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Supplementary Material

The supplementary materials include the following: first, the technical proofs for Theo-
rems 1-3, presented in Sections[ST.IHSI.3} respectively; second, the high-dimensional extensions
in Section including theoretical discussion in Section and simulation results in Sec-
tion and finally, additional numerical studies in Section [S3] including conditional coverage

evaluation in Section and supplementary simulation results in Section [S3.2)

S1 Technical Proofs

S1.1 Proof of Theorem 1

Without loss of generality, assume the non-missing calibration set Do is
indexed by {1,...,n}, while the test data is indexed by {n + 1}. Define
the random variable Z; = (X;,Y;) and its observed value z; = (x;,y;) for
i =1,...,n+ 1. According to the definition by |Tibshirani et al. (2019,

the random variables {Z;,7 = 1,...,n + 1} are referred to as weighted

1



Menghan Yi, Yingying Zhang, Yanlin Tang, and Huixia Judy Wang

exchangeable if their joint density function can be factorized as

n+1
f(z1,. . Zni1) = H ¢i(zi) - 9(Z1, - - -, Znt1), (S1.1)
i=1
where ¢;(+) is a certain adjustment function, and ¢ is a permutation-invariant
function; that is, for any permutation o of the set {1,...,n+ 1},
g(ZU(l), Ce ,Zg(n_H)) = g(Zl, Ce ,Zn+1).

In our data setup, Z; to Z, are observed data points drawn from the con-
ditional distribution f(z | 6 = 1), while Z,,4; is drawn from the marginal
distribution f(z). Since all variables are independent, the joint density can

be factorized as:

n

flz1,. o zne) = [ [ F(l0 = 1) f(2a11)

=1

n+1 n+1 (812)
= % Hf(zzlfs =1) = w(zns1) Hf(ZZM =1).

Therefore, the distribution of our data satisfies the weighted exchangeability
definition (S1.1)), where ¢;(z) = 1 for i = 1,...,n, and ¢;(z) = w(z) for
i =n+1,and g(zy,...,2.1) = [[17; f(zi | 6 = 1) is permutation invariant.

We define the event £z to indicate that two unordered collections are equal:

gZ = {[Zl,---,zn_H] = [Zl,...,Zn_H]},

which means that each Z; takes a value from the set {z1, ..., 2,11}, and the

collection {Zy,...,Z, 1} matches {zi,...,2,.1} as a multiset, regardless
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of order. Let the nonconformity score of z; be defined as r; = R(z;) for

t=1,...,n4+ 1. By weighted exchangeability, we can calculate

P{Rnﬂ =T ‘ gz,Dt} = ]P{ZnJrl =12z | EZaDt}

. Zo-(nJrl):i f(za(l)a s 7Zo(n+1)>
Zo’ f Zs(1)y - - - 7za(n—|—1))

Zg(n+1):iw(za(n+1)) H?;l f(2;]6 = 1)
30 w(Zo(in) T2 f(200 = 1)

_ w(z;)

= %
>t w(zg)

where the summations are taken over permutations o of the numbers 1, ..., n+
1. Note that this conditional probability is well-defined, since Assumption
1 means that under both F(z|6 = 1) and F(z) it is almost surely that

w(z) < co. Therefore, the distribution of R, is

n+1
w(x;, yi)
(Rut1 | €2,Dy) ~ Fr(r) = — I(r; <r), (51.3)
; S w(xg, ;)

which depends on the true weight function w(x,y).
To establish the properties under the estimated weights, we generate a

new sample using the estimated weight function w(x,y),

(Xn—i-l; Yn—H) ~ f(X, y) Wlth f(X7 y) - ﬁ)\(X7 y)f(X7 y|5 - 1) (Sl4>

Since the expectation of g(U) ¢(Y,~) is finite under the theorem’s assump-

tion, the estimated weight @ (X, Y") is finite almost surely. This implies that
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w(X,Y) can be normalized to have expectation one. Consequently, f(x, Y)
defines a valid probability density function. Let zn+1 = (inﬂ, ?nﬂ), and
denote its nonconformity score by R, 1 = R(zn+1). Define the event & to
indicate that two unordered collections are equal: & = {[Zl, RN/ Zn+1] =

21, ..., Zn, Zny1] } Using the same argument as for (S1.3|), we have

(Xuyl)
w1 | £.D) NS
( +1 1€z, Dy Z ZJ LW(X5,Y5) + W(Xng1, Ynt1) ( )

o~ o~

w(Xn—i-l) gn—i—l)
Z?:l {E(Xﬁ yj) + {E(in%—la gn-ﬁ-l)
which is well-defined, since w(z) < oo almost surely under both F'(z | 6 = 1)

_|_

]I(?’Vl-l—l S ’f’),

and F'(z). Let Q3(7) denote the 7-th quantile of the distribution F%, defined
as Qp(r) = inf{r : Fz(r) > 7}. According to the proposed definition
of prediction set, we have {V,,1 € C(Xni1)} < {Roi1 < Qp(l —a)}.
Therefore, by the definition of the quantile, it follows that:
P{Vo11 € C(Xp1) | Do} = E[B{Yoi1 € C(Xpi1) | €7, Di}]

