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This Supplemental Paper is organized as follows. We provide technical
details in Section [S.I| where Section includes details for deriving the
Karush-Kuhn-Tucker conditions in function spaces, Section introduces a
special case for high-dimensional functional predictors with partially separable
covariance structure. All technical proofs are provided in Section where
Section contains the proofs of the propositions, Section contains the
proofs of Theorems 14| as well as Corollary |1}, Section provides the proofs
of the lemmas used in the main proof of Theorem|[I} and Section[S.2.4] provides
some additional technical lemmas. Substantiating examples are provided in
Section [S.3]to support the technical assumptions made in the paper, and some

additional simulation results are provided in Section



S.1. Technical Details

S.1.1 Karush-Kuhn-Tucker Conditions in Function Spaces

In this section, we introduce the Karush-Kuhn-Tucker (KKT) condition in
function spaces and specialize it for . First, we review the notion of
Gateaux differentiability. For convenience, let ¢ denote a mapping from some
Hilbert space H to R, where _# is not necessarily linear. We note that the
Hilbert space assumption in the definition below could be relaxed depending

on the context of the application.

Definition 1. (Gateaux differentiability) For f.vp € H, we say that ¢ is
Gateaux differentiable at f in the direction of ¥ if limwmw and

lim 4q- M

exist and are equal. The common limit in this case s
denoted by P ;(f;1)) and is referred to as the Gateaux derivative of # at f
in the direction of V. If 2 ;(f;1) is defined for all ) € H, we say that ¢ is

Gateaux differentiable at f.

Clearly, if ¢ is Gateaux differentiable at f then Z ,(f;:) € B(H,R),
the space of continuous linear functionals on H. On the other hand, if ¢ is
convex but not necessarily Gateaux differentiable, then the useful notions of

sub-derivative and sub-differential can be defined as follows.

Definition 2. (Sub-derivative and sub-differential) The Gateauz sub-differential
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of a convex functional Z at g is defined as the collection 0 s = {9 €

BH,R) : Z(f) > F(9) + A (f — g) forall f € H} of linear functionals,

where the elements in O y,) are referred to as sub-deriatives.

Proposition 5. Any Gateaus differentiable mapping # from H to R is convex
if and only if Z(f) > Z(9) + 2 4(g;f — g) for all f,g € H, in which case
H (g) is the global minimum of #(-) if and only if 7 4(g;-) = 0. Suppose, on
the other hand, that ¢ is convex but not Gateaux differentiable. Then 7 (g)

is the global minimum of ¢ if and only if 0 € 0 4(y).

With &, and g,, defined in (2.5)), the objective function ¢(f) can be ex-

pressed as

4

(F) = S 6D+ 5-llell (51)

=1

where £1(£) = HIu(F— o), F—Fol (o) = —{gmr £~ Folos i) = SIS
C(F) = 25 195 £5ll,, f € LS. The following proposition contains the key

elements in minimizing ¢(f) based on ({S.1J).

Proposition 6. The functionals ¢;,1 = 1,2,3, are Gateaux differentiable at

all f € LIQ); where -@h (fa{l/’) = <%(f - fO)?fl/’)Q; .@b(f;'l,b) = _<gn717b>27 and
Do, (F; 1) = Xo(f,)2. The sub-differential of {4 at f contains all functionals

of the form A\ (w,-),, w € LY, such that w; = ”;?% if fj #0 and w; = V;n;
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for any arbitrary n; with ||n;|ls <1 if f; =0.

Note that the KKT condition (2.5)) can be easily derived from Propositions
and [0l The proofs for Propositions [5] and [6] are given in the Supplementary

Material.

S.1.2 Partially Separable Covariance Structure

To gain a deeper understanding of Conditions C[2CH] we consider functional
predictors with a partially separable covariance structure (Zapata et al., 2021),

namely,

T =" Ayt @y, (S-2)
k=1

where {t¢k, k > 1} are orthonormal functions in L[0, 1] and { Ay, k > 1} are a
sequence of g X ¢ covariance matrices. Further, consider A, = v, R, with v; >
vy > - -+ > 0 asequence of eigenvalues and R a g x q correlation matrix. In this
setting, {X, j € .7} share the same eigenvalues and eigenfunctions, and their
principal component scores have the same correlation structure across different
order k. To satisfy Condition C we must have v; = 1 and Zk21 v < T < 00.

To find the upper bound for s¢(\g), first note that

9(’5””5”)(9:\(2(%5/))71 = Z Ap(Ay + 2o I) My, @ Py = Z B @ g,
k=1

k=1



where B, = R(R + 9;I)"' and ¥, = X\y/vp, — o0 as k — oo. Writing

By, = {Byjj}] y—, it follows that

q

I = s S

00,00 - 1<5<q N k
J'=1

(S.3)

In Section[S.3]of the supplementary material, we examine two specific scenarios

where R is either a MA(1) or AR(1) correlation matrix. We find that the

upper bound of s()\y) is equal to some constant independent of Ay and the true

signal size ¢. Furthermore, we find that Condition C[4]holds for all legitimate

M A(1) correlation matrices and for AR(1) correlation matrices characterized

by an autoregressive coefficient less than 1/3.

S.2. Technical Proofs

S.2.1 Proof of Propositions

Proof of Proposition

Proof. Rewrite the minimization function ([2.4)),

2
1 p _ p A p
(f) = o Z <Y; — Zl<Xija fj>2> + A Zl 19, fill2 + 72 21 155l

n
=1

2
2
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The minimizer E(t) can always be represented in the form

~ ~

fi() = f3(t) +n;(t),
where J?J() = S ¢ Xii() € My, and n;(-) € M,;- Therefore, we have
(Xigs fid2 = (X fi)as WGl = WGB3 + Inll3, and 95513 = 19,5513 +

|W,;n;]13. The last equation holds by Condition (C. Therefore, f;(t) is

the minimizer when 7; = 0. [l
Proof of Proposition

Proof. The KKT condition (2.5]) follows readily from Propositions [5| and [6]
We can show the existence of functional KKT solution by showing that the
minimizer of (S.1]) exists. Note that (S.1) can be reformulated as a constrained

quadratic programming problem:

ming {{,(f) + ¢2(f)} such that 5(f) < Cy and l4(f) < Co.

where (C4, Cy) here have a one-to-one correspondence with the regularization
parameters (Aj, Ag) via the Lagrangian duality. It follows from Proposition
that the solution can be found in a finite-dimensional subspace. Therefore, the
above minimization problem involves a continuous finite-dimensional quadratic

objective function over a compact set. By Weierstrass’ extreme value theorem,
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the minimum is always achieved. To show uniqueness, first note that there
is either a unique solution or an (uncountably) infinite number of solutions.
This is because if f; and f, are two minimizers, then by convexity ¢(af, +

(1= )f,) < af(F,) + (1 — a)l(f,), and hence
Uaf+ (1 —a)fy) =L(f) =U(f,) for all @ € (0,1). (5.4)

If f, # f5, then by the strict convexity of ¢3 we have l3(af, + (1 — a)f,) <
als(f1)+ (1 —a)ls(f,). Since 1, Ly and ¢4 are all convex and in view of (S.1)),

the relationsip (S.4) cannot hold. Thus, f, = f,.

Proof of Proposition

Proof. Write the spectral decomposition of .79 as 709 = 37 | v @1jn
where {v;; }1>1 are the eigenvalues of 7 4) in decreasing order, and {n;x }r>1

are the corresponding eigenfunctions. Define

gﬂ&ju‘) — Hj7my(j7j)1‘[j7m = Z VikNik & Njk
k=1

where IT; ., = > 7" | 0, ®@n;y, is the projection operator onto the m-dimensional

principal components of 7 7). Recall that 27 = diag(.F7U9)<;<,. Tt is
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straightforward that

2 = 11,2711, =11, (Q(y’y) +ad) Il

a,m

where IT,, = diag(Il;.,)1<j<q- We know that Q&ffn{y) = 2 as m — .

