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S1 Preliminaries

First, we introduce an important lemma based on which our theorems are

obtained. Let Rn = (mn log (n+mn))
1/2.

Lemma S.1. Let {vi(t), t ∈ Rmn}, 1 ≤ i ≤ n be independent Rpn valued

random variables with E(vi(t)) = 0 for all t. Assume that there exist r1 > 0
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and r2 > 0 such that for every s ∈ Rmn, 0 < d ≤ 1, 1 ≤ i ≤ n,

E

(
sup

t:||t−s||≤d

||vi(t)− vi(s)||

)
≤ nr1dr2 .

Define

Bn(t, s) =

(
n∑

i=1

E||vi(t)− vi(s)||2
)1/2

, Vn(t, s) =

(
n∑

i=1

||vi(t)− vi(s)||2
)1/2

.

Then

sup
||t||≤nr3 ,||s||≤nr3

||
∑n

i=1(vi(t)− vi(s))||
n−2 +Bn(t, s) + Vn(t, s)

= Op(Rn), (S1.1)

for every r3 ≥ 0.

Proof. The proof of Lemma S.1 can be seen in that of Lemma 3.2 in He

and Shao (2000).

Lemma S.2. Under the assumption (A2), we have

sup
||τ ||≤nr3 ,||θ||≤nr3

||
∑n

i=1 η
∗
i (τ, θ)||

n−2 + (
∑n

i=1E||η∗i (τ, θ)||2)1/2 +
∑n

i=1 ||η∗i (τ, θ)||2)1/2
= Op(Rn),

sup
||τ ||≤nr3 ,||θ||≤nr3

||
∑n

i=1(τ − θ)⊤η∗i (τ, θ)||
n−2 + (

∑n
i=1E||(τ − θ)⊤η∗i (τ, θ)||2)1/2 +

∑n
i=1 ||(τ − θ)⊤η∗i (τ, θ)||2)1/2

= Op(Rn),

and

sup
||α||≤nr3 ,||τ ||≤nr3 ,||θ||≤nr3

||
∑n

i=1 α
⊤η∗i (τ, θ)||

n−2 + (
∑n

i=1E||α⊤η∗i (τ, θ)||2)1/2 +
∑n

i=1 ||α⊤η∗i (τ, θ)||2)1/2

= Op(Rn),
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for every r3 ≥ 0, where η∗i (τ, θ) = wiψ(zi, τ) − wiψ(zi, θ) − E(ψ(zi, τ)) +

E(ψ(zi, θ)).

Proof. From the assumption (A2) and the boundedness of the weight vari-

able wi, it follows that there exists constant c and r ∈ (0, 2] such that for

0 < d ≤ 1,

max
i≤n

Eθ

(
sup

τ :||τ−θ||≤d

||η∗i (τ, θ)||2
)

≤ ncdr.

Hence, vi(t) = wiψ(zi, t)−E(ψ(zi, t)) satisfies the condition of Lemma S.1.

Consequently, the results of Lemma S.2 are easily obtained from Lemma S.1.

S2 Proof of Theorems and Propositions

In this section, we present the proofs of Theorems 1–3 and Proposition 2.

S2.1 Proof of Theorem 1

Since ρ(z, θ) is a convex function with respect to θ for given z, then G∗
n(θ)

is also convex on θ. Hence, we only need to demonstrate that for any ϵ > 0,

there exists a constant B <∞ such that

P

(
inf

||β||=1

n∑
i=1

wiβ
⊤ψ(zi, θ0 +B(mn/n)

1/2β) > 0

)
> 1− ϵ
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for sufficiently large n. From Lemma S.2 together with assumptions (R1)

and (A4)-(A6), we have

n∑
i=1

wiβ
⊤ψ(zi, θ0 +B(mn/n)

1/2β)

=
n∑

i=1

wiβ
⊤ψ(zi, θ0) +B(mnn)

1/2β⊤Dnβ + o(n1/2) +Op((A(n,mn)mn log n)
1/2)

uniformly in β ∈ Smn . Due to A(n,mn) = o(n/ log n), for sufficiently large

n, we have

P

(
inf

||β||=1

n∑
i=1

wiβ
⊤ψ(zi, θ0 +B(mn/n)

1/2β) > 0

)

≥ P

(
(mnn)

−1/2 inf
||β||=1

n∑
i=1

wiβ
⊤ψ(zi, θ0) > −(B/2)λmin(Dn)

)
.

