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In the supplementary material, we provide the proofs of Proposition 1

and Theorem 1.

Let P|Z and E|Z denote the conditional probability and conditional ex-

pectation given Z, respectively. Also, let P and E denote the unconditional

probability and expectation.

S1 Proof of Proposition 1

First, we derive (1) ⇒ (2). Suppose that (1) holds, which means

lim
τ→1

P|Z
(
X > QX(τ | Z) | Y > QY (τ | Z)

)
= 0, for Z ∈ Z , a.s.
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Taking τ = 1 − x/n and by the definition of conditional probability, then

for all 0 < x, y < ∞, we have

n
(
P|Z
(
X > QX(1− x/n | Z), Y > QY (1− y/n | Z)

))
= oP(1),

uniformly for Z ∈ Z , a.s., and hence (2) holds.

Second, we derive (2) ⇒ (3). Under Assumption 1, for a given random

sample U1, . . . , Un from FX(· | Z) and a given random sample V1, . . . , Vn

from FY (· | Z) , there exist constants a1n > 0, a2n > 0, b1n ∈ R and b2n ∈ R

such that

P
(
max1≤i≤n Ui − b1n

a1n
≤ z

)
→ Gγ1(x) = exp

{
−(1 + γ1x)

−1/γ1
}
,

as n → ∞, for 1 + γ1x ≥ 0 and that

P
(
max1≤i≤n Vi − b2n

a2n
≤ z

)
→ Gγ2(y) = exp

{
−(1 + γ2y)

−1/γ2
}
,

as n → ∞, for 1 + γ2y ≥ 0. By Theorem 6.3.2 in de Haan and Ferreira

(2006), we have

P
(
max1≤i≤n Ui − b1n

a1n
≤ x,

max1≤i≤n Vi − b2n
a2n

≤ y

)
→ Gγ1(x)Gγ2(y),

which implies that FXY (·, · | Z) belongs to the maximum domain of attrac-

tion of the bivariate extreme value distribution Gγ1(·)Gγ2(·), for Z ∈ Z,

a.s.
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Finally we derive (3) ⇒ (1). Under the bivariate maximum domain of

attraction condition, we have

Pn (X ≤ QX(1− x/n | Z), Y ≤ QY (1− y/n | Z)) → exp(−x−1 − y−1),

uniformly for Z ∈ Z . Taking logarithms to the both sides, we have

lim
n→∞

n logP (X ≤ QX(1− x/n | Z), Y ≤ QY (1− y/n | Z)) = −x−1 − y−1,

which implies that

− logP (X ≤ QX(1− x/n | Z), Y ≤ QY (1− y/n | Z))
1− P (X ≤ QX(1− x/n | Z), Y ≤ QY (1− y/n | Z))

→ 1,

Thus, (1) follows.

S2 Proof of Theorem 1

We begin by introducing several lemmas that are required for the proof of

Theorem 1.

Lemma 1. Suppose that model (1) and Assumptions 1-6 hold. Then for

any ε > 0 and i = 1, · · · , n,

P

(∣∣∣∣∣Q̂X (1− c/n | Zi)

QX(1− c/n | Zi)
− 1

∣∣∣∣∣ > ε

)
= o(1), P

(∣∣∣∣∣Q̂Y (1− c/n | Zi)

QY (1− c/n | Zi)
− 1

∣∣∣∣∣ > ε

)
= o(1).

Proof. Let ϵn1(Z) =
Q̂X(1−c/n|Z)
QX(1−c/n|Z) − 1, ϵn2(Z) =

Q̂Y (1−c/n|Z)
QY (1−c/n|Z) − 1. By Theorem

4 in Wang et al. (2012) we have

ϵn1(Z) =
log(k/c)√

k

[
γ1Z

TH−1
1 Wn1(1){K1(Z)}−γ1 + oP(1)

]
,



4ZHAOWEN WANG, HUIXIA JUDY WANG, and DEYUAN LI

ϵn2(Z) =
log(k/c)√

k

[
γ2Z

TH−1
2 Wn2(1){K2(Z)}−γ2 + oP(1)

]
,

uniformly for Z ∈ Z a.s., where H1 = E
[
{K1(Z)}−γZZT

]
and H2 =

E
[
{K2(Z)}−γZZT

]
are bounded, W1n(1) = limτ→1 W1n(τ) and W2n(1) =

limτ→1 W2n(τ) are both normal distributed with mean zero and variance

E(ZZT ). Here,

W1n(τ) = {n(1− τ)}−1/2

n∑
j=1

Zj

[
τ − I

{
Xj ≤ ZT

j β1(τ)
}]

and

W2n(τ) = {n(1− τ)}−1/2

n∑
j=1

Zj

[
τ − I

{
Yj ≤ ZT

j β2(τ)
}]

.