= E[P{R1 < Qp(1 - )| €7, D}]

> 1—a. (S1.5)
Let dry (F1, F3) denote the total-variation (TV) distance between distribu-

tions F; and Fy. Then according to the definition of TV distance,

|P{Yn+1 S a(XnJrl) | Dtch} - P{?nJrl < a(xnﬂ) | Dtch}‘

< dpy (F(x,y), F(x, y)),
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where F (x,y) is the distribution function of f(x, y). Taking expectation

over D., we have

P{Y,1 € C(Xpy1) | D} > P{Y,1 € C(Xupr) | D1} — dov(F(x,9), F(x, 1))

(513) -
> 1—a—drv(F(x,y), F(x,y)). (51.6)

By the integral definition of TV distance,
- 1 _
dTV(F(Xay)a F(Xv y)) :E / |dF(X7y) - dF<Xa y)|
1 N
25 |’UJ(X7 y) —UJ<X, y)|dF(X7y’6 = 1)
1

= SE[5(U)(Y.F) — g(Wa(v,m)|,  (SLT)

where expectation is taken under (X,Y) ~ f(x,y|0 = 1). Finally, taking

expectation with respect to D; in inequality (S1.6)), we have

P{Yurs € CXuia)} 2 1 - a = SEGUN(Y ) - g(U)a(Y ).

S1.2 Proof of Theorem 2

Let A = {A;} be a partition of X', and let A,(X,11) be the subset of the

calibration set whose covariates fall in the same partition element as X, 1:

Ap(Xng1) = {(X;,Y;) € D” : X; € Aj and X1 € A} (S1.8)
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It follows that, conditional on X, € A;, the pair (X,41,Y,11) and the
subset A, (X,,+1) remain weighted exchangeable, with their joint distribu-
tion sharing the same form as in (S1.2)). By applying the same argument

and derivation as in the proof of Theorem 1, we obtain a coverage guarantee

analogous to (S1.5):
P{Y, 1 € C(Xpp1) | X1 € 45} > 1—a, (S1.9)

where 5{%1 and §7n+1 follow the same joint distribution as in 1' By
the definition of the total variation (TV) distance, we obtain
P{Y, 11 € é(XnH), Xot1 € A5}

Z ]P){i;n—i—l € a(in—&—l)a Xn—&—l € A]} - dTV<F(X7 y)u ﬁ(X7 y))

1 PR € Ay} — iy (F(x,y), Fix, ).

Similarly, using the definition of the total variation distance, we have
P{Xoi1 € A7} = P(Xui1 € A} — diy (F(x), F(x)).

By combining the results above, we conclude that

P{Yn+1 S a(Xn—i-l)v Xn+1 € AJ}

> (1 ){P{Xy1 € A} — dry(F(x), Fx)) } — drv (F(x.9). Flx.1)).
This implies that

]P){YnJrl € 6<)(n+1> ’ Xn+1 € Ag} 2 l—a— 310(:7

<~ (1 —a)dry (F(x), F(X)) + dtv (F(X, v), F(x, y))
Ajpe = P[X,., € 4] : (S1.10)
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Let G(x,v) = [ q(y,)dF(y|x,6 = 1) and g(x,7) = [ q(y,7)dF (y|x,6 = 1).

By the integral definition of TV distance, we have

rv(F).F(0) = 5 [ 14F(0 - dF(x)

= 5 | [ wee) - ax )apiy | x.6 = v]arex| 5= 1)
= 5 [ Jotoatx) = Gt ]arex | 5= 1)
1

- éEXNf(xM:l) |g(X)(j(X’ ’7) - /g\(X)q_(Xu ’/7\)|7 (8111>

where the first equation holds because
AF(x) = {/w(x, WAF(y | x,6 = 1)} (x| 5 =1).

By substituting equations (S1.11)) and (S1.7)) into (S1.10), we obtain an
exact lower bound for the local coverage. Alternatively, we can directly
apply the inequality drv(F(x), F(x)) < drv(F(x,y), F(x,y)) to (ST.10)

and then substitute (S1.7)), which yields the conclusion of Theorem 2.

S1.3 Proof of Theorem 3

Lemma 1. Let G¢(t | x) be the conditional CDF of f(Y | X), and let
@f(t | A(x)) be the local empirical CDF of fA(Y | X) constructed from

A(x) = A(x) U{(x,y)}, where A,(x) is the calibration subset in (S1.8)
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from the same cluster as x. They are defined as

Gr(t|x) =P{f(Y|X) <t|X=x},
(S1.12)

~ - w

Gpt | Ax) = ——I{f(Vi | X,) <1},

e A ) ZjeA(x) wj
where the weights w; are assumed to be known. These two CDFs are used to
construct the corresponding prediction intervals for' Y given X as follows:
CX;a)={yeY:G(fly| X)|X)>a},
C(Xsa)={y € V:G{fly | X) | AX)) > a}.
Under Assumptions 2-5, it follows that:

P{Y € C(X;a)AC(X;a)} = o(1).