By the assumption (A3) and the boundedness of the weight variable, we

have

P

(
(mnn)

−1/2 inf
||β||=1

n∑
i=1

wiβ
⊤ψ(zi, θ0) > −(B/2)λmin(Dn)

)
→ 1, as n→ ∞.

Hence, the proof of Theorem 1 is completed.

S2.2 Proof of Theorem 2

For any α satisfying ||α|| = O(1) as mn → ∞, we have from Lemma S.2

together with assumptions (R1) and (A4)-(A6) that

n∑
i=1

wiα
⊤ψ(zi, θ0)+nα

⊤Dn(θ
∗
n−θ0) = op(n

1/2)+Op((A(n,mn)mn log n)
1/2).
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If A(n,mn) = o(n/(mn log n)), the right of equation has order op(n
1/2).

Since lim infn→∞ λmin(Dn) > 0, we have the result of Theorem 2 by replacing

α with D−1
n α.

S2.3 Proof of Theorem 3

We only need to prove that Theorem 3 is valid for α ∈ Smn . We have from

Theorem 2 that for any α ∈ Smn ,

√
nα⊤(θ∗n − θ̂n)/σ = − 1√

n

n∑
i=1

α⊤D−1
n ψ(zi, θ0)

(wi − 1)

σ
+
√
nα⊤rn, (S2.2)

√
nα⊤(θ̂n − θ0) = − 1√

n

n∑
i=1

α⊤D−1
n ψ(zi, θ0) +

√
nα⊤ξn, (S2.3)

where ||rn|| = op(n
−1/2) and ||ξn|| = op(n

−1/2). According to assumption

(A7), the variable ψ(zi, θ0) has mean zero. We have

σ∗2
n = Var∗

(
1

σ
√
n

n∑
i=1

α⊤D−1
n ψ(zi, θ0)(1− wi)

)
=

1

n

n∑
i=1

(
α⊤D−1

n ψ(zi, θ0)
)2
,

σ2
n = Var

(
1√
n

n∑
i=1

α⊤D−1
n ψ(zi, θ0)

)
=

1

n

n∑
i=1

E
(
α⊤D−1

n ψ(zi, θ0)
)2
.

First, we prove that σ∗2
n − σ2

n
a.s.−−→ 0. We have

σ∗2
n − σ2

n =
1

n

n∑
i=1

[(
α⊤D−1

n ψ(zi, θ0)
)2 − E

(
α⊤D−1

n ψ(zi, θ0)
)2]

.

By assumption (A4), there exists a constant 0 < C <∞ such that

||α⊤D−1
n || ≤

√
λmax((DnD⊤

n )
−1)||α|| = 1√

λmin(DnD⊤
n )

< C (S2.4)
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for all n. By (S2.4) and Abel’s summation formula, we have

lim
n→∞

n∑
i=1

Var
(
α⊤D−1

n ψ(zi, θ0)
)2

i2

≤ lim
n→∞

n∑
i=1

E
∣∣α⊤D−1

n ψ(zi, θ0)
∣∣4

i2

= lim
n→∞

1

(n+ 1)2

n∑
i=1

E
∣∣α⊤D−1

n ψ(zi, θ0)
∣∣4

+ lim
n→∞

n−1∑
k=1

(
1

k2
− 1

(k + 1)2

) k∑
j=1

E
∣∣α⊤D−1

n ψ(zj, θ0)
∣∣4

≤ C lim
n→∞

sup
α0∈Smn

n∑
i=1

E
∣∣α⊤

0 ψ(zi, θ0)
∣∣4

(n+ 1)2

+ C lim
n→∞

n−1∑
k=1

(
1

k2
− 1

(k + 1)2

)
sup

α0∈Smn

k∑
j=1

E
∣∣α⊤

0 ψ(zj, θ0)
∣∣4

≤ lim
n→∞

Cc2n
δ

(n+ 1)2
+ lim

n→∞

n−1∑
k=1

Cc2k
δ

(
1

k2
− 1

(k + 1)2

)

≤ lim
n→∞

Cc2n
δ

(n+ 1)2
+ lim

n→∞

n−1∑
k=1

Cc2
2kδ+1 + kδ

k4 + 2k3 + k2

<∞.