Recall that both K1 and K2 are bounded, which means that for any ε > 0,

and fr fixed Z ∈ Z a.s.,

P|Z

(∣∣∣∣∣Q̂X (1− c/n | Z)
QX(1− c/n | Z)

− 1

∣∣∣∣∣ > ε

)

=P|Z

(∣∣∣∣ log(k/c)√
k

[
γ1Z

TH−1
1 Wn1(1){K1(Z)}−γ1 + oP(1)

]∣∣∣∣ > ε

)
= oP(1).

Since the item oP(1) above is bounded away from 1, by taking expection

with respect to Z, we have

P

(∣∣∣∣∣Q̂X (1− c/n | Z)
QX(1− c/n | Z)

− 1

∣∣∣∣∣ > ε

)
= o(1).

Similarly, we also have

P

(∣∣∣∣∣Q̂Y (1− c/n | Z)
QY (1− c/n | Z)

− 1

∣∣∣∣∣ > ε

)
= o(1).
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Lemma 2. Suppose Assumptions 1-6 hold. Under the conditional tail in-

dependence, it follows that for all 1 < x, y < ∞ and constant c > 0,

P (X ≤ xQX(1− c/n | Z), Y ≤ yQY (1− c/n | Z)) = 1− c

n

(
x−1/γ1 + y−1/γ2 + o(1)

)
.

Proof. Let d̃1 = d∗1I (ϱ
∗
1 ≥ γ1)−c−1

1 {K1(Z)}−γ1ZTβr1I (ϱ
∗
1 ≤ γ1), where ϱ∗1 =

max(ϱ1,−δ1), d
∗
1 = {K1(Z)}−δ1

{
d1I(ϱ1 ≥ −δ1)− δ1K̃1(Z)I(ϱ1 ≤ −δ1)

}
, c1

is a positive constant, and denote ϱ̃1 = max(ϱ∗1,−γ1),. By Lemma 2 in Wang

et al. (2012), for fixed Z ∈ Z a.s.,

QX(1− 1/t | Z) = c1{K1(Z)}γ1tγ1
[
1 +

γ1d̃1t
ϱ̃1

ϱ̃1
{1 + oP(1)}

]
,

as t → ∞, which implies that for all fixed Z ∈ Z ,

P|Z(X > t) = K1(Z)

(
t

c1

)−1/γ1
[
1 +

d̃1
ϱ̃1

(
t

c1

)ϱ̃1/γ1

{K1(Z)}−ϱ̃1{1 + oP(1)}

]
,

as t → ∞. For any 1 < x < ∞, define

L(x; t;Z) := x1/γ1
P|Z(X > xt)

P|Z(X > t)
.

Thus,

L(x; t;Z) =
1 + d̃1

ϱ̃1

(
xt
c1

)ϱ̃1/γ1
{K1(Z)}−ϱ̃1{1 + oP(1)}

1 + d̃1
ϱ̃1

(
t
c1

)ϱ̃1/γ1
{K1(Z)}−ϱ̃1{1 + oP(1)}

=
1 + oP(1)

1 + oP(1)

=1 + oP(1),
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uniformly for Z ∈ Z a.s. Notice that L(x; t;Z) is bounded away from x1/γ1 .

So E [L(x; t;Z)] = 1 + o(1), as t → ∞, which leads to

P (X > xQX(1− c/n | Z))

=E
[
x1/γ1P|Z (X > QX(1− c/n | Z)L(x;QX(1− c/n | Z);Z))

]
=x1/γ1c/nE [L(x;QX(1− c/n | Z);Z)]

=x1/γ1
c

n
(1 + o(1)).

Similarly, for 1 < y < ∞, we have

P (Y > yQY (1− c/n | Z)) =y1/γ2
c

n
(1 + o(1)).

