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theorems.

We first provides the following suitable regularity conditions necessary
for proving consistency.

A1 Let II be a prior distribution for f;(z9(t;)). Let M, = O(n®) for
some 3 < o < 1 and define ©,, = {f; : || fjlloc < M,, ||%m)fj(w(j)(ti))\|oo <
M, k=1,...,K}, 7 =1,...,J. Assume that I assigns an exponentially
small probability to the set ©,.

A2 Assume that f7(-) as a function of the latent factors @()(t;) is

continuously differentiable on a compact set.
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S1 Proof of Theorem 1

Proof of Theorem 1. Following |Chen et al. (2020), we use a proof by

contradiction to complete the proof. If {k} = (iea, |ry(a)=o(n A is Nt
satisfied, theni there are two cases: (i) {k,k'} C (Nyea, |ro(a)—owy D for
some k' # k, and (i) ) = e, IRo(a)=0(s) A We show below that, in both
of the above cases, one can construct X, X’ € S such that PX = Px,
while sin / (X[k], Xm) > 0.

Case (i) Without loss of generality, we assume K = 3, k = 1, k' =
I;

2. Then we establish that X = 14 and X' = X — /)E[k/]. It is

easy to verify that ||z(¢;)|| < C, and the columns of X are linearly in-
dependent, then ’)?, X' €S SinceY; | X,f; ~ N(fj(ill(j)(ti)),O'Q),
when given the structured index matrix @ and link function f;, this can
lead to PX = Py, where Px denote the probability distribution of
{Y;(t:),ieZy,j € {1,...,J}} given the parameters X, Q. f;. The key to
the validity of the previous step is our assumption that the column vec-

tors of @ are linearly independent. The following step requires verifying

that sin, £ (X K, X E’ﬂ) # 0. Unlike (Chen et al. (2020)), here we consider

the dependency of xj across different times ¢;. Fortunately, this only af-
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fects the norms of X K and X Ek] without influencing the inner product
of those. Therefore, as discussed in (Chen et al.| (2020), we can see that
sing Z (X k], X EH) # 0. This contradicts the definition of structured iden-
tifiability.

Case (ii) Similar to Chen et al. (2020), we can construct X, X’ €

S such that P<

X = = Px, while sin, / (X[k],XEkO > 0. The proof is

complete. O

S2 Proof of Theorem 2

Proof of Theorem 2. Note that f; is the true link function, o2 is the true
variance of noise, @, are the true values of model parameters, and ©%;
are the true values of hyper-parameters. From Equation (2.17) in the main
article, it follows that we only need to prove the consistency of Z(t;) for
each ¢, given f7, 0?2 and ©,. Based on Equation (2.17) in the main article,

given the true link function f7, the likelihood function of x(t;) is as follows:

e(t) = 3= Vi@ (R - 3@ R - Togo.

1

+ilogp< ) | N(0, dlk)>

<.
Il

,_A
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where dj, is defined in Equation (2.16). It is sufficient to show that for any

given n > 0, there exists a sufficient small constant e such that

P {w( sup l(z(t:)) < l(m*(tz))} > 1=

ti)—L*(t;)||<e

Based on Taylor expansion, we can get

Wz (t:)) — U(z"(t:))

3fj(§;KEi§;Rj)} R{z(t) ti)} — Z ti) — xx(ta)}| {1+ 0p(1)}

k=1 dz2k
_ ;. (t:) _
- §jK R =2 et - i (1)

k=1

{1+ 0,(1)}.

Since Yj(t;), 7 = 1,...,J are independent and identically distributed
with respect to j, and the expectation of Y;(;)|x*(t;), fix, 02, O, is fi(x* " (t;) R;),
we have E(K;|z*(t;)) = 0. Due to ||x(t;) — =*(t;)|| < €, when J — oo, for
a sufficiently small constant 7, [;(x(t;)) — l;(x*(t;)) < 0 with probability