By the strong law of large numbers, we have σ∗2
n − σ2

n
a.s.−−→ 0.

Second, we prove

L(
√
nα⊤(θ̂n − θ0)/σn) → N(0, 1), (S2.5)

and

L∗(
√
nα⊤(θ∗n − θ̂n)/(σσ

∗
n)) → N(0, 1), in pr. (S2.6)

To proof equation (S2.5), on one hand, we have
√
nα⊤ξn/σn = op(1) by (S2.3)
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and (A7) since

lim inf
n→∞

σ2
n = lim inf

n→∞
α⊤D−1

n Σn(D
⊤
n )

−1α ≥ lim inf
n→∞

λmin(D
−1
n Σn(D

⊤
n )

−1) > 0.

(S2.7)

On the other hand, by Doob’s inequality (Stout, 1974) and (A7), for any

ϵ > 0,

P

(
max
1≤i≤n

∣∣∣∣ 1n(α⊤D−1
n ψ(zi, θ0))

2 − 1

n
σ2
n

∣∣∣∣ ≥ 2ϵ

)
≤ 2P

(
max
1≤k≤n

∣∣∣∣∣ 1n
k∑

i=1

(α⊤D−1
n ψ(zi, θ0))

2 − σ2
n

∣∣∣∣∣ ≥ ϵ

)

≤ 2ϵ−2E

∣∣∣∣∣ 1n
n∑

i=1

(α⊤D−1
n ψ(zi, θ0))

2 − σ2
n

∣∣∣∣∣
2

= 2ϵ−2n−2

n∑
i=1

Var
(
α⊤D−1

n ψ(zi, θ0)
)2

= O(nδ−2).

(S2.8)

This implies that

max
1≤i≤n

∣∣∣∣ 1√
n
α⊤D−1

n ψ(zi, θ0)

∣∣∣∣ p−→ 0, as n→ ∞,

and further verifies the Lindeberg condition

n∑
i=1

E
1

σ2
nn

(α⊤D−1
n ψ(zi, θ0))

2I

(∣∣∣∣ 1

σn
√
n
α⊤D−1

n ψ(zi, θ0)

∣∣∣∣ ≥ ϵ

)
→ 0, as n→ ∞.

By the central limit theorem and Slutsky’s theorem, we complete the proof

of (S2.5). By (S2.2), we have

√
nα⊤(θ∗n − θ̂n)/(σσ

∗
n) = − 1

σ∗
n

√
n

n∑
i=1

α⊤D−1
n ψ(zi, θ0)

(wi − 1)

σ
+

√
nα⊤rn
σσ∗

n

.
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Write

Zn = − 1

σ∗
n

√
n

n∑
i=1

α⊤D−1
n ψ(zi, θ0)

(wi − 1)

σ
(S2.9)

and

ζin = − 1

σ∗
n

√
n
α⊤D−1

n ψ(zi, θ0)
(wi − 1)

σ
. (S2.10)

By Theorem 2 and the almost sure convergence, we have

E∗
(√

nα⊤rn
σσ∗

n

)
→ 0 in pr. as n→ ∞. (S2.11)

As shown by Rao and Zhao (1992), in order to prove (S2.6), it suffices to

prove

L∗(Zn) → N(0, 1) in pr. as n→ ∞. (S2.12)

In view of (S2.10), it is enough to demonstrate that for any ϵ > 0, we have

Ln(ϵ) ≡
n∑

i=1

1

nσ2σ∗2
n

(
α⊤D−1

n ψ(zi, θ0)
)2 E∗ ((wi − 1)2I (|ζin| ≥ ϵ)

) p−→ 0,

(S2.13)

as n→ ∞. Write

Tn = max
1≤i≤n

∣∣∣∣ 1

σ∗
n

√
n
α⊤D−1

n ψ(zi, θ0)

