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theorems.

We first provides the following suitable regularity conditions necessary

for proving consistency.

A1 Let Π be a prior distribution for fj(x
(j)(ti)). Let Mn = O(nα) for

some 1
2
< α < 1 and define Θn = {fj : ∥fj∥∞ < Mn, ∥ ∂

∂xk(ti)
fj(x

(j)(ti))∥∞ <

Mn, k = 1, . . . , K}, j = 1, . . . , J . Assume that Π assigns an exponentially

small probability to the set Θn.

A2 Assume that f ∗
j (·) as a function of the latent factors x(j)(ti) is

continuously differentiable on a compact set.
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S1 Proof of Theorem 1

Proof of Theorem 1. Following Chen et al. (2020), we use a proof by

contradiction to complete the proof. If {k} =
⋂

k∈∆, |RQ(∆)=O(J)| ∆, is not

satisfied, theni there are two cases: (i) {k, k′} ⊂
⋂

k∈∆, |RQ(∆)=O(J)| ∆ for

some k′ ̸= k, and (ii) ∅ =
⋂

k∈∆, |RQ(∆)=O(J)| ∆. We show below that, in both

of the above cases, one can construct X̃,X ′ ∈ S such that P ˜X
= PX ′ ,

while sin+∠
(
X̃ [k],X

′
[k]

)
> 0.

Case (i) Without loss of generality, we assume K = 3, k = 1, k′ =

2. Then we establish that X̃ =


I3

1′
3

...

 and X ′ = X̃ − X̃ [k′]. It is

easy to verify that ∥x(ti)∥ ≤ C, and the columns of X are linearly in-

dependent, then X̃,X ′ ∈ S. Since Y j | X, fj ∼ N
(
fj(x

(j)(ti)), σ
2
)
,

when given the structured index matrix Q and link function fj, this can

lead to P ˜X
= PX ′ , where PX denote the probability distribution of

{Yj(ti), i ∈ Z+, j ∈ {1, . . . , J}} given the parameters X,Q, fj. The key to

the validity of the previous step is our assumption that the column vec-

tors of Q are linearly independent. The following step requires verifying

that sin+∠
(
X̃ [k],X

′
[k]

)
̸= 0. Unlike Chen et al. (2020), here we consider

the dependency of xk across different times ti. Fortunately, this only af-



S2. PROOF OF THEOREM 2

fects the norms of X̃ [k] and X ′
[k] without influencing the inner product

of those. Therefore, as discussed in Chen et al. (2020), we can see that

sin+ ∠
(
X̃ [k],X

′
[k]

)
̸= 0. This contradicts the definition of structured iden-

tifiability.

Case (ii) Similar to Chen et al. (2020), we can construct X̃,X ′ ∈

S such that P ˜X
= PX ′ , while sin+∠

(
X̃ [k],X

′
[k]

)
> 0. The proof is

complete.

S2 Proof of Theorem 2

Proof of Theorem 2. Note that f ∗
j is the true link function, σ2

∗ is the true

variance of noise, Θ∗
xk are the true values of model parameters, and Θ∗

fj

are the true values of hyper-parameters. From Equation (2.17) in the main

article, it follows that we only need to prove the consistency of x̂(ti) for

each i, given f ∗
j , σ

2
∗ and Θ∗. Based on Equation (2.17) in the main article,

given the true link function f ∗
j , the likelihood function of x(ti) is as follows:

l(x(ti)) =
J∑

j=1

1

σ2
∗

[
Yj(ti)f

∗
j (x

⊤(ti)Rj)−
1

2
{f ∗

j (x
⊤(ti)Rj)}2

]
− J log σ∗

+
K∑
k=1

log p̃
(
xk(ti) | N(0, d̃ik)

)
,
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where d̃ik is defined in Equation (2.16). It is sufficient to show that for any

given η > 0, there exists a sufficient small constant ϵ such that

P

{
sup

∥x(ti)−x∗(ti)∥<ϵ

l(x(ti)) < l(x∗(ti))

}
≥ 1− η.

