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S1 Proofs

S1.1 Conditions

Condition 1. For some positive constants x; and ky, 0 < k1 < 03 < Ko
for k=1,2,--- K, and 0 < k1 < of* < Ky for k = 1,2,--- | K;. Further,

187 = maxi=r, ., 1Bl o]l = maxi=r x @ll and |7l =

.....

Similar conditions have been commonly assumed in heterogeneity anal-

ysis and high-dimensional regression analysis.

Condition 2. Design matrix X € R"*? has bounded elements. Let X s be
the sub-matrix of X with the support of nonzero coefficient set S, and X gc

is the corresponding complement. Define E (L, (y; 2, Q)) = [ Ly (y; 2, Q) f (y; 2, Q) dy,
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and Gy, = diag (E (L (y; &, €2))) is a nxn diagonal matrix with E (Ly, (y;; ®;, 2))’s
as its elements, where Q € {Q | |Q — Q*||2 < a}. G} and G, are defined

depending on Q" and {Q',~}. For a positive constant Cy and any k,
Amin (XSG X s/n) > Co, Amin (X5, G X s, /) > C.

This condition controls the correlations between the variables and has
multiple counterparts in literature. If the underlying heterogeneity struc-
ture were known, this condition would simplify to Condition 4 of Fan and
Lv (2011). These matrices can be viewed as the weighted covariance matri-
ces across the subgroups. This condition ensures that the design matrices

are not too ill-conditioned and facilitate the EM iterations.

Condition 3. The K; subgroups are sufficiently separable such that, for
any €2 in a ap-neighborhood of Q*(Q2 € B,, (2%) :== {2 : |2 — QF||, < ao}),
and each pair {(k, k"), 1 < k # k' < Ky},

0
24 (K; — 1) /Ky max {W, W, W"}’

pr(ye Ay | Q) -pr(y € Ay | Q) <

where A;, is the [;-th subgroup, ¢ = ¢ - min {COH1,0.5 (Ko + 040)_2} for a
constant ¢, and the definitions of W, W’ W" are as in Lemma 2. Addition-
ally, the K, groups satisfy similar conditions, for which, we also refer to

Condition C6 of Li et al. (2023).

This sufficiently separable condition is common in the heterogeneity
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analysis literature. It is noted that as K; grows, the problem gets more
challenging, and a stronger condition is needed. Relevant discussions can

be found in Hao et al. (2018) and others.

Condition 4. min,_; g, 7p = O (maxe_y x, 7)) , Kf = o(p(logn)™t).

Also, ming—; g, m* = O (max—1, g, ™), K2 = o(p(logn)™).

This condition assumes that the subgroups (groups) are not too im-
balanced. Furthermore, the number of subgroups (groups) is allowed to
grow with sample size n and dimension p, at a rate slower than p(logn)~'.
Intuitively, a larger n allows more subgroups (groups), but it needs to be
indirectly limited by p. It can also be fixed, which leads to the optimal rate

discussed in the main article and is comparable to those in the literature.

Condition 5. p(t) = A !p(t, \) is concave in t € [0, 00) with a continuous

derivative p'(t) satisfying p(0+) = 1, and p’(0+) is independent of .

This condition is satisfied by Lasso, SCAD, MCP, and others. For some
penalties, there exists a constant 0 < a < oo such that p(t) is constant for

all t > a.

Condition 6.

1 1 -
[—X;G;XS] [-X}G;XS]
n n

l

[EngGkX&} |:EX; GkX31:|

o (S1.1)




Ruiyue Wang, Sanguo Zhang and Shuangge Ma

where h1 < mln( /S2I?l4+20gp’ \/ Kl282) and hg < min(1 /sl(ﬁ+ogp’ \/ KgS),

where h < min( | s7iogp V EK?s).

1 1 -
xGGx| [Lxlaxs] | <om,

o0

This is the irrepresentable condition and regulates the correlations be-
tween the important and unimportant variables within each subgroup. This
is a common assumption in the high-dimensional regression literature. Anal-
ogous to Condition C3 in Li et al. (2023), we adopt a sample-weighted ver-
sion for both levels. Furthermore, we restrict the correlations between the
heterogeneous and homogeneous variables, ensuring that the heterogeneous

and homogeneous parts can be effectively identified.

S1.2 Proof of Theorem 1

u u u u T u u
Denote @ = (2“7, Q"7 41T, Q“ = (Q}",--- Q) |, Q) = vec (By, 0}) =
T
(ﬁklvﬁk?u U 7/8];;70-]’?)7 Ql = (Qll—ru T 7Ql[—(rl) ) where Qﬁc = vec (akuaio =
(ar1, ana, -+ g, 0h) and v = {¥], 73, - .7k} . Accordingly, Q" =

(T, Q" 4*T)T. Consider the objective function:
1 n K
O u ! __ 1 u . i,Qu
ot - 31 (3ot . )|

n K,
1
—i—ﬁ Zlog (Z T fu (yi; T, Qécv’Yk)) — Py (£2),
i=1 k=1

(S1.2)
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where % = (W%, T, ... ,WQ,L(H)T and 7! = (7rl1, ... ,7TZKZ)T, and the penalty
p Ku Kl Kl
Pu@) =D P {42 () + D _(ady)* +Z P 200
j=1 k=1 k=1 k=1

Denote w" = (wij),y g, and W' = (Wii), . g, If w* and w' were avail-
able, the penalized log-likelihood function for the complete data could be

written as:

Q[ X, w) Zzwzk [log m; + log fi. (vi; @i, )]
i=1 k=1
n K

+— ZZwm log 7, +1og fi (yi; @i, L, 7,,)] — Pi(K2).
=1 k=1
(S1.4)

Here, w!, is a latent Bernoulli variable with expectation E (w), | y, x, Q' v) =

P (wik =1y, =, Ql,'y) . Note that it can be computed as L}, (:vi, Ql,'y) =

ot fr (yi;wnﬂin’k)
2221 7T]lefk (Zﬁ;miynkﬂ’k)

. wjj, can be defined accordingly. In the ¢-th step of the

EM algorithm, the conditional expectation is computed as:

Exa0-0 [Q(Q] X, w)] =H, (2] Q) - P (), (S1.5)

where

Ho(Q ] QD) = 12 QY | QUED) L 1L (QF 4 | QY 4E1) - (S1.6)
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n Ky

HE(Q" | QD) ZZw QD) [log 7t + log fr (yi; &4, Q)]
=1 k=1

n

HL(QI,,Y | Ql(t_l), (t— 1 ZZW Qlt l) )

zlk’l

[logﬁ,{C + log f (yi; Li, ng’?’k)} ’
(S1.7)

and here W), (Q~Y ~#=1) can be computed as L, (yi, x;, QD »y(t*l)) —
l(tfl)f (y ;miyﬂz(tfl)n/’(:—l)

K I(t—1 I(t—1 t—1 )
P k( )fk(yz‘;mz‘ﬂk( ),’)’;(C )>

obtained in the previous iteration. w(Q““~Y) can be similarly defined.

which depends on Wi(tfl), Q=1 and Y

Note that the update of these weights is independent of the updates of
the other parameters. To establish Theorem 1, a corresponding population

version of H,, needs to be defined as:

MK,

1 | Q) =B | wi(07) log my + log fi (ys; i, Q)] |

Lk=1

K

D i (0 4
Lk=1

[log 7}, + log fi. (yi; @, ng'Yk)H :

Il
&=

H(Qy [ Q7Y 417

(S1.8)
Define the function evaluating the error between the iterative estimator

2 and true parameter 2" as:
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q(v) =Hu (" +v | QUY) =1, (@ | Q) — [Py (" +v) = PL(Q)]
= [ + o | QO) — g | @)
+ [HL(QZ* + U2,y vy | QT A — gl (QF 47 | QI 4 0D)
— [P (2 +v) =Py ()]
Note that we set v = (v],v;,v])" corresponding to £y = Qe QT AT,
where O = (47, Q) Q. = vee By, of) with By, = (B :
j € S} containing the important parameters. QY, v, and Q7 are defined

similarly.

