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S1 Theoretical Proofs

S1.1 Proof of Proposition 1
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and
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We can see that both probabilities can be written as continuous decreasing
functions ¢;(c) and gs(c) in ¢ € R, with support inside |0, %] We further

notice that at the point ¢* such that go(c*) = 1, we have gi(c¢*) > 5. Thus

1
1

there exists an interval C' € [0, %] around c¢*, such that for any ¢ € C,

|% —qi(c)] > |}1 — g2(c)], thus proves the proposition.

S1.2 Proof of Proposition 2

From Lemma B3 in the Appendix, we know that for lower quantiles qz';zl (Riy) =

qg};(Rll) +0pn, (1) and qg;;(Rzg) = qg;; (Ri2) + 0pn, (1). The same results
hold for the upper quantile of 1 —a/2. Notice that R; ; = n*(x) — 1 (w) =
2T (B* = Bir) = 0pm,, (1), and Rip = 7" (2) = Ner2(w) = 7 (B* — ) + 2171 ~
N(0,03), where 03 = B2 + (8% — Y-14)7 (8% — 7-14r) > 0. Follow-

~

ing the proof in Xie & Zheng| (2022), we can show that qi%(ng) =
Opny + 02@(/2) > 0pp, = qi‘;;(ﬁ“), where ®(«/2) denotes the CDF

of the standard normal distribution. Similarly, we can prove the inequality

for the upper quantile 1 — a/2. Combining them, we prove the proposition.
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S1.3 Proof of Proposition 3

Noticing that the upper and lower limits of the confidence interval are
symmetric, we only need to show Sensg(ct) + Specy(ch) < Sens(cf; bi%) +
S];ec(cT; by) + «, and the lower bound will follow using similar arguments.

For the upper bound, we have that

Senso(ct) — Sens(cT; b'P)
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The last equality is reasoned in the proof of Theorem 1 in the Appendix.

Then similarly, letting ng = min{|Ds,|, |Deaol, | Disto|}, we obtain

Specy(ch) — Spec(ct; bP)

1 a0 A
= - [ Z 1(R; < ' —my(w;) < qa/’g(Rl-))
tst,0 J€TLtst,0
= Y Lmelxy) + a5 (R) < ¢ <))
J€ZLtst,0
1 a0 &
= Nitst.0 Z 1<Rj < qa/g(Ri)) = Oz/? + 0”0(1)'
5 J€Ltst,0

Thus, as min{|Dy,|, | Deal, | Dist|} — 00, we surely have Sensg(ct)+Specy(c) <

Sens(c; b*?)+Spec(ct; bo) +. This completes the proof of the Proposition.

S2 Additional numerical results

S2.1 Additional numerical results in Sections 1 and 2

This section provides additional numerical results for the simulation exper-
iments described in Section 1.2 and Section 2.3.

We generate three data sets of random samples, D,., D., and Dy
with different sample sizes of 500 and 5000 for each data set. Following
the same model, we simulate data from a logistic model (GM): n*(z) =
x1+ 1.4x9+1.8x3, where the three covariates are independently drawn from

the standard normal N(0,1). We construct the bootstrap confidence bands
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using Algorithm 1 for four classifiers: (TM1) 1,1 = 101 4 +%202 4r + 2305 4,
(TM2) my2 = ToYour + T3Y30r, (TM3) Myp3 = 21014 + T234,, and (TM4)
10-layer Neural Network model with outcome y and covariates x, xs, x3.
Following the standard model training procedure using the R functions glm
and neuralnet, we estimate the parameters 5., v, ¥y using Dy, U D, for
the standard bootstrap method and D, for the proposed conformal method.
In the application of the bootstrap method, in addition to the stan-
dard version introduced in Section 1.2, we include an additional bootstrap
method, referred to as “double bootstrap in this paper, which is operated
under a parametric bootstrap method for modeling training mn,(w) and
a non-parametric bootstrap method for the empirical sensitivity Sens(c).
In the implementation of “double bootstrap”, we first obtain resampling
copies of n°*, and then for individual copies of 0, we calculate its resam-
pled Sens(c)”, resulting in a construction of the confidence interval. The

details are given in the following Algorithm.

