
Statistica Sinica: Supplement

Supplementary Materials for “EFFECTS-NESTED MULTI-LEVEL

SUPERVISED HETEROGENEITY ANALYSIS”

Ruiyue Wang1,2, Sanguo Zhang1, and Shuangge Ma2

1 University of Chinese Academy of Sciences

2 Yale University

S1 Proofs

S1.1 Conditions

Condition 1. For some positive constants κ1 and κ2, 0 < κ1 < σu∗
k < κ2

for k = 1, 2, · · · , Ku and 0 < κ1 < σk∗
k < κ2 for k = 1, 2, · · · , Kl. Further,

∥β∗∥∞ = maxk=1,...,Ku ∥β∗
k∥∞, ∥α∗∥∞ = maxk=1,...,Kl

∥α∗
k∥∞ and ∥γ∗∥∞ =

maxk=1,...,Kl
∥γ∗

k∥∞ are bounded.

Similar conditions have been commonly assumed in heterogeneity anal-

ysis and high-dimensional regression analysis.

Condition 2. Design matrix X ∈ Rn×p has bounded elements. Let XS be

the sub-matrix of X with the support of nonzero coefficient set S, and XSc

is the corresponding complement. Define E (Lk (y;x,Ω)) =
∫
Lk (y;x,Ω) f (y;x,Ω) dy,
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andGk = diag (E (Lk (y;x,Ω))) is a n×n diagonal matrix with E (Lk (yi;xi,Ω))’s

as its elements, where Ω ∈ {Ω | ∥Ω−Ω∗∥2 ⩽ α}. Gu
k and Gl

k are defined

depending on Ωu and {Ωl,γ}. For a positive constant C0 and any k,

λmin

(
X⊤

SG
l
kXS/n

)
≥ C0, λmin

(
X⊤

S1
Gu

kXS1/n
)
≥ C0.

This condition controls the correlations between the variables and has

multiple counterparts in literature. If the underlying heterogeneity struc-

ture were known, this condition would simplify to Condition 4 of Fan and

Lv (2011). These matrices can be viewed as the weighted covariance matri-

ces across the subgroups. This condition ensures that the design matrices

are not too ill-conditioned and facilitate the EM iterations.

Condition 3. The Kl subgroups are sufficiently separable such that, for

anyΩ in a α0-neighborhood ofΩ∗(Ω ∈ Bα0 (Ω
∗) := {Ω : ∥Ω−Ω∗∥2 ⩽ α0}),

and each pair {(k, k′) , 1 ⩽ k ̸= k′ ⩽ K0},

pr (y ∈ Ak | Ω) · pr (y ∈ Ak′ | Ω) ⩽
ϱ

24 (Kl − 1)
√
Kl max {W,W ′,W ′′}

,

where Al1 is the l1-th subgroup, ϱ = c · min
{
C0κ1, 0.5 (κ2 + α0)

−2} for a

constant c, and the definitions of W,W ′,W ′′ are as in Lemma 2. Addition-

ally, the Ku groups satisfy similar conditions, for which, we also refer to

Condition C6 of Li et al. (2023).

This sufficiently separable condition is common in the heterogeneity
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analysis literature. It is noted that as Kl grows, the problem gets more

challenging, and a stronger condition is needed. Relevant discussions can

be found in Hao et al. (2018) and others.

Condition 4. mink=1,...,Kl
πl∗
k = O

(
maxk=1,...,Kl

πl∗
k

)
, K2

l = o (p(log n)−1).

Also, mink=1,...,Ku π
u∗
k = O (maxk=1,...,Ku π

u∗
k ), K2

u = o (p(log n)−1).

This condition assumes that the subgroups (groups) are not too im-

balanced. Furthermore, the number of subgroups (groups) is allowed to

grow with sample size n and dimension p, at a rate slower than p(log n)−1.

Intuitively, a larger n allows more subgroups (groups), but it needs to be

indirectly limited by p. It can also be fixed, which leads to the optimal rate

discussed in the main article and is comparable to those in the literature.

Condition 5. ρ(t) = λ−1p(t, λ) is concave in t ∈ [0,∞) with a continuous

derivative ρ′(t) satisfying ρ(0+) = 1, and ρ′(0+) is independent of λ.

This condition is satisfied by Lasso, SCAD, MCP, and others. For some

penalties, there exists a constant 0 < a < ∞ such that ρ(t) is constant for

all t ⩾ aλ.

Condition 6. ∥∥∥∥∥
[
1

n
X⊤

ScGl
kXS

] [
1

n
X⊤

SG
l
kXS

]−1
∥∥∥∥∥
∞

⩽ O(hl),∥∥∥∥∥
[
1

n
X⊤

Sc
1
Gu

kXS1

] [
1

n
X⊤

S1
Gu

kXS1

]−1
∥∥∥∥∥
∞

⩽ O(hu),

(S1.1)
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where h1 ⩽ min(
√

ns2
s2K4

l log p
,
√

K2
l s2) and h2 ⩽ min(

√
n

sK4
u log p

,
√

K2
us);∥∥∥∥∥

[
1

n
X⊤

Sc
1
Gl

kXS

] [
1

n
X⊤

SG
l
kXS

]−1
∥∥∥∥∥
∞

⩽ O(h),

where h ⩽ min(
√

n
sK4

l log p
,
√
K2

l s).

This is the irrepresentable condition and regulates the correlations be-

tween the important and unimportant variables within each subgroup. This

is a common assumption in the high-dimensional regression literature. Anal-

ogous to Condition C3 in Li et al. (2023), we adopt a sample-weighted ver-

sion for both levels. Furthermore, we restrict the correlations between the

heterogeneous and homogeneous variables, ensuring that the heterogeneous

and homogeneous parts can be effectively identified.

S1.2 Proof of Theorem 1

DenoteΩ = (Ωu⊤,Ωl⊤,γ⊤)⊤,Ωu =
(
Ωu⊤

1 , · · · ,Ωu⊤
Ku

)⊤
,Ωu

k = vec (βk, σ
u
k ) =(

βk1, βk2, · · · , β⊤
kp, σ

u
k

)
, Ωl =

(
Ωl⊤

1 , · · · ,Ωl⊤
Kl

)⊤
, where Ωl

k = vec (αk, σ
u
k ) =(

αk1, αk2, · · · , α⊤
kp, σ

l
k

)
and γ = {γ⊤

1 ,γ
⊤
2 , · · · ,γ⊤

Kl
}⊤. Accordingly, Ω∗ =

(Ωu∗⊤,Ωl∗⊤,γ∗⊤)⊤. Consider the objective function:

Q(Ω,πu,πl) =
1

n

n∑
i=1

log

(
Ku∑
k=1

πu
kfk (yi;xi,Ω

u
k)

)

+
1

n

n∑
i=1

log

(
Kl∑
k=1

πl
kfk
(
yi;xi,Ω

l
k,γk

))
− P1(Ω),

(S1.2)
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where πu =
(
πu
1 , π

u
2 , . . . , π

u
Ku

)⊤
and πl =

(
πl
1, π

l
2, . . . , π

l
Kl

)⊤
, and the penalty

P1(Ω) =

p∑
j=1

P


√√√√ Ku∑

k=1

(βu
kj)

2 +

Kl∑
k=1

(αl
kj)

2, λ1

+

p∑
j=1

P


√√√√ Kl∑

k=1

(γl
kj)

2, λ2

 .

(S1.3)

Denote ωu = (ωu
ik)n×Ku

and ωl = (ωu
ik)n×Kl

. If ωu and ωl were avail-

able, the penalized log-likelihood function for the complete data could be

written as:

Q (Ω | X,ω) :=
1

n

n∑
i=1

Ku∑
k=1

ωu
ik [log π

u
k + log fk (yi;xi,Ω

u
k)]

+
1

n

n∑
i=1

Kl∑
k=1

ωl
ik

[
log πl

k + log fk
(
yi;xi,Ω

l
k,γk

)]
− P1(Ω).

(S1.4)

Here, ωl
ik is a latent Bernoulli variable with expectation E

(
ωl
ik | y,x,Ωl,γ

)
=

P
(
ωik = 1 | y,x,Ωl,γ

)
. Note that it can be computed as Ll

k

(
xi,Ω

l,γ
)
=

πl
kfk(yi;xi,Ω

l
k,γk)∑Kl

k=1 π
l
kfk(yi;xi,Ω

l
k,γk)

. ωu
ik can be defined accordingly. In the t-th step of the

EM algorithm, the conditional expectation is computed as:

Eω|X,Ω(t−1) [Q (Ω | X,ω)] = Hn(Ω | Ω(t−1))− P1(Ω), (S1.5)

where

Hn(Ω | Ω(t−1)) = Hu
n(Ω

u | Ωu(t−1)) +Hl
n(Ω

l,γ | Ωl(t−1),γ(t−1)), (S1.6)
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Hu
n(Ω

u | Ωu(t−1)) =
1

n

n∑
i=1

Ku∑
k=1

ωu
ik(Ω

u(t−1)) [log πu
k + log fk (yi;xi,Ω

u
k)] ,

Hl
n(Ω

l,γ | Ωl(t−1),γ(t−1)) =
1

n

n∑
i=1

Kl∑
k=1

ωl
ik(Ω

l(t−1),γ(t−1))

[
log πl

k + log fk
(
yi;xi,Ω

l
k,γk

)]
,

(S1.7)

and here ωl
ik(Ω

l(t−1),γ(t−1)) can be computed as Ll
k

(
yi,xi,Ω

l(t−1),γ(t−1)
)
=

π
l(t−1)
k fk

(
yi;xi,Ω

l(t−1)
k ,γ

(t−1)
k

)
∑Kl

k=1 π
l(t−1)
k fk

(
yi;xi,Ω

l(t−1)
k ,γ

(t−1)
k

) , which depends on π
l(t−1)
k ,Ωl(t−1), and γ(t−1)

obtained in the previous iteration. ωu
ik(Ω

u(t−1)) can be similarly defined.