∣∣∣∣ = 1

σ∗
n

max
1≤i≤n

∣∣∣∣ 1√
n
α⊤D−1

n ψ(zi, θ0)

∣∣∣∣ .
On one hand, according to (S2.7) and the almost surely convergence of

σ∗2
n − σ2

n, the term σ∗2
n is also bounded away from zero almost surely. On

the other hand, we have max1≤i≤n

∣∣∣ 1√
n
α⊤D−1

n ψ(zi, θ0)
∣∣∣ p−→ 0. Thus, Tn

p−→ 0
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as n→ ∞. Then we have as n→ ∞,

Ln(ϵ) ≤
n∑

i=1

1

nσ2σ∗2
n

(
α⊤D−1

n ψ(zi, θ0)
)2 E∗ ((wi − 1)2I (Tn|w1 − 1| ≥ ϵ)

) p−→ 0.

This completes the proof of (S2.13). By the central limit theorem and

(S2.11), the proof of (S2.6) is completed. By a routine argument (Rao and

Zhao, 1992), we can derive from (S2.5) and (S2.6) that as n→ ∞,

sup
u

|P ∗(
√
nα⊤(θ∗n − θ̂n)/(σσ

∗
n) ≤ u)− P (

√
nα⊤(θ̂n − θ0)/σn ≤ u)| p−→ 0.

Finally, by σ∗2
n − σ2

n
a.s.−−→ 0, we have

sup
u

|P ∗(
√
nα⊤(θ∗n−θ̂n)/σ ≤ u)−P (

√
nα⊤(θ̂n−θ0) ≤ u)| p−→ 0, as n→ ∞.

S2.4 Proof of Proposition 2

For the common least-squares estimator, we have θ̂n = (
∑n

i=1 xix
⊤
i )

−1
∑n

j=1 xjyj.

Therefore,

var(α⊤θ̂n) = E
(
var(α⊤θ̂n|{zi}ni=1)

)
+ 0 = σ2

ϵα
⊤E

( n∑
i=1

xix
⊤
i

)−1
α.

It is well known that
∑n

i=1 xix
⊤
i follows a Wishart distribution and satisfies

E((
∑n

i=1 xix
⊤
i )

−1) = Σ−1/(n−mn − 1). Therefore, we have

mnvar(α
⊤θ̂n)

α⊤Σ−1α
= σ2

ϵ

mn

n−mn − 1
= σ2

ϵ

γn
1− γn − 1/n

.

As demonstrated in El Karoui and Purdom (2018), to prove the second

equation in the Proposition 2, it is without loss of generality to study Σ =
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Imn and θ0 = 0. In this case, we have α⊤Σ−1α = ∥α∥22 = 1. According to

the proof of Theorem 2 in El Karoui and Purdom (2018) (see Page 43-48),

it can be derived that

σ2
ϵ

γn trace
(
Σ̂−2

w

)
/n

[trace
(
Σ̂−1

w

)
/n]2

− 1

1− γn

 = mnE(var(α
⊤θ∗n|{zi}ni=1)) + op(1),

(S2.14)

trace
(
Σ̂−2

w

)
/n(

trace
(
Σ̂−1

w

)
/n
)2 =

1

bEwi

(
wi

(1+bwi)2

) + op(1), (S2.15)

where Σ̂w =
∑n

i=1wiziz
⊤
i , Σ̂

−2
w = (Σ̂−1

w )2, and b is the unique solution of

Ewi

(
1

1+bwi

)
= 1− γn. We have

bEwi

(
wi

(1 + bwi)2

)
= 1− γn − Ewi

(
1

(1 + bwi)2

)
. (S2.16)

According to equation (S2.14), (S2.15), (S2.16), we have

mn

E
(
var
(
α⊤θ∗n/σ|{zi}ni=1

))
α⊤Σ−1α

=
σ2
ϵ

σ2

 γn

1− γn − E
(

1
(1+bwi)2

) − 1

1− γn

+o(1).
S2.5 Derivation of Equation (2.3)

Let

mn
var(α⊤θ̂n)

α⊤Σ−1α
=
σ2
ϵ

σ2

[
γn

1− γn − f(γn)
− 1

1− γn

]
.