Based on Taylor expansion, we can get

l(x(ti))− l(x∗(ti))

=
J∑

j=1

1

σ2
∗
[Yj(ti)f

∗
j (x

⊤(ti)Rj)−
1

2
{f ∗

j (x
⊤(ti)Rj)}2]

+
K∑
k=1

log p̃
(
xk(ti) | N(0, d̃ik)

)
−

J∑
j=1

1

σ2
∗
[Yj(ti)f

∗
j (x

∗⊤(ti)Rj)

−1

2
{f ∗

j (x
∗⊤(ti)Rj)}2]−

K∑
k=1

log p̃
(
x∗
k(ti) | N(0, d̃ik)

)

=

[
J∑

j=1

1

σ2
∗
{Yj(ti)− f ∗

j (x
∗⊤(ti)Rj)}

{
∂fj(x

∗⊤(ti)Rj)

∂x1(ti)
, . . . ,

∂fj(x
∗⊤(ti)Rj)

∂xk(ti)
, . . . ,

∂fj(x
∗⊤(ti)Rj)

∂xK(ti)

}
Rj{x(ti)− x∗(ti)} −

K∑
k=1

x∗
k(ti)

d̃2ik
{xk(ti)− x∗

k(ti)}

]
{1 + op(1)}

=

[
J∑

j=1

Kj −
K∑
k=1

x∗
k(ti)

d̃2ik
{xk(ti)− x∗

k(ti)}

]
{1 + op(1)}.

Since Yj(ti), j = 1, . . . , J are independent and identically distributed

with respect to j, and the expectation of Yj(ti)|x∗(ti), fj∗, σ
2
∗,Θ∗ is fj(x

∗⊤(ti)Rj),

we have E(Kj|x∗(ti)) = 0. Due to ∥x(ti) − x∗(ti)∥ < ϵ, when J → ∞, for

a sufficiently small constant η, li(x(ti)) − li(x
∗(ti)) < 0 with probability

1− η. The consistency of x̂(ti) is proved.
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Note that xk = (xk(t1), . . . , xk(tN))
⊤ ∼ NNGPk

(
0, Σ̃k(·, ·;Θxk)

)
.

Based on Theorem 2.1 of Basawa and Rao (1980) (Choi et al. (2011)),

it follows that the conclusion of the second part of the theorem holds.

Next, we verify the conditions in Basawa and Rao (1980). Denote xs
k =

(xk(t1), . . . , xk(ts))
⊤ and xs

k has nonsingular distributionNNGPk

(
0, Σ̃

s

k(·, ·;Θxk)
)
.

Let ps(Θxk) = p(xs
k;Θxk)/p(x

s−1
k ;Θxk) for every s ≥ 1. It is easy to show

that ps(Θxk) follows a normal distribution with mean µs
k(Θxk) and vari-

ance V s
k (Θxk), where µs

k(Θxk) and V s
k (Θxk) are functions of Θxk. Then by

calculation, ϕs(Θxk) and its derivatives are given by

ϕs(Θxk) = log ps(Θxk) = − log
(
(2π)s/2|V s

k (Θxk)|1/2
)

− {xs
k − µs

k(Θxk)}⊤ {V s
k (Θxk)}−1 {xs

k − µs
k(Θxk)}

2
,

ϕ̇s(Θxk) =
∂ϕs(Θxk)

∂Θxk

= −1

2
tr
(
{V s

k (Θxk)}−1V s′
k (Θxk)

)
+ {xs

k − µs
k(Θxk)}⊤ {V s

k (Θxk)}−1µs′
k (Θxk)

− 1

2
{xs

k − µs
k(Θxk)}⊤ {V s

k (Θxk)}−1V s′
k (Θxk){V s

k (Θxk)}−1 {xs
k − µs

k(Θxk)} ,

ϕ̈s(Θxk) =
∂ϕ̇s(Θxk)

∂Θxk

= {xs
k − µs

k(Θxk)}⊤ Ak(Θxk) {xs
k − µs

k(Θxk)}

+Bk(Θxk) {xs
k − µs

k(Θxk)}+ Ck(Θxk),

where Ak(Θxk), Bk(Θxk), and Ck(Θxk) are some functions of Θxk, made up

of first and second derivatives of µs
k(Θxk) and V s

k (Θxk). Subsequently, we

apply a similar methodology as used in Choi et al. (2011) to verify the con-
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ditions C1-C4 in Basawa and Rao (1980), thus establishing the consistency

of Θ̂xk.

