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S1 Preliminaries

First, we introduce an important lemma based on which our theorems are

obtained. Let R, = (my, log (n +m,))"2.

Lemma S.1. Let {v;(t),t € R™}, 1 < i < n be independent RP" valued

random variables with E(v;(t)) = 0 for all t. Assume that there exist ri > 0
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and ro > 0 such that for every s € R™,0<d<1,1<1i<n,

tllt—sl|<d

E ( sup  ||vi(¢) —vz-(s)||> < n"d".
Define
n 1/2 n 1/2
By(t,s) = (Z Ellvi(t) —"Uz'(S)HQ> , Valt,s) = (Z || (t) — Ui(8)||2>

Then

IS, 00 —uDll g o (S1.1)

sup
l[t]|<ns [|sl[<n7s 72 + Ba(t, s) + Va(t, )

for every r3 > 0.

Proof. The proof of Lemma can be seen in that of Lemma 3.2 in

and Shao| (2000). O

Lemma S.2. Under the assumption (A2), we have

1> ni (7, 0)]]

Sup _ n * w n * = O (Rn)J
el <nms ol<nms 72+ (i Ellnp (r, 0)[12)Y2 + 30 |0 (7, 0)| )2 7

sup >0 (r = 0) i (7, 0)||
lrli<nrs,oj<nrs 702 4 (Ooiy BT = 0) T (7,0)[12)V2 + X770 (7 = 0) T (7, 0)2)1/2
- Op(Rn)7
and

sup >0 atni(r,0)]]

llal|<n7s ||l <ns ol <nms 702 4 (i Bl (m,0)[2)V2 + 30 [laTni (7, 0)]]2)1/2

= Op(Rn)a
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for every r3 > 0, where nf(7,0) = wib(z;, 7) — wih(2;,0) — E((z, 7)) +

EW(%Q))‘

Proof. From the assumption (A2) and the boundedness of the weight vari-
able w;, it follows that there exists constant ¢ and r € (0, 2] such that for

0<d<l1,

maXEg( sup |9} (T, 9)||2> < nfd".

1=n 7il|r—ol|<d
Hence, v;(t) = wjth(z;, t) — E(¥(z;,t)) satisfies the condition of Lemma [S.1]
Consequently, the results of Lemmal[S.2] are easily obtained from LemmalS.1]

O

S2 Proof of Theorems and Propositions

In this section, we present the proofs of Theorems 1-3 and Proposition 2.

S2.1 Proof of Theorem 1

Since p(z,0) is a convex function with respect to 6 for given z, then G7(0)
is also convex on . Hence, we only need to demonstrate that for any e > 0,

there exists a constant B < oo such that

F)Q@W} 1m57¢@h60+zng/nﬂﬂﬁ)>o) >1—¢
=1
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for sufficiently large n. From Lemma together with assumptions (R1)

and (A4)-(A6), we have

S wiB 0 (zi,00 + Blma/n)25)

i=1

— z”: w; (2, 00) + B(mun)Y28T D, 8 + o(n'/?) + O, ((A(n, my)my log n)Y/?)

i=1

uniformly in g € S,,,. Due to A(n,m,) = o(n/logn), for sufficiently large

n, we have

l1811=1

( inf Zwlﬁ W( 21,90+B(mn/n)1/25) )

l1811=1

ZP<<m ~1/2 inf szﬁ ¢ 21790) (B/2))‘m1n(Dn)> :

By the assumption (A3) and the boundedness of the weight variable, we

have

lIBllI=1

P ((m n)~ Y2 inf Zwlﬁ (2, 00) > (B/Q))\min(Dn)> — 1, asn — oo.

Hence, the proof of Theorem 1 is completed.

S2.2 Proof of Theorem 2

For any « satisfying ||a|| = O(1) as m,, — oo, we have from Lemma

together with assumptions (R1) and (A4)-(A6) that

Z wia (2, 00) +na’ D, (05 —6p) = 0,(n'?) 4+ O,((A(n, my,)m, logn)'/?).

