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In the supplementary material, we provide the proofs of Proposition 1
and Theorem 1.

Let PPz and [Ez denote the conditional probability and conditional ex-
pectation given Z, respectively. Also, let P and E denote the unconditional

probability and expectation.

S1 Proof of Proposition 1

First, we derive (1) = (2). Suppose that (1) holds, which means

lirr%IPﬁz(X >Qx(T|Z)|Y >Qy(r|Z2) =0, forZe Z,as.
T—
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Taking 7 = 1 — z/n and by the definition of conditional probability, then

for all 0 < z,y < 0o, we have
n(Pia(X > Qx(1—2/n | 2),Y > Qv(1-y/n| 2))) = os(1),

uniformly for Z € Z, a.s., and hence (2) holds.

Second, we derive (2) = (3). Under Assumption 1, for a given random
sample Uy, ..., U, from Fx(- | Z) and a given random sample V;,...,V,
from Fy (- | Z) , there exist constants al > 0, > > 0, b. € R and b2 € R

such that

max inUi—b}1 _
IP’( 1= 2711 < z) — Gy (x) = exp{—(1+71x) 1/71},

as n — oo, for 1 + 2 > 0 and that

max;<j<, Vi — b2 _
P( = 2121 SZ) — Gy (y) = exp {— (1 + yoy) "/},

as n — oo, for 1 + 1y > 0. By Theorem 6.3.2 in de Haan and Ferreira

(R006), we have

)

U <n Vi — b2
P (max1<z<n Ui no< o maxi<i<n Vi bn < y) - G% (x)G’Yz (y)7

ap, a;
which implies that Fyy (-, - | Z) belongs to the maximum domain of attrac-

tion of the bivariate extreme value distribution G, (-)G.,(:), for Z € Z,

a.s.



52. PROOF OF THEOREM 13

Finally we derive (3) = (1). Under the bivariate maximum domain of

attraction condition, we have
P"(X <Qx(1—x2/n|Z),Y <Qy(1—y/n|Z)) = exp(—z~ ' —y 1),
uniformly for Z € Z. Taking logarithms to the both sides, we have

lim nlogP (X < Qx(1—z/n|Z),Y <Qy(1—y/n|Z))=—z7' -y,

n—oo
which implies that

—logP (X <@x(1—xz/n|Z),Y <Qv(1—y/n]|Z))

[ P(X<Qx(l_a/n|2),Y <Qr(l_y/n]2Z) -

Thus, (1) follows.

S2 Proof of Theorem 1

We begin by introducing several lemmas that are required for the proof of

Theorem 1.

Lemma 1. Suppose that model (1) and Assumptions 1-6 hold. Then for
anye>0andi=1,--- n,
Qx (1 —c¢/n | Z;) Qv (1—¢/n|Z)
P >ec|l =o0() P —1>¢e] =o0(1).
( Qx(1—c/n|Z,) W lerat=em 2o .

Proof. Let €,1(Z) = % —1,e0(Z) = % — 1. By Theorem

-1

4 in Wang et al| (2012) we have

_ log(h/c)
Vi

€n1(Z) [HZ"H "W (D){KL(Z)} ™ + op(1)]
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_ log(k/c)
Vk

uniformly for Z € Z as., where H; = E[{K(Z)}7ZZ"] and H, =

Eng(Z)

(V2 Z" Hy "W (D) {Ky(Z)} 2 + 0p(1)]

E [{K»(Z)}7ZZ"] are bounded, Wi, (1) = lim,_,; Wi,(7) and W, (1) =
lim,_y; Wa,,(7) are both normal distributed with mean zero and variance
E(ZZ"). Here,

Win(r) = {n(1 = )} 72 2, [r - T{X; < 2] Bi(7)}]

=1

and

Wau(r) = {n(1 =)} 2 2; [ = 1{Y; < Z]Ba(7)}] .

j=1
Recall that both K; and K5 are bounded, which means that for any € > 0,

>g>

(M Z"Hy "W (D){K1(Z)} 7 + op(1)] ‘ > 5> = op(1).

and fr fixed Z € Z a.s.,

Qx(1—c/n|Z)
Fie (‘ Qx(1—cfn|2)
_p, (

log(k/c)
Since the item op(1) above is bounded away from 1, by taking expection

Vi
> 5) = o(1).

> 8) = o(1).

with respect to Z, we have

P(‘@X(l—c/n|Z)_1

Qx(1—c¢/n|Z)

Similarly, we also have
P( Qv (1= c/n| Z)

O —c/n|Z)
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]