Observe that

P (X ≤ xQX(1− c/n | Z), Y ≤ yQY (1− c/n | Z))

=1− P (X > xQX(1− c/n | Z))− P (Y ≤ yQY (1− c/n | Z))

+ P (X > xQX(1− c/n | Z), Y > yQY (1− c/n | Z)) ,

where

P (X > xQX(1− c/n | Z), Y > yQY (1− c/n | Z))

≤P (X > QX(1− c/n | Z), Y > QY (1− c/n | Z))

=E
[
λ1− c

n
(Z)P|Z (Y > QY (1− c/n | Z))

]
=
c

n
E
[
λ1− c

n
(Z)
]

=o(n−1).
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Taking them together, we get

P (X ≤ xQX(1− c/n | Z), Y ≤ yQY (1− c/n | Z)) = 1− c

n

(
x−1/γ1 + y−1/γ2 + o(1)

)
.

Proof of Theorem 1. For any ε > 0, uniformly for i = 1, . . . , n,

P

max
(

Xi

QX(1−c/n|Zi)
, 1
)

max
(

Xi

un(Zi)
, 1
) > 1 + ε


=P
(
Xi > un(Zi), Xi > QX(1− c/n | Zi),

un(Zi)

QX(1− c/n | Zi)
> 1 + ε

)
+ P

(
Xi > un(Zi), Xi < QX(1− c/n | Zi),

un(Zi)

Xi

> 1 + ε

)
+ P

(
Xi < un(Zi), Xi > QX(1− c/n | Zi),

Xi

QX(1− c/n | Zi)
> 1 + ε

)
+ P (Xi < un(Zi), Xi < QX(1− c/n | Zi), 1 > 1 + ε)

=P
(
Xi > un(Zi), Xi > QX(1− c/n | Zi),

un(Zi)

QX(1− c/n | Zi)
> 1 + ε

)
+ P

(
Xi < un(Zi), Xi > QX(1− c/n | Zi),

Xi

QX(1− c/n | Zi)
> 1 + ε

)
≤P
(
Xi > un(Zi), Xi > QX(1− c/n | Zi),

un(Zi)

QX(1− c/n | Zi)
> 1 + ε

)
+ P

(
Xi < un(Zi), Xi > QX(1− c/n | Zi),

un(Zi)

QX(1− c/n | Zi)
> 1 + ε

)
=P
(
Xi > QX(1− c/n | Zi),

un(Zi)

QX(1− c/n | Zi)
> 1 + ε

)
≤P
(

un(Zi)

QX(1− c/n | Zi)
> 1 + ε

)
=o(1),
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where the last equation holds by Lemma 1. Similarly,

P

max
(

Xi

QX(1−c/n|Zi)
, 1
)

max
(

Xi

un(Zi)
, 1
) < 1− ε


=P
(
Xi > un(Zi), Xi > QX(1− c/n | Zi),

un(Zi)

QX(1− c/n | Zi)
< 1− ε

)
+ P

(
Xi > un(Zi), Xi < QX(1− c/n | Zi),

un(Zi)

Xi

< 1− ε

)
+ P

(
Xi < un(Zi), Xi > QX(1− c/n | Zi),

Xi

QX(1− c/n | Zi)
< 1− ε

)
+ P (Xi < un(Zi), Xi < QX(1− c/n | Zi), 1 < 1− ε)

≤P
(
Xi > QX(1− c/n | Zi),

un(Zi)

QX(1− c/n | Zi)
< 1− ε

)
+ P

(
Xi < QX(1− c/n | Zi),

un(Zi)

QX(1− c/n | Zi)
< 1− ε

)
≤P
(

un(Zi)

QX(1− c/n | Zi)
< 1 + ε

)
=o(1),

uniformly for i = 1, . . . , n. Taken together,

lim
n→∞

P

1− ε <
max

(
Xi

QX(1−c/n|Zi)
, 1
)

max
(

Xi

un(Zi)
, 1
) < 1 + ε, i = 1, . . . , n

 = 1.

By Lemma 1 in Zhang et al. (2017), there exist two sequences of positive

random variables ξ
(1)
n and ξ

(2)
n such that ξ

(1)
n

P→ 1, ξ
(2)
n

P→ 1, and for i =

1, . . . , n,

ξ(1)n max

(
Xi

QX(1− c/n | Zi)
, 1

)
≤ max

(
Xi

un(Zi)
, 1

)
≤ ξ(2)n max

(
Xi

QX(1− c/n | Zi)
, 1

)
.
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Similarly, there exist two sequences of positive random variables η
(1)
n and

η
(2)
n such that η

(1)
n

P→ 1, η
(2)
n

P→ 1, and for i = 1, . . . , n,

η(1)n max

(
Yi

QY (1− c/n | Zi)
, 1

)
≤ max

(
Yi

vn(Zi)
, 1

)
≤ η(2)n max

(
Yi

QY (1− c/n | Zi)
, 1

)
.