Step 1:

To prove estimation consistency, we first show that, if the estimate obtained
in the (¢ — 1)-th iteration of the EM algorithm Qét_l) € B, (€2;), where
a=0 (Kl‘g’sm/logp/n>, then there is a conditional local maximizer €2y in

{96 196 — 5", < xa), {9 |9 — Q5

, <xa}and {0« [[vo — Yilla < x4}

2 -9

where X1 = 4% + 27 X2 = 4% + LHQg_I)_QS 2’ Xy =

de [so ~ o /K?slogp o Kfszlogp
T—l-b 5 2,61_62—0( T)7€W_O( T>

and 1/3 < ¢ < 1 is a positive constant. It is noted that a > ¢, so the

ol - ;

selection of « is reasonable. It suffices to show that:

lim P ( sup q(v) < 0)) =1. (S1.9)

oo lo1ll=x1[lvzll=x2,/lvy =Xy
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Next, we establish an upper bound for g(v) over the set C(x) :=
{v:||v1]] = x1, |lv2ll = x2, [|[v4 ]| = x4} Note that for a sufficiently large
n, we can obtain that i, x2, Xy < a.

We introduce the strong concavity mentioned in Balakrishnan et al.
(2017). First consider the lower level. For any Q) € B, (Q5), v, € Ba(75),
with probability at least 1 — 1/p and a sufficiently large n, each Qé’ €
{0 11120 — 2ll2 < a} and v € {7 | 175 — ¥5ll2 < o} satisfies:

H (20,70 | 0, 70) — Ho (20,75 | 20, %0)
< (Vay Mo (O, 75 | Qo) . O — ) — 2105 — 9f 3 (81.10)

+ (Ve Ho (28,75 | 2%,70) Y0 — 7o) — gll% — 751l

where p is a positive constant. Then we consider k£ = 1, - - - | K; individually:

va};SlHn (Qg;ca'ygk ’ Qg)a’YO)

Ix M
_ % Z [Li: (yi,a:i, Qf),'yo) (yi — :ciTSlaZSl — 5’71527252) gcisl]
i=1

n
(S1.11)
V'YZSQ Hn (Qé’%ﬂ’ék | Qéa’)’o)
Ix M
— 071: Z [Lﬁ€ (yi,wi, Qé,’yo) (yi — wz’TSIO‘Z& — wZSQ’yzSQ) wiSQ]
- (S1.12)

n

Z |:L§<: (yi,wz‘,Qéa’Yo)]

e = (S1.13)
o 0 [ (i ) (i — w5 0, — i)
=1

£ *
VU?%TL (QOk770k | Qé,’)/[)) - To'lk*
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where it is defined, for example, x;s, = {x;; : 7 € S2}. And we can also

show that:
H;(ngﬁ’{)k | Qéﬂ’o) - H£1<Qg;c773k | 967’70)

i=1

O.Z* 9 O.l/ 9
k T * T * k T / T /
+ 5 (yz — L5, s, — mz‘sﬂk&) Y (yi — L5, s, — misﬂksg)

(S1.14)

Then,

H;(ngﬁ’{)k | Qéﬂ’o) - ’Hiz(ﬂg;cﬂ’gk | 967’70)
- <Vng*,€7{n (Q&»’YSIQ | Qéa')’o) Qg — Qé’%>

— (Vs o (00 Yok | Q05%0) »Yor — Yor) =L+ 1T + 111
(S1.15)

By Taylor expansion, and recalling that vy, = v;s,, we have:

n I

1
I - Z Lz (y7,7 i, Qé’ 70) U_k (yZ - mISH al:31 - w;27232)2
n =1 2
I
_0-216 (yl - mZS‘la;csl - w2527;682>2}:| - <v78an (982'7 ’ng’ ‘ QlO? ’YO) ?76]9 - 73k‘>

- <v0‘281 Hn (Qg;w’YSk: | QEM’YO) 7a;cSl - a281>

1 n

_ % / * ! * \T l l ~ ~T

= =0 VeC(“k& — Qs Yok — Yor) [E E L, (?Jz’» x;, 907’70) LisT;s
i=1

vec(a;&gl - al:sp’)’()k — Yor)s
(S1.16)

where ;s is an rearrangement of x;s.
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By taking Weyl’s theorem, we can obtain that:

1 « .
Amin (ﬁ ; L, (yi, i, 25, 7,) iBzS%TS)

1
n

n

1 1 < IO
- Amax ( XEGQXS - E X;Lgc (yi)wia Qf)a’yﬂ) m’LSwIS‘) )

where L} (yi, xT;, Qf), 70) @553;; is bounded by some matrix A. Denote M =
| A||?, where || - || is the spectral norm. According to the matrix Hoeffding’s

inequality, we have:

1 1 « 2
P )\max _XTGIX - — Ll i mi,ﬂl, iz %T <t| >1-— 8M
( (n sbpAs n; k;(?h 0 '70) STis | S z 1=s¢

(S1.18)

where s = |S|. Let t = \/% log(2K;sp). With probability 1 — -+, we

2K;p’

have:

1 1 & o 8M
Amax (EXEGLXS - Zl L (yi, i, 2,7, wgm}) < \/ —— log(2Kisp).

(S1.19)

Here, note that \/% log(2K;sp) = o(1). Therefore, I < —<21 (||}, —

s, 113+ 1vor = Yoell3)-
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Similar to I, by Taylor expansion, we have:

1 l l 1 l 1 I* 1 l 3
== > |:Lk (vi» i, R, o) {5 log(a};) — 5 log(oy) — W(UIJ —oy)

I l

g 2 O )
+ 2k (?Jz - iBiTslaggsl - :c;fgnz&) - 7’“ (yl- — a:;‘rglazsl — m;27;€82) H
1 , *

+ o Z |:L§c (yiawia Qéa’?’o) (yi - wzgla;gsl — wl?{?’;gsz) ] (0’2_/ — Ui: )
i=1

1 n (O.l/ . O.l*)2
= T L 1y L 97 u u )
4dn ; k (y Lj, g, 70) (0_2* + t(O’;{l - 0_;:))2

(S1.20)

U 1x)2

where t € (0,1). So, IT < —2& 57" | L (yi, i, 2, 7o) (?:ﬁac’;y :

Since 0 < L (yi, x;, Qé, 70) < 1, according to Hoeffding’s inequality,

n

1
< 1/ 7= log(4Kop),

[Lgc (yla T, 987’70) —-E (Léc (yw Ly, QéaWO))} m

i=1

S|

(S1.21)
with probability at least 1 — %m' Since 4/ 5= log(2K;p) = o(1) and 0 <

E (L. (y;, x;, O, < 1, there exists some positive constant ¢ such that
kY 0 Yo

_% Z?zl Lfrg (yi7 T, Qé, ’7’0) < —c when n is large enough.
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For 111, with Taylor expansion, we have:

1 < _
ﬁ Z |:L§€ (y’bv i, Qf)’ 70) (yl - az;:slaz‘S‘l - m';;27282) w;rSi|
=1

/ * / * 7 Ix
Vec(aksl — Qs Yok — Yor) (o) — ay)
l x M
' * / «\T |9k — O l l ~ ~T
— vec(Qys, — s, Yok — Yor) T on E Ly, (yi, x;, ’70) miSwiS]
i=1

Vec(a;ﬁgl - O‘Zsl ) ’)’6k — Yor)s
(S1.22)

where the second term is dominated by I. Note that the first term is small
enough with the decomposition L} (yi, x;, Qé, 70) =EL! (yl-, x;, Qé,’yo) —
(ELL (s, i, %, 7o) — Lk (i i, 2%, 7,) ), Where the first part of the first
term can be small enough by the subgaussian tail, and the second part can
be small enough similar to (S1.21). Then, /11 can be negative with a large

enough n. So, we can get:

Hiz(”é/kap)/:)k | Qéf)’o) - HL(nga’YGk | Qéa’Yo)