Algorithm S1. Constructing a bootstrap confidence interval for Sens(c)

with a given ¢ € R.

Step I: Train a linear classifier on training data and obtain . (w) = expit (wTﬁtr).
Step II: For b; € {1,2,---, B}, run the following loops.

Step I1.a Draw bootstrap sample Do} = {(yJ L)Y bl ~ Ber(my(w;))}.
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Step ILb Fit the logistic training model 1”* on the bootstrap data DP.
Step IL.c: Given by, for by € {1,2,--- | B}, run the following loops.
Step I1.cl: Draw bootstrap sample D2, = {(y?g, x?Q) :j €ZI2} and

set 72 | = {j € Tiw 1 2 = 1}

7b2

Step I1.c2: Calculate Sens” (c) = mlt - Zjel'b2 (g} (wy) > ¢)
St, tst,1
where nyq1 = |I{% 1| = [Tust -
Step III: Compute the empirical CDF

~ b1,b2

Fg(t) = % Zlﬁm:l 1 [, /Mitst1 (Séns

Step IV: Output Clg(c; ) of the form:

(c) — Séns(c)) <t].

[Sens(c) = F5' (1 — a/2)/ /M, Sens(c) — F5'(a/2)/ /1)
In addition to the t-bootstrap method, we also considered two al-
ternative approached to constructing bootstrap intervals from the boot-
strap samples generated from Algorithm 1 and Algorithm S1; they are, (a)
Clp,(c;a) = [Séns(c) — 1.966, Sens(c) + 1.966] and (b) Clpemp(c;a) =

b(c))} , where qV(SeAnsb(c)) denote the y-th quan

[qa/g(Sénsb(c)), ql_a/Q(Séns
tile of {Sénsb(c)}f.

To compare the proposed conformal method, we consider the batch
conformal inference method developed in Lee et al.| (2024) in a compari-
son. To reduce the randomness from the simulated data set, we repeatedly

generate the data sets Dy, D., and D, for 50 times and repeatedly imple-
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ment both bootstrap and conformal methods for each of the data set. All
the results are given in the following Tables |51 - The main results for
the average coverage rate and length of the confidence interval are reported
in Table [ST, The results confirmed the theoretical properties presented in
the main text: (a) The conformal confidence bands have an adequate cov-
erage (around 95% nominal level) for the oracle Sensy and specy; (b) the
non-parametric bootstrap confidence bands guarantee a proper coverage for
Sensy and Specy only when the working model is unbiased; (c) the dou-
ble bootstrap method also shows proper coverage, but with slightly larger
length, and the batch conformal inference method has similar results as
those given by our conformal method.

In Table [S2] we show that our proposed method achieves the best com-
putational efficiency; even with a large sample size of |D;.| = |D.| =
|Dyst] = 5000, our proposed method can easily finish the calculations within
minutes. In contrast, the double bootstrap method and the batch conformal
inference method take much longer time in their calculations.

Finally, to explain the bad coverage for non-parametric bootstrap method,
we present Table [S3| to show that this method only tries to cover Sens(c)
but not the real target Sensy(c), leading to under-estimated uncertainty,

which is problematic in practice.
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coverage for Sensg(c) average length

(TM1) (TM2) (TM3) (TM4) (TM1) (TM2) (TM3) (TM4)

t-bootstrap 0.933 0.734 0.324 0.951 0.23 0.22 0.25 0.23
non-parametric
bootstrap (B=1000) 2-sigma bootstrap 0.932 0.503 0.335 0.952 0.22 0.22 0.24 0.23
empirical bootstrap 0.943 0.689 0.325 0.945 0.22 0.23 0.25 0.22
t-bootstrap 0.986 0.962 0.984 0.961 0.35 0.59 0.81 0.31
double bootstrap
(B1 = By = 500) 2-sigma bootstrap 0.965 0.975 0.973 0.973 0.35 0.62 0.82 0.35
empirical bootstrap 0.978 0.965 0.981 0.982 0.34 0.63 0.79 0.31

batch conformal inference 0.952 0.952 0.932 0.943 0.31 0.56 0.78 0.28
conformal method
our proposed method 0.945 0.941 0.935 0.956 0.33 0.55 0.75 0.31

Table S1: Comparisons on coverage rate and average interval length across two bootstrap
methods (non-parametric and double bootstrap), three interval construction approaches,
and two conformal methods among four classifiers (TM1)-(TM4). “B” stands for the
bootstrap sample size, and 50 rounds of simulations are conducted to draw the summary

statistics.