Note that the update of these weights is independent of the updates of

the other parameters. To establish Theorem 1, a corresponding population

version of Hn needs to be defined as:

Hu(Ωu | Ωu(t−1)) = E

[
Ku∑
k=1

ωu
ik(Ω

u(t−1)) [log πu
k + log fk (yi;xi,Ω

u
k)]

]
;

Hl(Ωl,γ | Ωl(t−1),γ(t−1)) = E

[
Kl∑
k=1

ωl
ik(Ω

l(t−1),γ(t−1))

[
log πl

k + log fk
(
yi;xi,Ω

l
k,γk

)]]
.

(S1.8)

Define the function evaluating the error between the iterative estimator

Ω and true parameter Ω∗ as:
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q(v) =Hn(Ω
∗ + v | Ω(t−1))−Hn(Ω

∗ | Ω(t−1))− [P1 (Ω
∗ + v)− P1 (Ω

∗)]

=
[
Hu

n(Ω
u∗ + v1 | Ωu(t−1))−Hu

n(Ω
u∗ | Ωu(t−1))

]
+
[
Hl

n(Ω
l∗ + v2,γ

∗ + vγ | Ωl(t−1),γ(t−1))−Hl
n(Ω

l∗,γ∗ | Ωl(t−1),γ(t−1))
]

− [P1 (Ω
∗ + v)− P1 (Ω

∗)] .

Note that we set v = (v⊤
1 ,v

⊤
2 ,v

⊤
γ )

⊤ corresponding toΩ0 = (Ωu⊤
0 ,Ωl⊤

0 ,γ⊤
0 )

⊤,

where Ωu
0 =

(
Ωu⊤

01 , · · · ,Ωu⊤
0Ku

)⊤
, Ωu

0k = vec
(
βkS1

, σu
k

)
with βkS1

= {βkj :

j ∈ S1} containing the important parameters. Ωl
0, γ0 and Ω∗

0 are defined

similarly.

Step 1:

To prove estimation consistency, we first show that, if the estimate obtained

in the (t − 1)-th iteration of the EM algorithm Ω
(t−1)
0 ∈ Bα (Ω

∗
0), where

α = O
(
K3

l s1
√
log p/n

)
, then there is a conditional local maximizer Ω0 in

{Ωu
0 : ∥Ωu

0 −Ωu∗
0 ∥2 ⩽ χ1},

{
Ωl

0 :
∥∥Ωl

0 −Ωl∗
0

∥∥
2
⩽ χ2

}
, and {γ0 : ∥γ0 − γ∗

0∥2 ⩽ χγ},

where χ1 = 4ϵ1
ϱ

+ ι
∥∥∥Ω(t−1)

0 −Ω∗
0

∥∥∥
2
, χ2 = 4ϵ2

ϱ
+ ι

∥∥∥Ω(t−1)
0 −Ω∗

0

∥∥∥
2
, χγ =

4ϵγ
ϱ

+ ι
√

s2
s1

∥∥∥Ω(t−1)
0 −Ω∗

0

∥∥∥
2
, ϵ1 ≃ ϵ2 = O(

√
K3

l s log p

n
), ϵγ = O(

√
K3

l s2 log p

n
)

and 1/3 ⩽ ι < 1 is a positive constant. It is noted that α ≫ ϵ, so the

selection of α is reasonable. It suffices to show that:

lim
n→∞

P

(
sup

∥v1∥=χ1,∥v2∥=χ2,∥vγ∥=χγ

q(v) < 0)

)
= 1. (S1.9)
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Next, we establish an upper bound for q(v) over the set C(χ) :=

{v : ∥v1∥ = χ1, ∥v2∥ = χ2, ∥vγ∥ = χγ}. Note that for a sufficiently large

n, we can obtain that χ1, χ2, χγ ⩽ α.

We introduce the strong concavity mentioned in Balakrishnan et al.

(2017). First consider the lower level. For any Ωl
0 ∈ Bα(Ω

l∗
0 ), γ0 ∈ Bα(γ

∗
0),

with probability at least 1 − 1/p and a sufficiently large n, each Ωl′
0 ∈{

Ωl′
0 | ∥Ωl′

0 −Ωl∗
0 ∥2 ⩽ α

}
and γ ′

0 ∈ {γ ′
0 | ∥γ ′

0 − γ∗
0∥2 ⩽ α} satisfies:

Hl
n(Ω

l′
0 ,γ

′
0 | Ωl

0,γ0)−Hl
n(Ω

l∗
0 ,γ

∗
0 | Ωl

0,γ0)

⩽
〈
∇Ωl∗

0
Hn

(
Ωl∗

0 ,γ
∗
0 | Ωl

0,γ0

)
,Ωl′

0 −Ωl∗
0

〉
− ϱ

2
∥Ωl′

0 −Ωl∗
0 ∥22

+
〈
∇γ∗

0
Hn

(
Ωl∗

0 ,γ
∗
0 | Ωl

0,γ0

)
,γ ′

0 − γ∗
0

〉
− ϱ

2
∥γ ′

0 − γ∗
0∥22,

(S1.10)

where ϱ is a positive constant. Then we consider k = 1, · · · , Kl individually:

∇α∗
kS1

Hn

(
Ωl∗

0k,γ
∗
0k | Ωl

0,γ0

)
=

σl∗
k

n

n∑
i=1

[
Ll
k

(
yi,xi,Ω

l
0,γ0

) (
yi − x⊤

iS1
α∗

kS1
− x⊤

iS2
γ∗
kS2

)
xiS1

]
(S1.11)

∇γ∗
kS2

Hn

(
Ωl∗

0k,γ
∗
0k | Ωl

0,γ0

)
=

σl∗
k

n

n∑
i=1

[
Ll
k

(
yi,xi,Ω

l
0,γ0

) (
yi − x⊤

iS1
α∗

kS1
− x⊤

iS2
γ∗
kS2

)
xiS2

]
(S1.12)

∇σl∗
k
Hn

(
Ωl∗

0k,γ
∗
0k | Ωl

0,γ0

)
=

1

2nσl∗
k

n∑
i=1

[
Ll
k

(
yi,xi,Ω

l
0,γ0

)]
− 1

2n

n∑
i=1

[
Ll
k

(
yi,xi,Ω

l
0,γ0

) (
yi − x⊤

iS1
α∗

kS1
− x⊤

iS2
γ∗
kS2

)2]
,

(S1.13)
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where it is defined, for example, xiS2 = {xij : j ∈ S2}. And we can also

show that:

Hl
n(Ω

l′
0k,γ

′
0k | Ωl

0,γ0)−Hl
n(Ω

l∗
0k,γ

∗
0k | Ωl

0,γ0)

=
1

n

n∑
i=1

[
Ll
k

(
yi,xi,Ω

l
0,γ0

){1

2
log(σl′

k )−
1

2
log(σl∗

k )

+
σl∗
k

2

(
yi − x⊤

iS1
α∗

kS1
− x⊤

iS2
γ∗
kS2

)2 − σl′
k

2

(
yi − x⊤

iS1
α′

kS1
− x⊤

iS2
γ ′
kS2

)2}]
.

(S1.14)

Then,

Hl
n(Ω

l′
0k,γ

′
0k | Ωl

0,γ0)−Hl
n(Ω

l∗
0k,γ

∗
0k | Ωl

0,γ0)

−
〈
∇Ωl∗

0k
Hn

(
Ωl∗

0k,γ
∗
0k | Ωl

0,γ0

)
,Ωl′

0k −Ωl∗
0k

〉
−
〈
∇γ∗

0k
Hn

(
Ωl∗

0k,γ
∗
0k | Ωl

0,γ0

)
,γ ′

0k − γ∗
0k

〉
= I + II + III.

(S1.15)

By Taylor expansion, and recalling that γ0k = γkS2
, we have:

I =
1

n

n∑
i=1

[
Ll
k

(
yi,xi,Ω

l
0,γ0

){σl∗
k

2

(
yi − x⊤

iS1
α∗

kS1
− x⊤

iS2
γ∗
kS2

)2
−σl∗

k

2

(
yi − x⊤

iS1
α′

kS1
− x⊤

iS2
γ ′
kS2

)2}]− 〈∇γ∗
0k
Hn

(
Ωl∗

0k,γ
∗
0k | Ωl

0,γ0

)
,γ ′

0k − γ∗
0k

〉
−
〈
∇α∗

kS1
Hn

(
Ωl∗

0k,γ
∗
0k | Ωl

0,γ0

)
,α′

kS1
−α∗

kS1

〉
= −σl∗

k vec(α′
kS1

−α∗
kS1

,γ ′
0k − γ∗

0k)
⊤

[
1

n

n∑
i=1

Ll
k

(
yi,xi,Ω

l
0,γ0

)
x̃iSx̃

⊤
iS

]

vec(α′
kS1

−α∗
kS1

,γ ′
0k − γ∗

0k),

(S1.16)

where x̃iS is an rearrangement of xiS .
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By taking Weyl’s theorem, we can obtain that:

λmin

(
1

n

n∑
i=1

Ll
k

(
yi,xi,Ω

l
0,γ0

)
x̃iSx̃

⊤
iS

)

⩾ λmin

(
1

n
X⊤

SG
l
kXS

)
− λmax

(
1

n
X⊤

SG
l
kXS − 1

n

n∑
i=1

Ll
k

(
yi,xi,Ω

l
0,γ0

)
x̃iSx̃

⊤
iS

)
,

(S1.17)

where Ll
k

(
yi,xi,Ω

l
0,γ0

)
x̃iSx̃

⊤
iS is bounded by some matrix A. Denote M =

∥A∥2, where ∥ · ∥ is the spectral norm. According to the matrix Hoeffding’s

inequality, we have:

P

(
λmax

(
1

n
X⊤

SG
l
kXS − 1

n

n∑
i=1

Ll
k

(
yi,xi,Ω

l
0,γ0

)
x̃iSx̃

⊤
iS

)
⩽ t

)
⩾ 1−se

−nt2

8M ,

(S1.18)

where s = |S|. Let t =
√

8M
n

log(2Klsp). With probability 1 − 1
2Klp

, we

have:

λmax

(
1

n
X⊤

SG
l
kXS − 1

n

n∑
i=1

Ll
k

(
yi,xi,Ω

l
0,γ0

)
x̃iSx̃

⊤
iS

)
⩽

√
8M

n
log(2Klsp).