Proof of Lemma[1 To evaluate the discrepancy between C'(X; ) and C (X; ),
it is essential to quantify the deviation between the oracle CDF and its em-

pirical counterpart in (S1.12). Let G#(t | X) = P{f(Y | X) <t| X} denote

the conditional CDF of f(Y | X). Then, by the triangle inequality,
sup |G (£(y | X) | X) - Gi(fly | X) | AX))]
< sup|G(f(y | X) | X) = G7(f(y | X) | X))
+2161£ GH(f(y | X) | X) = GH(fly | X) | X)|
+sup G Fy | X) | X) = G5y | X) | AXX))]

= Il +12—|—13
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~

Let B, = {sup,cy |f(y | X) = f(y | X)| > 1}, where 1, is from Assump-

tion 3. On the complement event B¢, it can be shown that:

L < sup|Gy(z | X) - G5z | X)|

—suwp| [ fo1 Xy = [ X
z {y:f(yIX)<z} {y:f(yIX)<z}

< sup / FIX)dy + sup / F@IX)dy
{y:f (W X)< {y:f (W] X)>

z

Z,f(y|X)>Z} z va(ylx)gz}

< sup [y X)dy + sup

/ / F(yIX)dy
z Hyz—nn<f(y|X)<z} z Hyz<f(ylX)<z+nn}

= sup |G (2[X) — G (= — ma[X)] +sup |G (2 + m|X) — Gy(=]X)|

= 0p (1)a
where the last equality follows from the Lipschitz continuity of Gy in As-

sumption 4. Similarly, on the event B, we have:
I < sup |Gz | X) = Gz | X)|
|21 —22|<nn

< sup |Gp(zr + 0 | X) = Gz — 1 | X))

|21 —22|<nn
< sup |Gz + 20, | X) = Gz = 20, | X)| = 0p(1).

-~

Since B, C {supeaix) sty |7y %) = £y | X)| = 7}, by Assumption 3,

P(B,) <P( sup sup|f(y|x)— f(y|x)] > na) < pn=o0(1).
x€AX) ¥

Consequently, I; = op(1) and I, = op(1).
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For I, let G7(t | A(X)) = P{f(Y | X) <t |X € A(X)} denote the
conditional CDF of ]?(Y | X) given A(X). By the triangle inequality,
Iy < sup |G7(z | AX)) = G(z | X)|
< sup |Gz | A(X)) ~ G7(z | AX)| +sup|G5(z | AX)) - Gy(= | X)),
For the first term, since the weights are a.s. bounded under Assumption

2, Lemma S.2 of |Yi et al| (2025) (the weighted DKW inequality under

distribution shift) implies that for any ¢ > 0,

P{ sp G#(z | A(X)) — Gz | AX))| > ¢}

2
<2 {—-‘ + 1} exp{—Cn(e —1,)%},
{ (e—rn)+ "
where 71 denotes the number of samples in the subset A(X), r, = O(n™!),
and the constant C' depends on the upper bound of the weights. Under
Assumption 5, 7 — 00, it follows that sup, ‘@f(z | A(X))—Gf(z | A(X))| =

op(1). For the second term, by the law of iterated expectations, we have
sup Gz | A(X)) = G | X)|
= sup ‘E[Gf(z |X) =Gz | X) | X € A(X)]‘
< Sng[’Gf(z X))~ Gz | X)| | X € A(X)}
< sng“Gf(z |X') = Gz | X))| | X € A(X)} (S1.13)

+sng[|Gf(z | X') = Gy | X)| | X' € A(X)} (S1.14)
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+sgp]E“Gf(z |X) — Gz | X)| | X € A(X)}, (S1.15)

where (S1.13]) and (S1.15) converge to zero in probability by the local uni-

form consistency in Assumption 3, while (S1.14]) also converges to zero due
to the Lipschitz continuity and diameter shrinking in Assumptions 4-5. It

then follows that I3 = op(1). Putting all the pieces together, we have

sup G1(f(y | X) | X) = GH(fly | X) | AX))| = op(1).

Let A, = o(1) be a sequence such that D, = {sup,cy |G(f(y[X) |
X) —@f(f(ypi) | A(X))| > A\,} and P(D,,) = o(1). Therefore, on the event

D¢ | it follows from the definition of the prediction set that

C(X;a)AC(X;0) = {y: G4 (f(y | X) | X) > o, GH(fly | X) | A(X)) < a}
U{y: Gr(fy | X) | X) < a, GH(fly | X) | AX)) > o}
C {y:|GHIy X)X} —al <A}
Under Assumption 4, where G is Lipschitz continuous, we have
P{Y € C(X;a)AC(X;a)} < P{Y € O(X;a)AC(X;a), D5} +P(D,)

< PGHIY | X) [ X} —af < An) +o(1)