=1
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If A(n,m,) = o(n/(mylogn)), the right of equation has order o,(n'/?).
Since lim inf,, o Amin(Dy) > 0, we have the result of Theorem 2 by replacing

a with D, ta.

S2.3 Proof of Theorem 3

We only need to prove that Theorem 3 is valid for a € S,,,. We have from

Theorem 2 that for any o € S, ,

(wi 1)

Vo (05 —0,))0 = —— Z o D (2,60) +vna'r,, (S2.2)

Va6, — 6) ———Z o "D (2,00) + Vo€, (S2.3)

where ||r,|| = 0,(n"1/2) and ||&,|| = 0,(n"1/%). According to assumption

(AT), the variable ¥(z;, 6y) has mean zero. We have

n

1 < 1
= Var® (m ;QTDﬁliﬁ(Zi, 0o)(1 — wi)) == 121 (a" D5 (2, 60))°,

U'r21 = Var (% 1221: O‘TD;H/)(Z@ 00)) = % lzzl: L (aTD;1¢(Zi7 00))2 ’

First, we prove that 072 — 02 == 0. We have

a1 Z [ 22790)) — B (aTDglw(Zi,Ho))z] :

By assumption (A4), there exists a constant 0 < C' < oo such that

la "D < v Auas (Do D))l = <C (524
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for all n. By (S2.4) and Abel’s summation formula, we have

T 1
hmZVar D, w<zz,eo))

sup ZE}% 21,90)‘

< 1. aOGSmn =1
< ¢ lim (n+1)7?
n—1
1
1 S E 9
o> (@ E) Z_ gt 0l

< tim SOy RZ_IC I R -
= e 12 anee e TN\ R T 1

) CCQ k6+1 +]{35
S Ty T}E&Z Cczk‘l ¥ 2K3 + k2

< 0Q.

2 a.s.

By the strong law of large numbers, we have 0** — g2 =3 0.

Second, we prove

L(v/na' (0, —0y)/0,) — N(0,1), (S2.5)
and
L£*(v/na (05 = 0,)/(00%)) = N(0,1), in pr. (S2.6)

To proof equation (S2.5)), on one hand, we have \/na'¢, /o, = 0,(1) by (S2.3)
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and (A7) since

lim inf o2 =lim inf o' D;'Y, (D)) a > lim inf Ay (D, 'S.(D1)7Y) > 0.

n—o0 n—oo n—oo

(S2.7)

On the other hand, by Doob’s inequality (Stout|, |1974) and (A7), for any

€ >0,
P max l((JzTD’lw(z- 00))* — l02 > 2¢
1<i<n |n n v n "~
1 k

< l al — o2 >

< 2P (&5?2% - 51 D (z;,600))* = on| > 6)
1 & ’
E|=> (o' D (2, 00))° — o2 (52.8)
n

=1

= 2¢ 2n 2 Z Var (aTDglw(zi, 90))2
i=1
= 0(n°7?).
This implies that

LOCTD;LLp(Zi, 90)

n

max

p
— 0, as n — o0,
1<i<n

and further verifies the Lindeberg condition

O{TDglw(Zi, 90) Z

oo (

6)—)0, as 1 — 00.

1
T/
By the central limit theorem and Slutsky’s theorem, we complete the proof

of (523). By (522), we have

2
i=1 0

ZaTDglw(zi, 6) (w: — 1) + \/ﬁaTrn.