By straightforward caculations, we have

f(γn) =
(1− γn)

2(σ2γn − 1/n) + (1− γn)
3

(1− γn)(σ2γn + 1)− 1/n
.
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By ignoring the term of 1/n, we have

E(
1

(1 + bwi)2
) =

(1− σ2)γ2n + (σ2 − 2)γn + 1

1 + γnσ2
.

This completes the derivation.

S3 Proof of Corollaries

S3.1 Proof of Corollary 1

For smooth scores, by Taylor’s expansion and Dominated Convergence The-

orem, we have∣∣∣∣∣α⊤
n∑

i=1

Eθ0(ψ(zi, θ)− ψ(zi, θ0))− α⊤E(ϕ
′
(ϵi))

n∑
i=1

xix
⊤
i (θ − θ0)

∣∣∣∣∣
=

∣∣∣∣∣α⊤
n∑

i=1

1

2
(θ − θ0)

⊤E(ϕ
′′
(ϵi))xix

⊤
i (θ − θ0)xi

∣∣∣∣∣
≤ 1

2
sup
r

|ϕ′′
(r)|

n∑
i=1

|x⊤i (θ − θ0)|2|α⊤xi|

= O(
n∑

i=1

|x⊤i (θ − θ0)|2|α⊤xi|)

by (B2) for any α ∈ Sm. For jump scores, we also have∣∣∣∣∣α⊤
n∑

i=1

Eθ0(ψ(zi, θ)− ψ(zi, θ0)) + α⊤
∫ ∞

−∞
ϕ(r)f ′(r) dr

n∑
i=1

xix
⊤
i (θ − θ0)

∣∣∣∣∣
= O(

n∑
i=1

|x⊤i (θ − θ0)|2|α⊤xi|).

Further, by conditions (B3) and Young inequality,

O

(
n∑

i=1

|x⊤i (θ − θ0)|2|α⊤xi|

)
≤ B2mn

2n
O

(
n∑

i=1

|x⊤i α|4 + |x⊤i γ|2
)

= O(mn).
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Therefore, ifm2
n = o(n), then assumption (A4) holds. To verify ∥θ∗n−θ0∥2 =

Op(mn/n), the error bound of (A4) can be relaxed to o((nm)1/2), therefore,

m = o(n) is sufficient. By He and Shao (2000), if mn(logmn)
3/n → 0,

then conditions (B2)-(B3) imply assumptions (A1)-(A3) and (A5)-(A6)

with A(n,mn) = o(n/ log n). Furthermore, if m2
n logmn/n → 0 for smooth

scores or m3
n(logmn)

2/n→ 0 for jump scores, then assumptions (A1)-(A6)

are satisfied with A(n,mn) = o(n/(mn log n)). Thus, we have ||θ∗n − θ0||2 =

Op(mn/n) if mn(logmn)
3/n→ 0. In addition, by condition (B3), we have

sup
α∈Smn

n∑
i=1

|x⊤i α|4 ≤ sup
α,β∈Smn

n∑
i=1

|x⊤i α|2|x⊤i β|2 = O(n).

By (B2), E|ϕ(ϵi)|4 is bounded for both smooth and jump scores. Therefore,

for both types of scores, we have

1

n

n∑
i=1

E|α⊤ψ(zi, θ0)|4 =
1

n

n∑
i=1

∣∣α⊤xi
∣∣4E|ϕ(ϵi)|4 = O(1).

We have proved Dn = n−1E(ϕ
′
(ϵi))

∑n
i=1 xix

⊤
i for smooth scores and Dn =

n−1
∫∞
−∞ ϕ(r)f ′(r) dr

∑n
i=1 xix

⊤
i for jump scores. By conditions (B2)-(B3)

and Cauchy–Schwarz inequality, we have λmax(Dn) = O(1) for both scores.

By (B1), we have

n−1

n∑
i=1

E
∣∣α⊤ψ(zi, θ0)

∣∣2 ≥ λmin

(
n−1

n∑
i=1

xix
⊤
i

)
E|ϕ(ϵn)|2 > 0.