< 2\, +o(1) = o(1).
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Lemma 2. Define the weighted empirical CDFs based on the true weights

and the estimated weights of f( Yoi1|Xnt1) as follows:

(XHY;) iy ‘ ‘
Z Z] L w(X;,Y5) +w(Xn+1,y)H{f(Y; [ Xs) <t}

Xt1,
I w( +13/)

S 0K, V) + w0y O Xe) S0

L (X, 1) I
G = 2 s 1) T ey 1 X0 =1

W(Xn11,9)
Z] 1U)(X],Y;) (Xn+1,y)

+

{f(y | Xos1) <t}

where y is a candidate test point for Y, 1. Then, under Assumption 2,

sup |G7(f(y | Xnt1)) — G7(J(y | Xuin))| = 0p(1).

yey

Proof of Lemma[3. To simplify notation, let
=w(X;,Y:), w;=wX;Y;), i=1,...,n,
Wni1(Y) = W(Xny1,Y),  Wny1(y) = 0(Xpi1, y)-
Define Spi1(y) = Soiy w; + wos1(y) and Sppi(y) = S0, @ + Dpsa (y)-

Based on the definitions of G 7(t) and € 7(t), we have

sup - ‘ w; Wi +sup Wnt1(y) _ Wn41(Y)
B yGJJ\ 71 Sn41(y) SnH(Z/)J yey\SnH(y) Sny1(y)
0, (y) 12 (y)
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Furthermore, we can compute II;(y) and IIy(y) as follows.

n

y) = Y

=1

W Snjl(y) —w; S ()
Sn1(Y)Sni1(y)
_ @i {Sns1(y) = Sus1(®)} + S () (@i — wy)
; §n+1 (y)sn+1(y)
S |Sus1(y) — "il( | + S (y) S0, @ — wil
Sp1(Y)Sny1(y)
[Sni1(y) = S @), 3oL 18 — wi]
Sn41(y) Sn+1(y)

2500 18— wi] | Jwnn(y) = Boa(y)]
Sn+1(y) Sn-‘rl(y)

n

IN

IN

<

Similarly, we can derive that:

112( ) < Zi:l |UJZ - wl| + 2|wn+1<y) - wn-l—l(y)' '
Snt1(y) Snt1(Y)

Under Assumption 2, there exists a constant C; > 0 such that the weight

function is a.s. bounded below by C;. Combining II;(y) and Ily(y) gives

sup |G y | Xp41)) — éf(f(y | Xn+1))|

yey

3<2?:1 Wi — w I SUPyey |Wn11(y) — wn+1(y)|)
S, S,

n

3 /1 1
< _(_ Az'_ % - An - Wn >
<5 n;w w|+n21€15|w 11(y) = W ()]

<

J/

-~

Il 114

By the Cauchy-Schwarz inequality, we obtain

E(IL) = E|@(X, V) — w(X,Y)| < (BJH(X,Y) — w(X,Y)[)"2.

13



Menghan Yi, Yingying Zhang, Yanlin Tang, and Huixia Judy Wang

Let By = {sup,cy [0(X, y)—w(X,y)| > i/} and H, = {Efsup,cy |0(X, y)-
w(X,y)]? | @] > n,}. Under Assumption 2, there exists a constant Cy > 0
such that |0(X,Y) — w(X,Y)|? < Cy almost surely. Hence,
E|@(X,Y) —wX, V) =E {lo(X,Y) —w(X,Y)|* - I(H,)}
+E{|0(X,Y) —w(X,Y)[* - 1(H;) }
< Copn +m,P(H:) — 0.
Therefore, by Markov’s inequality, we have for any € > 0,

E(I1)
£

1/2

— 0.

Pl > ¢) < <

m | =

(Elo(X,Y) — w(X,Y)])

Moreover, by the consistency assumption in Assumption 2, we obtain
P(E,) = E{P(E, | 0)L(H,)} + E{P(E, | w)I(H;)}

E [supyey [0(X,y) —w(X,y)]* | @]

<P(H,) +E Zh
Tn

[(H})

< po /% = o(1).
Therefore, for any ¢ > 0 and sufficiently large n, we have P(Il; > ¢) <

P(E,) = o(1). Combining all the above results, we obtain

sup |G H(f(y[Xni1)) = GHF(y[Xni1))| = 0p(1).

yeY

O

~

Proof of Theorem 3. Define the local empirical CDF of f(Y,,11 | X,41) over

14
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the local dataset A(X,,1) in (S1.§)) as

Gt | AXpin)) = > @ily) (Y | Xi) <t}

iEAn(Xn+1)

~

+ wn+1(y) H{f(y ’ Xn—i-l) < t}7

where y is a candidate of Y,, ;1. The normalized weights are defined as

(y) w(X;, Y;)
wi\y) = ,
ZjEAn(Xn+1) w(X;,Y;) + w(Xng1,y)
w(Xpi1,
Do (y) = (Xn+1,9)

D jean X,y WX Y) Fw(Xnga,y)

By a basic property of distribution functions, the prediction set proposed

by Algorithm 2 can be expressed as:
ao(n—kl;O‘) = {y ey: éf(f(y | Xoi1) | A(Xn-i-l)) > a}'

It follows from Lemma |1 that P{Y,;; € C(X,11; a)Aa(XnH; a)} =o(1).
Furthermore, according to Lemma 28 in [Izbicki et al.| (2022), we obtain that
C (X,41; @) satisfies asymptotic conditional validity. That is, there exists a

sequence of sets A,, € X such that P(X, ;1 € A,) =1—0(1), and

sup
Xn+1 EAn

IP’{YnH € a(Xn+1;a) | X1 = Xn+1} - (1- oz)’ = o(1).