Define
7 =1, 71, = 11,, (9(’7"7) +ad) Il
Note that

g d2) — gn(Ljhjz) +E (Hn mX ® II¢

J2,m

)~(j2> +E (Hc X; @11, m)~(2>

Ji,m

(S.5)

Ji,m

E(Hc X; ®H§2m)?j2>,

where 115 |, = Y ksm Mk @Nji. By Cauchy-Schwarz inequality, for any fi, f2 €

L27

E (MK 1), (W Ko 1), | < 17990 AL (765 = 7699 1],

As m approaches infinity, the second term on the right-hand side of ({S.5)
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converges to 0. Similarly, the third and fourth terms also converge to 0. As a

Z) — %y7y) as m — o0.

result, we show that %%’
Note that Ty ) and ng,’;{y) have one-to-one mapping to a vector space

of at most mq dimensions. According to |Lu and Pearce (2000), there exists a

relationship between the eigenvalues of 9’ (7) and Q (7:7) as follows:

Ay (9(,7,,7)) Q(yy ‘H Q(yfy —1/2g(y’y (Q(//))_1/2

a,m a,m

2,2

By the definition of operator norm,

(' IN Y2 o (F,7) (7, 7)\ /2
() g (28:7)

a,m

2,2

[ (o) g (2 ) |

67

<) 7 (2|
2,2

The last inequality holds due to Condition CJ5l Finally, let m — oo and

a — 0, we have

A (TL2) = A (V) A (2877) = A (2Y)).

a,m
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Proof of Proposition

Proof. The convex program (4.10)) can be reformulated as a constrained quadratic

program

1
i {_d;rgjdj_g;dj}, such that [ld; |, < 1,

d;erMi (2

where the regularization parameter A\; and constraint level C are in one-to-
one correspondence via Lagrangian duality. As a result, the above minimiza-
tion problem involves a continuous finite-dimensional quadratic objective func-
tion over a compact set. The Weierstrass’ extreme value theorem guarantees
that the minimum is always achieved. According to the Karush-Kuhn-Tucker

(KKT) condition to (4.10)
dej — Qj -+ )\17‘]' = 0, (SG)

where 7; denotes the sub-gradient of ||d,||2 such that ||r;|ls < 1 and r; =

|d;]|3'd; holds for d; # 0. When | g;||2 < A1, suppose d; # 0, according to

(S.6]), we have

A1+ Amin (825) [[dj]]2 < [l@jll2 < A1+ Amax (825) [1d; |2,
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where Apin (£2;) and Apax (§2;) represent the smallest and largest eigenvalues
of the €2, respectively. In order words, when [[g;[[> < A1, we must have
d; = 0. On the other hand, when [|g;||> > A1, suppose d; = 0, according to
(S.6), we have @ = A\ir;, and hence [lg;[2 < A;. This statement presents a

contradiction, therefore,

d;=0, if llgjll: < A,

d; £ 0, if o2 > A

Proof of Proposition

Proof. To begin with, assume ¢ is convex and Gateaux differentiable. Sup-
pose 7(f) > 7 (9)+P (g f —g) for all f,g € H. Define h = Af +(1—)g,

then 7 (f) > #(h)+Z4(h;f —h)and Z(g) > Z(h)+ P 4(h;g — h), by

the linear combination of the two inequalities, we have:

AI N+ A =2 7(9) = F(h)+ P 4(h0) = FAf+ (1= N)g),

which shows convexity. On the other hand, by convexity, for all f,g € H,
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A € (0,1), we have

let A | 0%, then the right-hand side will go to Z 4(g; f — g).
To find the global minimum of _#(-), suppose & »(g; 1) = 0 for all 1) € H,
then #Z(g) < _Z(f) for all f € H. On the other hand, by setting f1 = g+ 7,

fo =g — 7, we have

@) =G0 g gy < LT = F)

T T

suppose _Z (g) is the global minimum, the left side is smaller than 0 and the
right side is greater than 0. By the definition of Gateaux differentiability, the
limits on both sides exist and are equal when 7 — 0. Therefore, & ,(g;¢) = 0
for all .

Now assume _# is convex but not Gateaux differentiable. Then we can
easily show _#(g) is the global minimum of _¢ if and only if 0 € d »(,) using

a similar derivation as above.
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S.2.2 Proofs of Theorems and Corollary

Proof for Theorem [1]

Recall that ? is the solution of KKT condition ) and 7 = {z €
{1,...,p} : ﬁ #+ O}. Write }n = (iy,}yc) by grouping the columns in
Z and .Z¢. For j € .°, in the scenario where .7U") possesses finitely many
nonzero eigenvalues, there exist infinitely many f; such that (f;, 709 f;), = 0,
and those f; do not make contributions to the response. Without loss of
generality, we assume that f,,. = 0, and we have f, = ( fg »,01)T. Similarly,
partition f = (};, };C)T, g, =(gL,9,)" andw = (w),wl.)". With the

partitions defined above and those in Section 3| the KKT condition in ([2.5)

can be rewritten as

IS S S ) r
g\ gl ) fo—Ffor 9 fo Wy
— + Ao + M =0
ez e e = n
7 ) g ) f e ge f e W e
(S.7)

Proof of (i) of Theorem
To utilize the Primal-Dual Witness argument in Wainwright (2009), let

f & be the solution of the functional elastic-net problem knowing the true
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signal set .. In other words, f & 1s the value of f, that minimizes

1, .
5 (TN = For)s Fr = For)y =97 Fr — For)a+ ZPen(ij/\h/\2>‘

jes

Using similar arguments as for Proposition [2]

:97.1(,5/,,5ﬁ)(fy — «fOY) — gy + >\2fy + Alwy = 07 (88)

where wy = (U,n;, 7 € .¥) is the functional subgradient of ¢, for this problem
described in Proposition [2| and @ For convenience, let n, = (n;,j € #)
for any set #'. By Proposition [2, the solution to the functional elastic-net
problem is unique and satisfies the KKT equation (S.7)). If we can show that
51T 7 FloAT
<fy,0 ) solves (S.7), then f = (fy,O )

show

T —~
and . C . It remains to

%((VC,(V)(]Ey . foy) — gy + Alwtsﬂc = ()’ (Sg)

for some w y. satistying wge = (V;n;,7 € ) where |94l < 1. However,

by (S.8),

- —1
fo—For= (%(,i’y)> (9 — Xfoy — Miws), (S.10)
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and hence, upon combining (S.9) and (S.10), any w o that solves ([S.9) must

satisfy

1 c o\ —1

v o2 (507) 0}
1

(S.11)

: 10
+ 7 (F7) (A_ifoy + wy) :

By Condition C[I] the existence of w . satisfying (S.9) is guaranteed by
HwycHoo < Cmin- (SlQ)

The rest of this subsection will be focusing on (S.12).
[ —~T <=
It is easy to see that, for any f € L0, 1], (Z77 £)(t) = L [ X (1) X o () f (u)du.
~T
The first term on the right-hand side of (S.11]) can be rewritten as (A\;n) ' X . (I—

A,)e,, where

A, = % / X, (u) {(sz 7”)13‘(’;} (u)du. (S.13)
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Thus, for all j € ¢,

—~T . (22 -1 A
7 x] <1 - An) 2ut 90 (757 (A—jfoy ‘ wy>

eyl = \

)\172 2
o ~T o -1 /)
<|I|—X.,(I-A, ]|z, g :) (g(ﬂﬂ) A2 , 7
> ‘ 7 o]( )Z 2+“ n n,Ao Alfo,sﬂ+w§” ,
(S.14)
where z, = o7'e, has covariance matrix equal to an identity matrix. If
7 ¢ . then (S.12) fails, and, by Lemmas and below,
P(7¢7) <P (lwrle> (1-7) Cum)
)2 (S.15)
n
< exp (—DWAIn) + exp (—D@)L) .
q

Note that exp (—D(l))\%n) < exp (—D(l)ngxq’\%Tn> since Ay > C;L Ay, Ap-
plying Lemma with € = 1/2, we can bound the rhs of by the
probability in (3.7)), provided A3n/q > (2log2)D~', which is guaranteed by
Condition for sufficiently large D3, in the condition.

To conclude the proof of part (i) of Theorem (1] it remains to establish the

following three lemmas, the proofs of which are in the Supplemental Material.

Lemma S.1. For ay, by >0, k=1,... K,

Z ar exp(—bgx) < exp{—(1 —€)bzx}

k=1
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for x > (eb) " tlog(Ka), where € € (0,1), a = maxy ay and b = miny, by.

Lemma S.2. Let v be as in Condition CH. Suppose \y > D¥(o+1)72(Croiny) 11/ W

for some constant DT. We have

Z ’ycmin
9 9

P (maX] eey/c

o —T
—X..(1-4,)z,
)\171 .J( >z

) < exp (—D(l))\%n)

where DY) = D3C%. ~%(0 +1)72771 and D} is a universal constant.

Lemma S.3. Let v be as in Condition C|3. Suppose, for some constant D7,

max"*

1 1 — 2
Ao > D7 (o1 +1) max (w, q_) and M > <§ — 2) cl

(Omin/omax)272 n n /\2 y
Then
. o -1/ )\ 2,}/ )\271
P (%) ( Wé”)) A2 A > (1= ) et < _p@22n
{%g}g T, 9717& " fog tws = 9 < exp g

where D) = D3(Cuin/Crax)?v?(p1 + 1) 72771 and D} is a universal constant.

Proof of (ii) of Theorem
We need to show that H]/”; |2 > 0 for all j € . with the probability lower
bound stated in the theorem. For simplicity, assume that .#5 = .¥’. The same

arguments hold if .¥ is replaced by .7 below.

