10) 85.16(0.75) 90.13(0.14)

AL
(SE)

20 10.58(0.01) 8.45(0.01) 13.17(0.44) 11.17(0.06)

30 10.59(0.01) 8.08(0.01) 15.66(0.56) 11.42(0.10)

40 10.57(0.01) 7.69(0.01) 14.80(0.52) 11.43(0.12)

OMNI: Standard conformal prediction applied to the complete data. Naive: Standard

conformal prediction applied to the observed data. MAR-CP: Weighted conformal pre-

diction with MAR weights. MNAR-CP: Proposed weighted conformal prediction with

MNAR weights. Values in parentheses are standard errors.
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S3 Additional Numerical Studies

S3.1 Conditional Coverage

This section investigates the conditional coverage performance of the pro-

posed method, including the non-localized prediction from Algorithm 1 and

the localized prediction from Algorithm 2.

We generate the covariates X = (Z,U) and the missingness indicator

δ ∼ Bern(π) following the same setup as in the simulation study in Section

4 of the main paper. For clarity, we focus on linear model with a = −3.5,

resulting in the following model:

Yi = Zi +
∑10

j=1 Uij + ϵi,

πi = π(Ui, Yi) = 1/
{
1 + exp

(
− 3.5− 0.1

∑10
j=1 Uij + 0.65Yi}

)}
,

where we consider only homoscedastic errors with ϵi ∼ N(0, 1) and a sample

size of n = 1000. This setting corresponds to a 40% missing rate. For the

proposed method, we use the same procedures for weight and conditional

density estimation as in Section 4 of the main paper, with conditional quan-

tiles estimated only via linear quantile regression. Let K be the number of

clusters in Algorithm 2. We compare the prediction performance for K = 1

(i.e., the non-localized prediction in Algorithm 1), K = 5, and K = 10.

To evaluate conditional coverage, we fix the covariates for 20 new sub-

jects. These covariates are generated as follows: we first create 20 equally
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spaced quantile levels ranging from 0.01 to 0.99. For each quantile level,

we compute the corresponding marginal quantile for each covariate dimen-

sion based on its true distribution. This yields 20 covariate vectors, each

consisting of marginal quantiles taken at the same quantile level across all

dimensions. The average results over 1000 repeated experiments for each

fixed covariate test point are shown in Figure S1, where the x-axis rep-

resents the 20 covariate vectors generated at quantile levels from 0.01 to

0.99.

It is observed that the conditional coverage is slightly low for subjects

on the left side of Figure S1. This is because these new subjects have ex-

treme covariate values—some near the 0.01 quantile—where training data

are sparse and predictions are less reliable without model assumptions.

However, as the number of clusters K increases, the conditional coverage

improves, which aligns with our theory—larger K provides a better approx-

imation to the conditional distribution, leading to more reliable conditional

coverage guarantees for any given covariate. In practice, the selection of

K is guided by the predictive objective: if only marginal coverage over the

entire covariate space is required, setting K = 1 is adequate. However, if

conditional coverage is desired for a specific subject—particularly one with

atypical covariates—a larger K is generally more appropriate (e.g., 5 to 10
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when n = 1000) and may be further increased as the sample size grows.

S3.2 Additional Simulation Results

This section presents additional simulation results that complement Sec-

tion 4 of the main paper. While the main paper reports marginal coverage

for the linear model with n = 1000 and the nonlinear model with n = 4000,

we also include results for the nonlinear model with n = 1000 in Table S3

and for the linear model with n = 4000 in Table S4. In addition, Fig-

ure S2 illustrates examples of conditional density estimates under different

settings. Since these findings are consistent with those in the main paper,

we omit further discussion.
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Figure S1: Comparison of conditional coverage and conditional length across different

numbers of clusters K. The x-axis represents 20 covariate vectors, each formed by taking

the same quantile level (from 0.01 to 0.99) across all variables.
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Figure S2: Comparison of conditional density estimations for a = −3.5 and n = 4000.

The oracle density is represented by the red solid line, LQR by the blue dashed line,

QRF by the green dash-dotted line.
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Table S3: Average Coverage percentages (AC%) and Average Length (AL) for 90%

prediction sets, across different missing rates and f̂ estimators, averaged over 500 new

subjects and 500 repetitions in nonlinear model with n = 1000.

Miss.(%) f̂ OMNI Naive MAR-CP MNAR-CP

(a) Homoskedastic

AC%
(SE×100)

20
LQR 90.06(0.08) 84.77(0.11) 86.75(0.28) 90.50(0.14)

QRF 90.12(0.08) 84.44(0.11) 86.19(0.30) 90.13(0.15)

30
LQR 90.06(0.08) 83.51(0.11) 86.14(0.31) 90.06(0.16)

QRF 90.05(0.09) 82.98(0.11) 85.75(0.29) 89.64(0.16)

40
LQR 90.12(0.08) 82.23(0.12) 86.73(0.42) 89.79(0.18)

QRF 90.08(0.08) 81.35(0.11) 85.89(0.42) 89.27(0.18)

AL
(SE)

20
LQR 11.61(0.04) 9.31(0.03) 12.25(0.38) 20.54(0.61)

QRF 11.70(0.03) 9.71(0.02) 11.16(0.21) 12.91(0.21)