S2.2 Additional numerical results in Section 3

In this section, we first provide the averaged confidence intervals for AUC
of specificity using conformal method: the 80% CI is [0.462, 0.890], the 90%
CI is [0.384,0.921] and the 95% CI is [0.246,0.925]. As discussed in the
main text, all three confidence intervals for specificity contain 0.5, showing
the existence of large uncertainty in the prediction of partial maturation.
Next, we provide some supplementary figures to the plots in Section 3

of the main text at higher confidence levels. Figures [S1| and [S2| correspond
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Nty = Nea = Nist = D00 Ngyr = Nea = Nist = 5000

TM1 TM2 TM3 TM4 TM1 TM2 TM3 TM4

t-bootstrap 31ls 30s 27s 123s 73s 68s 62s 933s
non-parametric
bootstrap (B=1000) 2-sigma bootstrap 30s 31ls 28s 129s 70s 64s 60s 930s
empirical bootstrap 28s 26s 25s 121s  62s 59s 58s 921s
t-bootstrap 423s 412s 392s 874s 1623s 1587s 1566s >1hr
double bootstrap
(B1 = By = 500) 2-sigma, bootstrap 427s 410s 402s 862s 1634s 1601s 1543s >1hr
empirical bootstrap 398s 388s 374s 802s 1602s 1520s 1459s >1hr

batch conformal inference 623s 612s 589s 1211s >1hr >1hr >1hr >1hr
conformal method
our proposed method 6s 58 5s 30s 25s 21s 20s 198s

Table S2: Comparison of run-time (in seconds) for one round of simulation under two
bootstrap methods (non-parametric and double bootstrap), three interval construction
approaches, and two conformal methods among four classifiers (TM1)-(TM4). “B”
stands for the bootstrap sample size, and 50 rounds of simulations are conducted to

draw the summary statistics.

to the 90% and 95% confidence bands for sensitivity and specificity, respec-
tively. We can see from these two figures that the 90% and 95% confidence
bands are wider and only 90% confidence interval for AUC of sensitivity is
above 0.5. This indicates that the prediction model exhibits a large uncer-

tainty at the confidence level 90% and 95%.
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Figure S1: The 90% ROC confidence bands for sensitivity (left) and specificity (right)
produced by conformal and bootstrap methods. Black solid line is the ROC of the
sexual maturation prediction; the green solid and dashed line correspond to the upper
confidence bands, while the blue solid and dashed line are the lower confidence bands of
the conformal and bootstrap methods, respectively. The red dashed line is the reference

line of random decision.
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Figure S2: The 95% ROC confidence bands for sensitivity (left) and specificity (right)
produced by conformal and bootstrap methods. Black solid line is the ROC of the
sexual maturation prediction; the green solid and dashed line correspond to the upper
confidence bands, while the blue solid and dashed line are the lower confidence bands of
the conformal and bootstrap methods, respectively. The red dashed line is the reference

line of random decision.
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coverage for Sens(c)

(TM1) (TM2) (TM3) (TM4)

t-bootstrap 0.962 0.953 0.954 0.993
non-parametric
bootstrap (B=1000) 2-sigma bootstrap 0.974 0.945 0.945 0.982
empirical bootstrap 0.959 0.952 0.962 0.987
t-bootstrap 1 1 0.992 1
double bootstrap
(B1 = By = 500) 2-sigma, bootstrap 1 0.995 0.995 1
empirical bootstrap 0.991 0.993 0.986 0.999
batch conformal inference 0.996 0.991 0.982 1
conformal method
our proposed method 1 1 0.995 1

Table S3: Comparisons on Coverage for the empirical sensitivity Sens(c) across two boot-
strap methods (non-parametric and double bootstrap), three interval construction ap-
proaches, and two conformal methods among four classifiers (TM1)-(TM4). “B” stands

for the bootstrap sample size, and 50 rounds of simulations are conducted to draw the

summary statistics.
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