Note that P(.% D .%) = P(minje || fjll2 > 0) > P(minjcy ||(ZUD)2F |, >
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0). By the triangle inequality,

; N%Y
iy |(799) 72

= min [(769)12, |, - ma

(TON(F = fw)|,

_ GINL/2(F _ £ .
>G %@(H(y ) (fa f03>2

Thus, it suffices to provide an upper bound for P (maxjey (7 G9) )1/2( — foi)ll2 > G).

By (S.10), we have

fy For =(T, yy)) (Qy—kfoy—/\lwy)

{@(i’f (g ’”)*} (gy oy AW).

Since (9(i,y))_1_($(f,y))_1 _ (ﬁ(f’y))_l (9(;4;/) _ 7 //)) (9(i’;y )1

n, n

(9( )1/2 — fos) Hg H Q(y’y))l/z(fy_foy)”m

A
Aot 30 (Woslle + 3200 )}

q 7 o
< (147 - 27,

jes

where we applied the inequality

.()‘(/ o o y’y J—
m(gu, ) g (G

T,A2

q
< )7 -

00,00
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By Lemma [S.4] with || fos|le = 1,

mae | (709)/2(F; = fu)

f 6 — AR()\y)
T (1 =RV

(S.16)

2

(lg.5llo + A2 + Crax A1) (1 + \A/—f\ﬂmy,y) _ %y,y)mQQ) '

Thus, with G as given in the theorem,

P (7027, - ], > ) (517
S.17

<P(llgslly > A2) +P (\<_6H|g(y,y> _ %(y,y)mm S 1) '
2 I

Finally, bound the rhs of (S.17)) using Lemmas and and note that it is

dominated by the expression in (3.7)) under Condition (3.6).

Lemma S.4. Under Condition C4), for any Ay >0

. 6 — 4R(\,) 1
QI INY2( (ST —1 < 918
el e e e
Lemma S.5. Suppose Ay > Di(o + 1)7/2, /184 we have
P(lgslle > X2) <exp (—DPA3n) (S.19)

holds for some D® < D3 ((o0 +1)%7) " where D} and D} are universal con-
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stants.

Lemma S.6. Suppose p, is the largest eigenvalue of T+, then

2
p <\/§H|g(§ﬂ,y) _ %(y,y)mm > u) < exp {_(;—,;q}
1

holds for some constant C' > 0, as long as C' and q satisfy

u? u?n

— < g < .
C2p? 1= 7C2p,

(S.20)

The proofs for Lemmas - are in the Supplementary Material.

Proof of Theorem [2|

Proof. When IS , the excess risk has the form
? 2
2 * * = RN 1/2 -~
éﬂMZE[;X&ﬁw—@q o [CASORNFIPE P
je.s

Following a similar derivation as in (S.16)),

[CASORE PRSI |

< \/am(Q(Y,y))lﬂ(%(j”,y))—lm {HngOo W (||fo,5ﬂ||oo + ﬁcmax)}

2,2 )\2

1
(1517 =2,
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Similar to (S.57)),

1

(F N2 o (T )\ —1 <
Cas@ICaON Ny

together with a similar derivation as for (S.16) with || f;+ |/« = 1, we have

%(}) < q(2 -+ Cmax)\l/)\Q)Q)\Q =dq (4Cmax)\1 +4X + Cr2nax)\%/)\2)

with probability greater than (3.7]). n
Proof of Corollary

Proof. Recall

a(p, ¢, n) = max (q, Viog(p — q), v/qlog n) :

and define

gn = Cq_l@Q(p, q, n)

where C' is a large enough constant. Let

1
)\2 = (ﬁnq/n)l/Q = 01/2—06<p, q, n)

Vn

and \; = b\, for some suitable constant b. If ¢*log(p — ¢) < n for large n,
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which is guaranteed by the assumption ga(p, ¢, n) = o(n'/?), we have for all

large n,

a(p, ¢, n) = max (q7 %f{@a Viog(p — q), V/qlog n) :

from which it is easy to see that (3.6) holds for b, C' sufficiently large. Note
that ¢, > C'logn. By Theorem [2] the excess risk is bounded by a constant

multiple of

q
)\261 = Cl/Q_na(pa q, n)

vn

where probability at least 1 — n~" for some constant D. The claim of the
corollary follows from the Borel-Cantelli Lemma by choosing a large enough

C and hence D > 1. O
Proof of Theorem [3|
Proof. Recall that the excess risk for an estimator f & has the form

2
) .

A5 =||T) " (For = F)
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For any f,, f, € L3, define

-1l

2

2(F1.12) = | (7))

which is a proper metric in L. Write the spectral decomposition of 7 +) as
T = > k1 PEDy, © @y, where py > py > -+ > 0. By Corollary 2, for any
covariance operator 7 7) € P (r), its eigenvalues satisfy Patb—1y4j < Ck™2"
for some constant C' > 0. Consider sub-class of covariance operators, denoted
as @ (r,C,C") for some 0 < " < C < oo, which include all F+) with
C'k™ < pae—1)4; < Ck™". Tt is straightforward to show that for k& > g,
c1(k/q)™* < pr. < ca(k/q) ™" for some 0 < ¢ < ¢y < 00,

As noted in |Cai and Yuan| (2012) in the proof of their Theorem 1, any
lower bound derived under a specific case yields a lower bound for the general
case. For the rest of the proof, we will consider a special case where ) ¢

P (r,C,C") and the functional coefficient in the oracle model has the form

2M

By=Lypfy, Fo=M2 Y ity (8.21)

k=M+1

where 6 = (Opr11,...,000) € {0,1}M for some large integer M. The Var-
shamov-Gilbert bound (Lemma 2.9, T'sybakov (2009)) shows that for any

M > 8, there exists a subset ©y = {0, 0% ... 6™} € {0,1}M such that
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(a) 89 = (0,...,0)T; (b) H(OY),0W) > M/8forany 0<j <k <N, H(-,")
is the Hamming distance; and (c) N > 2M/8, Because {f,: 0 € ©,} C L, it
is clear that VB > 0
s sup P(2(f, for) 2 B)
TP (r) Ffor€ls

> sup max Py (.@(fy, fo) > B> :
77 ep (rc,cr) 960

(S.22)

Here, Py is the probability measure when the function coefficient has the form
given in (S.21).

Next, we proceed to establish the lower bound under the special case using
results in Theorem 2.5 of [Tsybakov (2009). To that end, for any 8,6 € ©,
such that 8 # @', the Kullback-Leibler distance between Py and Py is given

by

A (Py||Por) = _gz(feafe 2M Z (O —
k=M+1
npm / npm
< .
- 202MH(0’0) ~ 202

For any 0 < o < 1/8, let M = [¢on'/@ D g?/r+1)7 and ¢y = Do~V @+ for
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some large enough D > 0, then

N —2r —(2r+1)

1 Co M CoC

N § K (Pya ||Pyy) < 552" <—> <20 M< alog N.
k=1

On the other hand,

2M

P50 d) 2 S0.0) 2 52 G () 2w g

for some small enough d > 0. By Theorem 2.5 in [T'sybakov (2009) we have

inf sup maxPy (23(f,, fo) = da? T (n/q) "7
fo 7 Neprocr) 990

> 1;@\@(1—2@— 20 )

2r/( 2r+1)

Letting a = da we have

lim lim inf sup max Py (@2(]?% fo) > a(n/q)*%> =1.

a—0n—o0 fy’ F(Z, y)egp(rcc,) 0cOg

(S.23)

The minimax lower bound result in the theorem is derived by combining (S.22)

and ([S.23)). O

Proof of Theorem 4]
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Proof. We first note that

Thus, as long as P (5”\7& 5”) — 0, we have
lim sup sup P (%’(fsg) > B) = lim sup sup P <%(?y) > B) .

"0 g (F ) fopEld VTS g () fopel]

From (3.9, we can easily derive that
P 7.7\ o
fo= <9;1(A3 )> {ﬁ(/’/)foy + gy} ;

- o o 1
where f, and g, are defined in (S.7|). Define f, = (9:\(;/”/)> FTI o

then

BT, = H(g(y’,yf))l/? (fo, — wa

<@ (Fos = Fo||, + @) (F -5

(s.24)

By Lemma , the first term in (S.24) can be bounded by %)\éﬂ | fosllo- In
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order to bound the second term, note that

FoFr=(20) 257 (F) - F.)
N (%Y"“))_l (T — g2 ( F- fy>
— (2N 7 (Fy— for) 42 (7 F,
_ (%(fﬂ)) 1gy+ (ﬁ//)) - (T — g7 (fy _ fy)
_ (%(f,y))‘l F7) ( F,- f0y>
(B @ =70 (£, fo)
0 (20 g~ (Z0) e,

7.\ !
N (9;3 )) (F) — g7 ) <f, . f/>
Therefore, by the triangular inequality,

| (F -7,

< H (T (7)) 7 (Fo = fos)

2

i (9(%5@),}1 <9A(,5ﬂ,,sﬁ)>_1 (%(y,y) _ 9(%%) <fy _ foy>

3

> (8.25)

@ (70) 7|
1

H@EN(2) 9y

2

3

1 (9(5/’,5/7))1/1 (x(,y,,¢)>—l (9.(y,y) B 9“(545”)) <]?y _ fy)

2
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For convenience, define

(T (= £,
(3('5ﬁ"y))y (fs — foy)H2 ,

‘(mmﬂ))m (xw,f))l (T~ gD (g

2,2

-1
X (TN () Iorls

2,2
-1

(TN (F) a9y

2

Then, (S.25) may be further developed as

A(rn) < Bi(v1) + Ba(v1, v9) By (v2) + Bs(vh) + By(vh) + Ba(vr, 12) A(1s).