Lemma 2. Suppose Assumptions 1-6 hold. Under the conditional tail in-

dependence, it follows that for all 1 < x,y < co and constant ¢ > 0,

P(X < 2Qx(1—c/n|Z),Y < yQy(l —c/n|Z)) = 1-% (1 472 4 0(1)).
Proof. Let d = diI (¢} = m)—¢; {K1(2)} 278, 1 (0] < 7). where o} =
max(er, —01), di = {Ki(2)} " {dul(e2 = =01) = W K(Z) I (01 < =01) . o

is a positive constant, and denote g1 = max(o}, —71),. By Lemma 2 in Wang

et al| (2012), for fixed Z € Z a.s.,

QX(l — 1/t | Z) = cl{Kl(Z)}’Ylt’h

Jt@l
1+ 7151 1+ 0P<1)}] ,
1

as t — 0o, which implies that for all fixed Z € Z,

" —1/m glvl ¢ o1/m N
PeX >0 =K@ () 145 (5) @y T o).
C1 01 \C1
as t — oo. For any 1 < x < 0o, define
I[Dz(X > l’t)
L(z:t:Z) = Y/ 22~ )

Thus,
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uniformly for Z € Z a.s. Notice that L(x;t;Z) is bounded away from bt/
So E[L(x;t;Z)] =1+ o(1), as t — oo, which leads to
P(X >zQx(1—c¢/n|Z))
=E ['/"Pz (X > Qx(1—¢/n | Z)L(z;Qx (1 — ¢/n | Z); Z))]
=" e/nE [L(z: Qx (1 — ¢/n | Z);Z)]
=21 5(1 4 0(1)).
n

Similarly, for 1 < y < 0o, we have
P(Y > yQv(1—c/n| Z) =y~ (1+o(1).
Observe that
P(X <aQx(1—c/n|2),Y <yQv(1—c/n|2))
=1-P (X >2Qx(1—¢/n| Z)) ~B(Y < yQy(1 - ¢/n| Z))
+P(X > 2Qx(L—c/n| 2),Y > yQy(1—c/n| Z)),
where
P(X >2Qx(1—¢/n| 2).Y > yQy(1—c/n| Z))
<P(X > Qx(1—¢/n| 2).Y > Qy(1-¢/n| Z))
—E [\ (Z)Pz (Y > Qv(1—c/n | Z))
——E [\-<(2)

=o(n1).
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Taking them together, we get

P(X <zQx(1—¢/n|2Z),Y <yQy(1—c/n|Z))= 1-< (x_l/”“ +y ey o(1)).
n

O

Proof of Theorem 1. For any € > 0, uniformly for : =1,...,n,

X
max <QX(1_C/n‘Zi), 1>
X
max (’U«n(zi)’ 1)

P >14¢

Un(Z;)
Ox(L—c/n|Z) ”5)

nzi
+P(Xi > up(Zi), X; < Qx(1—c¢/n | Zi)uu)((‘ ) > 1+5>

X; ]
Ox(—c/n|Z) “)

L p (XZ- < un(Z), X > Qx (1 — c/n | Z1),

— . ) , _ , U (Z;)
=P (X2 > un(Z;), X; > Qx(1—c¢/n|Z;), Ox(—c/n|Z) > 1+ 8)
X
+P (Xi < un(Zi), Xi > Qx (1 —c¢/n|Z), Ox(L—c/n|Z) >1 +€)

P (XZ- < un(Z). X, > Qx(1 — e/n | Zy), QX(luj(cZ/ii e g)

P (0> x| 20, g g 1+
Un (Z;)

<* (graZenta) 1)

=o(1),
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where the last equation holds by Lemma 1. Similarly,

X;
max <QX(1*C/"|Z1')’ 1)
X;
max <un(Zi)’ 1)

(X5 (2. X, > Qx(1— ofn | 2. 522 <1 )

P <1l-—¢

Xi

X, 1
Ox(1—c/n | Z) _5>

+P (Xi <un(Z), Xi > Qx(1 —c¢/n | Z;),

; —c/n|%Z; Un(Z:i) _
+IP’(X1<QX(1 / |ZZ)’QX(1—c/n|ZZ-) <1 e)

= (Qxauf(cz/ig z) <t )

=o(1),

uniformly for ¢ = 1,...,n. Taken together,

X,
max (#, 1)
lim P [1-c< Oxllze/n,)

n—00 X
max (Un(zi)7 1)

<l+e i=1,....n| =1

By Lemma 1 in Zhang et al) (2017), there exist two sequences of positive

random variables 57(11) and gff) such that 57(11) R 1,§,(12) RN 1, and for ¢ =

Xi

(1) Xi Xi @)
& max (Qx(l ~efn | Z) 1) = max (un<zi>’1) < & max <Qx(1 | Z

).
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Similarly, there exist two sequences of positive random variables 77,(11) and

777(12) such that 77,(11) L 1,777(12) L 1,and fori=1,...,n,

7Y max ( Y 1> < max < Y 1) < n'? max ( Y
" Qv(1—c¢/n|Z;)" ) — va(Z) ) — " Qy(1—c¢/n|Z;

Then, we have

Xi Xi
3% maX( - c/n\Z 71> e <un(zi)’1> < ) max <QX(1—C/R\Zz)’1>
o) s () e )
no max Qy (1— c/n\Z)’ max vn(Z;)’ nomhax Qy (1=¢/n|Z;)’

Y; _ Y
) aX (Qy T—c/nlZ )’1> Hax (vn(zi)’1> py) max (Qy(l—c/mzﬁ’l)
an < I
@ = X, =W X; '
&n maX( Tz 71> max (un<zi>’1> nomax <Qx(1—0/n\z)’1>