Therefore, the conclusion of Theorem 3 is established under the true weight
function. Lemma [2| further shows that replacing the true weight function

with its estimator preserves asymptotic validity.
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S2 High-Dimensional Extensions

S2.1 Theoretical Discussion

Our method relies on estimating two components: (1) the propensity score
P60 =1]X,Y), and (2) the conditional density f(y | x). In the main paper,
we focus on finite-dimensional covariate settings, and here we discuss how
to estimate these components in high-dimensional scenarios and the related
theoretical properties.
(1). Propensity Score Estimation

Since nonignorable missingness causes identification issues even in low-
dimensional settings, estimating the propensity score in high dimensions
becomes even more challenging. Existing methods can address this problem
primarily under low-dimensional structural assumptions (such as sparsity),
via a two-step strategy: first performing screening or dimension reduction,
and then estimating the model in the reduced space. For example, |Ding
et al.[(2020) identifies covariates associated with § using a Pearson y? statis-
tic, whereas Wang et al.| (2021) employs sufficient dimension reduction to
simplify both the Y | X and ¢ | (X,Y) models. After dimension reduc-
tion, both studies construct their propensity score estimators within the

instrumental-variable framework of [Shao and Wang| (2016)). In the simu-
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lation studies in Section [S2.2] we adopt the dimension reduction approach
of Wang et al.| (2021) following an initial feature screening. Under stan-
dard regularity conditions (e.g., conditions for kernel estimation) and a
dimension-reduction step with accuracy guarantees, the resulting estima-
tors are consistent and satisfy Assumption 2 in the main paper.
(2). Conditional Density Estimation

In the main paper, we develop a conditional density estimator that is
reformulated in terms of the conditional quantile Qy (7 | x,6 = 1) esti-
mated from the observed data, as given in equations (2.8) and (2.10). This
reformulation enables us to leverage existing conditional quantile estima-
tion methods to accommodate high-dimensional settings, and the choice
of estimator does not affect the validity of the coverage guarantee. We
may use the classical ¢;-penalized quantile regression of Belloni and Cher-
nozhukov| (2011), which achieves an estimation error of Op(4/(slogp)/n)
under standard conditions and a sparsity assumption. Here, p is the num-
ber of covariates, s is the number of nonzero coefficients in the true model,
and s < p. Building on this work, [Wang et al.| (2012)) and Tan et al.| (2022))
achieve notable theoretical and computational improvements by introduc-
ing nonconvex penalties such as SCAD and MCP, with the latter further

enhanced by convolution smoothing and multi-step weighted ¢;. We can
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also use generalized random forests (Athey et al., 2019), which can handle
relatively large p, but their theoretical guarantees are derived under the as-
sumption that p is fixed. In addition, we may incorporate recent methods
in high-dimensional quantile regression reviewed in |Qiu et al| (2026) into
our framework in appropriate settings.

Another efficient strategy in ultrahigh-dimensional settings is to per-
form feature screening before fitting the regression model. [Zhang et al.
(2020) show that under nonignorable missingness with a logistic propensity
model, the pseudo-response Y9 can be used for screening because the active
set of Y | X is contained in that of Y§ | X. Therefore, under standard reg-
ularity conditions and using a screening procedure with the sure-screening
property, any downstream regression estimator will remain consistent when
the selected model contains the true active set. Following this strategy, in
the simulation studies in Section [S2.2] we first perform feature screening and
then fit linear quantile regression (Koenker, 2005) and quantile regression
forests (Athey et al., [2019)) using the reduced covariates.

The above methods yield consistent estimates of the conditional quan-
tiles in high-dimensional settings under the regularity conditions specified
in their respective papers. Consequently, under these conditions, our con-

ditional density estimator can be shown to satisfy Assumption 3 in the
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main paper. In addition, by directly using a conditional density estimator,
one can implement Algorithm 2 in high-dimensional settings using K-means
clustering based on the profile distance [zbicki et al.| (2022). If the number
of clusters satisfies K,, — oo and K, = o(n), then under mild regularity
conditions, such as the marginal density of X being bounded away from
zero and infinity on a compact set, the partition produced by Algorithm 2

can be shown to satisfy Assumption 5 with probability tending to one.

S2.2 Simulation Results

This section presents simulation studies to evaluate our method in high-
dimensional settings. We employ a two-step strategy: first performing fea-
ture screening to reduce the dimensionality to a finite set of covariates,
and then estimating the propensity score and conditional density in the
resulting reduced space.