(S.26)

According to Lemma [S.7HS.9} for 0 < v < 1/2,

Bi(v). Ba(v). Balw) = 0,(\%), B4<u>=0p<(§A§‘2”*21)_2).

First, let v; = v» = v in (8.26), where 0 < v < 1/2 — 1/(4r). According to



S.2.2  Proofs of Theorems and Corollary

Lemma [S.10],

(S.27)

provided that As < (n/q)~*/@ ) and ¢ = o (n++) In this case, com-

bining the last term on the rhs of (S.26)) with the lhs, we obtain

H (7)) (fo—F»)

L= 0,0%) (5.28)
provided that \g < (n/q)~2/@+1),

Next, we let vy = 1/2, v, =v € (0,1/2 —1/(4r)) in (S.26). According to
Lemma [S.10]

1 [(n 4L _% 1.1
By(1/2,v) = O, <q2 <E)‘§T) ) =0, <q2)‘§

provided that A3 < (n/q)—QT/(2r+1)_

'H (9(%,%))1/2 ((%(%f’))_l (9(547) _ 9((7,(7)) (9(5/@5/)))—11

_o, (q; (?)) =0, (438) = o (41)
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provided that A3 < (n/q)~2/? ). When ¢ = o (n 2r+4lr+u4w), the above expres-

sion has an order of 0,(1). In this case, again

_1
1 1\ 72 1 1y
=0, <)\§ + (gAg) +gaat > .

L= 0, ()é) As a result, %(ﬁy) =0, (A3)

(T (Fy = F)

Thus, ‘(?(‘y"y))l/Q (fy - f,Y)

provided that Az =< (n/q)~?/@ 1 Finally, let v — 1/2 — 1/(4r), we have

q=o(n"%). O

S.2.3 Proofs of Lemmas

Proof of Lemma
Proof. Note that

K

Zak exp(—byz) < Kaexp(—bz) = exp[—{b—a "log(Ka)}z].

We established the Lemma by noting that b — 2! log(Ka) > (1 — €)b. O

Proof of Lemma [S.2|
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Proof. First of all, we claim that, for any £ € (0, 1),

P (maneyc )\L}L <I — An) zZoll > gcz;min)
n
! 2 (S.29)
< 2( ) o )\%Cﬁlinégn + ( ) ex ( n )
—q)exp{ —— > - ——.
< 2(p—q)exp o p—a)exp (5
To show ([S.29), first apply the union bound to get
o —<T £Cmin
P(maneyc )\1—/”)(.‘7 (I — An) Zn , Z 3 )
=y C1min
AUl )
jese )\171 9 3
~ A min
<Zp L X.Tj(I—An)Zn EM )
jese v 2 5o
Write
PRSP SN <l $.30
W =X ® 7= P ® Py, (5.30)

k=1

where the pj, are the (nonnegative) eigenvalues of g7

arranged in descend-
ing order and &\bk are the corresponding eigenfunctions. Assume without loss

of generality that {ak, k > 1} is a CONS of L1[0,1]. It follows that

Xo(w) =3 &y (w), (5.31)
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where €, := [ X ,(t),(t)dt satisfies

—C Co= (0, 7 d)s = Birdjn. (S.32)

Since there are at most n linearly independent Ek, pr = 0,k > n and higher
order eigenfunctions a)k, for k > n can be obtained by the Gram-Schmidt

orthogonalization. Thus, we can re-express A,, as

! / / zaa? w { A A2>—1a,g<v>} e

where EZ = (npp)~Y 2@ are n-dim orthonormal vectors. Clearly, I — A,, is a
positive-definite matrix with all eigenvalues less or equal to 1.
~T
Conditional on X, Q;(t) :=n~2X (t)(1— A,)z, is a rank n Gaussian

process with

E[Q;(1)|X,] =0 and Covl@;(s). Q;(1)X,] = n ' X0y (5)(I — A, X (t).
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Also, note that

n! 3(/1(3)(1 - An)zjf.j(s)ds <n! /Y;(S)X/.j(s)ds =tr (%(j’j)) :

(S.33)
Define the event Z;(cg) = {tr <<7n(j’j)> < co}. It follows that
A §Cmm\/ﬁ

P(HQJHZ > 13—0>

' NEC2n
=EP| Q5> 197 Xn)]

! (3.34)

2 A%§20r2ninn c

< E|PLIQslz 2 —=5 5% [ Xn Zi(co) |1(Z5(c0)) | +P (%5 (o))

' NEC2,n :
<E|P| Q5 > 197 Xm@j(00)> +P (Z(c0))

By Lemma (i) with L =1, K =n,s =4/3,

N2E2C2 n

in

902

/\%62 Clzninn

P<||Qj||§ > Xn,.@j(c())> < 2exp{ - T%o}' (S.35)

Recall that 777 = 15" ¥, @ X,;, and X;; """ 92 (0, 709). Thus,

tr (Z97) = L S X5 and

P (Z5(co)) =P (tr (Z7) > cp) =P (Z 1115 > n%) ‘

=1
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Thus, by Lemma (ii) with L =n, s = 16/9 and the assumption (C[2) we

obtain

— (:9) —
P T PT LR B LT

for any ¢y > (14 s/2)7. It follows from (S.34)-(S.36), with ¢ = 27, 7 > 1 and

A1 < Dj, we obtain

g gcmin
P e ||[——Q|| >
(maxjey Al\/ﬁQ] 2_ 3 )
N2 A2n
<9 - rmn o A S ]
<20 Q)eXp{ 48027 } 1 eXp( 32(011)2)

This proves (S.29). Suppose for d € (0,1), we have

)\1>max<\/78 m€ \/;Dﬁ)' Ma

which is equivalent to

ITllIlg2

m1n€2 2
‘A —log(p —q) > (1 —d) 275

2
48027 AL,
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and

An \n
—— —1 —q¢)> (1 —d)——.
sy, 0 O Dy
By Lemma [S.1 with £ = 7/3 and d = 1/2, we have
o —=T C1min
P <H1an€5/Jc /\1_nX.J (I - An) Zn ) > B 5 > < exp (—D)\%n)

holds for any D and A; such that

(o + 172 Jlog(p — q)
Cmirﬂ/ n

Y

>\1>DT'

and
02' 72 02. 72 1
D < D* min < : min
2o+ 127 = M\ 8640?77 32(D,)7
where D} and Dj are universal constants. ]

Proof of Lemma [S.3l
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Proof. Let constants £, 0, and p = A /Ay satisfy

£€(0,7/2) and 6€ (0,(y—28)/(1—7)) and pCpa > (1—2§)/¢.