(S1.19)

Here, note that
√

8M
n

log(2Klsp) = o(1). Therefore, I ⩽ −C0κ1

2
(∥α′

kS1
−

α∗
kS1

∥22 + ∥γ ′
0k − γ∗

0k∥22).
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Similar to I, by Taylor expansion, we have:

II =
1

n

n∑
i=1

[
Ll
k

(
yi,xi,Ω

l
0,γ0

){1

2
log(σl′

k )−
1

2
log(σl∗

k )−
1

2σl∗
k σ

l′
k

(σl′
k − σl∗

k )

+
σl∗
k

2

(
yi − x⊤

iS1
α′

kS1
− x⊤

iS2
γ ′
kS2

)2 − σl′
k

2

(
yi − x⊤

iS1
α′

kS1
− x⊤

iS2
γ ′
kS2

)2}]
+

1

2n

n∑
i=1

[
Ll
k

(
yi,xi,Ω

l
0,γ0

) (
yi − x⊤

iS1
α′

kS1
− x⊤

iS2
γ ′
kS2

)2]
(σl′

k − σl∗
k )

= − 1

4n

n∑
i=1

Ll
k

(
yi,xi,Ω

l
0,γ0

) (σl′
k − σl∗

k )
2

(σl∗
k + t(σl′

k − σl∗
k ))

2
,

(S1.20)

where t ∈ (0, 1). So, II ⩽ − 1
4n

∑n
i=1 L

l
k

(
yi,xi,Ω

l
0,γ0

) (σl′
k−σl∗

k )2

(κ2+α)2
.

Since 0 ⩽ Ll
k

(
yi,xi,Ω

l
0,γ0

)
⩽ 1, according to Hoeffding’s inequality,

∣∣∣∣∣ 1n
n∑

i=1

[
Ll
k

(
yi,xi,Ω

l
0,γ0

)
− E

(
Ll
k

(
yi,xi,Ω

l
0,γ0

))]∣∣∣∣∣ ≤
√

1

2n
log(4K0p),

(S1.21)

with probability at least 1 − 1
2Klp

. Since
√

1
2n

log(2Klp) = o(1) and 0 ≤

E
(
Ll
k

(
yi,xi,Ω

l
0,γ0

))
≤ 1, there exists some positive constant c such that

− 1
n

∑n
i=1 L

l
k

(
yi,xi,Ω

l
0,γ0

)
≤ −c when n is large enough.



Ruiyue Wang, Sanguo Zhang and Shuangge Ma

For III, with Taylor expansion, we have:

1

n

n∑
i=1

[
Ll
k

(
yi,xi,Ω

l
0,γ0

) (
yi − x⊤

iS1
α∗

kS1
− x⊤

iS2
γ∗
kS2

)
x̃⊤
iS

]
vec(α′

kS1
−α∗

kS1
,γ ′

0k − γ∗
0k)(σ

l′
k − σl∗

k )

− vec(α′
kS1

−α∗
kS1

,γ ′
0k − γ∗

0k)
⊤

[
σl′
k − σl∗

k

2n

n∑
i=1

Ll
k

(
yi,xi,Ω

l
0,γ0

)
x̃iSx̃

⊤
iS

]

vec(α′
kS1

−α∗
kS1

,γ ′
0k − γ∗

0k),

(S1.22)

where the second term is dominated by I. Note that the first term is small

enough with the decomposition Ll
k

(
yi,xi,Ω

l
0,γ0

)
= ELl

k

(
yi,xi,Ω

l
0,γ0

)
−

(ELl
k

(
yi,xi,Ω

l
0,γ0

)
− Ll

k

(
yi,xi,Ω

l
0,γ0

)
), where the first part of the first

term can be small enough by the subgaussian tail, and the second part can

be small enough similar to (S1.21). Then, III can be negative with a large

enough n. So, we can get:

Hl
n(Ω

l′
0k,γ

′
0k | Ωl

0,γ0)−Hl
n(Ω

l∗
0k,γ

∗
0k | Ωl

0,γ0)

−
〈
∇Ωl∗

0k
Hn

(
Ωl∗

0k,γ
∗
0k | Ωl

0,γ0

)
,Ωl′

0k −Ωl∗
0k

〉
−
〈
∇γ∗

0k
Hn

(
Ωl∗

0k,γ
∗
0k | Ωl

0,γ0

)
,γ ′

0k − γ∗
0k

〉
⩽ −ϱ

2
∥Ωl′

0k −Ωl∗
0k∥22 −

ϱ

2
∥γ ′

0k − γ∗
0k∥22,

(S1.23)

with probability at least 1 − 1
Klp

, where ϱ = c1min(C0κ1,
(κ2+α)−2

2
) and c1

is a positive constant. Then, we can simply take the summation, which
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implies that:

Hl
n(Ω

l′
0 ,γ

′
0 | Ωl

0,γ0)−Hl
n(Ω

l∗
0 ,γ

∗
0 | Ωl

0,γ0)

⩽
〈
∇Ωl∗

0
Hn

(
Ωl∗

0 ,γ
∗
0 | Ωl

0,γ0

)
,Ωl′

0 −Ωl∗
0

〉
− ϱ

2
∥Ωl′

0 −Ωl∗
0 ∥22

+
〈
∇γ∗

0
Hn

(
Ωl∗

0 ,γ
∗
0 | Ωl

0,γ0

)
,γ ′

0 − γ∗
0

〉
− ϱ

2
∥γ ′

0 − γ∗
0∥22,

(S1.24)

with probability at least 1− 1
p
. The upper-level concavity can be similarly

obtained, which means that:

q(v) ⩽
〈
∇Ωu∗

0
Hn

(
Ωu∗

0 | Ωu(t−1)
0

)
,v1

〉
− ϱ

2
∥v1∥22

+
〈
∇Ωl∗

0
Hn

(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)
,v2

〉
− ϱ

2
∥v2∥22

+
〈
∇γ∗

0
Hn

(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)
,v3

〉
− ϱ

2
∥v3∥22,

− [P1 (Ω
∗
0 + v)− P1 (Ω

∗
0)] .

We focus on the first term in the second line:

〈
∇Ωl∗

0
Hn

(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)
,v2

〉
=
〈
∇Ωl∗

0
Hn

(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)
−∇Ωl∗

0
H
(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)
+∇Ωl∗

0
H
(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)
−∇Ωl∗

0
H
(
Ωl∗

0 ,γ
∗
0 | Ωl∗

0 ,γ
∗
0

)
,v2

〉
,

(S1.25)

where the equation follows from the self-consistency property of the pop-

ulation version of the objective function (McLachlan and Krishnan, 2007),

that is, Ω∗ = argmaxΩ′ H (Ω′ | Ω∗).
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Following Lemma 1, we have:

〈
∇Ωl∗

0
Hn

(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)
−∇Ωl∗

0
H
(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)
,v2

〉
⩽
∥∥∥∇Ωl∗

0
Hn

(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)
−∇Ωl∗

0
H
(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)∥∥∥
∞
∥v2∥1

⩽ ϵ2
√
Kl(s+ 1) ∥v2∥2 ,

(S1.26)

with probability at least 1 − 8K2
l +4Kl

p
, where ϵ2 = C2Kl

√
log p
n

and C2 is a

positive constant.

By Condition 3 and Lemma 2, we have:

〈
∇Ωl∗

0
H
(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)
−∇Ωl∗

0
H
(
Ωl∗

0 ,γ
∗
0 | Ωl∗

0 ,γ
∗
0

)
,v2

〉
⩽
∥∥∥∇Ωl∗

0
H
(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)
−∇Ωl∗

0
H
(
Ωl∗

0 ,γ
∗
0 | Ωl∗

0 ,γ
∗
0

)∥∥∥
2
∥v2∥2

⩽ τ
∥∥∥Ω∗

0 −Ω
(t−1)
0

∥∥∥
2
∥v2∥2 .

(S1.27)

For the penalty term, we have:

[P1 (Ω
∗
0 + v)− P1 (Ω

∗
0)]

⩽ C3

√
K3

l s log p

n
∥v1∥2 + C4

√
K3

l s log p

n
∥v2∥2 + C5Kl

√
K3

l s2 log p

n
∥v3∥2 .
(S1.28)

With Lasso, we need to set the order of λ1 as O(

√
K3

l log p

n
). Further, note

that this term can be negative with MCP and SCAD, combining with the

minimal signal condition of the true parameters.
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Then, with a properly chosen positive constant C and ϵu = C

√
K3

l s log p

n
,

C3

√
K3

l s log p

n
+ ϵ2

√
Kl(s+ 1) ⩽ ϵu. (S1.29)

By treating
〈
∇Ωu∗

0
Hn

(
Ωu∗

0 | Ωu(t−1)
0

)
,v1

〉
and

〈
∇γ∗

0
Hn

(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)
,v3

〉
similarly, there can also be ϵl = C

√
K3

l s2 log p

n
such that:

q(v) ⩽− ϱ

2
∥v1∥22 +

(
ϵu + τ

∥∥∥Ω∗
0 −Ω

(t−1)
0

∥∥∥
2

)
∥v1∥2

− ϱ

2
∥v2∥22 +

(
ϵu + τ

∥∥∥Ω∗
0 −Ω

(t−1)
0

∥∥∥
2

)
∥v2∥2

− ϱ

2
∥v3∥22 +

(
ϵl + τ

√
s2
s1

∥∥∥Ω∗
0 −Ω

(t−1)
0

∥∥∥
2

)
∥v3∥2 ,

with probability at least 1 − 18K2
l +10Kl+1

p
. The term

√
s2/s1 is based on

Condition 3 and the ratio of ∥xS2∥/∥xS1∥ by considering (S1.64).