We follow the data-generating mechanism in Section 4 of the main
paper but increase the covariate dimension to p = 300. The covariates are
generated as U;; ~ N(Z;/10, 1),57 = 1,...,300, where Z; is an instrumental
variable. As in Section 4, we consider both linear and nonlinear models,
with the true outcome Y; and the missingness indicator depending only

on the first 10 components of U;. In the feature screening step, we fit
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a penalized linear regression of Y on X using the observed training data
with an Elastic Net penalty, and directly retain the 15 covariates with
the largest estimated coefficients. We then proceed in this reduced low-
dimensional space as in Section 4 of the main paper: the propensity score
is estimated using the method of Wang et al.| (2021), and the conditional
density is obtained via equations (2.8) and (2.10). For conditional quantile
estimation, we use linear quantile regression (LQR) in the linear model and
quantile random forests (QRF) in the nonlinear model, respectively.

We compare the four methods considered in the main paper, namely
OMNI, Naive, MAR-CP, and MNAR-CP. The results for the linear model
with a sample size of n = 1000 are presented in Table [ST], while those for
the nonlinear model with a sample size of n = 4000 are presented in Table
[S2l Consistent with the low-dimensional findings, the Naive and MAR-CP
methods usually fail to reach the nominal coverage because they do not
correctly adjust for the bias caused by nonignorable missingness, either by
ignoring it or by applying a misspecified correction. Both OMNI and the
proposed MNAR-CP method achieve the nominal coverage. However, our
intervals tend to be wider because OMNI uses fully observed samples and
avoids weight estimation, which is unrealistic in practice. In contrast, our

method relies on a smaller effective sample size and has additional estima-
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tion error that becomes more pronounced in high-dimensional settings. As
the sample size increases, our interval lengths become closer to those of

OMNI, as shown in Table [S2]

Table S1: Average Coverage percentages (AC%) and Average Length (AL) for 90%
prediction sets in the high-dimensional setting with p = 300 and n = 1000, averaged over

500 new subjects and 500 repetitions under the linear model using the LQR estimator.

Miss.(%) OMNI Naive MAR-CP  MNAR-CP

(a) Homoskedastic
G, 40 90.12(0.08) 88.29(0.11) 87.79(0.24) 89.68(0.12)
(SEx100) 50 90.12(0.08) 87.94(0.13) 87.09(0.36) 89.76(0.14)
60 90.12(0.08) 87.40(0.15) 85.75(0.47) 89.61(0.15)

40 3.48(0.01)  3.51(0.01)  3.67(0.06) 5.45(0.12)
(SE) 50 3.48(0.01)  3.55(0.01)  3.67(0.02) 6.29(0.15)
60 3.48(0.01)  3.61(0.01)  3.82(0.05) 6.78(0.16)
(b) Heteroscedastic
A 40 90.00(0.09) 84.01(0.15) 82.91(0.41) 88.80(0.18)
(SEx100) 50 90.00(0.09) 83.23(0.17) 82.02(0.43) 89.14(0.20)
60 90.00(0.09) 82.47(0.20) 81.01(0.48) 89.34(0.21)
AL 40 2.73(0.01)  2.29(0.01)  2.52(0.05)  7.93(0.21)
(SE) 50 2.73(0.01)  2.31(0.03)  2.63(0.07)  8.96(0.23)
60 2.73(0.01)  2.45(0.06)  2.94(0.09)  10.11(0.23)
OMNI: Standard conformal prediction applied to the complete data. Naive: Standard

conformal prediction applied to the observed data. MAR-CP: Weighted conformal pre-
diction with MAR weights. MNAR-CP: Proposed weighted conformal prediction with

MNAR weights. Values in parentheses are standard errors.
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Table S2: Average Coverage percentages (AC%) and Average Length (AL) for 90%
prediction sets in the high-dimensional setting with p = 300 and n = 4000, averaged

over 500 new subjects and 500 repetitions under the nonlinear model using the QRF

estimator.

Miss. (%) OMNI Naive MAR-CP  MNAR-CP

(a) Homoskedastic
AL 20 90.01(0.07) 84.16(0.08) 88.01(0.31) 90.89(0.11)
(SEx100) 30  89.99(0.06) 82.71(0.09) 87.50(0.41) 90.90(0.12)
40 90.02(0.07) 81.12(0.09) 85.58(0.63) 90.40(0.12)
AL 20 11.07(0.01) 9.33(0.01) 13.51(0.42) 11.72(0.06)
(SE) 30 11.06(0.01) 9.01(0.01) 14.78(0.51)  11.86(0.09)
40 11.05(0.01) 8.68(0.01) 14.27(0.49) 11.65(0.06)