A 1
Tip* _ k)
\/ﬁa <9n en)/(aan) O';;\/ﬁ pa o O'O';kl
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Write
;— 1
g Z (b)Y (52.9)
o
T/ =1
and
1 (w; — 1)
in = o DMz, 00) ——-. S2.10
C o \/— (Z 0) ( )
By Theorem 2 and the almost sure convergence, we have
T
Iox (M> 50 inpr. asn — oo, (S2.11)
ook

As shown by Rao and Zhao (1992), in order to prove (S2.6)), it suffices to

prove

L(Z,) — N(0,1) in pr. as n — 0. (52.12)

In view of (52.10), it is enough to demonstrate that for any ¢ > 0, we have

n

Ly(e) = Z mzl 3 (o TDlew(zi,Go))QIE* ((w; — 1)%I (|G| > €)) 0,

(S2.13)

as n — oo. Write

_ [ _ 1 LR A
Tn—lrgzag); o = D (2, 00) —U—;kllrglia;fz %a D, (2, 00)| -

On one hand, according to (S2.7) and the almost surely convergence of

*2 2 *
o;° — o5, the term o}

2 is also bounded away from zero almost surely. On

the other hand, we have max;<;<, "D (2,00)| 2 0. Thus, T, &0

1
un
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as n — o0o. Then we have as n — o0,

_ 1
Li(e) <> e (@7 D (2, 600)) B ((wi — 121 (TyJwy — 1] > €)) & 0.
i=1 n

This completes the proof of (S2.13)). By the central limit theorem and

(S2.11]), the proof of (S2.6|) is completed. By a routine argument (Rao and

Zhao, 1992), we can derive from ((S2.5)) and (S2.6|) that as n — oo,
sup |P*(vna (05, — 0,)/(007) < u) — P(v/na' (0, — 6o) /o, < u)| £ 0.
Finally, by 072 — 02 2% 0, we have

sup |P*(v/na" (05 —=0,) /o < u)—P(v/na' (0,—0,) <u)| 50, as n— .

S2.4 Proof of Proposition 2

. N n TyV—1 n
For the common least-squares estimator, we have 0, = (3_i_, iz, )™ D5, 25y

%

Therefore,
" -1
var(a'6,) = E (Var(ozTénHzi ?:1)> +0=0%"E (Z $Z3:ZT> a.
i=1

It is well known that > | z;z; follows a Wishart distribution and satisfies

B2 izl )™Y) =271 /(n — m, — 1). Therefore, we have

i

mnvar(aTén) 9 My, 9 Y

a1 _Uen—mn—l _061—%—1/71'

As demonstrated in [El Karoui and Purdom| (2018)), to prove the second

equation in the Proposition 2, it is without loss of generality to study > =
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I, and 6y = 0. In this case, we have o' ¥ 'a = [|a||3 = 1. According to

the proof of Theorem 2 in [El Karoui and Purdom| (2018) (see Page 43-48),

it can be derived that

trace (i;z) /n 1

07 | = = my E(var(a" 05| {z}1)) + 0,(1),
[trace (E;}) /nl]? 1=
(52.14)
trace (f]f) /n 1
AL o), (s215)
(trace <Z;1> /n) bEy, <m>
where 3, = S wiziz|, ¥22 = (232 and b is the unique solution of

Ewi< L )zl—%. We have

14+bw;

bE,, ((HwT)?) = 1=, — B, ((1+—16w)2> . (S2.16)

According to equation ([S2.14)), (52.15)), (S2.16)), we have

E (var (a0 /ol{zi}l,)) _ o? Vo 1

m =
n T-1 2 1 1—7,
@ “ T l-m—E ((1+bwi)2> K

S2.5 Derivation of Equation (2.3)

Let

var(a'6,) o2

_ e Y 1
AT e T o2 L—%—f(%) 1—%J '

By straightforward caculations, we have

(1-— Vn)2(027n —1/n)+ (1 - 7n>3
(I =) (0% +1) = 1/n .

fl) =
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By ignoring the term of 1/n, we have

L 1=+ (@ = 2)m+1
(1 + buw,)? 1+ o2

E(

This completes the derivation.