Therefore, (A7) is verified. This completes the proof of Corollary 1.



S3. PROOF OF COROLLARIES13

S3.2 Proof of Corollary 2

The derivative of ρ(z, θ) is

ψ(z, θ) =

(
ex

⊤θ

1 + ex⊤θ
− y

)
x.

Thus, we have E(ψ(zi, θ0)) = 0. Assumption (A1) is true since ρ is dif-

ferentiable in θ. By (C1), we have supα∈Smn

∑n
i=1 |α⊤xi|4 = O(n). This

implies

n∑
i=1

E|α⊤ψ(zi, θ0)|4 =
n∑

i=1

E

∣∣∣∣∣α⊤xi

(
ex

⊤
i θ0

1 + ex
⊤
i θ0

− yi

)∣∣∣∣∣
4

≤
n∑

i=1

∣∣α⊤xi
∣∣4 = O(n).

By Cauchy-Schwarz Inequality, we have

α⊤Dnα ≤ n−1

n∑
i=1

∣∣α⊤xi
∣∣2 ≤ n−1/2

√√√√ sup
α,β∈Sm

n∑
i=1

|α⊤xi|2|β⊤xi|2 = O(1).

This implies that λmax(Dn) has a finite upper bound. By (C2),

α⊤Dnα = n−1

n∑
i=1

ex
⊤
i θ0

1 + ex
⊤
i θ0

∣∣α⊤xi
∣∣2 ≥ λmin(Dn) > 0.

Together with (C1), the term

n−1

n∑
i=1

E
∣∣α⊤ψ(zi, θ0)

∣∣2 = n−1

n∑
i=1

ex
⊤
i θ0

1 + ex
⊤
i θ0

(
1− ex

⊤
i θ0

1 + ex
⊤
i θ0

)∣∣α⊤xi
∣∣2

is also bounded away from zero. Thus, assumption (A7) is verified. Ac-

cording to the result of He and Shao (2000), assumptions (A2), (A5) and

(A6) are satisfied with r = 2 and A(n,mn) = mn by (C1), and assumption

(A4) is implied by (C1) and (C2). Assumption (A2) is straightforward by
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(C1). Thus, we have ||θ∗n − θ0||2 = Op(mn/n) by mn logmn/n → 0, and

we have equation (2.2) by m2
n logmn/n → 0. This completes the proof of

Corollary 2.

S3.3 Proof of Corollary 3

The loss function ρ(z, θ) = ||z− θ|| is convex and its derivative is ψ(z, θ) =

−(z − θ)/||z − θ|| for θ ̸= z. For z = θ, the subdifferential set is

∂θρ(z, θ) = ∂θ∥z − θ∥ = {u ∈ Rmn : ∥u∥ ≤ 1}.

We consider ψ(z, θ) = 0 for z = θ. Therefore, we have∥∥∥∥∥
n∑

i=1

ψ(zi, θ̂n)

∥∥∥∥∥ = o(n1/2),

which verifies assumption (A1). To verify (A3), we have

E

∥∥∥∥∥
n∑

i=1

ψ(zi, θ0)

∥∥∥∥∥
2
 = E

(
n∑

i=1

n∑
j=1

ψ(zi, θ0)
⊤ψ(zj, θ0)

)
= n,

which further leads to

P

(∥∥∥∥∥
n∑

i=1

ψ(zi, θ0)

∥∥∥∥∥ ≥ C(nmn)
1/2

)
≤ n

C2nmn

=
1

mn

,

by Chebyshev inequality. Since

sup
τ :∥τ−θ∥⩽d

∥ψ(z, τ)− ψ(z, θ)∥ ⩽ 2d/∥z − θ∥,

we have assumption (A2) holds with r = 2, and assumptions (A5)-(A6)

hold with A(n,mn) = mn. Assumption (A4) holds with D = Dn = E[||z −
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θ0||2I − (z− θ0)(z− θ0)
⊤/||z− θ0||3] if m2

n/n→ 0, see He and Shao (2000).