We can see that q(v) < 0 when ∥v1∥2 > 2ϵu
ϱ

+ 2τ
ϱ

∥∥∥Ω(t−1)
0 −Ω∗

0

∥∥∥
2
,

∥v2∥2 > 2ϵu
ϱ
+ 2τ

ϱ

∥∥∥Ω(t−1)
0 −Ω∗

0

∥∥∥
2
, and ∥v3∥2 > 2ϵl

ϱ
+ 2τ

ϱ

√
s2
s1

∥∥∥Ω(t−1)
0 −Ω∗

0

∥∥∥
2
.

Note that ∥v1∥ = χ1, ∥v2∥ = χ2, ∥vγ∥ = χγ and χ1 =
4ϵ1
ϱ
+ι
∥∥∥Ω(t−1)

0 −Ω∗
0

∥∥∥
2
,

χ2 =
4ϵ2
ϱ
+ι
√

s2
s1

∥∥∥Ω(t−1)
0 −Ω∗

0

∥∥∥
2
, χγ = 4ϵγ

ϱ
+ι
∥∥∥Ω(t−1)

0 −Ω∗
0

∥∥∥
2
, 1
6
≤ ι < 1, and

τ ⩽ ϱ/12. Therefore, there is a local maximizer Ω
(t)
0 following Ω

(t−1)
0 that

satisfies: if Ω
(t−1)
0 ∈ Bα (Ω

∗
0), then

∥∥∥Ωu(t)
0 −Ωu∗

0

∥∥∥
2
⩽ χ1,

∥∥∥Ωl(t)
0 −Ωl∗

0

∥∥∥
2
⩽

χ2, and
∥∥∥γ(t)

0 − γ∗
0

∥∥∥
2
⩽ χγ with probability at least 1− 18K2

l +10Kl+1

p
.

Then, we can show that, if Ω
(0)
0 ∈ Bα (Ω

∗
0), for any t ⩾ 1,∥∥∥Ω(t)

0 −Ω∗
0

∥∥∥
2
⩽

1− ιt

1− ι

4ϵu
ϱ

+ ιt
∥∥∥Ω(0)

0 −Ω∗
0

∥∥∥
2
⩽

8ϵu
(1− ι)ϱ

+ ιt
∥∥∥Ω(0)

0 −Ω∗
0

∥∥∥
2
,

(S1.30)
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with probability at least 1 − t (18K2
l + 10Kl + 1) /p. Note that, when t ⩾

t̂ := log1/ι

(
(1−ι)ϱ

∥∥∥Ω(0)
0 −Ω∗

0

∥∥∥
2

ϵl

)
, ιt
∥∥∥Ω(0)

0 −Ω∗
0

∥∥∥
2
is dominated by 8ϵu

(1−ι)ϱ
and

8ϵl
(1−ι)ϱ

. So, the final error can be bounded as:

∥∥∥Ω̂0 −Ω∗
0

∥∥∥
2
= O

(√
K3

l s log p

n

)
, ∥γ̂0 − γ∗

0∥2 = O

(√
K3

l s2 log p

n

)
,

(S1.31)

with probability at least 1−t (18K2
l + 10Kl + 1) /p. And note that t̂ (18K2

l + 10Kl + 1) /p

goes to 0 as p and n diverge by Condition 4.

Step 2:

We show that Ω̂ =
(
Ω̂0, Ω̂Sc

)
=
(
Ω̂0, 0

)
is a local maximizer of the objec-

tive function. This indicates that

∥∥∥Ω̂−Ω∗
∥∥∥
2
= O

(√
K3

l s log p

n

)
, ∥γ̂ − γ∗∥2 = O

(√
K3

l s2 log p

n

)
,

(S1.32)

in Step 1 hold due to the conclusion drawn in this step. Following Theorem

1 in Fan and Lv (2011), it suffices to show that ∥vec(zβ, zα)∥2 ⩽ λ1 and
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∥zγ∥2 ⩽ λ2, where

∇βS1
Q(Ω̂)

∇αS1
Q(Ω̂)

∇γS2
Q(Ω̂)

∇βj
Q(Ω̂)

∇αj
Q(Ω̂)

∇γl
Q(Ω̂)



=



∇βS1
Q(Ω∗)

∇αS1
Q(Ω∗)

∇γS2
Q(Ω∗)

∇βj
Q(Ω∗)

∇αj
Q(Ω∗)

∇γl
Q(Ω∗)



+A ·



β̂S1
− β∗

S1

α̂S1 −α∗
S1

γ̂S2
− γ∗

S2

0

0

0



+



r(∆)βS1

r(∆)αS1

r(∆)γS2

r(∆)βj

r(∆)αj

r(∆)γl



=



0

0

0

zβ

zα

zγ



,

(S1.33)

and r(∆) is the residual of the first-order Taylor expansion of the gradient.

Here, A =

∇2
βS1

βS1
Q(Ω∗)

0

0

∇2
βjβS1

Q(Ω∗)

0

0

0

∇2
αS1

αS1
Q(Ω∗)

∇2
γS2

αS1
Q(Ω∗)

0

∇2
αjαS1

Q(Ω∗)

∇2
γlαS1

Q(Ω∗)

0

∇2
αS1

γS2
Q(Ω∗)

∇2
γS2

γS2
Q(Ω∗)

0

∇2
αjγS2

Q(Ω∗)

∇2
γlγS2

Q(Ω∗)

∇2
βS1

βj
Q(Ω∗)

0

0

∇2
βjβj

Q(Ω∗)

0

0

0

∇2
αS1

αj
Q(Ω∗)

∇2
γS2

αj
Q(Ω∗)

0

∇2
αjαj

Q(Ω∗)

∇2
γlαj

Q(Ω∗)

0

∇2
αS1

γl
Q(Ω∗)

∇2
γS2

γl
Q(Ω∗)

0

∇2
αjγl

Q(Ω∗)

∇2
γlγl

Q(Ω∗)



.

(S1.34)

Note that here j ∈ Sc
1 and l ∈ Sc

2 ∩ Sc
1 = Sc, αj = (α1j, α2j, · · · , αKlj, )

⊤,

and αkj is the j-th element of αk for the k-th subgroup. βj and γ l are

similarly defined.
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First consider zβ. For the k-th coordinate, we have:

(zβ)k = (∇βj
Q(Ω∗))k + (∇2

βjβS1
Q(Ω∗)(β̂S1

− β∗
S1
))k + (r(∆)βj

)k

=
σu∗
k

n

n∑
i=1

Lu
k (yi,xi,Ω

u∗)
(
yi − x⊤

iS1
β∗

kS1

)
xij

+
σu∗
k

n

n∑
i=1

Lu
k (yi,xi,Ω

u∗)x⊤
iS1

xij(β̂kS1
− β∗

kS1
) + (r(∆)βj

)k

= (ξβ1)k + (ξβ2)k + (r(∆)βj
)k, , k = 1, 2, · · · , Ku.

(S1.35)

According to Condition 1 and with bounded xij, we have:

|(ξβ1)k| ⩽κ2

∣∣∣∣∣ 1n
n∑

i=1

E(Lu
k (yi,xi,Ω

u∗))
(
yi − x⊤

iS1
β∗

kS1

)
xij

∣∣∣∣∣
+ κ2

∣∣∣∣∣ 1n
n∑

i=1

(Lu
k (yi,xi,Ω

u∗)− E(Lu
k (yi,xi,Ω

u∗))
(
yi − x⊤

iS1
β∗

kS1

)
xij

∣∣∣∣∣
⩽κ2

∣∣∣∣∣ 1n
n∑

i=1

E(Lu
k (yi,xi,Ω

u∗))
(
yi − x⊤

iS1
β∗

kS1

)∣∣∣∣∣max |xij|

+ κ2

∣∣∣∣∣ 1n
n∑

i=1

(Lu
k (yi,xi,Ω

u∗)− E(Lu
k (yi,xi,Ω

u∗))

∣∣∣∣∣max
∣∣(yi − x⊤

iS1
β∗

kS1

)
xij

∣∣ .
(S1.36)

Here, the first term can be bounded by Hoeffding inequality due to the gaus-

sian distribution of E(Ll
k (yi,xi,Ω

u∗))
(
yi − x⊤

iS1
β∗

kS1

)
. The second term can

be bounded by Hoeffding inequality similar to (S1.21). So, we can get that

there exists a positive constant cβ1, such that |(ξβ1)k| ⩽ cβ1

√
log p
n

with

probability at least 1− 1
p
, which tends to 1. Then by Condition 4, we have

∥ξβ1∥2 ⩽ cβ1

√
Ku log p

n
with probability tending to 1.
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According to (S1.33), we have:

β̂S1
− β∗

S = −
[
∇2

βS1
βS1

Q(Ω∗)
]−1 [

∇βS1
Q(Ω∗) + r(∆)βS1

]
. (S1.37)

So, we can get that:

(ξβ2)k =− σu∗
k

n

n∑
i=1

Lu
k (yi,xi,Ω

u∗)x⊤
iS1

xij

[
∇2

βkS1
βkS1

Q(Ω∗)
]−1 [

∇βkS1
Q(Ω∗) + r(∆)βkS1

]
=−

[
1

n

n∑
i=1

Lu
k (yi,xi,Ω

u∗)x⊤
iS1

xij

][
1

n

n∑
i=1

Lu
k (yi,xi,Ω

u∗)x⊤
iS1

xiS1)

]−1

[
σu∗
k

n

n∑
i=1

Lu
k (yi,xi,Ω

u∗)
(
yi − x⊤

iS1
β∗

kS1

)
xiS1 + r(∆)βkS1

]
.