S3 Proof of Corollaries

S3.1 Proof of Corollary 1

For smooth scores, by Taylor’s expansion and Dominated Convergence The-

orem, we have

TZE(;O (2, 0) — (2, 600)) — a " E(¢ (¢;) Zx:c (60— b))

ol Z 5(9 —00)"E(¢" () iz} (0 — 0p)

/\

< 5suplo(r |Z|x 0 — 00l

= O(3 a0~ B0l

by (B2) for any o € S,,. For jump scores, we also have

T ZEHO Zla 1/’(% 00)) + OéT /OO ¢(T d?"le 6 60 ‘
= O3 &7 (0 — B0)la )
=1

Further, by conditions (B3) and Young inequality,

0 (Zw <e—eo>|2|a%|> < B <Z el alt+ Ja] w) = O(ma)
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Therefore, if m2 = o(n), then assumption (A4) holds. To verify |0} —6]|* =
O,(m,,/n), the error bound of (A4) can be relaxed to o((nm)'/?), therefore,
m = o(n) is sufficient. By He and Shao| (2000), if m,,(logm,)*/n — 0,
then conditions (B2)-(B3) imply assumptions (Al)-(A3) and (A5)-(A6)
with A(n,m,) = o(n/logn). Furthermore, if m?2 logm,,/n — 0 for smooth
scores or m3 (logm,)?/n — 0 for jump scores, then assumptions (A1)-(A6)
are satisfied with A(n, m,) = o(n/(m, logn)). Thus, we have ||0} — 6y||* =

O,(my/n) if m,(logm,)?/n — 0. In addition, by condition (B3), we have

sup le al* < sup ZISE allz/ B* = O(n).

aESmnll a,B€Smy, ;1
By (B2), E|¢(e;)|* is bounded for both smooth and jump scores. Therefore,

for both types of scores, we have

1< 4
—ZE|a (2i,00)|* = Z|aT:ci| E|o(e)[* = O(1).
i=1
We have proved D,, = n " E(¢ (&) Y., x;x; for smooth scores and D,
n~t [7 ¢(r)f(r) dr Y.,z for jump scores. By conditions (B2)-(B3)
and Cauchy—Schwarz inequality, we have Ayax(Dy,) = O(1) for both scores.

By (B1), we have

nfle‘a 21,90‘ > mm( le )EW €n)]? > 0.

Therefore, (A7) is verified. This completes the proof of Corollary 1.
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S3.2 Proof of Corollary 2

The derivative of p(z, ) is

o e:r:TO
Y(2,0) = Tres YT

Thus, we have E(9(z;,0)) = 0. Assumption (Al) is true since p is dif-

ferentiable in 6. By (C1), we have sup,eg, >.i; | 2" = O(n). This
implies

n 790 4
EaT (zi,6p) Ela"zs | —— —

By Cauchy-Schwarz Inequality, we have

< Z }aTxirl = O(n).

n n
o' Dya < n7t Z }aTxi|2 <n 12 | sup Z laTx; 28T z;)2 = O(1).
a,BESm i—1

i=1
This implies that Apax(D;) has a finite upper bound. By (C2),

n

o -1 eni o T2
D,aa=n ;1+€z % ‘Oz ZL‘Z} ZAmin(Dn)>0-

Together with (C1), the term

v 2 - et e o 2

n 1;E|aT¢(zi,90)} =n 1;m <1 ﬁ) |cv 93,!
is also bounded away from zero. Thus, assumption (A7) is verified. Ac-
cording to the result of [He and Shao| (2000)), assumptions (A2), (A5) and
(A6) are satisfied with r = 2 and A(n,m,) = m, by (C1), and assumption

(A4) is implied by (C1) and (C2). Assumption (A2) is straightforward by
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(C1). Thus, we have ||6% — 6y||> = O,(m,/n) by m,logm,/n — 0, and
we have equation (2.2) by m?2logm,/n — 0. This completes the proof of

Corollary 2.