(S.37)

We claim that

4 -1
=) (max T <9n(,§&,¢)> (&foy + wy> > (1 — %) Cmin)
jese e A 2 3 (S.38)

)\%%25271 )\Q(Cmin/omax)2§2n
< 2 T _ _
< exp { 1077 } +2(p—q)exp { AL+ ' C- )7 [

max

for some constant C' > 0 and ¢ that satisfy

23252 A3320%n
<y .
4C?p? 4= 4C%Tpy (5:39)

To show (S.38), by Lemma |[S.12] for any j € .7°,

X, L70N(F) X, + B, (S.40)

oj:

where E; = (Eyj,...,E,;)" is a vector of iid zero-mean Gaussian processes

independent of X » with a covariance operator

F6) . g6 _ 9(j,<7)(g(5ﬂ,§”))—9(«77j). (S.41)
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With (S.40) and Condition [1]

(S.42)

. A
(j’y) (Z(iy > ( 2foy + w,/)
2

H/ Xl ><‘7fi’y)) ()\2f0V+wy>()ds

2

— -1 /)
H/ {7 Jfﬂ) ) Xy E]T}(-)Xy(s) <<%L(:i’2,5”)> ()\_jfoy +wy) (s)ds
2
, g A
< 76T |7 G| (A—f!\foyuoo + me> +[|E; ()Z]],,
where
1 [— )
Z o1 = E/Xy(s) @fff) ( 2f0y+wy)( )ds. (S.43)

Note that if

H‘ﬂ'y‘y) A ‘ #(1406) and max|E/()Z|, < $Comin

7,2 50,00 jese J 2 3 ’

then (S.37), (S.42) along with Condition Cf3|and || £y (e =1 give

max
jeSC

790 (957) " (Shos 402 )
2

)‘ min 2
<-+6) (14 G ) Gt 52 < (1- B g,
1
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where the last inequality follows from the fact

L=+ (146A32) <1

by (S.37). In the following, we establish

(]

and

(‘y’y))*l
n,Ag

A222262%n
1+6)) < e S.44
AL ))—GXP{ 402p%q} 40

00,00

Cmin A (Cmin/cmax>2£2n
T(. 5§ < 2p— L2 :
Ej()Z],> = ) <2(p q)exp{ 24(1 + 1 1C-L g

max

P [ max
jese

(S.45)

To show ([S.44)), first apply the triangle inequality to obtain

<7

g (ST (9(«5’,«5’))71

n n,A\2

00,00

{(9(¢y) (:%(;V,y))1}mmm

2

1 )H<9n(y,y) B 9(y,ty))(%(,s&,5ﬁ)),1

00,00

(S.46)
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Then, by Lemma

< Vi||7 @) - g gy

;A2

7@ - |

n 2

2,2
7. S I\ — 7. 7. IS\~
S\/‘_]H%(y’y)(‘%(,ka )) 1 22”“7(?’?)_%(%?)‘“2,2 (9!2 )) 1 g
(S.47)
and
FF )\ —
i -
x S —
< vl -seona ), s
IS IS (S P\ —1
< o - 7o,
Since
()1 1 P5) ()1
&, <5 md |70 @ 7|, <0 (49)

(S-46)-(S.49) together with the Condition CJ3 give

PP\ —
9;1(%,(7)(3()\ )) 1

T,A2

< x+ %EJ‘HQ(J’J@ _ %(y,y)
2

ll >

00,00
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Thus, for 6 > 0, by Lemma [S.6 we have

d(

F(ST) (9(5’75’))—1

n,A2

> (1 +5)> <P <|H9<5’~5”> — T, &%5)

2V
{ /\3%25271}
<expyq —

4C2piq

00,00

for some constant C' > 0 and ¢ satisfies (S.39)). This proves (S.44)).

To prove (S.45), recall the definitions of Z in (S.43) and let U,(-) =

-
E;(-)Z. We have

Cmin Cmin
P (moser 100l = 552 < 3 (1300 > 52

jeSC

- Y elp (o2 S, ) )

jese

Also, conditional on X », U; is a zero-mean Gaussian process with covariance

operator Z; with trace

() = | Z|Pte(T V), (5.50)

where FU) is defined in (S.41). It remains to bound || Z||? and tr(ZFUI)).

First, by (S.41) and (C]2),

tr(FU) < tr(F09)) < 7. (S.51)
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By the decompositions in (S.30) and (/S.31),

-~

A
(%(iy> < Q.foy"‘Wy) Zpk+>\2 <¢k;7 foy+wy> Pr;

E>1 2

and therefore

2

~ A -
121 = 5 |3 5 (B o 0r)
k>1
1 D, N 2
= G <¢k, fo¢+wy> (by (532))
k=1 Pk A2 2 (S.52)
1 ||\ 2
_n_)\2 )\lfoy+W¢ ,

L /M 4 Co)”
A2

By (S.50), (S.51), (S.52), and an application of Lemma [S.14] (i) with s = 4/3,

Cmin
> E{P(HUJ-HQ > &

jese

N A Cmm Cmax 252
Xy) } s aew {_2Z<(1 + u/‘lC ; ):J} |

max

This concludes the proof of (S.45). According to Lemma we have » >

p1(p1+ Xo)7L Let € = 6 = /3, we find (S.38)) is bounded by

A%WZTL )\2<Cmin/cmax)272n
— 2(p — — . (S.53
P { 36C2(p, + )\2)2(1} +2p—g)exp { 86474 } (5.53)

Note that p; must be bounded from below by a universal constant, denoted
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as Dj. Without this lower bound, the model will only contain noise and no
meaningful signals. Below, we will use D* to denote a universal constant in

(0, 00) whose value changes from line to line. Suppose A, satisfies

6 max(1, Dy ,) Crl/? 1 2 6CTY? A ’
max(L, Dg,) Cr'2 (e 1) - [¢ 60T (o4 da) [ g5y

)\2 >
(D) . " N "

which meets Condition (S.39). It can be shown that the first term of (S.53)
is bounded by exp (—D((f))‘%n) for any D < D*y2(p; + 1)~2. Suppose for

d € (0,1), Ay also satisfies

8641 q log(p — q) (S.55)

Ay >
? d<Cmin/Cmax)272 n 7

which is equivalent to

(Cmin/cmax)272 )\Zn (Cmin/cmax)272 )\27”&

—log(p—q) > (1—4d)-

8647 8647 7
Then, the second term of (S.53) is bounded by
AQ(Cmin/Cmax)272n
(P —q)exp { 8617q

— . 2.2
<exp {_ (1 = d)(Crin/Crnax)™7* AQn}
864 q

<expd — (1 - d)<Cmin/CmaX)272 . )\gn
= 864037 q
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/\2
<exp (—DZEQ)LTL) )
q

where Déz) < D*(1 — d)(Croin/Cmax)*v*77 L. The second inequality uses the

fact Ay < Dj . It follows from Lemma|S.1|with d = 1/2

& 7.\ L[ A2
‘97'7,] ) (‘%I A2 ) ()\_lfoy +w;ﬁ)

P [ max
jeFC

holds for any D® and A, such that

D® < p (Crlrlin/cma><)272

< min {DP, D},
SR SO

and

. T(p1+1) qlog(lp —q) [¢?
Ny > D it AU VAR S
2 > (Cmin/omax)%z max ( n s n

Proof of Lemma [S.4]

Proof. Define &++”) to be the operator that only contains the off-diagonal

elements of ) je. &) = F) _ @) = %(y’y) — ng )
) 2 2
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Then

‘H(Q(f,f))uQ(%(j’,y))—l‘HOO )

_ (Q(Y,y))l/Q(Qiy,y))—l + (Q(y,y)>1/2{(%\(5’,5’))—1 . (Qif,f))—l}m

_ (Q(y,y))lm(g(%y))—l o (Q(y,y))1/2(602?’,5’))—1&(«7,,“)(9(5’75’))—1

Ao A2 00,00
< ||| (@) e ) M(H\HgW)(z(f ) oooo>'
(S.56)
Note that
’H(Q(y,y))uz(gf\%%)—l
_ G2 ( g (5:9) -1
= max || (Z00)2 (F09 4 2o s (S.57)

1/2
Vik 2 1
IEZ | fll2<1 [kzzl (Vjk + A2)? VRNV 2] e

The last inequality holds by observing that the maximum value of function
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h(z) = z(xz + p)~2 is h(p) = (4p)~ . Meanwhile

.. L)\ —
H‘g(f’,?)(g;\g )) 1

00,00

% S S\ — % LS\ —
:H‘g;é )(9;\(2 )) 1—Q§2 )((7)\(2 )) 1

o (S.58)
<1+||@ff (@l + 6
—1
P S\ —
=1+ H‘{ﬂ +E&V(@T)) 1}

By Theorem 3.5.5, Hsing and Eubank (2015), % + g(y)"w)(e@f\f’y))*l is in-

vertible if

ROw) = [|6 @l <

00,00

which is warranted by Condition C[4] In this case,

PO (S.59)

5 -1
H'{erg(y,y)(Qg,y))—l} E—enE

Therefore, (S.18) holds by (S.56)-(S.59). O
Proof of Lemma [S.5|

—~T —
Proof. Recall that g; = nilX,jen. Conditional on X,;j, g; is a rank n Gaus-

sian process with mean zero and covariance operator %; = n~'o? 9D and
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tr(%;) = n~'tr(Z97)o2. Define the event ;(c;) = {tl" (%(j’j)> < 01}7 1t

follows that

Plgslle > o) <D P<||9j|!2 > /\z>

jes

< Z E [P (ng”2 > Ao

jes

+Y P{Z(er)}

jes

X.;, 9]'(01))

Setting ¢; = 27 and applying Lemma (i) with s = 4/3, we get

16027

P (||9j||2 > Ay

. 2
X.j,@m)) < 2exp <— s ) |

Given that X P o g (0, 7@D) and |Hf7(j’j)H|2’2 = 1 together with the

facts 7 > 1 and Ay < D3,

P (Z5(c1)) =P (Z | X2 > 2na§> < exp (—55n)

i=1

- ( n) < A2n
ex —_— ex e a———
=P \T52) =P\ T, 2

by Lemma (ii) with s = 16/9. Combining the two bounds entails

3nA2 A3n
p Ag) < 2 —— ~3i 7 )
(lg./lle > X) < qexp< 16027)”6”)( 32<D;,1>2)
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Suppose

1 4 1
Ay > D¥(o 4 1)7Y2 . 84 max (g\/é-m-l/?, 8D§1) : qu,
n ’ n

which is equivalent to

3n\3 3n\3
5 —logq > 2
16021 320°%T
and
nA2 nA2
——— ] >
32(D3,)7  °"17 64(D3,)?