When (x∗(ti),Θ
∗
xk) are given, σ2

∗ can be estimated by maximizing

ℓ(σ2|x∗(ti),Θ
∗
xk) =

J∑
j=1

[
− 1

2
log

∣∣σ2IN +CN

∣∣− 1

2
tr
(
(σ2IN +CN)

−1Y jY j
⊤)].

In Theorem A1 of the appendix in Choi et al. (2011), let θ0 = σ2
∗, similar

to the proof of Θ̂xk above, then the consistency of σ̂2 can be obtained as

N, J → ∞.

S3 Proof of Theorem 3

Proof of Theorem 3. Choi and Schervish (2007) established posterior

consistency in nonparametric regression problems with Gaussian errors when

suitable prior distributions are used for the unknown regression function

and the noise variance. Here, we will use Theorem 1 from Choi and

Schervish (2007) to prove the posterior consistency of fj for the true vec-

tors x∗⊤(ti)Rj. Next, we verify the conditions of Theorem 1 in Choi and

Schervish (2007). For each j, define γ = fj, γ∗ = f ∗
j and pi(·;γ) as the den-

sity function of Yj(ti)|γ,Rj,x
∗(ti). Define Λ(γ∗,γ) = log

pi(Yj(ti)|x∗(ti);γ∗)
pi(Yj(ti)|x∗(ti);γ)

,

Ki(γ
∗,γ) = Eγ∗(Λ(γ∗,γ)) and Vi(γ

∗,γ) = Varγ∗(Λ(γ∗,γ)). Due to

Yj(ti)|fj(·) ∼ N
(
fj(x

∗⊤(ti)Rj), σ
2
)
independently for i = 1, . . . , N , then
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by calculation,

Ki(γ
∗,γ) =

1

2

[
f ∗
j

(
x∗⊤(ti)Rj

)
− fj

(
x∗⊤(ti)Rj

)]2
σ2

and

Vi(γ
∗,γ) =

[
fj

(
x∗⊤(ti)Rj

)
− f ∗

j

(
x∗⊤(ti)Rj

)]2
.

Then, from the calculations of Ki(γ
∗,γ) and Vi(γ

∗,γ), it is easily shown

that (i) for every δ > 0, there exists ϵ > 0 such that ∀ γ ∈ W 0
ϵ , Ki(γ

∗,γ) < δ

for all i and that (ii)
∞∑
i=1

Vi(γ∗,γ)

i2
< ∞, ∀γ ∈ W 0

ϵ , where

W 0
ϵ =

{
fj :

∫ ∣∣fj (x∗⊤(ti)Rj

)
− f ∗

j

(
x∗⊤(ti)Rj

)∣∣ dλ(x∗(ti)) < ϵ

}
.

Hence, under the consistent estimator Θ̂fj of hyperparameters, if the prior,

Π assigns positive probability to W 0
ϵ for each ϵ > 0, then condition (A1) of

Theorem 1 in Choi and Schervish (2007) holds.

Following the test function construction method and verification meth-

ods for the existence of tests in Choi and Schervish (2007), then we can show

that the subconditions (i) and (ii) of (A2) satisfies. The subcondition (iii) of

(A2) requires that there exists a constant C2 such that Π(γc
n) ≤ C2e

−C2n.

As in the construction of seives, if the prior distribution for the regres-

sion function, Π, assigns exponentially small probability to the two sets

γc
n,0 = {fj : ∥fj∥∞ > Mn} and γc

n,i = {fj : ∥ ∂fj
∂xk(ti)

∥∞ > Mn}, then the

condition (iii) of (A2) holds.
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Note that

∣∣∣fj (x̂⊤(ti)Rj

)
− f ∗

j

(
x∗⊤(ti)Rj

)∣∣∣
≤

∣∣∣fj (x̂⊤(ti)Rj

)
− f ∗

j

(
x̂⊤(ti)Rj

)∣∣∣+ ∣∣∣f ∗
j

(
x̂⊤(ti)Rj

)
− f ∗

j

(
x∗⊤(ti)Rj

)∣∣∣ .
Since x̂⊤(ti)Rj converges to x∗⊤(ti)Rj in probability and f ∗

j is continuous,

by combining the above results, the theorem is proved.
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