- <Vng;€7'[n (96277& | Qf)a’)’o) »Qlo/k - Qéﬁ;>

(S1.23)
- <V78an (9827’7’& | Qéa’)’o) ,’Yf)k - ’73k>
Y * 0 *
< _EHQ& - Qék”% - 5”7616 - 'YOk”g,
with probability at least 1 — K%p, where ¢ = ¢; min(Cyky, (”2?)72) and ¢;

is a positive constant. Then, we can simply take the summation, which
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implies that:

H,,(20, %0 | 20,70) — Ha(267 75 | 26, 70)
< (Vg Ha (9,75 | 06, 70) .06 - 08 ) - 20k - Qf 3 (S124)
(Vo (275 1 260 70) %0 = 6) = Sl = il

with probability at least 1 — 217. The upper-level concavity can be similarly

obtained, which means that:

Uk u(t— Q
a(v) < (Vapta (%" 1 24) 01) = Lol
* * - - Q
(Vo (2075 1 0407 ) o) = L
x % I(t— - 0
(Vo (27 1 QU0 A) o) = Do

—[PL (2 +v) =P ()]

We focus on the first term in the second line:

(Voo (9675 1 24 247" )
= <V96*Hn (96*7 N | QD). 'y((f_”) ~ VM <Qf)*,~y;§ QY. 7g—1))

Vo (270 | A0 = Vg (96,7 | Q6 5) v
(S1.25)

where the equation follows from the self-consistency property of the pop-
ulation version of the objective function (McLachlan and Krishnan, 2007),

that is, Q* = argmaxg H (' | Q7).
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Following Lemma 1, we have:

(Fa Mo (96,75 1 QA ) = Vit (2675 1940 ) v
< HVQg*”Hn (ﬂé e Y Al ”) — VoM (Qé R S >HOO vl

< eV E(s+1)|val,,

(S1.26)
2
with probability at least 1 — w, where €, = Cy K4/ 10% and Cy is a
positive constant.

By Condition 3 and Lemma 2, we have:

* * l - - * k * *
<V96*H (Qé 'Y | Qo(t 1)77(()t 1)) - Vng*H (Qé Y0 | Qé »’Yo) ,’U2>

* * I(t—1 t—1 * * * *
< ané*/H <Qé » Yo | Q()( ),’Yé )> - VQ@*H (Qé » Yo | Qé 7'70) ‘2 ||v2||2
* (t—1)
7 ||1€2 — €2 2”"72H2-
(51.27)

For the penalty term, we have:

731 Q*—l—’u Pl Q*)}

K3slo K3slo K so lo
Cy\) =5 o], + Cay | LB g, + Cs Ry S22 g

(S1.28)
With Lasso, we need to set the order of A; as O(4/ @). Further, note
that this term can be negative with MCP and SCAD, combining with the

minimal signal condition of the true parameters.
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Th . .. K?slogp
en, with a properly chosen positive constant C' and €, = C'y/ ——=,

KPsl
Opy | L2082 o R (s + 1) (S1.29)

By treating (Vo Hs (93* 1925 o) and <V73’Hn (2 e 2"

3
similarly, there can also be ¢, = C'4/ w such that:

) Il

0 * -1
=~ Zloally + (eu+ 7|02 = 2577|| ) llwall,

)t

. .. _ 18K?4+10K;+1 .
with probability at least 1 — The term +/s9/s; is based on

0 * -
q(v) <=2 llorll3 + (e + 7|25 — "

B Qét—l)

0
~Lhual}+ (kT

Condition 3 and the ratio of ||xs,]||/||%s, || by considering (S1.64).

€u T t—1 *
We can see that q(v) < 0 when |vi|s2 > 2? + 2? Q(() )—QO K
[oallo > 2+ 2|57 — 05| and o]l > %+ 2, o2 g — |
Note that v, | = x.[|va]| = XmvaH—-Xwandxl |2y - 95
e t—1 X e t—1 X
X2:472‘H é )_Qo 27Xw:?7‘HHQE) )_Qo 2,%§L<1,and

7 < p/12. Therefore, there is a local maximizer Q(()t) following Q(()t_l) that

<

satisfies: if Q((]t_l) € B, (€2;), then Hﬂg(t) -7 < xa,
2

Ql(t) Ql*
2

*

®) 18K?+10K;+1
X2, and H'Yo — Y0 ) < —_—t

X~ with probability at least 1 —

p
Then, we can show that, if Q(()O) € B, (27), for any t > 1,
11—t 4de 8e
o — || < o -l < — tled - o
H 0 ol = 1—4 Q+L 0 ol = (1 —1)o 0 Olly

(S1.30)

1
ALY

) o)
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with probability at least 1 — ¢ (18 K7 4+ 10K, + 1) /p. Note that, when ¢ >

oola®_a
t = logl/L ((1 LQH(: QOHQ): /!

8¢;
(1-t)e”

8Eu
(1-v)e and

Q) -

is dominated by
2

So, the final error can be bounded as:

[ K3slogp . . [K3sylogp
220( ZT)7 H’YO_’YOH2:O( ZT )

(S1.31)

Hﬁo—nz;

with probability at least 1—¢ (18 K7 + 10K, + 1) /p. And note that ¢ (18 K7 + 10K; + 1) /p

goes to 0 as p and n diverge by Condition 4.

Step 2:

We show that Q = (ﬁo, ﬁ;,w) = ((AZO, 0> is a local maximizer of the objec-

tive function. This indicates that

[K3slogp -, | K3sylogp
2 n n

(S1.32)

HQ—Q*

in Step 1 hold due to the conclusion drawn in this step. Following Theorem

1 in Fan and Lv (2011), it suffices to show that ||vec(zgs, z4)||, < A1 and

I
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12,11, < Ao, where

Vs, Q(Q) Vs, Q(27) Bs, — B, r(A)gg, 0
Vas, Q) Vs, Q) as, — A, 7(A)ag, 0
Vs, Q) Vs, Q) Vs — V5, r(A)yg, 0
= +A- + = ,
V5,2(Q) Vi, Q) 0 r(A)g, Zp
Ve, Q) Ve, Q(7) 0 7(A)a, Za
v, Q(Q) Vv, Q(27) 0 r(A), z,
(S1.33)

and r(A) is the residual of the first-order Taylor expansion of the gradient.

Here, A =
Vias,8s, A2 0 0 Vs, 8,22 0 0
0 V2 s, Q) V4, Q) 0 V2,0 Vi, Q)
0 Visyas Q) Vi 4, Q) 0 V5,a,Q0) V5,,Q)
Va, 8, QA2 0 0 V,8,Q() 0 0
0 Vayas, Q) Vo, Q) 0 Ve, Q) Ve ,,,Q2)
0 Vi as, 2 VZ,Z.,SQQ(Q*) 0 V26,27 V2, 0(07)
(S1.34)
Note that here j € Sf and [ € S§ N Sf =S¢, a; = (a1, agj, - - ,ozKlj,)T,

and ay; is the j-th element of ay for the k-th subgroup. 3; and «, are

similarly defined.
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First consider zg. For the k-th coordinate, we have:

(z6)k = (V, Q)i + (V3,5, Q) (Bs, — B, )i + (r(A)g) )

o &
= TS I (2, @) (4 — 2 Bis,)
=1

b (i i, Q) 25,2 (Brs, — Brs,) + (1(A)g, )i

i=1

= (§p1)r + (§p2)s + (P(A)g))k, L E=1,2,--- K,

(S1.35)
According to Condition 1 and with bounded z;;, we have:
1 - u U* *
|(€p1)n| <ri2 n ZE(Lk (yi, i, 7)) (yz- - w;[glﬁk.sl) Tij
i=1
1 - u u* U U* *
+K2 EZ(Lk (yi’mi’ﬂ ) _]E(Lk: (y’hmi;Q )) (yz _m;;lﬁksl) 332]
i=1
1 - u U* *
ko | SR (g w1, 92)) (31— s, B )| max
i=1
1 - u U* U U* T *
+ ka2 n Z(Lk (yi, @i, ) — E(Ly, (yi, 25, 2"7))| max } (y,- - mz’SlBkSl) a’z‘j’ .
i=1