(S1.38)

We bound it by:

|(ξβ2)k| ⩽

∥∥∥∥∥∥
[
1

n

n∑
i=1

Lu
k (yi,xi,Ω

u∗)x⊤
iS1

xij

][
1

n

n∑
i=1

Lu
k (yi,xi,Ω

u∗)x⊤
iS1

xiS1)

]−1
∥∥∥∥∥∥
1∥∥∥∥∥σu∗

k

n

n∑
i=1

Lu
k (yi,xi,Ω

u∗)
(
yi − x⊤

iS1
β∗

kS1

)
xiS1 + r(∆)βkS1

∥∥∥∥∥
∞

⩽

∥∥∥∥∥
[
1

n
X⊤

Sc
1
Gu

kXS1

] [
1

n
X⊤

S1
Gu

kXS1

]−1
∥∥∥∥∥
∞(∥∥∥∥∥σu∗

k

n

n∑
i=1

Lu
k (yi,xi,Ω

u∗)
(
yi − x⊤

iS1
β∗

kS1

)
xiS1

∥∥∥∥∥
∞

+
∥∥∥r(∆)βkS1

∥∥∥
∞

)
.

(S1.39)

Here, the norm
∥∥∥σu∗

k

n

∑n
i=1 L

l
k (yi,xi,Ω

u∗)
(
yi − x⊤

iS1
β∗

kS1

)
xiS1

∥∥∥
∞
can be bounded

similarly as |(ξβ1)k|. Overall, there exists a positive constant cβ2, ∥ξβ2∥2 ⩽

hun
η1(
√

Ku log p
n

+
√
Ku

∥∥∥r(∆)βS1

∥∥∥
∞
) with probability tending to 1 by ap-

plying Condition 6.
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Similarly, we get:

(zα)k = (∇αj
Q(Ω∗))k + (∇2

αjαS1
Q(Ω∗)(α̂S1 −α∗

S1
))k

+ (∇2
αjγS2

Q(Ω∗)(γ̂S2
− γ∗

S2
))k + (r(∆)αj

)k

=
σl∗
k

n

n∑
i=1

Ll
k

(
yi,xi,Ω

l∗,γ∗) (yi − x⊤
iS1

α∗
kS1

− x⊤
iS2

γ∗
kS2

)
xij

+
σl∗
k

n

n∑
i=1

Ll
k

(
yi,xi,Ω

l∗,γ∗) [x⊤
iS1

xij(α̂kS1 −α∗
kS1

) + x⊤
iS2

xij(γ̂kS2
− γ∗

kS2
)
]

+ (r(∆)αj
)k = (ξα1)k + (ξα2)k + (r(∆)αj

)k, k = 1, 2, · · · , Kl,

(S1.40)

where we can bound ξα1 as above.

Then, according to the second line of (S1.33), we have:

α̂S1 −α∗
S1

γ̂S2
− γ∗

S2

 =

∇2
αS1

αS1
Q(Ω∗)

∇2
γS2

αS1
Q(Ω∗)

∇2
αS1

γS2
Q(Ω∗)

∇2
γS2

γS2
Q(Ω∗)


−1∇αS1

Q(Ω∗) + r(∆)αS1

∇γS2
Q(Ω∗) + r(∆)γS2

 .

(S1.41)

Then, we can similarly obtain that:

|(ξα2)k| ⩽

∥∥∥∥∥
[
1

n
X⊤

Sc
1
Gl

kXS

] [
1

n
X⊤

SG
l
kXS

]−1
∥∥∥∥∥
∞(∥∥∥∥∥σl∗

k

n

n∑
i=1

Ll
k

(
yi,xi,Ω

l∗,γ∗) (yi − x⊤
iS1

α∗
kS1

− x⊤
iS2

γ∗
kS2

)
xiS

∥∥∥∥∥
∞

+
∥∥∥vec(r(∆)αkS1

, r(∆)γkS1
)
∥∥∥
∞

)
,

(S1.42)
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|(ξγ2)k| ⩽

∥∥∥∥∥
[
1

n
X⊤

ScGl
kXS

] [
1

n
X⊤

SG
l
kXS

]−1
∥∥∥∥∥
∞(∥∥∥∥∥σl∗

k

n

n∑
i=1

Ll
k

(
yi,xi,Ω

l∗,γ∗) (yi − x⊤
iS1

α∗
kS1

− x⊤
iS2

γ∗
kS2

)
xiS

∥∥∥∥∥
∞

+
∥∥∥vec(r(∆)αkS1

, r(∆)γkS1
)
∥∥∥
∞

)
.

(S1.43)

Then, by ∥vec(zβ, zα)∥2 ⩽ ∥zβ∥2 + ∥zα∥2, ∥zβ∥2 ⩽ ∥ξβ1∥2 + ∥ξβ2∥2 +∥∥∥r(∆)βj

∥∥∥
2
, and combining with Lemma 3 in Wytock and Kolter (2013),

there exists a positive constant cc such that:

∥vec(zβ, zα)∥2 ⩽cc

(√
Ku log p

n
+

∥∥∥∥∥
[
1

n
X⊤

Sc
1
Gu

kXS1

] [
1

n
X⊤

S1
Gu

kXS1

]−1
∥∥∥∥∥
∞(√

Ku log p

n
+
∥∥∥Ω̂0 −Ω∗

0

∥∥∥2
∞

)
+
∥∥∥Ω̂0 −Ω∗

0

∥∥∥2
∞

+

√
Kl log p

n
+

∥∥∥∥∥
[
1

n
X⊤

Sc
1
Gl

kXS

] [
1

n
X⊤

SG
l
kXS

]−1
∥∥∥∥∥
∞(√

Kl log p

n
+
∥∥∥Ω̂0 −Ω∗

0

∥∥∥2
∞

)
+
∥∥∥Ω̂0 −Ω∗

0

∥∥∥2
∞

)
;

(S1.44)

∥zγ∥2 ⩽cc

(√
Kl log p

n
+

∥∥∥∥∥
[
1

n
X⊤

ScGl
kXS

] [
1

n
X⊤

SG
l
kXS

]−1
∥∥∥∥∥
∞(√

Kl log p

n
+
∥∥∥Ω̂0 −Ω∗

0

∥∥∥2
∞

)
+
∥∥∥Ω̂0 −Ω∗

0

∥∥∥2
∞

)
,

(S1.45)

with probability tending to 1.

Combining Condition 6 and the results in Step 1, we can show that

∥vec(zβ, zα)∥2 ⩽ λ1 and ∥zγ∥2 ⩽ λ2 with probability tending to 1. Then,

by the minimal signal of the true parameters, Theorem 1 can be established.
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Remarks With Lasso, λ1 and λ2 need to be much large than

√
K3

l log p

n
,

which is a violation of (S1.28), leading to
∥∥∥Ω̂−Ω∗

∥∥∥
2
≫
(√

K3
l s log p

n

)
.

This re-establishes the advantages of concave penalties like MCP.

Related Lemmas

Lemma 1. Suppose that conditions (1) and (4) hold. With probability

tending to 1,∥∥∥∇Ωl∗
0
Hn

(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)
−∇Ωl∗

0
H
(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)∥∥∥
∞

= Op(Kl

√
log p

n
).

(S1.46)

Proof. Recall that:∥∥∥∇Ωl∗
0
Hn

(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)
−∇Ωl∗

0
H
(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)∥∥∥
∞

= max
1⩽k⩽Kl

∥∥∥∇α∗
kS1

Hn

(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)
−∇α∗

kS1
H
(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)∥∥∥
∞

+ max
1⩽k⩽Kl

(
∇σl∗

k
Hn

(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)
−∇σl∗

k
H
(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

))
.

(S1.47)

And we have:∥∥∥∇α∗
kS1

Hn

(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)
−∇α∗

kS1
H
(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)∥∥∥
∞

⩽ κ2

∥∥∥∥∥ 1n
n∑

i=1

Ll
k

(
yi,xi,Ω

l
0,γ0

)
yixiS1 − E

(
Ll
k

(
y,x,Ωl

0,γ0

)
yxS1

)∥∥∥∥∥
∞

+ κ2µk

∣∣∣∣∣ 1n
n∑

i=1

Ll
k

(
yi,xi,Ω

l
0,γ0

)
− E

(
Ll
k

(
y,x,Ωl

0,γ0

))∣∣∣∣∣ = κ2 ∥I1∥∞ + κ2µk |I2| ,

(S1.48)
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where µk =
∥∥(x⊤

S1
α∗

kS1
+ x⊤

S2
γ∗
kS2

)xS
∥∥
∞ which can be treated similarly to

Hao et al. (2018). And I2 can be bounded similarly to (S1.21), which implies

that I2 ≤
√

1
2n

log(2p) with probability at least 1− 1
p
. Then considering I1

by following Lemma S1 in Li et al. (2023), we have:

∥I1∥∞ ⩽ D1Kl

√
log p

n
, (S1.49)

with probability at least 1− 2Kl

p
, where D1 is a positive constant.

By applying union bound, we can obtain that:

max
1⩽k⩽Kl

∥∥∥∇α∗
kS1

Hn

(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)
−∇α∗

kS1
H
(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)∥∥∥
∞

⩽

√
1

2n
log(2p) +D1Kl

√
log p

n
⩽ D2Kl

√
log p

n
,

(S1.50)

with probability at least 1− 2K2
l +Kl

p
, where D2 is a positive constant.