S3.3 Proof of Corollary 3

The loss function p(z,0) = ||z — 0| is convex and its derivative is ¢(z,0) =

—(z—=10)/||z —0]| for 8 # z. For z = 6, the subdifferential set is
9pp(2,0) = Opllz = 0l = {u € R™ : [jul] < 1}.

We consider 9(z,0) = 0 for z = 0. Therefore, we have

i=1

which verifies assumption (Al). To verify (A3), we have

D Vo) | =E (ZZM%,%)%(@,@O)) =n,

i=1 j=1
which further leads to

p<_

Z ¢(Z27 90)

= o(n'"),

E

> C’(nmn)l/2> < _ i,

- C?nm,, m,

by Chebyshev inequality. Since

sup |[4(z,7) — ¥(z,0)|| < 2d/[|= 0],

7| T—0||<d
we have assumption (A2) holds with » = 2, and assumptions (A5)-(A6)

hold with A(n,m,) = m,. Assumption (A4) holds with D = D,, = E[||z —
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00121 — (2 — 00)(z — 00) " /|2 — 6o||?] if m2/n — 0, see He and Shao| (2000).
By (D1), FEg(1/||z — 60||*) < oo implies that Ey,(1/]|z — 6|]) < co. We

have

Amax(Dn) = max o' E

< N
max a < El|lz—6y|

P|Z — 0o|[?T — (2 — 0p) (2 — )
||z — 0ol|?

We also have

S Ela" (= 00)]* Z|a (1 = 00)[*/lJ2i = ol|* < .
=1

Meanwhile, by (D3), the term > | E|a (2, 6p)|?/n is bounded away from
zero for any a € S, and any n. Thus, assumption (A7) holds. This

completes the proof of Corollary 3.

S4 Simulation Details

S4.1 The reversed percentile method

In this subsection, we show how the RW method constructs confidence
intervals for a'f, via the reversed percentile method for any a with a
bounded norm.

Given samples z1, . .., 2, and a random weight distribution with o2 > 0,
we compute the RW estimator B times. Specifically, for b € {1,..., B}, we

generate weights {w?}?_; and compute 6° = arg mingegmn y 5, wp(2;,0).
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The -th quantile of {a"60:°/a}E | is defined by

B
A 1
. T p*l TpxBY . T b
Qg—lnf{te{a 0. a0 }Eg 1« Qn/agt)ZQ}.

b=1

Let the target coverage level be 1 — ;. The reversed percentile method

constructs confidence interval for o', by
Cy = [(14+1/0)a 0, — Q1 oo, (1 + 1/o)a b, — Qg 2. (S4.17)

Proposition S.1. Under the same conditions of Theorem 3, for any By €
(0,1), we have

lim  Pla'6y € Cg) =1— P,

n—o00,B—00

where Cg, 1s defined in equation .

Proof. Rewrite Cg, by

Th \/E(Ql—ﬁo/Q - OfTén/U) TA \/ﬁ(Qb’o/Z - aTén/O’)
0] en — ,Oé GTL -
vn vn

Let Q 5 denote the 3-th quantile of the conditional distribution of v/na™ (6 —

0,)/0 given {z}™,. By Glivenko-Cantelli theorem, for any fixed n > 0 and
B € (0,1), we have \/H(Qg — aTén/a) — Qﬂ — 0 as B — oo almost surely.

Let Q3 denote the S-th quantile of vna (6, — 6,). We have

P (aTGO € {aTé— %,ofé— %]) =1-— 0.

By Theorem 3 and the Continuous Mapping Theorem, we have Qg — Qs TN

0. This completes the proof. n
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Table S.1: MASDE for the spatial median.

my, Average SD Exp Gamma Gamma2 Gamma3d Pair

36 2.820 0.043  0.035 0.098 0.116 0.049
47 2.686 0.027  0.025 0.047 0.060 0.031
55 2.682 0.051 0.047 0.019 0.074 0.050

Table S.2: MACE and MCIW for the spatial median.