Then, we have

ξ
(1)
n

η
(2)
n

max
(

Xi

QX(1−c/n|Zi)
, 1
)

max
(

Yi

QY (1−c/n|Zi)
, 1
) ≤

max
(

Xi

un(Zi)
, 1
)

max
(

Yi

vn(Zi)
, 1
) ≤ ξ

(2)
n

η
(1)
n

max
(

Xi

QX(1−c/n|Zi)
, 1
)

max
(

Yi

QY (1−c/n|Zi)
, 1
) ,

η
(1)
n

ξ
(2)
n

max
(

Yi

QY (1−c/n|Zi)
, 1
)

max
(

Xi

QX(1−c/n|Zi)
, 1
) ≤

max
(

Yi

vn(Zi)
, 1
)

max
(

Xi

un(Zi)
, 1
) ≤ η

(2)
n

ξ
(1)
n

max
(

Yi

QY (1−c/n|Zi)
, 1
)

max
(

Xi

QX(1−c/n|Zi)
, 1
) .

For any x > 0, y > 0,

P

max
1≤i≤n

ξ
(1)
n

η
(2)
n

max
(

Xi

QX(1−c/n|Zi)
, 1
)

max
(

Yi

QY (1−c/n|Zi)
, 1
) ≤ x, max

1≤i≤n

η
(1)
n

ξ
(2)
n

max
(

Yi

QY (1−c/n|Zi)
, 1
)

max
(

Xi

QX(1−c/n|Zi)
, 1
) ≤ y


≥P

max
1≤i≤n

max
(

Xi

un(Zi)
, 1
)

max
(

Yi

vn(Zi)
, 1
) ≤ x, max

1≤i≤n

max
(

Yi

vn(Zi)
, 1
)

max
(

Xi

un(Zi)
, 1
) ≤ y


≥P

max
1≤i≤n

ξ
(2)
n

η
(1)
n

max
(

Xi

QX(1−c/n|Zi)
, 1
)

max
(

Yi

QY (1−c/n|Zi)
, 1
) ≤ x, max

1≤i≤n

η
(2)
n

ξ
(1)
n

max
(

Yi

QY (1−c/n|Zi)
, 1
)

max
(

Xi

QX(1−c/n|Zi)
, 1
) ≤ y

 .

Since for all j, k = 1, 2, η(j)n /ξ
(k)
n

P→ 1, η
(j)
n /ξ

(k)
n

P→ 1, we have

lim
n→∞

P (∆n ≤ x,Θn ≤ y)

= lim
n→∞

P

max
1≤i≤n

max
(

Xi

QX(1−c/n|Zi)
, 1
)

max
(

Yi

QY (1−c/n|Zi)
, 1
) ≤ x, max

1≤i≤n

max
(

Yi

QY (1−c/n|Zi)
, 1
)

max
(

Xi

QX(1−c/n|Zi)
, 1
) ≤ y

 .
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Note that for all x > 0, y > 0,

P

max
(

Xi
QX (1−c/n|Zi)

, 1
)

max
(

Yi
QY (1−c/n|Zi)

, 1
) ≤ x,

max
(

Yi
QY (1−c/n|Zi)

, 1
)

max
(

Xi
QX (1−c/n|Zi)

, 1
) ≤ y


=P (Xi ≤ QX(1− c/n | Zi), Yi ≤ QY (1− c/n | Zi), x ≥ 1, y ≥ 1)

+P
(
Xi ≤ QX(1− c/n | Zi), Yi > QY (1− c/n | Zi), x

−1QY (1− c/n | Zi) ≤ Yi ≤ yQY (1− c/n | Zi)
)

+P
(
Xi > QX(1− c/n | Zi), Yi ≤ QY (1− c/n | Zi), y

−1QX(1− c/n | Zi) ≤ Xi ≤ xQX(1− c/n | Zi)
)

+P
(
Xi > QX(1− c/n | Zi), Yi > QY (1− c/n | Zi),

QX(1− c/n | Zi)

yQY (1− c/n | Zi)
≤ Xi

Yi
≤ xQX(1− c/n | Zi)

QY (1− c/n | Zi)

)
.