By (D1), Eθ0(1/||z − θ0||2) < ∞ implies that Eθ0(1/||z − θ0||) < ∞. We

have

λmax(Dn) = max
α∈Smn

α⊤E

[
||z − θ0||2I − (z − θ0)(z − θ0)

⊤

||z − θ0||3

]
α ≤ E||z−θ0||−1.

We also have

n∑
i=1

E|α⊤ψ(zi, θ0)|4 =
n∑

i=1

|α⊤(zi − θ0)|4/||zi − θ0||4 ≤ n.

Meanwhile, by (D3), the term
∑n

i=1E|α⊤ψ(zi, θ0)|2/n is bounded away from

zero for any α ∈ Smn and any n. Thus, assumption (A7) holds. This

completes the proof of Corollary 3.

S4 Simulation Details

S4.1 The reversed percentile method

In this subsection, we show how the RW method constructs confidence

intervals for α⊤θ0 via the reversed percentile method for any α with a

bounded norm.

Given samples z1, . . . , zn and a random weight distribution with σ2 > 0,

we compute the RW estimator B times. Specifically, for b ∈ {1, . . . , B}, we

generate weights {wb
i}ni=1 and compute θ∗bn = argminθ∈Rmn

∑n
i=1w

b
iρ(zi, θ).
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The β-th quantile of {α⊤θ∗bn /σ}Bb=1 is defined by

Q̂β = inf

{
t ∈ {α⊤θ∗1n , . . . , α

⊤θ∗Bn } :
1

B

B∑
b=1

1(α⊤θ∗bn /σ ≤ t) ≥ β

}
.

Let the target coverage level be 1 − β0. The reversed percentile method

constructs confidence interval for α⊤θ0 by

Cβ0 = [(1 + 1/σ)α⊤θ̂n − Q̂1−β0/2, (1 + 1/σ)α⊤θ̂n − Q̂β0/2]. (S4.17)

Proposition S.1. Under the same conditions of Theorem 3, for any β0 ∈

(0, 1), we have

lim
n→∞,B→∞

P (α⊤θ0 ∈ Cβ0) = 1− β0,

where Cβ0 is defined in equation (S4.17).

Proof. Rewrite Cβ0 by[
α⊤θ̂n −

√
n(Q̂1−β0/2 − α⊤θ̂n/σ)√

n
, α⊤θ̂n −

√
n(Q̂β0/2 − α⊤θ̂n/σ)√

n

]
.

Let Q̃β denote the β-th quantile of the conditional distribution of
√
nα⊤(θ∗n−

θ̂n)/σ given {zi}ni=1. By Glivenko-Cantelli theorem, for any fixed n > 0 and

β ∈ (0, 1), we have
√
n(Q̂β − α⊤θ̂n/σ)− Q̃β → 0 as B → ∞ almost surely.

Let Qβ denote the β-th quantile of
√
nα⊤(θ̂n − θ0). We have

P

(
α⊤θ0 ∈

[
α⊤θ̂ −

Q1−β0/2√
n

, α⊤θ̂ −
Qβ0/2√
n

])
= 1− β0.

By Theorem 3 and the Continuous Mapping Theorem, we have Q̃β −Qβ
p−→

0. This completes the proof.
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Table S.1: MASDE for the spatial median.

mn Average SD Exp Gamma Gamma2 Gamma3 Pair

36 2.820 0.043 0.035 0.098 0.116 0.049

47 2.686 0.027 0.025 0.047 0.060 0.031

55 2.682 0.051 0.047 0.019 0.074 0.050

Table S.2: MACE and MCIW for the spatial median.