MACE MCIW

6o m, Exp Gamma Gamma2 Gamma3 Pair Exp Gamma Gamma2 Gamma3d Pair

0.05 36 0.004 0.005 0.009 0.004 0.005 0.485  0.487 0.510 0.472 0.484
47 0.006  0.005 0.007 0.005 0.005 0.329  0.330 0.338 0.324 0.328

55 0.010 0.011 0.013 0.009 0.010 0.265 0.266 0.270 0.263 0.265

0.1 36 0.013 0.013 0.010 0.008 0.012 0.404  0.405 0.418 0.395 0.403
47 0.006 0.006 0.007 0.008 0.006 0.275 0.276 0.280 0.272 0.275

55 0.012 0.010 0.011 0.012 0.011 0.222 0.222 0.224 0.221 0.222

S4.2 Simulation for spatial median estimation

Let 21, ..., z, be independent sampled from the mixture normal distribution
0.6N(0,%) + 0.4(4,21,,,), where (3);; = 0.8 for 1 < 4,5 < m,. Con-
sider the order m,, = |3n%*] and choose (n,m,) = (500,36), (1000, 47),
(1500,55). For each dimension of z;, we take 6, derived from simulated
data with a large sample size (n = 100000) as a proxy for 6y, where
0, = argmingegmn Yol — 0]l. Other settings are identical to those

in the logistic regression.
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Table S.3: Results of ||0} — 0o||*/m,, in the linear model.

My Error Exp Gamma Gamma2 Gamma3d Pair Residual
19 Normal 0.161  0.169 0.288 0.105 0.178 0.123
Mixture 0.046  0.049 0.102 0.025 0.051 0.029
Double exp 0.057  0.061 0.119 0.033 0.064 0.038
24 Normal 0.073  0.077 0.129 0.048 0.078 0.059
Mixture 0.017  0.019 0.038 0.010 0.018 0.012
Double exp 0.073  0.077 0.129 0.048 0.078 0.059
32 Normal 0.027  0.029 0.048 0.018 0.028 0.023
Mixture 0.005  0.006 0.011 0.003 0.006 0.004
Double exp 0.007  0.008 0.014 0.004 0.007 0.006
39 Normal 0.013  0.014 0.023 0.009 0.013 0.011
Mixture 0.002  0.003 0.005 0.002 0.003 0.002
Double exp 0.003  0.003 0.006 0.002 0.003 0.003

Generally speaking, according to Table[S.I]and Table[S.2] the RW meth-
ods perform well in variance estimation and interval estimation. The RW
method with Gamma weights has a slight advantage in estimating the stan-

dard deviation of \/n(8,; — ;).
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Table S.4: Results of |0} — 6g||?/m,, in the logistic model.

my, Exp Gamma Gamma2 Gamma3 Pair

18  0.338  0.360 0.661 0.215 0.358
23 0.149  0.158 0.280 0.096 0.154
27 0.095 0.101 0.176 0.062 0.098

Table S.5: Results of ||07 — 6|/ /m, for the spatial median.

m, Exp Gamma Gamma2 Gamma3d Pair

36 0.033 0.035 0.064 0.022 0.033
47 0.015 0.016 0.027 0.010 0.015
55 0.010 0.010 0.017 0.006 0.010

S4.3 Results of the squared [, norm error

For completeness of the paper, we also compute [|0} — y]|?/m,, for differ-
ent methods to show the validity of Theorem 1. Note that the task of
RW method is not parameter estimation, but approximates the sampling
distribution of the M-estimator 6, for statistical inference (e.g., interval
estimation).

Table - show that ||0% — 6||>/m,, tends to zero as n increases,
which demonstrates Theorem 1. For RW methods, the lighter the tail of the
random weight w;, the smaller ||0% — 6,,||*/m,, is achieved. This is because

the weight w; is more concentrated around 1 when its tail is light, in which
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cases the RW estimator &7 is closer to 6, because the weighted samples is

the closest to the original samples.
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