Consider:(
∇σl∗

k
Hn

(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)
−∇σl∗

k
H
(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

))
⩽

1

2κ1

∣∣∣∣∣ 1n
n∑

i=1

Ll
k

(
yi,xi,Ω

l
0,γ0

)
− E

(
Ll
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(
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))∣∣∣∣∣
+

1

2

∣∣∣∣∣ 1n
n∑

i=1

[
Ll
k

(
yi,xi,Ω

l
0,γ0

) (
yi − x⊤

iS1
α∗

kS1
− x⊤

iS2
γ∗
kS2

)2]
−E

[
Ll
k

(
y,x,Ωl
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) (
y − x⊤

S1
α∗

kS1
− x⊤

S2
γ∗
kS2

)2]∣∣∣ = II1 + II2.

(S1.51)

II1 can be similarly bounded as above with probability at least 1− 1
p
. Then,

we only need to bound II2. Take x⊤
S1
α∗

kS1
− x⊤

S2
γ∗
kS2

= x̃⊤
S α̃

∗
kS , where x̃iS
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is a rearrangement of xiS , and α̃∗
kS contains the corresponding coefficients.

Then, we have:

II2 ⩽
1

2

∣∣∣∣∣ 1n
n∑

i=1

Ll
k

(
yi,xi,Ω

l
0,γ0

)
y2i − E

[
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k

(
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)
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]∣∣∣∣∣
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kS∥

∥∥∥∥∥ 1n
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)
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]∥∥∥∥∥
∞

+
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kS∥
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∥∥∥∥∥ 1n
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⊤
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x̃Sx̃

⊤
S

]∥∥∥∥∥
∞

= II21 + II22 + II23,

(S1.52)

where II22 can be bounded similarly to I1. Following Li et al. (2023), with

probability at least 1 − 4Kl

p
, II21 ⩽ D3

√
1
n
, and with probability at least

1− 1
p
, II24 ⩽ D4

√
1
n
, where D3 and D4 are positive constants.

Also, by applying union bound, we can obtain that:

max
1⩽k⩽Kl

(
∇σl∗

k
Hn

(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)
−∇σl∗

k
H
(
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0 ,γ
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0 | Ω
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(t−1)
0

))
⩽ D5Kl

√
1

n
,

(S1.53)

with probability at least 1− 6K2
l +2Kl

p
, where D5 is a positive constant.

Overall, we have:∥∥∥∇Ωl∗
0
Hn

(
Ωl∗

0 ,γ
∗
0 | Ω

l(t−1)
0 ,γ

(t−1)
0

)
−∇Ωl∗
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(
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∞
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√
log p

n
).

(S1.54)
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Lemma 2. Under Condition 3 and Condition 4, and with Ω0 ∈ Bα (Ω
∗
0),

∥∥∥∇Ωl∗
0
H
(
Ωl∗

0 ,γ
∗
0 | Ωl

0,γ0

)
−∇Ωl∗

0
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(
Ωl∗

0 ,γ
∗
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0 ,γ
∗
0

)∥∥∥
2
⩽ τ ∥Ω∗

0 −Ω0∥2 ,

(S1.55)

where τ ⩽ ϱ
12

according to Condition 3.

Proof. Consider the k-th subgroup. We have:

∥∥∥∇Ωl∗
0k
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k E
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l∗
0 ,γ

∗
0
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)
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]∥∥2
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+
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2σl∗
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E
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2
E
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(
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)2]∣∣∣∣2
2

,

(S1.56)

where F l
k

(
Ωl

0,Ω
l∗
0

)
= Ll

k

(
y,x,Ωl

0,γ0

)
− Ll

k

(
y,x,Ωl∗

0 ,γ
∗
0

)
. It is sufficient

to show that I ⩽ τ1
∥∥Ωl∗

0 −Ωl
0

∥∥
2
and II ⩽ τ2

∥∥Ωl∗
0 −Ωl

0

∥∥
2
. Here we take

πl
k = 1/Kl as a much simpler balanced setting by following Condition 4 and

Lemma 7 of Hao et al. (2018).

Then, the Taylor expansion of Ll
k

(
y,x,Ωl

0,γ0

)
at (Ωl∗

0 ,γ
∗
0) leads to:

Ll
k

(
y,x,Ωl

0,γ0

)
= Ll

k

(
y,x,Ωl∗

0 ,γ
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0
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+∇Ll

k

(
y,x,Ωlz

0 ,γ
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)
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0−Ωl∗
0 ,γ0−γ∗

0),

(S1.57)

where (Ωlz
0 ,γ

z
0) = (zΩl

0+(1−z)Ωl∗
0 , zγ0+(1−z)γ∗

0). To simplify notation,
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we use x̃S and α̃∗
kS defined in Lemma 1 and take vec(Ωl

0,γ0) = Υ. Then,

∇Ll
k (y,x,Υ) =

(
[∇Υ1L

l
k (y,x,Υ)]⊤, · · · , [∇ΥKl

Ll
k (y,x,Υ)]⊤

)⊤
,

(S1.58)

∇Υk′
Ll
k (y,x,Υ) =


−Ll

k (y,x,Υ)Ll
k′ (y,x,Υ) δΥk′

,k′ ̸= k;

Ll
k′ (y,x,Υ) [1− Ll

k′ (y,x,Υ)]δΥk
,k′ = k.

(S1.59)

Then, for k = 1, 2, · · · , Kl,

δΥk
=

 vec
(
σl
k(y − x̃⊤
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(
1
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 . (S1.60)

Next, we apply Taylor expansion to bound I:

I =
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(S1.61)

Then, by the definition of ∇Ll
k (y,x,Υ

z), we can obtain that:
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(S1.62)
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For k = 1, · · · , Kl, define:

Wk1 : = sup
z∈[0,1]

E
[
δ⊤
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(S1.63)

and W = max1⩽k⩽Kl
{Wk1,Wk2}. Then, under Condition 3, it is sufficient

to bound τ1:

τ1 ⩽ sup
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(S1.64)

For II and k = 1, 2, · · · , Kl, define:

W ′
k := sup

z∈[0,1]
E
[
δ⊤
Υz

k
δΥz

k
· σl∗

k

−2
]
; W ′′

k := sup
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E
[
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Υz

k
δΥz

k
· (y − x̃⊤

S α̃kS)
2
]

W ′ = max
1⩽k⩽Kl

W ′
k, W ′′ = max

1⩽k⩽Kl

W ′′
k .

(S1.65)

Similar to I, we can bound II under Condition 3, that is,

∥∥∥∇Ωl∗
0k
H
(
Ωl∗

0 ,γ
∗
0 | Ωl

0,γ0

)
−∇Ωl∗

0k
H
(
Ωl∗

0 ,γ
∗
0 | Ωl∗

0 ,γ
∗
0
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2
⩽

ϱ2

144Kl
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0 −Ω0∥22 .

(S1.66)

Now we take the summation, and there exists τ ⩽ ϱ
12

satisfying:
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0 ,γ
∗
0

)∥∥∥
2
⩽ τ ∥Ω∗

0 −Ω0∥2 .

(S1.67)
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S2.2 Additional Data Analysis Results
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Figure S1: Data analysis using the MG-FMR method: genes sorted in descending order

of the magnitudes of the coefficients within the subgroups. Top/bottom: three upper/five

lower levels.
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Figure S2: Top: survival curves for the three upper-level groups (p-value of the log-rank

test = 1 × 10−4). Bottom: survival curves for the five lower-level subgroups (p-value

= 4× 10−5).
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Figure S3: Top/bottom: distribution of lymph node positive ratio for the upper-level

groups/lower-level subgroups.
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S3 Extension

S3.1 Modeling Homogeneity in Effects Across Levels

With the proposed approach, there is no special attention to the alignment

of the estimated effects between the upper and lower levels. When the upper

level heterogeneity structure is determined by some strong effects and the

lower level has additional contributions from some weak effects, intuitively,

it may be sensible to expect that the estimates for the strong effects at

the upper and lower levels have certain alignment. Consider the special

case of linear regression and orthogonality between the strong and weak

effects at the lower level. Then, those estimates are strictly equal. Here, we

further explore the aspect of modeling homogeneity in the estimated effects

(at multiple levels). This has some connections with the existing literature

(Tang et al., 2021; Yang et al., 2019).

Consider the scenario with an index partition {Gm}m=1,2,··· ,Ku that de-

scribes how the lower-level subgroups have effects aligned with those of the

groups at the upper level:

k ∈ Gm, if |βu
m −αl

k| ≤ r, m = 1, 2, · · · , Ku, k = 1, 2, · · · , Kl,

(S3.68)

where r is small enough to ensure that Gm ∩ Gm′ = ∅ for m ̸= m′. Note
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that r = 0 leads to the vector-based form of the multidirectional separation

penalty (MDSP) (Tang et al., 2021). Here, we consider its addition to the

proposed approach:

Pmdsp

(
βu,αl

)
=

Kl∑
k=1

P

(
min

(
p∑

j=1

P (|βu
1j −αl

kj|),
p∑

j=1

P (|βu
2j −αl

kj|),

· · · ,
p∑

j=1

P (|βu
Kuj −αl

kj|)

))
.

(S3.69)

Here, the upper-level FMR model automatically estimates the Ku direc-

tions. This penalty shares spirits and advantages similar to the original

MDSP, which adopts Lasso penalization. It is noted that the zero direction

for sparsity is redundant here. Additionally, unlike the commonly adopted

pairwise penalization for heterogeneity analysis, we only need to identify a

“nested” hierarchy (in terms of the aligned estimated effects). As such, it

is not necessary to make pairs of parameters exactly the same for grouping.

As shown below, this can lead to relaxed assumptions.

Overall, the objective function with the additional MDSP is:

Lmdsp(Ω) = L(Ωu) + L(Ω̃
l
)− Pma

(
βu,αl,γ l

)
− Pmdsp

(
βu,αl

)
. (S3.70)

It is noted that the MDSP term, in a similar way as the original penalty, can

be extended to multiple levels. The “nesting” hierarchy between different

levels can also be adjusted with tuning parameters, and “nesting” here does



S3. EXTENSION

not pertain to individuals (but rather estimated effects).
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Figure S4: Scheme of the proposed extension. Top (D): the original proposed two-level

analysis; Bottom (E): Aligning lower-level effects with upper-level ones promotes some

subgroups to have equal effects via Multi-Directional Separation Penalty (MDSP).