(b) Heteroscedastic
AL 20 89.92(0.07) 82.34(0.09) 86.64(0.52) 90.84(0.12)
(SEx100) 30  89.94(0.06) 80.57(0.09) 87.18(0.59) 90.82(0.13)
40 89.93(0.06) 78.55(0.10) 85.16(0.75) 90.13(0.14)
AL 20 10.58(0.01) 8.45(0.01) 13.17(0.44) 11.17(0.06)
(SE) 30 10.59(0.01) 8.08(0.01) 15.66(0.56) 11.42(0.10)
40 1057(0.01) 7.69(0.01) 14.80(0.52) 11.43(0.12)

OMNI: Standard conformal prediction applied to the complete data. Naive: Standard
conformal prediction applied to the observed data. MAR-CP: Weighted conformal pre-

diction with MAR weights. MNAR-CP: Proposed weighted conformal prediction with

MNAR weights. Values in parentheses are standard errors.
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S3 Additional Numerical Studies

S3.1 Conditional Coverage

This section investigates the conditional coverage performance of the pro-
posed method, including the non-localized prediction from Algorithm 1 and
the localized prediction from Algorithm 2.

We generate the covariates X = (Z,U) and the missingness indicator
d ~ Bern(7) following the same setup as in the simulation study in Section
4 of the main paper. For clarity, we focus on linear model with a = —3.5,
resulting in the following model:

Yi=2;+ Z;il Uij + €,
m=m(U,Y;) =1/{1+exp (—35-013", Uy +0.65Y;})},

where we consider only homoscedastic errors with €; ~ N (0, 1) and a sample
size of n = 1000. This setting corresponds to a 40% missing rate. For the
proposed method, we use the same procedures for weight and conditional
density estimation as in Section 4 of the main paper, with conditional quan-
tiles estimated only via linear quantile regression. Let K be the number of
clusters in Algorithm 2. We compare the prediction performance for K =1
(i.e., the non-localized prediction in Algorithm 1), K =5, and K = 10.

To evaluate conditional coverage, we fix the covariates for 20 new sub-

jects. These covariates are generated as follows: we first create 20 equally
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spaced quantile levels ranging from 0.01 to 0.99. For each quantile level,
we compute the corresponding marginal quantile for each covariate dimen-
sion based on its true distribution. This yields 20 covariate vectors, each
consisting of marginal quantiles taken at the same quantile level across all
dimensions. The average results over 1000 repeated experiments for each
fixed covariate test point are shown in Figure [S1 where the x-axis rep-
resents the 20 covariate vectors generated at quantile levels from 0.01 to
0.99.

It is observed that the conditional coverage is slightly low for subjects
on the left side of Figure [SI] This is because these new subjects have ex-
treme covariate values—some near the 0.01 quantile—where training data
are sparse and predictions are less reliable without model assumptions.
However, as the number of clusters K increases, the conditional coverage
improves, which aligns with our theory—Ilarger K provides a better approx-
imation to the conditional distribution, leading to more reliable conditional
coverage guarantees for any given covariate. In practice, the selection of
K is guided by the predictive objective: if only marginal coverage over the
entire covariate space is required, setting K = 1 is adequate. However, if
conditional coverage is desired for a specific subject—particularly one with

atypical covariates—a larger K is generally more appropriate (e.g., 5 to 10
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when n = 1000) and may be further increased as the sample size grows.

S3.2 Additional Simulation Results

This section presents additional simulation results that complement Sec-
tion 4 of the main paper. While the main paper reports marginal coverage
for the linear model with n = 1000 and the nonlinear model with n = 4000,
we also include results for the nonlinear model with n = 1000 in Table
and for the linear model with n = 4000 in Table [S4 In addition, Fig-
ure |52 illustrates examples of conditional density estimates under different

settings. Since these findings are consistent with those in the main paper,

we omit further discussion.
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Figure S1: Comparison of conditional coverage and conditional length across different
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Table S3: Average Coverage percentages (AC%) and Average Length (AL) for 90%
prediction sets, across different missing rates and festimators, averaged over 500 new

subjects and 500 repetitions in nonlinear model with n = 1000.

Miss.(%)  f OMNI Naive MAR-CP  MNAR-CP
(a) Homoskedastic

LQR  90.06(0.08) 84.77(0.11) 86.75(0.28) 90.50(0.14)
20 QRF  90.12(0.08) 84.44(0.11) 86.19(0.30) 90.13(0.15)
AC% LQR 90.06(0.08) 83.51(0.11) 86.14(0.31) 90.06(0.16)
(SEx100) 50 QRF  90.05(0.09) 82.98(0.11) 85.75(0.29) 89.64(0.16)
LQR 90.12(0.08) 82.23(0.12) 86.73(0.42) 89.79(0.18)
40 QRF  90.08(0.08) 81.35(0.11) 85.89(0.42) 89.27(0.18)

" LQR 11.61(0.04) 9.31(0.03) 12.25(0.38)  20.54(0.61)

QRF 11.70(0.03) 9.71(0.02) 11.16(0.21) 12.91(0.21)
AL LQR 11.61(0.04) 8.97(0.03) 12.50(0.41)  21.55(0.62)