We have (S.19) holds for some D®) < D3 ((0 + 1)27)"" < 64~ min {60727, (D51) 72},

where D} and Dj are universal constants. ]

Proof of Lemma [S.6l

Proof. Recall H|9' () |H2 , = p1 and define ¢ = Cfp’%q for some constant C' > 0,
) 1
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then by Corollary 2 in Koltchinskii and Lounici (2017),

P (Vall7) =7, 2 )

o (Il77 -2yl E) o

n
<e™!

as long as

t (7.7) 9 t ot

— = max ( 7 ), rg ), - =1, (S.61)

n n n n'n
where

(T )) = (ElIX1]l2)? < El| X113 0T

Ty T NT My, ~ o1
by Jensen’s inequality and Condition C. Hence (S.61) holds when

-
q—<t<n,

L1

which amounts to (S.20).
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S.2.4 Additional technical lemmas

Lemma S.7. For any 0 <v <1,
|@) (0 = for)||, < A=) v X 1ol

Proof. Write Z+7) =37, | prpy @ ¢y and fo0 = 351 fey,. Then

Prfr
fr= Z A3 + pr i

k>1

Therefore

oy [~ 2 A fk 2 2p2y
() _ = v 2 VR Z
H(9 ) (fy fof) 9 Zpk ()\3+pk) = k:>1 (A3 + pr)? fi

E>1 k>1

< (=P | Forlls
The last inequality follows from Young’s inequality: Az+pj > (1—v)~ =)A= pr
]

Lemma S.8. For0 <v <1,

S (1 _ I/)l_VIJVAV_l.
2,2

ey ey
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Proof. For any f € L3 such that || f||; < 1, write f =37, ., fre;, we have

-1

oy ()

k>1

2v v
— E L 2 < Pk < o \=vo vyr—1
\l (Pk+A)2f'“_rkn§1X{pk+A}_(1 TN

Lemma S.9. Assume Condition C[3-C[6 hold. For 0 <v <1/2,r>1/2

-0 AT >_2 .
| p((q ]

e ()

Proof. For 0 <v <1/2,

2

[y (207) g

< gyy)>19,% ¢k>
2
< (yvy))_l ¢k7 ['R72 >

n 2
- X,
k+>\3¢k7 ZEZ y>

=1

2

-z
>

2

o

2

[y

k

%

1 2

ﬁ{l Salen 1y>2} |

>1 i=1

Therefore

i () e




S.2.4 Additional technical lemmas

2 2v+1
o Pr

= (o + As)?

2 2v41

o Pk
<
= A Z (pr + Ag)+2v

k>1

< Co* ((nfa) 2 F)

for some constant C' > 0. The last inequality is obtained by Lemma The

proof can be completed by Markov inequality. O

Lemma S.10. Assume Condition C.@—C.@ hold. Then for any r > 1/2, 0 <

v<1/2—1/(4r),

H' oy (g(yy) 1(%“”—9”)(%/5/)

H' (g(y,y))lﬂ <9A(5",5”))_1 (zb(y,y) _ 9(%%) (9(5/),5»))*11

Proof. (1). Write g = >~ gxPys b = D51 hrgp. We have

m (F)" (g;%f))l (Z57) — g (g TN

2,2

= sup < (9(YV ) ! (91-1(7,7) — g(é’é’)) (9(3’73’))_” h>
lgll<1,||R|I<1 2

_ sup < g(yy (;ﬂ,;ﬂ))'/g7 (gn(y,y) . g(y,y)) (9(%%))—” h>
llgll<1,||R|[<1 2

PrIk —v

= sup W Y oo (T =T ) ¢

lgl<tinl<t| \ =7 P + A >1

2
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PrPy " gulu o
= sup kl—)\@% (%(y,y) _9(y,y)> ¢l>2
lol<viipl<t |57 Pe T
1/2 p2l/p—21/ 1/2
7 2
< sup gih? LB, (T = T) @)
lgll<1.lInfl<1 g;l k; (P + As)? 2
pQVp—QV 1/2
k Tl () (7.5) 2
k,lzzl (oo 2o (P ) 1),

The second inequality from the bottom follows from the Cauchy-Schwarz in-

equality. By Jensen’s inequality

1/2
P2 pr oy oy 2
|2 e e (B0 (77 =77 0,
kd>1
o (7,9 (7,9 2 v
< ZWE<¢k7 (9; )= T )¢l>2
fd>1

Note that

E(y, (777 =77 ¢y),

n

2
1 e — ~T —~ ~T

=E(od,, | =) Xiv®X,,—EX190X,, | ¢
n

=1 2
1 —~ ~T —~ —~T 2
= B¢ (XveX,, —EXi,0X,,)d)
1 ~ T 2
< EE <¢k7 (le ® X1y> ¢’z>2
1 o\ 2 2
- EE<¢k’ X1y>2 <¢l’ X1y>2

1 4

< EEW <¢k7 j7\(:1.5ﬂ>;1 E/? <¢57 X/ly>

2
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2 2

3

n

3

= —PrPI-
n

= E<¢k7 3(/1,7> E<¢za /)21=5”>

2 2

The last inequality follows from the Cauchy-Schwarz inequality. The second-

to-last equality from the bottom is derived from the property of Gaussian kur-
— — 2 —

tosis, E(¢, X1+)3 =3 (E((bk, le>§> , where (¢, X 1) follows a Gaussian

distribution with mean 0 and variance smaller than p;. Therefore

E'H (9(y,y))” <9A(3:7,e7)>_1 (gn(y,y) . 9(,%,%)) (9(y,y))—v

2,2
1/2
3 P11c+2u 1-2
<=2 Adoa
1/2 1/2
< 32/)1_21/ 1 Z p]1€+2l/ (S 62)
a 1>1 l ny~ k>1 (pr + Az)1+2v

By Corollary 2| we have

q
Z P = Z Z (ﬂq(k_1)+j)1_2y < (be)' g Z k207 = Ofa).

>1 j=1 k>1 k>1

The last equation holds because 1 —2v > 1/(2r). By Lemma the expres-

1—2v+3-

~1/2
sion (S.62)) can be bounded by Cq*/? <(n/q) D > for some C' > 0.

The proof is completed by applying the Markov inequality.
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(2). Similarly, we can show that

el () e gy gy

1/2 ) 1/2
<3 Z 1— 21/) (l Z Pk >
I>1 >1 (or + A3)?

<0g (tnfg) AF)

2,2

for some C” > 0. The proof is completed by applying the Markov inequality.

]

Lemma S.11. For A < 1, suppose T) satisfies Condition C.@ {pi}i>1
are the eigenvalues of T7+). Then there exist constants ¢ > 0 depending

only on b,c,r, v such that

14+2v

Z (/\fw <dg(1+A171e),
Pi

>1
where b, ¢ are defined in Condition C[3]

Proof. Let C' = be, according to Corollary [2] it is straightforward that

1+21/ qu 14 14+2v
St zz( )

A
I>1 =1 k>1 T Pa(k—1)+

Cl{? o 1+2v
<) ()\ +Ch 27«)

k>1
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1
Cl+21/
q Z ()\kQ'I’ + C)1+2V

k>1

* dx
< 1+2v —(142v) /
= qC (C + 1 (AIQT _|_ O)1+2V

< Cl+2y C—(1+2V) )\—2*176 / J
>q ( + 0 (y2r + 0)1+2V

< qcd (1 + )\_%) .