S3.2 Statistical Properties

Consider oracle estimator Ω̂
o
, where the oracle MDSP term is:

P2 =
Ku∑
l=1

∑
k∈G∗

l

P

(
p∑

j=1

P (|βmj − αkj|)

)
.
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Theorem 2. Assume that the conditions in Theorem 1 hold. Additionally,

assume Condition 7 (described below) and

√
K3

l s log p

n
= O (λ3), b is much

larger than (a + 0.5) · λ3. Then, there exists an oracle estimator Ω̂
o
that

shares the same properties as that in Theorem 1, and there exists an MDSP

estimator Ω̂ that satisfies:

Pr(Ω̂ = Ω̂
o
) → 1.

This indicates:

Pr( ∩
l=1,2,··· ,Ku

{Ĝl = G∗
l }) → 1, P r( ∩

j∈D∗c
k

∩
1⩽k⩽Kl

β̂lj = α̂kj) → 1.

S3.3 Proof of Theorem 2

Additional notations and condition

Suppose that we have the partition of {1, · · · , Kl} , which represents the

subordination of the upper-level groups and lower-level subgroups. k ∈

Gm, k = 1, · · · , Kl,m = 1, · · · , Ku indicates that the l-th subgroup at the

lower level is subordinate to the k-th group at the upper level. This sub-

ordination is determined through the multidirectional separation penalty

term, that is, k ∈ Gm if and only if

m = argmin

(
p∑

j=1

P (|β1j − αkj|),
p∑

j=1

P (|β2j − αkj|), · · · ,
p∑

j=1

P (|βKuj − αkj|)

)
.

(S3.71)
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More discussions are provided below. Define Dk = {j : |β∗
mj − α∗

kj| ̸=

0, k ∈ Gm},D = {(k, j) : |β∗
mj − α∗

kj| ̸= 0, k ∈ Gm} is the nonzero set for

pairs of subordination and Dk ∈ S1, dk = |Dk|, k = 1, · · · , Kl. Then we set

v = (v⊤
1 ,v

⊤
2 ,v

⊤
γ )

⊤ corresponding to Ωo
0 = (Ωou⊤

0 ,Ωol⊤
0 ,γo⊤

0 )⊤, where Ωou
0 =(

Ωou⊤
01 , · · · ,Ωou⊤

0Ku

)⊤
, Ωou

0k = vec
(
βo

kS1
, σou

k

)
with βo

kS1
= {βo

kj : j ∈ S1}

contains the nonzero parameters in the coefficients, γo
0 is defined similarly.

Ωol
0 =

(
Ωol⊤

01 , · · · ,Ωol⊤
0Kl

)⊤
, Ωol

0k = vec
(
αo

kDk
, σou

k

)
, and the true parameters

can be similarly defined by Ωo∗
0 .

The following condition is additionally assumed.

Condition 7.

∥∥∥∥∥
[
1

n
X⊤

S1\Dk
Gl

kXS

] [
1

n
X⊤

SG
l
kXS + J

]−1
∥∥∥∥∥
∞

⩽ O(ho), (S3.72)

where ho ⩽ min(
√

n
sK3

l log p
,
√

K2
l s) and J ∈ Rs×s is semi-positive-definite

and defined as:

J =

 1
n
X⊤

S1\Dk
Gu

kXS1\Dk
0

0 0

 .

This is an adjusted irrepresentable condition and postulates that the

variables corresponding to the same coefficients at both the lower and upper

levels (subordinate) should be more independent.
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Step 1:

We first consider an oracle estimator based on the true subgroup subordi-

nate and all the important variables. This step is similar to Step 1 in the

previous proof, while we set the MDSP term P2 as:

P2 =
Ku∑
m=1

∑
k∈Gm

P

(
p∑

j=1

P (|βmj − αkj|)

)
, (S3.73)

where P (·) can be a Lasso penalty like Tang et al. (2021) with parameter λ3

as well as an MCP or SCAD penalty like the composite penalties in Huang

et al. (2012) with more parameters.

We continue to use the definition of v and adapt it to the new variables.

With the previous strategies, we can show that:

q(v) ⩽
〈
∇Ωou∗

0
Hn

(
Ωou∗

0 ,Ωol∗
0 ,γo∗

0 | Ωu
0 ,Ω

ol(t−1)
0 ,γ

o(t−1)
0

)
,v1

〉
− ϱ

2
∥v1∥22

+
〈
∇Ωol∗

0
Hn

(
Ωou∗

0 ,Ωol∗
0 ,γo∗

0 | Ωou(t−1)
0 ,Ω

ol(t−1)
0 ,γ

o(t−1)
0

)
,v2

〉
− ϱ

2
∥v2∥22

+
〈
∇γo∗

0
Hn

(
Ωou∗

0 ,Ωol∗
0 ,γo∗

0 | Ωou(t−1)
0 ,Ω

ol(t−1)
0 ,γ

o(t−1)
0

)
,v3

〉
− ϱ

2
∥v3∥22,

− [P1 (Ω
o∗
0 + v)− P1 (Ω

o∗
0 )]− [P2 (Ω

o∗
0 + v)− P2 (Ω

o∗
0 )] ,

(S3.74)
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where considering k = 1, · · · , Kl individually, and k ∈ Gm:

∇αo∗
kS1

Hn

(
Ωou∗

0 ,Ωol∗
0 ,γo∗

0 | Ωou
0 ,Ωol

0 ,γ
o
0

)
=

σl∗
k

n

n∑
i=1

[
Ll
k

(
yi,xi,Ω

ou
0 ,Ωol

0 ,γ
o
0

) (
yi − x⊤

iS1\Dk
β∗

mS1\Dk
− x⊤

iDk
α∗

kDk
− x⊤

iS2
γ∗
kS2

)
xiS1

]
∇γ∗

kS2
Hn

(
Ωou∗

0 ,Ωol∗
0 ,γo∗

0 | Ωou
0 ,Ωol

0 ,γ
o
0

)
=

σl∗
k

n

n∑
i=1

[
Ll
k

(
yi,xi,Ω

ou
0 ,Ωol

0 ,γ
o
0

) (
yi − x⊤

iS1\Dk
β∗

mS1\Dk
− x⊤

iDk
α∗

kDk
− x⊤

iS2
γ∗
kS2

)
xiS2

]
∇σl∗

k
Hn

(
Ωou∗

0 ,Ωol∗
0 ,γo∗

0 | Ωou
0 ,Ωol

0 ,γ
o
0

)
=

1

2nσl∗
k

n∑
i=1

[
Ll
k

(
yi,xi,Ω

ou
0 ,Ωol

0 ,γ
o
0

)]
− 1

2n

n∑
i=1

[
Ll
k

(
yi,xi,Ω

ou
0 ,Ωol

0 ,γ
o
0

) (
yi − x⊤

iS1\Dk
β∗

mS1\Dk
− x⊤

iDk
α∗

kDk
− x⊤

iS2
γ∗
kS2

)2]
,

(S3.75)

and for m = 1, · · · , Kl, j ∈ S1 we have:

∇βo∗
mj
Hn

(
Ωou∗

0 ,Ωol∗
0 ,γo∗

0 | Ωou
0 ,Ωol

0 ,γ
o
0

)
=

σu∗
k

n

n∑
i=1

[
Ll
k (yi,xi,Ω

ou
0 )
(
yi − x⊤

iS1
β∗

mS1

)
xij

]
+

Ku∑
k=1

I (k ∈ Gm, j ∈ S1\Dk)
σl∗
k

n

n∑
i=1

[
Ll
k

(
yi,xi,Ω

ou
0 ,Ωol

0 ,γ
o
0

)
(
yi − x⊤

iS1\Dk
β∗

mS1\Dk
− x⊤

iDk
α∗

kDk
− x⊤

iS2
γ∗
kS2

)
xij

]
∇σou∗

k
Hn

(
Ωou∗

0 ,Ωol∗
0 ,γo∗

0 | Ωou
0 ,Ωol

0 ,γ
o
0

)
=

1

2nσl∗
k

n∑
i=1

[
Ll
k (yi,xi,Ω

ou
0 )
]
− 1

2n

n∑
i=1

[
Ll
k (yi,xi,Ω

ou
0 )
(
yi − x⊤

iS1
β∗

mS1

)2]
,

(S3.76)

where we can get (S3.74) with a similar strategy as in S1.2. Also, [P1 (Ω
o∗
0 + v)− P1 (Ω

o∗
0 )]

has the same conclusion as in (S1.28). The minor differences come from the
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fact that we replace αkS1\Dk
by βmS1\Dk

if k ∈ Gm, and so we can get very

similar conclusions via this oracle version.

This oracle version of the penalty and triangle inequality implies that:

[P2 (Ω
o∗
0 + v)− P2 (Ω

o∗
0 )] ⩽ C1

√
K3

l s log p

n
∥v1∥2 + C2

√
K3

l s log p

n
∥v2∥2 ,

(S3.77)

where C1 and C2 are positive constants. Note that, with Lasso, λ3 needs

to have the order of O(

√
K3

l s log p

n
). Further, this term can be negative with

MCP and SCAD by combining with the minimal signal conditions. Then,

with the two lemmas and the same steps as above, we can show that the

oracle estimator error can be bounded as:∥∥∥Ω̂o

0 −Ω∗
0

∥∥∥
2
= O

(√
K3

l s log p

n

)
, ∥γ̂o

0 − γ∗
0∥2 = O

(√
K3

l s2 log p

n

)
,

(S3.78)

with probability tending to 1. Here we replace α̂kS1\Dk
by β̂mS1\Dk

if k ∈ Gm

in Ω̂
o

0.

Step 2:

We show that Ω̂o =
(
Ω̂

o

0, 0
)
is a local maximizer of the objective function.