MACE MCIW

β0 mn Exp Gamma Gamma2 Gamma3 Pair Exp Gamma Gamma2 Gamma3 Pair

0.05 36 0.004 0.005 0.009 0.004 0.005 0.485 0.487 0.510 0.472 0.484

47 0.006 0.005 0.007 0.005 0.005 0.329 0.330 0.338 0.324 0.328

55 0.010 0.011 0.013 0.009 0.010 0.265 0.266 0.270 0.263 0.265

0.1 36 0.013 0.013 0.010 0.008 0.012 0.404 0.405 0.418 0.395 0.403

47 0.006 0.006 0.007 0.008 0.006 0.275 0.276 0.280 0.272 0.275

55 0.012 0.010 0.011 0.012 0.011 0.222 0.222 0.224 0.221 0.222

S4.2 Simulation for spatial median estimation

Let z1, . . . , zn be independent sampled from the mixture normal distribution

0.6N(0,Σ1) + 0.4(4, 2Imn), where (Σ1)ij = 0.8|i−j| for 1 ≤ i, j ≤ mn. Con-

sider the order mn = ⌊3n0.4⌋ and choose (n,mn) = (500, 36), (1000, 47),

(1500, 55). For each dimension of zi, we take θ̂n derived from simulated

data with a large sample size (n = 100000) as a proxy for θ0, where

θ̂n = argminθ∈Rmn

∑n
i=1 ∥zi − θ∥. Other settings are identical to those

in the logistic regression.
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Table S.3: Results of ∥θ∗n − θ0∥2/mn in the linear model.

mn Error Exp Gamma Gamma2 Gamma3 Pair Residual

19 Normal 0.161 0.169 0.288 0.105 0.178 0.123

Mixture 0.046 0.049 0.102 0.025 0.051 0.029

Double exp 0.057 0.061 0.119 0.033 0.064 0.038

24 Normal 0.073 0.077 0.129 0.048 0.078 0.059

Mixture 0.017 0.019 0.038 0.010 0.018 0.012

Double exp 0.073 0.077 0.129 0.048 0.078 0.059

32 Normal 0.027 0.029 0.048 0.018 0.028 0.023

Mixture 0.005 0.006 0.011 0.003 0.006 0.004

Double exp 0.007 0.008 0.014 0.004 0.007 0.006

39 Normal 0.013 0.014 0.023 0.009 0.013 0.011

Mixture 0.002 0.003 0.005 0.002 0.003 0.002

Double exp 0.003 0.003 0.006 0.002 0.003 0.003

Generally speaking, according to Table S.1 and Table S.2, the RWmeth-

ods perform well in variance estimation and interval estimation. The RW

method with Gamma weights has a slight advantage in estimating the stan-

dard deviation of
√
n(θ̂nj − θ0j).
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Table S.4: Results of ∥θ∗n − θ0∥2/mn in the logistic model.

mn Exp Gamma Gamma2 Gamma3 Pair

18 0.338 0.360 0.661 0.215 0.358

23 0.149 0.158 0.280 0.096 0.154

27 0.095 0.101 0.176 0.062 0.098

Table S.5: Results of ∥θ∗n − θ0∥2/mn for the spatial median.

mn Exp Gamma Gamma2 Gamma3 Pair

36 0.033 0.035 0.064 0.022 0.033

47 0.015 0.016 0.027 0.010 0.015

55 0.010 0.010 0.017 0.006 0.010

S4.3 Results of the squared l2 norm error

For completeness of the paper, we also compute ∥θ∗n − θ0∥2/mn for differ-

ent methods to show the validity of Theorem 1. Note that the task of

RW method is not parameter estimation, but approximates the sampling

distribution of the M-estimator θ̂n for statistical inference (e.g., interval

estimation).

Table S.3 - S.5 show that ∥θ∗n − θ0∥2/mn tends to zero as n increases,

which demonstrates Theorem 1. For RW methods, the lighter the tail of the

random weight wi, the smaller ∥θ∗n − θn∥2/mn is achieved. This is because

the weight wi is more concentrated around 1 when its tail is light, in which
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cases the RW estimator θ∗n is closer to θ0 because the weighted samples is

the closest to the original samples.
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The Indian Journal of Statistics, Series A 54 (3), 323–331.

Stout, W. F. (1974). Almost Sure Convergence. New York: Academic Press.


	Preliminaries
	Proof of Theorems and Propositions
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Proposition 2
	Derivation of Equation (2.3)

	Proof of Corollaries
	Proof of Corollary 1
	Proof of Corollary 2
	Proof of Corollary 3

	Simulation Details
	The reversed percentile method
	Simulation for spatial median estimation
	Results of the squared l2 norm error