1 —n. The consistency of Z(t;) is proved.
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Note that &, = (zx(t1),...,2(tn))T ~ NNGPy (O, f]k(-,-;@xk))
Based on Theorem 2.1 of Basawa and Rao| (1980) (Choi et al. (2011)),
it follows that the conclusion of the second part of the theorem holds.
Next, we verify the conditions in Basawa and Rao| (1980). Denote x} =
(zx(t1), ..., 24(ts)) " and x§ has nonsingular distribution NNGPy, (O, MO @xk))
Let ps(©uk) = p(x5; Our) /p(x) ' Ouy) for every s > 1. Tt is easy to show
that ps(©,,) follows a normal distribution with mean pj(©,;) and vari-
ance V;*(©,), where 17 (0,) and V;?(0,) are functions of ©,. Then by

calculation, ¢4(©,) and its derivatives are given by

(bs(@mk) = 10gps(®:}ck) = - log ((2W)8/2|Vks(®$k)|l/2)

Az = 150} {VE(Om)} ) — 15(Our)}

: ,
6.0 = 222 Ly (10,0011 (O.0)
{2} — 1 (Ou)} (Vi (Om)} 1 (Or)
— 5 o~ (00} V(0. V@0V (©)} ] — 1 (@)}
500 = 22O _ (o 11(0,0)7 4u(0.0) L3 4i(©.0)

+ Bi(Our) {2} — 117.(Our) } + Cr(Oui),

where Ag(©.1), Br(O.k), and Ci(O,y) are some functions of @, made up
of first and second derivatives of 1§ (©,;) and Vi(©,;). Subsequently, we

apply a similar methodology as used in (Choi et al. (2011)) to verify the con-
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ditions C1-C4 in Basawa and Rao| (1980), thus establishing the consistency

~

of G)xk

When (x*(t;), ©%,) are given, o2 can be estimated by maximizing

J
1 1
((o*|x*(t;), %) = Z [— 3 log |0°Iy + Cn| — §tr((02IN + CN)_lyijT>]'

j=1

In Theorem A1 of the appendix in (Choi et al. (2011)), let 6y = o2, similar

2

to the proof of @xk above, then the consistency of 0* can be obtained as

N, J — o0. O

S3 Proof of Theorem 3

Proof of Theorem 3. |Choi and Schervish| (2007)) established posterior
consistency in nonparametric regression problems with Gaussian errors when
suitable prior distributions are used for the unknown regression function
and the noise variance. Here, we will use Theorem 1 from |Choi and
Schervish| (2007) to prove the posterior consistency of f; for the true vec-
tors «*" (¢;)R;. Next, we verify the conditions of Theorem 1 in (Choi and

Schervish| (2007). For each j, define v = f;, v, = f; and p;(-;) as the den-

pi (Y5 ()L (8:);Y*)
pi (Y5 ()| (t:);7Y)

Ki(v*,v) = Ey+(A(v*,7)) and Vi(v*,v) = Var~-(A(y*,7)). Due to

V()| f;(-) ~ N (f;j(@*"(t;)R;),0?) independently for ¢ = 1,..., N, then

sity function of Y;(t;)|vy, R;, *(t;). Define A(v*,v) = log
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by calculation,

Ki(v*,v) =

and
* * * * 2
Viy'y) = [f; (=" () Ry) — f7 (=" (t:)Ry)]
Then, from the calculations of K;(v*,~) and V;(v*,~), it is easily shown
that (i) for every > 0, there exists € > 0 such that Vv € W2, K;(v*,v) <

€

for all i and that (ii) MZQV—) < 00, Vy € W2, where

i=1

WP = {fj : / |fi (T (L) Ry) — [ (z* () Ry) | dA(a*(t;)) < e}.
Hence, under the consistent estimator 5 #; of hyperparameters, if the prior,
IT assigns positive probability to WY for each € > 0, then condition (A1) of
Theorem 1 in (Choi and Schervish (2007)) holds.

Following the test function construction method and verification meth-
ods for the existence of tests in|Choi and Schervish| (2007)), then we can show
that the subconditions (i) and (ii) of (A2) satisfies. The subcondition (iii) of
(A2) requires that there exists a constant Cy such that TI(y¢) < Che™ 2",
As in the construction of seives, if the prior distribution for the regres-

sion function, II, assigns exponentially small probability to the two sets

c c 9 J
TYno = {f] : Hf]”oo > M,} and Yni = {f] : Hamkj;ti)noo > M,}, then the

condition (iii) of (A2) holds.
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Note that

5 (8T Ry ) - 17 (2Tt R; )| +

i (@ @R,) — £ (@ T(1)Ry)|

Since QT(ti)Rj converges to * ' ({;) R; in probability and f} is continuous,

by combining the above results, the theorem is proved. O]
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