(S1.36)
Here, the first term can be bounded by Hoeffding inequality due to the gaus-
sian distribution of E(L}, (y;, z;, ")) (vi — /5, Brs, ). The second term can
be bounded by Hoeffding inequality similar to (S1.21). So, we can get that
there exists a positive constant cgy, such that |(&s1)i] < cp Onp with

probability at least 1 — zl)’ which tends to 1. Then by Condition 4, we have

a1, < cp14/ By logp with probability tending to 1.
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According to (S1.33), we have:
2 * 2 * -1 *
B, —Bs = = |Vhy 5, Q)| |Va, Q@) +r(A)g, |- (S137)

So, we can get that:

g

(€p2)s = —

n

IZ* Z LZ (yl, x;, Qu*) w;‘r'imij [v%kslﬁksl Q(Q*>:| -1 [Vﬁksl Q(Q*) + T.(A):@ksl]
=1

n -1

1 ux
E Z LZ (yi7 i, Q ) 33:519”1’81)

=1

1 - u*
= — [EZLZ (yi,mi,ﬂ )$I§1mU]

=1

0.u* . u Uk *
[ . Z Ly (yi, i, 2) (Z/z‘ - il?iTsﬁksl) Tis, + T(A)ﬁksll
=1

n
(51.38)
We bound it by:

1
1 ¢ u u* 1 < u uk

’(552)k‘< [EZLI@ (ylamlvﬂ )wI’in] [EZLk(yhml’Q )szS1w151)]
i=1 =1

1
n

ou* " s .
7]; Z Ly (yi, i, 2) (yi - wiTSuBkSl) Tis, + T(A)ﬂksl
=1 [e's]

1 1 !
< [5X§5GZX81} {EX;GZX&}

o0

Z LZ’ (yi7 Li, Qu*) (yl - wiTslﬁZsl) Lis,

+||r(a)s,, oo) .

(S1.39)

can be bounded

Here, the norm ‘

similarly as [(s1)x|. Overall, there exists a positive constant cga, [|€s2]|, <

hun™ ( /@ + VK,

plying Condition 6.

T(A)gs,

) with probability tending to 1 by ap-
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Similarly, we get:

(Za)r = (Va, Q)i + (Vo a5, Q) (@s, — a5,

+ (Vayrs, Q) Fs, = 75,k + (1(A)a,

I« T
g
_ "k l Ix _x T % T &
- ZLk (Wi i, X7 7*) (4i — s, ks, — Tis, Vis,) Tig
=1

O.l* n R R
7]; Z Lgc (%’7 i, Ql*f)’*) [wzslmij(aksl —ays,) + wlsgwij(')’ksg - ’)’232)]
i=1

_|_

+ (r(A)a, )k = Ear)r + (Ea2)k + (P(A)ay)e, k=1,2,--+ K],

(51.40)
where we can bound &,; as above.
Then, according to the second line of (S1.33), we have:
-1
G~ b | [ Vhae Q) VL Q@) [ Var Q@) + (A,
Vs, — Vs, V%SQ,}& Q(Q") V%Sﬂsz Q") Vs, Q) + T(A)752
(S1.41)

Then, we can similarly obtain that:

1 1 -
(Goahl < | |1 X56LXs| | x3E1xs

(

[e.9]

I
O

n

n
l I* * T * T *

E Lk (yz> Ly, Q » Y ) (yl — L5, Ogs, — wiSQ’yk’SQ) Lis

=1

L)

o

+ HVGC(T(A)aksl ) T(A)“’ksl)

(S1.42)
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|(572)k‘ <

[

1 1 -
[—X;GZXS] [-X}G;XS]
n n

o0

I« N
o
k l 53 * T * T *
n E Ly, (yi, x;, Q7 ) (yi — L5, Ops, — wi527k52) Lis
L)

i=1
Then, by [lvec(zs, za)ll, < l[2slly + 1Zally: [125lly < 1€l + 121l +

H"‘(A)Bj

there exists a positive constant ¢, such that:

K, lo
[vec(zg, za) ||, <ce (\ / Tgp +

[e.e]

+ HVGC(T(A)aksl T(A)ys,)
(S1.43)

, and combining with Lemma 3 in Wytock and Kolter (2013),
2

1 u 1 u -
{Engakx&} {EX;G,CX&}

Kol - 2 _ 2
(\/¥+ ‘Qo—ﬂg >+HQO—Q;;
Kilogp 1 o1 | -
XLGXs| |- XxIGx
+ e {n s ds) |- Asbyds
1 ~ 2 —~ 2
( Rilosr g, g ) o —as )
(S1.44)
K;lo 1 1 -
1241, <ce (\/ l gp+‘ l—X;GLXs} {—XgGiXs}
n n n
>~ (S1.45)
K1 " 2 _ 2
( ’;gp+HQo—Q; >+Hﬂo—ng )

with probability tending to 1.
Combining Condition 6 and the results in Step 1, we can show that
|vec(zg, za)|l, < A1 and ||z, < A2 with probability tending to 1. Then,

by the minimal signal of the true parameters, Theorem 1 can be established.
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Remarks With Lasso, A\; and Ay need to be much large than 4/ @,

K3slogp
> (),

This re-establishes the advantages of concave penalties like MCP.

which is a violation of (S1.28), leading to Hﬁ -

Related Lemmas

Lemma 1. Suppose that conditions (1) and (4) hold. With probability

tending to 1,

HVng;Hn (96*778 | 93“”%78””)
(S1.46)

_ _ log p
* * l
Vo (27 1 9 A0 )| = 0u 22D,

Proof. Recall that:

* * I(t— — * * I(t—1 —1
”Vng*Hn (Qf) Y0 | Qo(t 1)7'7(()t 1)> — VarH <Qf) Y0 | Qo(t )a’)’(()t )>

HOO

* * I(t—1 -1 * * (-1 -1
T HVQZ&Hn (Qé 770 | QO(t )’7(()t )> N VQZ&H (Qé ’70 | Qo(t )778t )) Hoo

1<k<K,

%% I(t— — ® % I(t— -
+ lg}cg}lc(l (vai*Hn (Qé 770 | QO(t 1)7 7(()t 1)> - VU?H (Qé a'70 | QO(t 1)77(()t 1)>> :
(S1.47)

And we have:

* % I(t— - * Ak I(t-1 -1
HvazslHn <Qf) » Yo | QO(t 1)77((Jt 1)> o VO‘Z&H <§2é Yo | Qo(t )77(()t )> Hoo

1 n
< Ko E Z ng (yw Zi, 96770) Yiis, — E (LZ (97 Z, 96770) yw31>
=1 00
1 n
+ Kok E ZLZ (yivmia 96770) —-E (Lgc (yawv Qé770>)| = K2 ”Il||oo + Kok ’[2’ )
=1

(S1.48)
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where py, = || (€ s, + ®&,7Vis,)®s||, which can be treated similarly to
Hao et al. (2018). And I can be bounded similarly to (S1.21), which implies
that I, < % log(2p) with probability at least 1 — %. Then considering Iy

by following Lemma S1 in Li et al. (2023), we have:

lo
|1l < Dikiny| =22, (S1.49)

with probability at least 1 — 27{{’, where D, is a positive constant.

By applying union bound, we can obtain that:

max
1<k<K;

1 l |
<4/ 5= log(2p) + D1 K1y o8P < Do Ky ng,
2n n n

2K2+K;

. 0 e N * * l(t— —
Vags, Ho (2,75 1 2 A ™) = Vg 1 (287 1 266 ) |

s,

(S1.50)
with probability at least 1 — , where Dy is a positive constant.