This indicates that:∥∥∥Ω̂o
−Ω∗

∥∥∥
2
= O

(√
K3

l s log p

n

)
, ∥γ̂ − γ∗∥2 = O

(√
K3

l s2 log p

n

)
,

(S3.79)



S3. EXTENSION

in Step 1 holds due to the conclusion drawn in this step. Following Step 2

in Theorem 1, we can select γ and β in the same way. Here we define

αkS1\Dk
+ κkS1\Dk

= βmS1\Dk
, k ∈ Gm, k = 1, · · · , Kl,m = 1, · · · , Ku,

(S3.80)

where κkS1\Dk
is the new variable and κ∗

kS1\Dk
= 0. So it suffices to

show that ∥zo∥∞ ⩽ λ3, where zo = {zok}k=1,··· ,Kl
is a vector and zok =

∇κkS1\Dk
Q(Ω̂

o
). For each k = 1, · · · , Kl and k ∈ Gm, it can be obtained

that:



∇βmDk
Q(Ω̂

o
)

∇βmS1\Dk
Q(Ω̂

o
)

∇αkDk
Q(Ω̂

o
)

∇γkS2
Q(Ω̂

o
)

∇κkS1\Dk
Q(Ω̂

o
)


=



∇βmDk
Q(Ω∗)

∇βmS1\Dk
Q(Ω∗)

∇αkDk
Q(Ω∗)

∇γkS2
Q(Ω∗)

∇κS1\Dk
Q(Ω∗)


+ B ·



β̂
o

mS1Dk
− β∗

S1Dk

β̂
o

mS1\Dk
− β∗

mS1\Dk

α̂o
kDk

−α∗
kDk

γ̂o
kS2

− γ∗
kS2

0


+



r(∆)βmDk

r(∆)βmS1\Dk

r(∆)αkDk

r(∆)γkS2

r(∆)κkS1\Dk


=



0

0

0

0

zok


,

(S3.81)

where r(∆) is the residual of the first-order Taylor expansion of the gra-

dient. And A =



∇2
βmDk

βmDk
Q(Ω∗)

∇2
βmS1\Dk

βmDk
Q(Ω∗)

0

0

0

∇2
βmDk

βmS1\Dk
Q(Ω∗)

∇2
βmS1\Dk

βmS1\Dk
Q(Ω∗)

∇2
αkDk

βmS1\Dk
Q(Ω∗)

∇2
γkS2

βmS1\Dk
Q(Ω∗)

∇2
κkS1\Dk

βmS1\Dk
Q(Ω∗)

0

∇2
βmS1\Dk

αkDk
Q(Ω∗)

∇2
αkDk

αkDk
Q(Ω∗)

∇2
γkS2

αkDk
Q(Ω∗)

∇2
κkS1\Dk

αkDk
Q(Ω∗)

0

∇2
βmS1\Dk

γkS2
Q(Ω∗)

∇2
αkDk

γkS2
Q(Ω∗)

∇2
γkS2

γkS2
Q(Ω∗)

∇2
κkS1\Dk

γkS2
Q(Ω∗)

0

∇2
βmS1\Dk

κkS1\Dk
Q(Ω∗)

∇2
αkDk

κkS1\Dk
Q(Ω∗)

∇2
γkS2

κkS1\Dk
Q(Ω∗)

∇2
κkS1\Dk

κkS1\Dk
Q(Ω∗)


.

(S3.82)
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Then, we have

zok = ∇κkS1\Dk
Q(Ω∗) + r(∆)κkS1\Dk

+∇2
κkS1\Dk

βmS1\Dk
Q(Ω∗)(β̂

o

mS1\Dk
− β∗

mS1\Dk
) +∇2

κkS1\Dk
αkS1\Dk

Q(Ω∗)(α̂o
kS1\Dk

−α∗
kS1\Dk

)

+∇2
κkS1\Dk

γkS2
Q(Ω∗)(γ̂o

kS2
− γ∗

kS2
)

=
σl∗
k

n

n∑
i=1

Ll∗
k

(
yi − x⊤

iS1\Dk
β∗

mS1\Dk
− x⊤

iDk
α∗

kDk
− x⊤

iS2
γ∗
kS2

)
xiS1\Dk

+ r(∆)κkS1\Dk

+
σl∗
k

n

n∑
i=1

Ll∗
k

[
x⊤
iS1\Dk

(β̂
o

mS1\Dk
− β∗

mS1\Dk
) + x⊤

iDk
(α̂o

kDk
−α∗

kDk
) + x⊤

iS2
(γ̂o

kS2
− γ∗

kS2
)
]
xiS1\Dk

= ξok1 + r(∆)κkS1\Dk
+ ξok2, , k = 1, 2, · · · , Kl.

(S3.83)

According to (S1.36), we can use the same inequality to show that

∥ξok1∥∞ = O(
√

Kl log p
n

) with probability at least 1− 1
p
, which tends to 1.

For ξok2, we have:
β̂

o

mS1\Dk
− β∗

mS1\Dk

α̂o
kDk

−α∗
kDk

γ̂o
kS2

− γ∗
kS2

 = −C ·


∇βmS1\Dk

Q(Ω∗)

∇αkDk
Q(Ω∗)

∇γkS2
Q(Ω∗)

+ r(∆)βmS1\Dk

+ r(∆)αkDk

+ r(∆)γkS2

 ,

(S3.84)

where C =
∇2

βmS1\Dk
βmS1\Dk

Q(Ω∗)

∇2
αkDk

βmS1\Dk
Q(Ω∗)

∇2
γkS2

βmS1\Dk
Q(Ω∗)

∇2
βmS1\Dk

αkDk
Q(Ω∗)

∇2
αkDk

αkDk
Q(Ω∗)

∇2
γkS2

αkDk
Q(Ω∗)

∇2
βmS1\Dk

γkS2
Q(Ω∗)

∇2
αkDk

γkS2
Q(Ω∗)

∇2
γkS2

γkS2
Q(Ω∗)



−1

.

(S3.85)
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Then we bound ∥ξok2∥∞ by Condition 7,

∥ξok2∥∞ ⩽

∥∥∥∥∥
[
1

n
X⊤

S1\Dk
Gl

kXS

] [
1

n
X⊤

SG
l
kXS + J

]−1
∥∥∥∥∥
∞(∥∥∥∥∥σl∗

k

n

n∑
i=1

Ll∗
k

(
yi − x⊤

iS1\Dk
β∗

mS1\Dk
− x⊤

iDk
α∗

kDk
− x⊤

iS2
γ∗
kS2

)
xiS

∥∥∥∥∥
∞

+
∥∥∥vec(r(∆)βmS1\Dk

, r(∆)αkDk
, r(∆)γkS2

)
∥∥∥
∞

)
,

(S3.86)

where the second line can be bounded as above, and the third line is

O(
K3

l s log p

n
). Then we have:

∥ξok2∥∞ ⩽ co

√
K3

l s log p

n
, (S3.87)

with probability tending to 1, where co is a positive constant.

Overall, we can get ∥zo∥∞ ⩽ λ3. Thus, by combining with the minimal

signal condition of the true parameters, we have:

∥∥∥Ω̂o
−Ω∗

∥∥∥
2
= O

(√
K3

l s log p

n

)
, ∥γ̂ − γ∗∥2 = O

(√
K3

l s2 log p

n

)
,

(S3.88)

with probability tending to 1.

Step 3:

We show that, for k = 1, · · · , Kl,m = 1, · · · , Ku given α̂k ∈ B(α∗
k, caτ)

and β̂m ∈ B(β∗
m, cbτ), where τ = O

(√
K3

l s2 log p

n

)
and ca, cb are positive



Ruiyue Wang, Sanguo Zhang and Shuangge Ma

constants, we have:

sup
α̂k∈B(α∗

k),β̂m∈B(β∗
m)

∥∥∥β̂m − α̂k

∥∥∥ ⩽ sup
β̂m∈B(β∗

m)

∥∥∥β∗
m − β̂m

∥∥∥
+ sup

α̂k∈B(α∗
k)

∥α∗
k − α̂k∥+ ∥β∗

m −α∗
k∥

⩽ (ca + cb)τ + ∥β∗
m −α∗

k∥ ,

(S3.89)

and

inf
α̂k∈B(α∗

k),β̂m′∈B(β∗
m′ )

∥∥∥β̂m′ − α̂k

∥∥∥ ⩾ ∥β∗
m′ −α∗

k∥

−

(
sup

β̂m′∈B(β∗
m′ )

∥∥∥β∗
m′ − β̂m

∥∥∥+ sup
α̂k∈B(α∗

k)

∥α∗
k − α̂k∥

)

⩾ ∥β∗
m −α∗

k∥ − (ca + cb)τ.

(S3.90)

While k ∈ Gm and m ̸= m′, it follows that:

Pr

(
sup

α̂k∈B(α∗
k),β̂m∈B(β∗

m)

∥∥∥β̂m − α̂k

∥∥∥ ⩽ inf
α̂k∈B(α∗

k),β̂m′∈B(β∗
m′ )

∥∥∥β̂m′ − α̂k

∥∥∥)→ 1.

(S3.91)

Recall

P2 =
Ku∑
m=1

∑
k∈Gm

P

(
p∑

j=1

P (|βmj − αkj|)

)
. (S3.92)

Following Tang et al. (2021), when p goes to the L1 norm function, we

have L̃mdsp = Lma + P2. We have L̃mdsp = Lmdsp at α̂k ∈ B(α∗
k, caτ) and

β̂m ∈ B(β∗
m, cbτ), and thus argmin L̃mdsp = argminLmdsp.

There are minor differences for different penalties. For example, fol-

lowing Breheny and Huang (2009), the composite MCP can select im-
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portant groups of variables and important variables within these variable

groups with highly desirable properties. Additionally, following Huang et al.

(2012), the internal and external penalties can differ.
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