The last inequality holds because for r > 1/2,

< C—(1+2y) + Zk—ZT(1+2y) < 0.
k=1

— <
/0 (y2r + C’ 1+2v kz:; k:27“ + C’ 1+2v

]

Lemma S.12. Suppose that U, U, are jointly Gaussian processes with means
Wy, Uy, (auto) covariance operators 911,922 and cross covariance operator
G119 = 95,. Then, conditional on Uy, Uy is a Gaussian process with mean
o+ 909, (Uy — ) and covariance operator Gog — G2191,9 12, where 47,

is the Moore-Penrose generalized inverse of 411, and therefore
d _
Uy =po+ 909U —pm)+ 2

where Z is a zero-mean process independent of Uy and has covariance operator

G2 — 9219119 12.
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Lemma S.13. Suppose U, w G2(0,9), 1l =1,...,L, with tr(¥4) < oo, then

for any s > 1,

(i)

L s \L? .
P (Z U135 > 95) = (s——l) exp (—m> ;
=1

(11) if we further have x > (1 + s/2)L - tr(¥), then

2 o ) <o (TS
P(lzlnulnp )s p (U L - L))

The proof of this result is a straightforward application of the following

Lemma [S.14l

Lemma S.14. Suppose that &, 1 < m < L,1 < k < K, are independent

random wvariables where L < oo, K < o0, & ~ N(0,0;) for all I,k with

-----

then for any s > 1,

(i)

(EEaee) < () "o (i) oo

=1 k=1
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(11) if we further have x > (1 + s/2)L||0||1, then

K _ g1/2)2
p (Zzgﬂ > ) S s e ) P

=1 k=1

Proof. For (i), by Markov’s inequality,

Letting t = (28>, 0x) "', s > 1, we obtain

K K 0 —L/2 s O\ L2
1—2t6,)" " = 1 - <( ) :
( g H( 325:1 O C\s

k=1 k=1

where the maximum is attained when 6; # 0,0, = 03 = --- = 0. To see
why the above statement is true, define r;, = Hk(Zszl 0r)"!, then we have

0<nr <1, Zszl re = 1, denote 7 = (ry,...,rx)", define

L K T
9k (k) = 3 g log (1 — f) .
k=1

It is straightforward to determine that the function gx has a compact support
and is differentiable. By setting the gradient of gx with respect to rx equal

to zero, we obtain 1, = 1/K, k = 1,..., K, and this leads to the attainment
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of the function’s minimum value. Note that function gx only have one critical
point, as a result, the maximum value must be attained at the boundary of the
support of rx. Without loss of generality, we have rx = 0, then the minimum
value of gx_; is attained at r, = 1/(K — 1), k=1,..., K — 1, the maximum
value of gx_1 must be attained at the boundary of rx_;. Recursively using
this fact, we have ry =1, ry =--- =rg =0.

For (ii), the proof utilizes a modified version of the Laurent-Massart in-
equality (Laurent and Massart, 2000), as follows. Suppose Z; N (0,1),

a; >0 (j=1,...,n), define ¢ = 2||a||o and v* = 2||a|3. Then, for any y > 0,

P (X:CLJ-(Z]2 -1)> y) < exp {—;—; (1420 2cy)"/? - 1)2} :

J=1

Back to our setting, letting & = 04/°Zy, v? = 2L||0]2, ¢ = 2]|0|e, and
assuming y > 27'sL||0||; (s > 1), we have 2cy/s > 2L||0||1]|0]|- > 2L||0]|3 =

v2. Then, 2v"2cy > s > 1, and in this case

v? 2 v s (1—s712)77
22 (14207 2%ey)? = 1)" > 22 (20 %cy)? = 1) > EE—
Subsequently,

L K (1— 371/2)2
P <ZZ & — Ok) > y) < exp (—Wy) -

=1 k=1



Let © =y + L||0||:. Then, for z > (1 + s/2)L||0||1, (S.64) holds.

0
The proofs of the following lemmas are straightforward and are omitted.

Lemma S.15. For operator-valued matrices A and B,

(i) IABll, s < [l Al

n,8 |B|Ha,77 fO’f’ @76,77 S {27 OO};

(i) if A has dimension q x q, then 2| Allyz < [|All o < VallAll,,,-

Lemma S.16. For a q X q operator-valued covariance matriz R, suppose p;

is the largest eigenvalue of R, then for any A > 0

-1 pl

S.3. Substantiating examples for the technical conditions

We now provide examples of functional predictors that satisfy technical condi-
tions such as C[3 and CH] As described in Remark 2, we consider functional
predictors with partially separable covariance structure (Zapata et al., 2021)

such that

T =N Ay, @ i, (S.65)

k=1



where {¢y, k > 1} are orthonormal functions in Ly[0, 1] and {Ag, k > 1} are a
sequence of ¢ x g covariance matrices. Further, consider A, = vy R, where v; >
vy > --- > 0 are a sequence of eigenvalues and R is a ¢ X ¢ correlation matrix,
e.g. a MA(1) correlation matrix. In this setting, {X;,j € .} share the same
eigenvalues and eigenfunctions, and their principal component scores have the
same correlation structure across different order k. To satisfy Condition CJ2]

vi = 1 and {1} decay to 0 fast enough such that », v < oo. To verify

B

9(%(?)(%(%(5”))71 = Z Ap(Ap + M)y, @ g = Z B @ .
=1

k=1

Under the setting considered, By, = R(R+ VY1), where 9y = /v, — 00 as

k — o0.



S.3.1 MA(1) correlation

S.3.1 MA(1) correlation

We first focus on MA(1) correlation

1 p 0 O 0
p 1 p O 0
0O p 1 »p 0
R =
0
0 p 1 p
0 0 0 p 1

In order for R to be a legitimate correlation matrix, we need |p| < 1/2. We
will focus on the case 0 < p < 1/2; the same conclusion can be reached for

p € (—1/2,0) using similar arguments. We have

ﬂk ~—1

By=I—-9,(R+VI) " ' =1- 1+%R,ﬂ




S.3.1 MA(1) correlation

where

1 pr O 0 0
pe 1 pr O - 0
- 0 pr 1 pr -+ O
Rk - ’
N T T :
0 o1 pk
0 O 0 pr 1

with pr = p/(1 + J%). Note that both By and fi: are positive definite, all
diagonal values for both matrices should be greater than 0, hence |By ;;| < 1

for all k,j. Let B3 be the (4, j/)th element of R ' and denote

o LVIZWR %
2px 1+\/1—74;5%g

One can easily verify that 6, is an increasing function of p; and |6 < 1.
Hence, 6, decreases to 0 as ¥, — oo with k.

By [Shaman| (1969),

|Ei]”| < elj*j



S.3.1 MA(1) correlation

L gl (S.66)

V1= 4p? ’

where § = V174" ¢ [0,1). Hence, for j # j, |By,;/| < |RY| < \/%HU_J'/‘

2p —4p?

uniformly for all k. By (S.3)

1 20
<1+ ,
00,00 1—4p21—9

= H‘y(y,ym%(y,y))_l‘

(S.67)

which is a constant not depending on A or ¢. We continue to verify C[4]in this

example:
(yvy)_Q(yvy) Q(yvsﬂ) —1: Vk R_I
(7 )(&y777) ;Vk+)\( )k ® Uy,

where R is the MA(1) correlation matrix above. Using the same argument as

for (533),
(yvy)_ (yvy) (5”75”) —1‘“ :2 Vg <2 1
[ - 2@ )| =z B <20 <

which satisfies Condition Cl4]
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S.3.2 AR(1) correlation

We shift our focus towards AR(1) correlation

L p p P p!

p 1 p pr

. PP 1op pr
p2

pr po 1 p

prt P 1

and we will focus on the case 0 < p < 1. Similarly, because By = I — ¥, (R +
0,I)7", we have | By j;| < 1 for all k,j. Define Ry = R+ 9;I, let R be the
(7,7")th element of fi;l, we have | By, j;/| < 0k|§ijl| for all j' # j.

Consider stochastic process Y; with AR(1) mean and Gaussian white noise,

1.e.

Yi = py + Wi, Wi ke A7(0,9)

i.4.d
pe = pp—r + Vi, Vi RTA(0,1 = p?)

then Y. ~ A4(0, ﬁ), where R = R + 9I. It can be shown that Y; is an



S.3.2  AR(1) correlation

ARMA(1,1) process
iid

}/t - PYt—l + Ut - eUt—la Ut ~ </I/(07 H)J

where 0 < 0 < 1, and (6, k) satisfies

1 —2p0 + 6?
Var(V;) =1+ 9 = g
—0)(1— pd
Cov(¥, Yi) =l = L= T )iy,

then

o<, P _ =01 =p) U _0
149 1 —2p0 + 02 K p

According to [Tiao and Ali (1971), for j" # j, we have
KR < C {<1 — p0)2099 1L (p — 9)20%0 0171 4 (1 — ph)(p — ) <9j+j’—2 i Q2q—j—j’)} 7

where

- (p—0)2(1—0>)1"" (p—6)(1 — ph)
¢= {“ <1—p2><1—92>} 0216
L (p=0)(1—pb)
= (1—62)2 1— 20 + 62




S.3.2  AR(1) correlation

. 1Y
(1 +9)(1 - 62)2
p
<
—(1—62)2
Also, note that
§C< i 1 —ph <1-—06% —9<1—-0<1-6*
K —(1_92)27 )0_ ) p — — I
we have

l7—5" 2q—|5—4'| Jj+i —1 2q—j—j'+1
|Brjj| < 0 + 0, + 0 + 0

< p|j—j'| + p2q—|j—j'| + pj-l-j'—l + p2q—j—j’+1‘

Applying some algebra, we have

maXZprlSl_p(l P, maXZp2q \JJ|_ZI0_1_

J
J#j’ J#5 k=g+1

q
max +]71+ 2qjj+1<max + QJ k< P 14 p7 1.
P (S <

By (S.3) and the above derivation,

"= ‘Hym&”)@(%ﬂ)—lm <140 (S.68)

00,00 —pP



which is a constant not depending on A or g. We continue to verify C. |4, Using

the same argument as for (S.3),

> 145 Y]
. < li=3l
; ” +/\ (R— 1)y @ Yy, < fg?ﬁ}i’j,#jm’?x S

00,00

1<j<q —~
J'#7

p _ _
S (2 — plla=D721 _ ylla 1)/2J)

Hence, for large ¢, we need p < 1/3 in order that C. 4| holds.