Counsider:

(Top o (273 120V ™Y) = Vot (2,7 1Y)

1 |1
2k, EZLZ (yi,xi,ﬂéﬁ’o) —E (L;C (y7w,Q6770))
i=1
111 <& l I -, o
5 HZ [Lk (y%miaQO)’YO) (yz - wi&aksl — miSQ’YkSQ) :|
=1

* * 2
—E [LﬁC (y, x, Qé,’yo) (y — azglaksl — wggfyk&) ] ’ =11 +1I.
(S1.51)

11 can be similarly bounded as above with probability at least 1 — ]l?. Then,

~T ~ ~
we only need to bound II,. Take g Qs — zc;'yz& = TgQg, Where T;s
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is a rearrangement of ;s, and ;s contains the corresponding coefficients.

Then, we have:

IIQ ZLI ylawz796770> Yi -k [Ll (y’w 907’70) y }

1
2

+ [l H ZLL (yi, i, 2, Yo) yiis — E [L (v, @, 2, 7o) yis]
=1

[e.9]

5 Haks

E Z ng (yu Li, 967’70) %zsi;‘rs —E |:ng (ya T, 96770) %S%:S‘r]
1=1

o

= Iy + [ 15 + 1153,
(S1.52)

where 115, can be bounded similarly to I;. Following Li et al. (2023), with
probability at least 1 — , Il < Dy \/%, and with probability at least
1-— %, Iy < Dy \/g , where D3 and D, are positive constants.

Also, by applying union bound, we can obtain that:

Y 0 W= B * * I(t— _
B (VG?H" <Qf) Y0 | Qo(t 1)7’7((; 1)> - Vagﬂ'f (Qé | Qo(t 1)7,7[(; 1)))

1<k<K,
1

g DSKZ )

n

with probability at least 1 —

(S1.53)

6K?4+2K;

, where Dy is a positive constant.
Overall, we have:

* * l(t— - * * e B
[V (9275 1960, 9077) = Vgt (7 1487 |

10gp)
=5).

= Op(Kl
(S1.54)
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Lemma 2. Under Condition 3 and Condition 4, and with 2y € B, (§),

HVQB*H (96*773 ’ 96770) - vﬂf)*/H (96*778 | 96*7’78)

| <719% - Sl

(S1.55)
where 7 < 1—92 according to Condition 3.
Proof. Consider the k-th subgroup. We have:
% * l Ix * Ix * 2
HVQE*ICH (Qo 'Y | Qoa’)’o) - VQ&H (Qo Yo | 2 a'YO) ‘2 =1+11

= HU?E [Fli (Qév Yo> Qé*v 78) (y - 93;0‘231 - w:S‘rg"Yl:Sg) wisl} Hz
2

Y

1 * * ]‘ * * * *
+ j—l*E [FL (92,70, 26 70)] = 5B [ FL (26,70, 26, 78) (v — 25,01, — @d70s,) ]
2

20}, 2
(S1.56)

where F} (), 5) = L (v, 2, Q0. vo) — L% (v, 2, Q5 ~v5). 1t is sufficient
to show that I < 7 Hﬂé* - QéHQ and 1] < 7 Hﬂf)* - QSHZ. Here we take
7t = 1/K; as a much simpler balanced setting by following Condition 4 and
Lemma 7 of Hao et al. (2018).

Then, the Taylor expansion of L} (y, x, Q) 'yo) at (Qf,~5) leads to:

Ly (y, 2,9, 7o) = L, (y, &, 5, 7v5) +V L (y, 2, Q7)) vee(Q—Q%, vo—75),
(S1.57)

where (QF,v2) = (294 + (1 — 2)QL, 29, + (1 — 2)7;). To simplify notation,
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we use s and ¢ defined in Lemma 1 and take vec(2),7,) = Y. Then,

T
VLL (y, T, T) = ([VYHLZ (y, €T, T)]Tv R [VTKl LZ (y7 Z, T)]T> )

(S1.58)

_Lz <y’ T, T> Léc’ <y7 Z, T) (s’rk,,k/ 7£ ka

Lt (y, 2, X)[1 — LY, (y, 2, 0)]6x, k' = k.

Then, for k=1,2,--- , K},

vee (o} (y — B3 dus)as
S, = . (S1.60)
g a2
s\~ —Zsaus)

O

Next, we apply Taylor expansion to bound I:

1= & [ot (v~ #5ais) s Vi (2. 0% 00 = 1)

2

2
— e[t (v - #iais) s, V1L (.2, 09) ] |10 =073

* ~T ~x%
< sup E MUL (y - mSak8> Tis,
z€[0,1]

2
IV )2 17 -
(S1.61)

Then, by the definition of VL! (y, 2, Y?), we can obtain that:

VL, (g2, Y9)|s = > [Lh (v,2,0%) Ly (y, 2, X)) - 6% o,
k' #k
+ |:L§C (y, €T, TZ) (1 — LL (’y, T, TZ))}Q . (STz(st = Al + AQ.
(S1.62)
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For k=1,--- | K, define:

Wi 1= sup E [d;zéri : Hafj <y — 5;&%) Tis,
z€[0,1]

j
)

and W = maxi<k<x, {Wi1, Wia}. Then, under Condition 3, it is sufficient

(S1.63)

Wia = Sl[t)pu]E {5%5& ' HU? <y - i;&%) Tis,
z€|0,

to bound 7y:

2 2
71 < sup E {Hafj (y — %g&zs) T;s, Al} + sup E [Hofj <y — i-ga;s) T;s, AQ} .
z€[0,1] 2 z€[0,1] 2
(S1.64)
For Il and k =1,2,---, K, define:
W, = sup E [6y:0y: -a,l:_Q ;. W/ = sup E|y:0v; - (y — Tgaus)?
2€[0,1] F 2€[0,1] F
W'= max W;, W"= max W.
1<k<K, 1<k<K;
(51.65)
Similar to I, we can bound /I under Condition 3, that is,
£ * l 1% * Ix * 2 92 * 2
ang;;ﬂ (Qo » Y0 | Q07’7’0) - VQ{;;CH (Qo Yo | 0 7’70) )2 < 144K, 1€26 — o5 -
(51.66)

Now we take the summation, and there exists 7 < 5 satisfying:

Va2 (9070 | 9.v0) = Va1 (26,75 1 924 %5)

|, <719% — Qll,.

(S1.67)