For any > 0,y > 0,

X Y;
. ¢l max <QX(1*C/"\Z1')’ 1) pl) max (Qyufc/mzi)’ 1)
max % =T X 5 X, =Y
Mn” max (Qy(l—c/n\Zi)’ 1) & max (Qx(l—c/n|Z,-)’ 1)
X; Y
max <u—l’ 1> max (U—Z, 1>
2P| xS S 0
SIS max (Un(lzi), 1) ="=" max (un(%i), 1)
X; Y;

o &(12) max <—QX(1fc/n\Z¢)7 1) 777(12) max (Qy(lfc/n|Zi)’ 1)
max —— <z, max —— <y
1<i<n 77(1) max < Y, 1) 1<i<n 5 1) max ( X; 1>

" Qy (1—¢/n|Zy)’ " Qx (1—c/n|Z;)’

Since for all j,k = 1,2, ny )/f ,n,(zj)/fﬁbk) RN 1, we have

lim P(A, <z,0, <y)
n—oo
X; Y
max <_—nz1> maX( — TRz )
_ llm P max QX(l / ‘ z) < ZL‘7 max QY(1 / ‘ z) S y

n—o00 1<i<n Y;
max (Qy(lfc/n|Zi)’ 1)
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Note that for all x > 0, y > 0,

X Y;
b (ma"(@xac/mzi)’l) <, maX(Qy(l—c/n\zwl) . y)

Y; - X;
max (Qyu—c/mzwl) max (qu—c/n\zi) ) 1)

=P(X; <Qx(1—¢/n|Z:),Yi<Qv(l—c/n|Zi),z>1y>1)

+P (X < Qx(1—¢/n | Z:),Yi > Qv(1—c¢/n | Zi),z ' Qv (1 —¢/n | Zi) <Yi <yQy (1 —c¢/n| Zi))

+P (X > Qx(1—¢/n| Z:),Yi < Qv(1—c¢/n | Zi),y ' Qx (1 —c/n | Z:) < Xi <2Qx(1 —c/n | Z:))

Qx( —c/n|Z)

+P (XZ > Qx(l —c/n ‘ Zl),Y; > Qy(l —c/n | Zl)

That is to say,

X
p max (m, 1) max <

"yQy (1 —c¢/n | Z;)

Y;
Qy (1—c/n|Z;)’

<u,

Y,
max <QY(1_C/n|Zi) ’ 1)

A+ Ay — A3+ Ay, ifay>1l,2>1,y>1,

Ay — As + Ay, ifey>10<x<1l,y>1,
B Ay — Ag + Ay, ifey>1l,x>10<y<1,

0, ifry <1,2 >0,y >0.

where

A =P(X; <Qx(1—c¢/n|Z),Y; <yQy(l —c/n|Zy)),

X
max <Qx(1—0/"|zi)’ 1)

Qx(l—c/n|Zi) _

Ay =P (X»L > Qx(l —C/TL | ZZ)7YV»L > Qy(l —c/n | ZZ‘),

zQx(1 —c/n | Zl)>
Qv(l—c/nl|Z;) )’

X(l — c/n ‘ Zi)

X a9
yQv(l—¢/n|Z:) — Yi = Qv

(1 —c¢/n|Zi)

).
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As =P(X; <Qx(1—¢/n|Z),Y; <a7'Qy(1 —¢/n|Zy)),

Plug in Lemma 2, we have

& _ 1 & _1 C
A1:1—E(1+y " —1—0(1)),142:1—5(14—3; 0 +0(1)),A3:1—E(2+0(1)),

A5=1—§(1+x‘% +o(1)>,A6=1—§(1+y‘% +o(1)).

On the other hand,

A <P(X;:>Qx(1—¢/n|Z),Y;>Qy(l—¢c/nl|Z)) = %E (M—e/n(Z)) = o(n").

Therefore,

max ( max <

i, 1
Qy (1—c¢/n|Z;)’

Y; = 121?2; X;

max <_Qy<1—é/n|z7->’ 1) o max <_QX<1—5/n\zT>> 1)

max (

X; 1
Qx(1—c/n|Z;)’
P | max
1<i<n

<Yy

X, Y,
Qx(lfc/n|Zi)’1> < max (Qy(lfc/n|zi)’1>

=P ,
Y X
max <Qy(1—c/n|Zi)7 1) max <Qx(l—c/n\Zi)’ 1>

<y

y - ao1))) ey >le>10<y<,

ifxry <1,z >0,y > 0.

1

1
exp(—cz m —cy ), ifx>1y>1,

0, otherwise.
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Together with continuous mapping theorem, we obtain

lim P(q, < z) = P(f(max(Uy, 1), max(Us, 1)) < x)

n—oo

where Uy ~ Fréchet (77!, ¢™), Uy ~ Fréchet (v, ', ¢?) and Uy and U, are in-
dependent. That is to say, g, converges in distribution to f(max(Uy, 1), max(Us, 1)).

OJ
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