S.4. Additional Simulation Results

n=100,p=200,9=10,p=0 n=100,p=200,q=10,p=0.3 n=100,p=200,q=10,p=0.75
1.00 1.00] —————== 1.00 —=
o o o
075 5 075 & 075
o i o
2 e g e 2 o
Z 050 & =050 & 2050 @
S ~F e} S e}
a [ o
E E 3
=025 Methods E 025 Methods E 025 Methods
fEnet fEnet fEnet
----- FLR-SCAD ----- FLR-SCAD ----- FLR-SCAD
0.00 0.00 EE— 0.00
0.00 0.25 0.50 075 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
False Positive Rate False Positive Rate False Positive Rate

Figure S.1: Simulation Scenario II: the ROC curves of fEnet and FLR-SCAD
under the ultra high-dimensional case. The ROC curves are obtained by changing
the value of A and holding other hyperparameters as optimal.



Table S.1: Simulation Scenario II: summary of estimation, prediction, and vari-
able selection performance of the proposed fEnet versus FLR-SCAD under different

problem sizes.

n P q Method FPR (%) FNR (%) MND RER
p=0

500 50 5 fEnet 0 (0, 0) 0 (0, 0) 1.11 (0.61, 1.82)  0.0009 (0.0005, 0.0015)
FLR-SCAD 0 (0, 0) 0(0,0)  1.80 (0.90, 3.59)  0.0014 (0.0008, 0.0028)

200 100 5 fEnet 0 (0, 0) 0(0,0)  L57(0.81,2.37) 0.0025 (0.0015, 0.0040)
FLR-SCAD 0 (0, 0) 0(0,0)  2.16 (1.18,3.71)  0.0048 (0.0025, 0.0111)

100 200 10  fEnet 0 (0, 0.5) 0(0,0)  3.23(2.01,5.05) 0.0252 (0.0124, 0.0611)
FLR-SCAD 5.8 (1.1,13.2) 10 (0,30) 7.49 (4.90, 15.18) 0.4896 (0.2332, 0.8809)

p=03

500 50 5 fEnet 0 (0, 0) 0(0,0)  L11(0.68,2.05) 0.0011 (0.0007, 0.0017)
FLR-SCAD 0 (0, 0) 0 (0, 0) 1.96 (0.93, 4.11)  0.0016 (0.0009, 0.0033)

200 100 5 fEnet 0 (0, 0) 0(0,0)  1.66 (0.90, 2.52)  0.0028 (0.0016, 0.0049)
FLR-SCAD 0 (0, 0) 0(0,0)  2.18(1.03,3.60) 0.0054 (0.0025, 0.0132)

100 200 10  fEnet 0 (0, 1.1) 0(0,0)  3.15 (1.95,4.97)  0.0230 (0.0110, 0.0735)
FLR-SCAD 8.4 (4.2,14.2) 10 (0,30) 7.60 (4.95, 12.37) 0.4162 (0.2522, 0.7676)

p=0.75

500 50 5 fEnet 0 (0, 0) 0 (0, 0) 1.61 (0.82, 2.63)  0.0013 (0.0008, 0.0021)
FLR-SCAD 0 (0, 0) 0(0,0)  3.08 (138, 6.41) 0.0018 (0.0010, 0.0040)

200 100 5 fEnet 0 (0, 0) 0(0,0)  1.95(0.99,3.25) 0.0032 (0.0018, 0.0055)
FLR-SCAD 0 (0, 2.1) 0(0,0)  2.93(1.41,6.34)  0.0060 (0.0030, 0.0140)

100 200 10 fEnet 0 (0, 3.7) 0 (0, 10) 4.15 (2.73, 6.55)  0.0184 (0.0084, 0.0914)
FLR-SCAD 4.7 (1.6, 10.6) 50 (30, 70) 8.16 (4.95, 16.04) 0.2345 (0.1581, 0.3791)

n=100,p=200,q=10,p=0.75

n=100,p=200,q=10,p=0.75

n=100,p=200,q=10,p=0.75

False Positive Rate

0,00 Jer e ——

False Negative Rate

Relative Excess Risk

Lhbd

8

"
logio(1 - )

3 )
logio(1-a)

/4
1

logyo(1 - ct)

Values of log;o0

Figure S.2: Simulation Scenario II: the plots of FPR, FNR, and RER versus

log,(1 — ) for different values of # under the ultra high-dimensional case.



Table S.2: Simulation Scenario Il: summary of estimation, prediction, and vari-
able selection performance of the proposed fEnet method versus FLR-SCAD under

different problem sizes.

n P q Method FPR (%) FNR (%) RER
p=0
50 50 5 fEnet 0 (0, 0) 0 (0, 0) 0.0213 (0.0113, 0.0340
FLR-SCAD 0 (0, 0) 0 (0, 0) 0.0381 (0.0245, 0.0604
200 100 5 fEnet 0 (0, 0) 0 (0, 0) 0.0413 (0.0248, 0.0702
FLR-SCAD 9.5 (4.2,17.9) 0 (0, 0) 0.0612 (0.0405, 0.1034
100 200 10  fEnet 0 (0, 0.5) 0 (0, 10) 0.0784 (0.0429, 0.2346
FLR-SCAD 6.8 (2.6, 11 6) 0 (0, 30) 0.4616 (0.2127, 0.7290
p=0.3
500 50 5 fEnet 0 (0, 0) 0 (0, 0) 0.0274 (0.0172, 0.0491
FLR-SCAD 0 (0, 2.2) 0 (0, 0) 0.0528 (0.0353, 0.0830
5 fEnet 0 (0, 0) 0 (0, 0) 0.0562 (0.0338, 0.1042
FLR-SCAD 9.5 (4.2, 15.8) 0 (0, 0) 0.0797 (0.0503, 0.1410
10 fEnet 0 (0, L.1) 0 (0, 20) 0.1048 (0.0618, 0.3288
FLR-SCAD 8.4 (3.7, 13.2) 20 (0, 50) 0.5074 (0.3487, 0.7764
p=0.75

5 fEnet 2 (0, 6.7) 0 (0, 0) 0.0504 (0.0276, 0.0926
FLR-SCAD 26.7 (13.3, 37.8) 0 (0, 0) 0.0870 (0.0506, 0.1701
5 fEnet 1(0, 4.2) 0 (0, 20) 0.1411 (0.0603, 0.3734
FLR-SCAD 9.5 (3.2, 16.8) 20 (0, 40) 0.3056 (0.1227, 0.5523
10 fEnet 0.5 (0, 1.6) 40 (20, 50) 0.1518 (0.0878, 0.2769
FLR-SCAD 5.3 (2.1, 9.0) 0 (40, 70) 0.2467 (0.1616, 0.3688

True Positive Rate

n=100,p=200,q=10,p=0

n=100,p=200,q=10,p=0.3

0.25 Methods
—— fEnet

----- FLR-SCAD

0.00

True Positive Rate
a
&
/;\
%,
%

0.25 Methods

——— fEnet
FLR-SCAD

0.00

True Positive Rate
&

n=100,p=200,q=10,p=0.75

0.00 0.25 0.50 075
False Positive Rate

0.00 0.25 0.50

0.75 1.00 0.00
False Positive Rate

Figure S.3: Simulation Scenario IlI: the ROC curves of fEnet and FLR-SCAD
under the ultra high-dimensional case. The ROC curves are obtained by changing
the value of A and holding other hyperparameters as optimal.



n=100,p=200,q=10,p=0.75 n=100,p=200,q=10,p=0.75 n=100,p=200,q=10,p=0.75
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I
=
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Relative Excess Risk

False Positive Rate
False Negative Rate
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logyo(1 - at) logro(1 - )
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Figure S.4: Simulation Scenario II: the plots of FPR, FNR, and RER versus
log(1 — ) for different values of # under the ultra high-dimensional case.
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