Ruiyue Wang, Sanguo Zhang and Shuangge Ma

S2 Additional Numerical Results

S2.1 Additional Simulation Results
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Table S2: Simulation results for the unbalanced subgroup design. p =1 and £ = 1. In each cell: mean (sd).
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TPRL FPRL MSEL RIL ARIL TPRU FPRU MSEU RIU ARIU
S1  Proposed  0.914(0.066) 0.053(0.021)  0.561(0.654)  0.844(0.028)  0.602(0.059) 1(0) 0.001(0.002)  0.238(0.071)  0.818(0.023)  0.634(0.047)
S-FMR  0.805(0.073) 0.551(0.066) 19.509(11.925) 0.682(0.021) 0.184(0.052) - - - - -
(separately) - - - - - 0.953(0.160)  0.245(0.097) 2.844(4.890) 0.779(0.084)  0.557(0.168)
G-FMR  0.800(0.078) 0.167(0.068)  9.197(6.276)  0.713(0.056) 0.316(0.137) - - - - -
(separately) - - - - - 1(0) 0.016(0.016)  1.033(0.231)  0.793(0.021)  0.585(0.043)
MG-FMR  0.847(0.086) 0.031(0.025)  0.545(0.388)  0.842(0.040) 0.598(0.087) - - - - -
(separately) - - - - - 1(0) 0.005(0.008)  0.231(0.117)  0.820(0.024)  0.639(0.048)
Order-A  0.799(0.067) 0.047(0.012)  0.569(0.113)  0.807(0.039) 0.507(0.101) 1(0) 0.007(0.008)  0.223(0.092)  0.823(0.019)  0.645(0.042)
Order-D  0.860(0.097) 0.057(0.040)  0.812(0.580)  0.828(0.072) 0.573(0.147) 1(0) 0.083(0.065) 0.592(1.174)  0.829(0.036) 0.657(0.073)
S2  Proposed  0.929(0.049) 0.056(0.022)  0.485(0.232)  0.852(0.013) 0.619(0.034) 1(0) 0.001(0.003)  0.163(0.070)  0.813(0.019)  0.624(0.038)
S-FMR  0.739(0.075)  0.537(0.080) 16.583(18.840) 0.682(0.023) 0.183(0.059) - - - - -
(separately) - - - - - 0.925(0.158)  0.247(0.086) 1.701(1.822) 0.790(0.045) 0.579(0.092)
G-FMR  0.679(0.109) 0.071(0.079)  2.842(3.158)  0.803(0.052) 0.504(0.127) - - - - -
(separately) - - - - - 1(0) 0.007(0.009)  0.718(0.271)  0.785(0.020)  0.594(0.041)
MG-FMR  0.833(0.098) 0.041(0.031)  0.738(1.410)  0.844(0.034) 0.604(0.064) - - - - -
(separately) - - - - - 1(0) 0.006(0.009)  0.172(0.078)  0.815(0.019)  0.627(0.038)
Order-A  0.747(0.071)  0.048(0.016)  0.657(0.180)  0.808(0.041) 0.511(0.105) 1(0) 0.008(0.009)  0.189(0.088)  0.814(0.020)  0.627(0.039)
Order-D  0.821(0.120) 0.039(0.023)  0.668(0.984)  0.842(0.035)  0.600(0.068) 1(0) 0.067(0.033)  0.141(0.193)  0.824(0.023)  0.647(0.046)
S3  Proposed  0.827(0.082) 0.046(0.029)  0.767(2.439)  0.865(0.019) 0.653(0.048) 1(0) 0.003(0.004)  0.132(0.058)  0.802(0.018)  0.603(0.037)
SFMR  0.734(0.069) 0.531(0.063) 16.791(16.194) 0.671(0.008) 0.168(0.029) - - - - -
(separately) - - - - - 0.966(0.159)  0.239(0.081) 1.746(2.865) 0.766(0.067) 0.530(0.136)
G-FMR  0.687(0.089) 0.091(0.053)  5.765(3.354)  0.749(0.065) 0.395(0.122) - - - - -
(separately) - - - - - 1(0) 0.004(0.006)  0.809(0.275)  0.777(0.022)  0.553(0.046)
MG-FMR  0.772(0.066) 0.037(0.026)  0.902(1.929)  0.847(0.056) 0.617(0.115) - -
(separately) - - - - - 1(0) 0.002(0.005) O.EB 055) o.mowe 019) o.%ﬁo 039)
Order-A  0.724(0.056) 0.047(0.017)  0.597(0.344)  0.810(0.044) 0.513(0.113) 1(0) 0.004(0.007)  0.143(0.058)  0.800(0.017)  0.598(0.035)
Order-D  0.768(0.098) 0.041(0.028)  0.917(1.912)  0.847(0.054) 0.618(0.107) 1(0) 0.081(0.043) 0.211(0.497) 0.807(0.020) 0.613(0.041)
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Table S4: Simulation results for the unbalanced subgroup design. p = 1.5 and £ = 1.5. In each cell: mean (sd).

Ruiyue Wang, Sanguo Zhang and Shuangge Ma

TPRL FPRL MSEL RIL ARIL TPRU FPRU MSEU RIU ARIU
S1  Proposed  0.969(0.067) 0.017(0.021)  1.323(1.745)  0.825(0.048) 0.564(0.089) 1(0) 0(0) 0.251(0.093)  0.840(0.017)  0.679(0.035)
S-FMR  0.828(0.086) 0.494(0.081) 13.095(21.563) 0.694(0.021) 0.223(0.047)
(separately) 0.897(0.276)  0.236(0.082) 4.354(6.820) 0.778(0.117)  0.555(0.235)
G-FMR  0.743(0.070) 0.173(0.077)  11.527(4.860)  0.661(0.043) 0.184(0.108) - - - - -
(separately) - - - - - 0.996(0.021)  0.002(0.003) 1.543(0.453) 0.807(0.038)  0.612(0.076)
MG-FMR  0.892(0.101)  0.040(0.025)  3.028(3.298)  0.798(0.060) 0.507(0.104) - - - - -
(separately) - - - - - 1(0) 0.001(0.005)  0.320(0.120)  0.839(0.014)  0.676(0.028)
Order-A  0.859(0.056) 0.019(0.011)  1.191(0.415)  0.793(0.037) 0.471(0.093) 1(0) 0.001(0.003)  0.277(0.108)  0.836(0.016)  0.670(0.034)
Order-D  0.901(0.097) 0.039(0.040)  2.054(2.718)  0.811(0.072) 0.543(0.147) 1(0) 0.084(0.031)  0.482(0.705)  0.865(0.022)  0.729(0.045)
S2  Proposed  0.944(0.073) 0.019(0.030)  0.890(1.517)  0.827(0.037) 0.567(0.074) 1(0) 0(0) 0.167(0.073)  0.830(0.023)  0.659(0.046)
S-FMR  0.768(0.073) 0.503(0.065) 14.360(14.651) 0.690(0.022) 0.211(0.051) - - - - -
(separately) - - - - - 0.993(0.040)  0.230(0.089)  2.096(5.130)  0.803(0.051)  0.606(0.104)
G-FMR  0.705(0.054) 0.084(0.080)  7.231(9.232)  0.718(0.061) 0.323(0.137) - - - - -
(separately) - - - - - 1(0) 0.002(0.004) 1.120(0.371)  0.812(0.019)  0.622(0.038)
MG-FMR  0.897(0.100) 0.037(0.038)  3.045(4.221)  0.800(0.053)  0.496(0.095) - - - - -
(separately) - - - - - 1(0) 0(0) 0.197(0.87)  0.826(0.019)  0.652(0.037)
Order-A  0.811(0.065) 0.021(0.011)  0.980(0.170)  0.784(0.032)  0.449(0.083) 1(0) 0.001(0.001)  0.187(0.079)  0.825(0.018)  0.651(0.037)
Order-D  0.890(0.113) 0.027(0.032)  4.344(5.627)  0.805(0.055) 0.525(0.099) 1(0) 0.071(0.023) 1.145(2.492) 0.841(0.023)  0.680(0.046)
S3  Proposed  0.837(0.071) 0.029(0.023)  1.167(1.300)  0.796(0.072) 0.515(0.134) 1(0) 0.001(0.002)  0.147(0.062)  0.818(0.015)  0.634(0.031)
SFMR  0.753(0.075) 0.515(0.077) 13.747(17.233) 0.679(0.013) 0.180(0.031) - - - - -
(separately) - - - - - 0.964(0.157)  0.202(0.079) 2.962(3.842) 0.788(0.076) 0.575(0.156)
G-FMR  0.685(0.046) 0.073(0.119)  9.315(8.258)  0.677(0.055) 0.286(0.104) - - - - -
(separately) - - - - - 1(0) 0.001(0.002) 1.136(0.333) 0.801(0.084)  0.601(0.169)
MG-FMR  0.755(0.066) 0.039(0.026)  4.756(4.836)  0.760(0.061) 0.446(0.101) - - - - -
(separately) - - - - - 1(0) 0(0) 0.158(0.070)  0.817(0.020)  0.631(0.040)
Order-A  0.773(0.055)  0.030(0.009)  0.889(0.155)  0.803(0.041) 0.501(0.103) 1(0) 0(0) 0.140(0.063)  0.814(0.019)  0.628(0.038)
Order-D  0.750(0.106)  0.038(0.040)  5.787(6.293)  0.757(0.074) 0.441(0.134) 1(0) 0.068(0.029) 1.630(1.858) 0.813(0.031)  0.625(0.063)
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S2.2 Additional Data Analysis Results
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Figure S1: Data analysis using the MG-FMR method: genes sorted in descending order
of the magnitudes of the coefficients within the subgroups. Top/bottom: three upper/five

lower levels.
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Figure S2: Top: survival curves for the three upper-level groups (p-value of the log-rank

test = 1 x 107%). Bottom: survival curves for the five lower-level subgroups (p-value

=4x1079).
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Figure S3: Top/bottom: distribution of lymph node positive ratio for the upper-level

groups/lower-level subgroups.
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S3 Extension

S3.1 Modeling Homogeneity in Effects Across Levels

With the proposed approach, there is no special attention to the alignment
of the estimated effects between the upper and lower levels. When the upper
level heterogeneity structure is determined by some strong effects and the
lower level has additional contributions from some weak effects, intuitively,
it may be sensible to expect that the estimates for the strong effects at
the upper and lower levels have certain alignment. Consider the special
case of linear regression and orthogonality between the strong and weak
effects at the lower level. Then, those estimates are strictly equal. Here, we
further explore the aspect of modeling homogeneity in the estimated effects
(at multiple levels). This has some connections with the existing literature
(Tang et al., 2021; Yang et al., 2019).