(SE) %0 QRF  11.68(0.03) 9.35(0.02) 11.32(0.24)  13.31(0.27)
LQR 11.75(0.04) 8.72(0.03) 15.20(0.54)  23.26(0.66)
40 QRF  11.72(0.03)  9.02(0.02) 12.83(0.38)  14.00(0.34)
(b) Heteroscedastic
LQR 89.86(0.09) 83.06(0.11) 85.96(0.30) 90.30(0.17)
20 QRF  89.92(0.09) 82.53(0.11) 85.23(0.35) 89.85(0.16)
AC% LQR 89.86(0.09) 81.60(0.13) 86.01(0.37) 89.66(0.19)
(SEx100) %0 QRF  89.91(0.09) 80.77(0.11) 85.11(0.41) 89.07(0.18)
LQR 89.97(0.09) 80.16(0.13) 84.70(0.52) 89.41(0.20)
0 QRF  90.04(0.08) 79.02(0.13) 83.80(0.51) 88.52(0.21)
LQR 10.88(0.04) 8.13(0.03) 12.07(0.46)  22.17(0.66)
20 QRF  11.20(0.03)  8.80(0.02) 11.00(0.28)  12.91(0.30)
AL LQR 10.88(0.04) 7.76(0.03) 13.19(0.50)  22.20(0.67)
(SE) %0 QRF  11.20(0.03) 8.41(0.02) 11.51(0.32)  13.56(0.37)
LQR 10.91(0.04) 7.51(0.03) 14.21(0.56)  20.31(0.65)
40 QRF  11.23(0.02) 8.04(0.02) 12.00(0.40)  12.73(0.33)

OMNTI: Standard conformal prediction applied to the complete data. Naive: Standard conformal pre-
diction applied to the observed data. MAR-CP: Weighted conformal prediction with MAR weights.
MNAR-CP: Proposed weighted conformal prediction with MNAR weights. Values in parentheses are

standard errors. 28
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Table S4: Average Coverage percentages (AC%) and Average Length (AL) for 90%

prediction sets, across different missing rates and f estimators, averaged over 500 new

subjects and 500 repetitions in linear model with n = 4000.

Miss.(%)  f OMNI Naive MAR-CP  MNAR-CP
(a) Homoskedastic
LQR  89.99(0.07) 87.85(0.08) 84.77(0.59) 89.54(0.08)
0 QRF  90.02(0.07) 79.75(0.09) 81.98(0.26) 89.23(0.11)
AC% LQR 89.99(0.07) 87.27(0.09) 85.52(0.41) 89.40(0.08)
(SEx100) o0 QRF  90.01(0.06) 77.31(0.10) 79.77(0.31) 88.95(0.11)
LQR 89.99(0.07) 86.72(0.10) 84.15(0.56) 89.49(0.09)
% QRF  89.96(0.06) 74.82(0.11) 78.14(0.32) 88.42(0.13)
LQR  3.30(0.00)  3.24(0.00)  3.21(0.02)  3.75(0.04)
40 QRF  7.61(0.01) 6.98(0.01) 7.77(0.11)  7.78(0.04)
AL LQR  3.30(0.00)  3.25(0.00)  3.32(0.04)  4.09(0.07)
(SE) %0 QRF  7.61(0.01) 6.96(0.01) 7.81(0.12)  7.95(0.05)
LQR  3.30(0.00)  3.26(0.00)  3.32(0.02)  4.51(0.08)
o0 QRF  7.60(0.01)  6.95(0.01) 7.94(0.12)  8.09(0.07)
(b) Heteroscedastic
LQR 90.08(0.07) 83.47(0.10) 81.16(0.57) 89.13(0.11)
40 QRF  90.11(0.06) 76.60(0.11) 79.71(0.30) 88.67(0.12)
AC% LQR  90.08(0.07) 82.35(0.11) 79.75(0.59) 89.79(0.12)
(SEx100) %0 QRF  90.10(0.07) 73.84(0.12) 77.79(0.35) 88.06(0.12)
LQR 90.08(0.07) 81.12(0.12) 79.00(0.55) 89.48(0.13)
o0 QRF  90.04(0.06) 71.07(0.13) 75.84(0.39) 88.51(0.13)
LQR  2.57(0.00)  2.04(0.00)  2.32(0.09)  3.45(0.12)
10 QRF  7.59(0.01)  6.83(0.01)  7.80(0.12)  7.96(0.08)
AL LQR  2.57(0.00)  1.97(0.00)  2.22(0.07)  3.98(0.14)
(SE) %0 QRF  7.59(0.01) 6.82(0.01) 7.98(0.13)  8.15(0.10)
LQR  2.57(0.00) 1.91(0.01)  2.38(0.10)  4.71(0.16)
00 QRF  7.59(0.01) 6.85(0.01) 8.05(0.12)  8.39(0.10)

OMNTI: Standard conformal prediction applied to the complete data. Naive: Standard conformal pre-

diction applied to the observed data. MAR-CP: Weighted conformal prediction with MAR weights.

MNAR-CP: Proposed weighted conformal prediction with MNAR weights. Values in parentheses are

standard errors.
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