That is to say,

P

max
(

Xi

QX(1−c/n|Zi)
, 1
)

max
(

Yi

QY (1−c/n|Zi)
, 1
) ≤ x,

max
(

Yi

QY (1−c/n|Zi)
, 1
)

max
(

Xi

QX(1−c/n|Zi)
, 1
) ≤ y



=



A1 + A2 − A3 + A4, if xy ≥ 1, x ≥ 1, y ≥ 1,

A1 − A5 + A4, if xy ≥ 1, 0 < x < 1, y ≥ 1,

A2 − A6 + A4, if xy ≥ 1, x ≥ 1, 0 < y < 1,

0, if xy < 1, x > 0, y > 0.

where

A1 = P (Xi ≤ QX(1− c/n | Zi), Yi ≤ yQY (1− c/n | Zi)) ,

A2 = P (Xi ≤ xQX(1− c/n | Zi), Yi ≤ QY (1− c/n | Zi)) ,

A3 = P (Xi ≤ QX(1− c/n | Zi), Yi ≤ QY (1− c/n | Zi)) ,

A4 = P
(
Xi > QX(1− c/n | Zi), Yi > QY (1− c/n | Zi),

QX(1− c/n | Zi)

yQY (1− c/n | Zi)
≤ Xi

Yi
≤ xQX(1− c/n | Zi)

QY (1− c/n | Zi)

)
,
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A5 = P
(
Xi ≤ QX(1− c/n | Zi), Yi ≤ x−1QY (1− c/n | Zi)

)
,

A6 = P
(
Xi ≤ y−1QX(1− c/n | Zi), Yi ≤ QY (1− c/n | Zi)

)
.

Plug in Lemma 2, we have

A1 = 1− c

n

(
1 + y

− 1
γ2 + o(1)

)
, A2 = 1− c

n

(
1 + x

− 1
γ1 + o(1)

)
, A3 = 1− c

n
(2 + o(1)) ,

A5 = 1− c

n

(
1 + x

− 1
γ2 + o(1)

)
, A6 = 1− c

n

(
1 + y

− 1
γ1 + o(1)

)
.

On the other hand,

A4 ≤ P (Xi > QX(1− c/n | Zi), Yi > QY (1− c/n | Zi)) =
c

n
E
(
λ1−c/n(Z)

)
= o(n−1).

Therefore,

P

max
1≤i≤n

max
(

Xi

QX(1−c/n|Zi)
, 1
)

max
(

Yi

QY (1−c/n|Zi)
, 1
) ≤ x, max

1≤i≤n

max
(

Yi

QY (1−c/n|Zi)
, 1
)

max
(

Xi

QX(1−c/n|Zi)
, 1
) ≤ y


=Pn

max
(

Xi

QX(1−c/n|Zi)
, 1
)

max
(

Yi

QY (1−c/n|Zi)
, 1
) ≤ x,

max
(

Yi

QY (1−c/n|Zi)
, 1
)

max
(

Xi

QX(1−c/n|Zi)
, 1
) ≤ y



=



(
1− c

n

(
x
− 1

γ1 + y
− 1

γ2 + o(1)
))n

, if xy ≥ 1, x ≥ 1, y ≥ 1,(
c
n

(
x
− 1

γ2 − y
− 1

γ2 + o(1)
))n

, if xy ≥ 1, 0 < x < 1, y ≥ 1,(
c
n

(
y
− 1

γ1 − x
− 1

γ1 + o(1)
))n

, if xy ≥ 1, x ≥ 1, 0 < y < 1,

0, if xy < 1, x > 0, y > 0.

Hence,

lim
n→∞

P(∆n ≤ x,Θn ≤ y) =


exp(−cx

− 1
γ1 − cy

− 1
γ2 ), if x ≥ 1, y ≥ 1,

0, otherwise.
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Together with continuous mapping theorem, we obtain

lim
n→∞

P(qn ≤ x) = P(f(max(U1, 1),max(U2, 1)) < x)

where U1 ∼ Fréchet (γ−1
1 , cγ1), U2 ∼ Fréchet (γ−1

2 , cγ2) and U1 and U2 are in-

dependent. That is to say, qn converges in distribution to f(max(U1, 1),max(U2, 1)).

□
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