Consider the scenario with an index partition {G,, }m=12... K, that de-
scribes how the lower-level subgroups have effects aligned with those of the

groups at the upper level:

kegma if |16Um_a§€|§7,.7 m:1727"'7Ku7 k:172a"'7Kla
(93.68)

where r is small enough to ensure that G,, N G,, = @ for m # m/. Note
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that r = 0 leads to the vector-based form of the multidirectional separation
penalty (MDSP) (Tang et al., 2021). Here, we consider its addition to the

proposed approach:

K P P
Pmdsp (ﬂu’al) - ZP (mln (ZP akg ’ZP |/32] akj|)7
7=1
> P8k, — aiﬂ))) :
j=1

(S3.69)
Here, the upper-level FMR model automatically estimates the K, direc-
tions. This penalty shares spirits and advantages similar to the original
MDSP, which adopts Lasso penalization. It is noted that the zero direction
for sparsity is redundant here. Additionally, unlike the commonly adopted
pairwise penalization for heterogeneity analysis, we only need to identify a
“nested” hierarchy (in terms of the aligned estimated effects). As such, it
is not necessary to make pairs of parameters exactly the same for grouping.
As shown below, this can lead to relaxed assumptions.

Overall, the objective function with the additional MDSP is:
~1
Lonasp(2) = L) + L(2) — Prna (B, @', 4") — Prasp (B ') . (S3.70)

It is noted that the MDSP term, in a similar way as the original penalty, can
be extended to multiple levels. The “nesting” hierarchy between different

levels can also be adjusted with tuning parameters, and “nesting” here does
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not pertain to individuals (but rather estimated effects).
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Figure S4: Scheme of the proposed extension. Top (D): the original proposed two-level
analysis; Bottom (E): Aligning lower-level effects with upper-level ones promotes some

subgroups to have equal effects via Multi-Directional Separation Penalty (MDSP).

S3.2 Statistical Properties

Consider oracle estimator ©° , where the oracle MDSP term is:

Ky 4
Pr=>» > P Z;P(ij — )

I=1 keg;}
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Theorem 2. Assume that the conditions in Theorem 1 hold. Additionally,
assume Condition 7 (described below) and 1/ @ = O (A3), b is much
larger than (a + 0.5) - A3. Then, there exists an oracle estimator Q" that
shares the same properties as that in Theorem 1, and there exists an MDSP

estimator € that satisfies:
Pr1=0") - 1.
This indicates:

Pr(_ N0 {G=GH—1 Pr(n N by=ady) L

=12, ,Ky JEDEC 1<k<K,

S3.3 Proof of Theorem 2

Additional notations and condition

Suppose that we have the partition of {1,---, K;} , which represents the
subordination of the upper-level groups and lower-level subgroups. k €
On,k=1,---  K;,m=1,--- K, indicates that the [-th subgroup at the
lower level is subordinate to the k-th group at the upper level. This sub-
ordination is determined through the multidirectional separation penalty

term, that is, k € G,, if and only if

m = argmin (Z P(1B1; — asl), D P(18o; — angl)s -+, Y P(IBreuj — akj|)> :
j=1 j=1

=1

(S3.71)
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More discussions are provided below. Define Dy = {j : |B;,; — a},| #
0,k € G}, D = {(k,j) : |B; — ;] # 0,k € G} is the nonzero set for
pairs of subordination and Dy € S, dy = |Dy|,k =1, -+, K;. Then we set

— (T T 2 T\T ; o _ ouT olT L oT\T ou __
v = (v],v,,v,) corresponding to g = (", QF ,~vg )", where Qg" =
(QouT QOUT)T Qov — (IBO ou) ith /60 _ {IBO e S}
01 y8boK, ) o Napp = VEC |\ Pgs,, 0 ) Wl kS1 — kj - J 1
contains the nonzero parameters in the coefficients, v{ is defined similarly.
ol __ ol T olTY\ T ol __ o ou
Q= (20, Q%,) , QY = vec (aka, o), and the true parameters

can be similarly defined by €F".

The following condition is additionally assumed.

Condition 7.

1

1 —1
H [ﬁxgl\pkagxs} [EXEG;XS + j] < O(hy), (S3.72)

o0

where h, < min( /sl(l?’%gp’ VK?s) and J € R**® is semi-positive-definite

and defined as:

J =
0 0

This is an adjusted irrepresentable condition and postulates that the
variables corresponding to the same coefficients at both the lower and upper

levels (subordinate) should be more independent.
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Step 1:

We first consider an oracle estimator based on the true subgroup subordi-
nate and all the important variables. This step is similar to Step 1 in the

previous proof, while we set the MDSP term P, as:

P=3 Y p (Z P18y - akj|>> , (33.73)

where P(-) can be a Lasso penalty like Tang et al. (2021) with parameter A3
as well as an MCP or SCAD penalty like the composite penalties in Huang
et al. (2012) with more parameters.

We continue to use the definition of v and adapt it to the new variables.

With the previous strategies, we can show that:

ouk olx _ ox u ol(t—1 o(t—1 0
Q<v) < <V98u*%n (QO 7QOZ » Y0 | QO’ Q0 3 )7'70(t )> ,'l)1> - 5””1‘@
oux ol 0% ou(t—1 ol(t—1 o(t—1 0
+ <V981*Hn (Qo aﬂol Y0 | $2 ¢ )790 ¢ )7’)’0(t )) ,'v2> - 5””2‘@
* * o% ou(t—1 ol(t—1 o(t—1 0
(T M (287, %0 e 120,980 3 ) g = s,

= [PL(QF" +v) = Pr (7)) = [P2 (2 + v) — P2 (277)],
(S3.74)
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where considering k = 1,--- , K; individually, and k € G,,:
oux olx 0% ou ol o
vaz*sl Hn (Qo 7R T R O 074 7'70)

I« T
o
_ "k § l ou ol 0 T * T * T *
- 7 |:Lk (y’“ mi? QO 7QO 770) (yl - mlsl\Dkﬁmsl\'Dk - wkaaka - wZSQPYkSQ) wiSl]
=1

Vs, Mo (8, Q57,767 | ", 95, 0)

.
ks,

I« M
o
k ! ou ol o T * T * T *
[Lk (% x;, ", g >’Yo) (?Ji — Tis, DkﬁmSl D, — Lip, XD, — mi827k82) wiSQ]
n
i=1

vaf Hy (qu*’ le*’ 78* | qu’ le’ 78)
1 n
I ; ; \
o Z [Lfk (yi, @, ", Q7 ¥6) (vi — wZSI\Dk’BmSI\Dk - miTDkaka N miTS?FYkSQ)ﬁ ’
i—=1
¢ (83.75)

and form=1,---, K;, j € §; we have:

ux M

Vg Mo (5 908 | 98 9 8) = 7 7 [ (e ) (91— 205, Bs,)

=1
Ky x n
£ (k€ Gy € SND) “E 7 (L (3 i ", 24 4)

k=1 =1
T * T * T *
(?/z‘ - mi&\DlemSl\Dk — Lip, Okp, — $i327k52> xij]
oux olx ox ou ol o
Vagu*Hn (Qo D7 T R O 074 7'70)

n n

1 ou 1 ou * 2
= 2na§c* Z [Lﬁc (yi,mi,g(] )} " on Z [Lfrc (yiawhﬂo ) (yz — a:lglﬂmsl) ] ,
(S3.76)

1= =1

where we can get (53.74) with a similar strategy as in S1.2. Also, [Py (20" +v) — P1 (277)]

has the same conclusion as in (S1.28). The minor differences come from the
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fact that we replace ags;\p, by Bps,\p, if k € G, and so we can get very
similar conclusions via this oracle version.