30
LQR 11.61(0.04) 8.97(0.03) 12.50(0.41) 21.55(0.62)

QRF 11.68(0.03) 9.35(0.02) 11.32(0.24) 13.31(0.27)

40
LQR 11.75(0.04) 8.72(0.03) 15.20(0.54) 23.26(0.66)

QRF 11.72(0.03) 9.02(0.02) 12.83(0.38) 14.00(0.34)

(b) Heteroscedastic

AC%
(SE×100)

20
LQR 89.86(0.09) 83.06(0.11) 85.96(0.30) 90.30(0.17)

QRF 89.92(0.09) 82.53(0.11) 85.23(0.35) 89.85(0.16)

30
LQR 89.86(0.09) 81.60(0.13) 86.01(0.37) 89.66(0.19)

QRF 89.91(0.09) 80.77(0.11) 85.11(0.41) 89.07(0.18)

40
LQR 89.97(0.09) 80.16(0.13) 84.70(0.52) 89.41(0.20)

QRF 90.04(0.08) 79.02(0.13) 83.80(0.51) 88.52(0.21)

AL
(SE)

20
LQR 10.88(0.04) 8.13(0.03) 12.07(0.46) 22.17(0.66)

QRF 11.20(0.03) 8.80(0.02) 11.00(0.28) 12.91(0.30)

30
LQR 10.88(0.04) 7.76(0.03) 13.19(0.50) 22.20(0.67)

QRF 11.20(0.03) 8.41(0.02) 11.51(0.32) 13.56(0.37)

40
LQR 10.91(0.04) 7.51(0.03) 14.21(0.56) 20.31(0.65)

QRF 11.23(0.02) 8.04(0.02) 12.00(0.40) 12.73(0.33)

OMNI: Standard conformal prediction applied to the complete data. Naive: Standard conformal pre-

diction applied to the observed data. MAR-CP: Weighted conformal prediction with MAR weights.

MNAR-CP: Proposed weighted conformal prediction with MNAR weights. Values in parentheses are

standard errors. 28
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Table S4: Average Coverage percentages (AC%) and Average Length (AL) for 90%

prediction sets, across different missing rates and f̂ estimators, averaged over 500 new

subjects and 500 repetitions in linear model with n = 4000.

Miss.(%) f̂ OMNI Naive MAR-CP MNAR-CP

(a) Homoskedastic

AC%
(SE×100)

40
LQR 89.99(0.07) 87.85(0.08) 84.77(0.59) 89.54(0.08)

QRF 90.02(0.07) 79.75(0.09) 81.98(0.26) 89.23(0.11)

50
LQR 89.99(0.07) 87.27(0.09) 85.52(0.41) 89.40(0.08)

QRF 90.01(0.06) 77.31(0.10) 79.77(0.31) 88.95(0.11)

60
LQR 89.99(0.07) 86.72(0.10) 84.15(0.56) 89.49(0.09)

QRF 89.96(0.06) 74.82(0.11) 78.14(0.32) 88.42(0.13)

AL
(SE)

40
LQR 3.30(0.00) 3.24(0.00) 3.21(0.02) 3.75(0.04)

QRF 7.61(0.01) 6.98(0.01) 7.77(0.11) 7.78(0.04)

50
LQR 3.30(0.00) 3.25(0.00) 3.32(0.04) 4.09(0.07)

QRF 7.61(0.01) 6.96(0.01) 7.81(0.12) 7.95(0.05)

60
LQR 3.30(0.00) 3.26(0.00) 3.32(0.02) 4.51(0.08)

QRF 7.60(0.01) 6.95(0.01) 7.94(0.12) 8.09(0.07)

(b) Heteroscedastic

AC%
(SE×100)

40
LQR 90.08(0.07) 83.47(0.10) 81.16(0.57) 89.13(0.11)

QRF 90.11(0.06) 76.60(0.11) 79.71(0.30) 88.67(0.12)

50
LQR 90.08(0.07) 82.35(0.11) 79.75(0.59) 89.79(0.12)

QRF 90.10(0.07) 73.84(0.12) 77.79(0.35) 88.06(0.12)

60
LQR 90.08(0.07) 81.12(0.12) 79.00(0.55) 89.48(0.13)

QRF 90.04(0.06) 71.07(0.13) 75.84(0.39) 88.51(0.13)

AL
(SE)

40
LQR 2.57(0.00) 2.04(0.00) 2.32(0.09) 3.45(0.12)

QRF 7.59(0.01) 6.83(0.01) 7.80(0.12) 7.96(0.08)

50
LQR 2.57(0.00) 1.97(0.00) 2.22(0.07) 3.98(0.14)

QRF 7.59(0.01) 6.82(0.01) 7.98(0.13) 8.15(0.10)

60
LQR 2.57(0.00) 1.91(0.01) 2.38(0.10) 4.71(0.16)

QRF 7.59(0.01) 6.85(0.01) 8.05(0.12) 8.39(0.10)

OMNI: Standard conformal prediction applied to the complete data. Naive: Standard conformal pre-

diction applied to the observed data. MAR-CP: Weighted conformal prediction with MAR weights.

MNAR-CP: Proposed weighted conformal prediction with MNAR weights. Values in parentheses are

standard errors. 29
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