This oracle version of the penalty and triangle inequality implies that:

[P2 (257 +v) — P2 (£207)] < C4 v, + Ca

K3s1
npslogp sl .
n

K}slogp
n

(S3.77)
where ('} and Cy are positive constants. Note that, with Lasso, A3 needs
to have the order of O(4/ @). Further, this term can be negative with
MCP and SCAD by combining with the minimal signal conditions. Then,
with the two lemmas and the same steps as above, we can show that the

oracle estimator error can be bounded as:

[K3slogp o . K}sylogp
:O< L ’ ||70_70||2:O l )
2 n n

(93.78)

9% - o

with probability tending to 1. Here we replace oys,\p, by Bmsl\pk itk € G,
in €.
Step 2:

We show that Q, = <SA28 , 0) is a local maximizer of the objective function.

This indicates that:

| K3}slogp o, K3}sologp

(S3.79)
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in Step 1 holds due to the conclusion drawn in this step. Following Step 2

in Theorem 1, we can select v and 3 in the same way. Here we define

keg’mak:la'”7Kl7m:]-7"'7Ku7

s\ T #k5\Dy = Binsi\Dy s

(S3.80)

. . . - .
where s¢;,5,\p, is the new variable and As\D, = 0. So it suffices to

show that ||z,||,, < A3, where z, = {Zok}r=1,.. k, 1S & vector and z,, =
Vﬂksl\pk Q(ﬁo). For each kK = 1,--- ,K; and k € G,,, it can be obtained
that:

~ 0 ~o0

r(A)

Vﬂmpk () vﬁm,Dk Q(Q*) ﬂmlek - ﬁzlpk Bmp,
Vosio, 22" Vs, 0, QA7) Brsi\py — Binsi\ox 7(A)8,.5,\p,
Vern, QQ°) | = | Vayp, Q") | +8- | &fp, — aip, | (Ao,
Vors, Q) Vs, Q(27) Fis, = Trs, T(A)yys,
Vocrsyvo, Q) Vs vmy, Q27 0 T(A)sys, o,

(S3.81)

where 7(A) is the residual of the first-order Taylor expansion of the gra-
dient. And A =

%ka By, Q(e2) v%ka Bmsi\Dy, () 0 0
v%msl\pk'@m"?k AR V%W&\Dkﬁmsl\Dk At v%m,sl\Dko‘ka (") V%msl\Dk’msz (Y
0 ik”Danle\Dk (") Vikaaka o(Qr) Vika s, o(Q%) v2
0 '27‘"'52@"51 \Dj AR V?"ksfz“’mk (") V’kaSQ VkSs (") V2
’ iksl \Dy, Pmsi\Dy, A2 vik‘sl\Dko‘ka AR Viksl\D;C VkSy Q) v

(S3.82)

2
Bmsi\ Dy, ¥kS1\ Dy,

XDy *kS1\ Dy,
VkSy *kS1\ Dy

2
¥kS1\ Dy, ¥kS1\ Dy

(2

QR

")

Q)

o

%)

*)




Ruiyue Wang, Sanguo Zhang and Shuangge Ma

Then, we have

Zok = v%ksl\pk Q(Q*) + T(A)”ksl\ﬂk

2 * =0 * 2 * ~ *
+ V%ksl\pkﬂmsl\Dk (2 >(/8m31\Dk B ’Bmsl\Dk) + v%ksl\vkaksl\pk Q2 )(azsl\pk B aksl\Dk)
2 *\ (250 *
+ V%ksl\pkvksz (2 )(’7k52 - ’7k32)
g

I« M

k I3 T * T * T *

n E Ly (Z/z — Zi5\p, Bms\p, — Tip, Okp, — wisg’YkSQ) Zis\py + T(A)%ksl\’Dk
i=1

+

I« M
Ok [T 3° T (A T (S
n Z Ly |::Bi81\Dk (Bmsl\vk - ﬁ;‘sl\pk) + wka(aZDk - al:Dk) + Ts, (’7252 - ’YZSQ)] LiS1\ Dy,

i=1

:§0k1+T(A)”k81\Dk +fok2a 7k: 1727"' 7Kl'
(93.83)

According to (S1.36), we can use the same inequality to show that
€01 [|oo = O(y/ ZH282) with probability at least 1 — %, which tends to 1.

For &,2, we have:

“~0

ﬁmsl\pk - IBjnSl\Dk vﬁmsl\pk Q") + T(A)ﬁmsl\bk
Qlp, — Ap, = C [ Vo, Q) +7(A)as, :
Viss = Viss Vs, Q827 +7(A)y,s,
(S3.84)
where C =
1
Vi souBusioy L) Voo im, AL Vi s, Q)
Vein,Bnsiio, 2 Veep an, Q) Vo, 4, Q)
VB, A Vigam, Q) V5, QR

(S3.85)
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Then we bound ||€k2||c by Condition 7,

1 1 -1
[[€on2lloo < |:EX;;\D,€G2XS:| [EXEGZXerJ]

o0

I« T

o « * * f
( ;Z Z Ly (yi = Tis\p,Prmsi\p, — Tip,Xip, — Tis, Ths,) Tis
i=1 >
—+ HVGC(T‘(A)ﬁmSl\Dk , T(A)akbk ) T(A)‘Yk.s2> )oo) )
(93.86)

where the second line can be bounded as above, and the third line is

O(M). Then we have:

K3slo
[€or2lloo < €0/ ngp, (S3.87)

with probability tending to 1, where ¢, is a positive constant.
Overall, we can get ||z,|| ., < As. Thus, by combining with the minimal

signal condition of the true parameters, we have:

[ K3slogp N . [ K3sylogp
2 n n

(S3.88)

HQO—Q*

with probability tending to 1.

Step 3:

We show that, for k = 1,--- | K;,m = 1,--- | K, given oy € B(aj,c,7)

o~ 3
and 8,, € B(83,,,cT), where 7 = O (\/ KZSQTIO‘W) and c¢,, ¢, are positive
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constants, we have:

W et RN LA

apeB(ar).B,,cB(BL,) B €B(B5,)

+ osup |lag — @yl + (18 — ap (53:89)

areB(ar)
< (cat+ o)+ 18 — ol

and

nf B =185 - il

akEB(ak)ﬁ 1€EB ﬁ* )

~ s |8 =B+ s llai - @l
B, €B(B* ) ar€B(ay)

m/

> (185, — ajll — (ca + co)T.
(S3.90)

While k € G,, and m # m/, it follows that:

Pr su Hﬁ —akH inf HBm,—&kH — 1.
areB(a;),B eB(ﬁ* & €B(}), B, €B(B,)

(S3.91)

Recall

Z Z i <ZP |Bims = O‘k9|)>' (S3.92)

Following Tang et al. (2021), when p goes to the L; norm function, we
have Emdsp = Loa + P2. We have Zmdsp = Loasp at ay € B(aj,c,7) and
Bm € B(B3;,,cT), and thus argmin Zmdsp = argmin L,,,4sp.

There are minor differences for different penalties. For example, fol-

lowing Breheny and Huang (2009), the composite MCP can select im-
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portant groups of variables and important variables within these variable
groups with highly desirable properties. Additionally, following Huang et al.

(2012), the internal and external penalties can differ.
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