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S1 Theoretical Proofs

S1.1 Proof of Proposition 1

As η∗(x) = xTβ∗ ∼ N(0, β∗Tβ∗), P (y = 1) = E exp
(
η∗(x)

)
1+exp

(
η∗(x)

) = 1
2
. Then,

OR(c;w) > 1⇔
∣∣1
4
−P

(
ηtr,1(w) > c, y = 1

)∣∣ > ∣∣1
4
−P

(
ηtr,2(w) > c, y = 1

)∣∣
Notice that given βtr being a consistent estimator, ηtr,1 − η∗(x) = xT (βtr −

β∗) = ontr,p(1). Denote the density function of η∗(x) as fη∗(x), we have that

P
(
y = 1, ηtr,1(w) > c

)
=

∫ ∞
−∞

P
(
y = 1, ηtr,1(w) > c | η∗(x) = t

)
fη∗(t)dt

= ontr(1) +

∫ ∞
−∞

P
(
y = 1 | η∗(x) = t

)
fη∗(t)1(t > c)dt = ontr(1) + g1(c)
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and

P
(
y = 1, ηtr,2(w) > c

)
=

∫ ∞
−∞

P
(
y = 1, ηtr,2(w) > c | η∗(x) = t

)
fη∗(t)dt

=

∫ ∞
−∞

P
(
y = 1 | η∗(x) = t

)
fη∗(t)P (ηtr,2(w) > c | η∗(x) = t)dt = g2(c).

We can see that both probabilities can be written as continuous decreasing

functions g1(c) and g2(c) in c ∈ R, with support inside [0, 1
2
]. We further

notice that at the point c∗ such that g2(c
∗) = 1

4
, we have g1(c

∗) > 1
4
. Thus

there exists an interval C ∈ [0, 1
2
] around c∗, such that for any c ∈ C,

|1
4
− g1(c)| > |14 − g2(c)|, thus proves the proposition.

S1.2 Proof of Proposition 2

From Lemma B3 in the Appendix, we know that for lower quantiles qca,1α/2 (R̂i,1) =

qca,1α/2 (Ri,1) + op,n1(1) and qca,1α/2 (R̂i,2) = qca,1α/2 (Ri,2) + op,n1(1). The same results

hold for the upper quantile of 1−α/2. Notice that Ri,1 = η∗(x)−ηtr,1(w) =

xT (β∗−βtr) = op,ntr(1), and Ri,2 = η∗(x)− ηtr,2(w) = xT (β∗−γtr) +x1γ1 ∼

N(0, σ2
2), where σ2

2 = β∗21 + (β∗−1 − γ−1,tr)
T (β∗−1 − γ−1,tr) > 0. Follow-

ing the proof in Xie & Zheng (2022), we can show that qca,1α/2 (R̂i,2) =

op,n1 + σ2Φ(α/2) > op,n1 = qca,1α/2 (R̂i,1), where Φ(α/2) denotes the CDF

of the standard normal distribution. Similarly, we can prove the inequality

for the upper quantile 1−α/2. Combining them, we prove the proposition.



S1. THEORETICAL PROOFS3

S1.3 Proof of Proposition 3

Noticing that the upper and lower limits of the confidence interval are

symmetric, we only need to show Sens0(c
†) + Spec0(c

†) ≤ ˆSens(c†; bup1 ) +

ˆSpec(c†; blo0 ) + α, and the lower bound will follow using similar arguments.

For the upper bound, we have that

Sens0(c
†)− ˆSens(c†; bup1 )

=
∑

j∈Itst,1

1
(
η∗(xj) > c†

)
ntst,1

−
∑

j∈Itst,1

1
(
ηtr(wj) + qca,11−α/2(R̂i) > c†

)
ntst,1

=
1

ntst,1

 ∑
j∈Itst,1

1
(
η∗(xj) > c†

)
− 1
(
ηtr(wj) + qca,11−α/2(R̂i) > c†

)
=

1

ntst,1

[ ∑
j∈Itst,1

1
(
η∗(xj) > c† ≥ ηtr(wj) + qca,11−α/2(R̂i)

)
−
∑

j∈Itst,1

1
(
η∗ ≤ c† < ηtr(wj) + qca,11−α/2(R̂i)

)]

=
1

ntst,1

[ ∑
j∈Itst,1

1
(
Rj > c† − ηtr(wj) ≥ qca,11−α/2(R̂i)

)
−
∑

j∈Itst,1

1
(
η∗ ≤ c† < ηtr(wj) + qca,11−α/2(R̂i)

)]

≤ 1

ntst,1

∑
j∈Itst,1

1
(
Rj > qca,11−α/2(R̂i)

)
= α/2 + on1(1).
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The last equality is reasoned in the proof of Theorem 1 in the Appendix.

Then similarly, letting n0 = min{|Dtr|, |Dca,0|, |Dtst,0|}, we obtain

Spec0(c
†)− ˆSpec(c†; bup1 )

=
1

ntst,0

[ ∑
j∈Itst,0

1
(
Rj ≤ c† − ηtr(wj) < qca,0α/2 (R̂i)

)
−
∑

j∈Itst,0

1
(
ηtr(xj) + qca,0α/2 (R̂i) ≤ c† < η∗(xj)

)]

≤ 1

ntst,0

∑
j∈Itst,0

1
(
Rj ≤ qca,0α/2 (R̂i)

)
= α/2 + on0(1).

Thus, as min{|Dtr|, |Dca|, |Dtst|} → ∞, we surely have Sens0(c
†)+Spec0(c

†) ≤

ˆSens(c†; bup1 )+ ˆSpec(c†; blo0 )+α. This completes the proof of the Proposition.

S2 Additional numerical results

S2.1 Additional numerical results in Sections 1 and 2

This section provides additional numerical results for the simulation exper-

iments described in Section 1.2 and Section 2.3.

We generate three data sets of random samples, Dtr, Dca and Dtst

with different sample sizes of 500 and 5000 for each data set. Following

the same model, we simulate data from a logistic model (GM): η∗(x) =

x1+1.4x2+1.8x3, where the three covariates are independently drawn from

the standard normal N(0, 1). We construct the bootstrap confidence bands



S2. ADDITIONAL NUMERICAL RESULTS5

using Algorithm 1 for four classifiers: (TM1) ηtr,1 = x1β1,tr+x2β2,tr+x3β3,tr,

(TM2) ηtr,2 = x2γ2,tr + x3γ3,tr, (TM3) ηtr,3 = x1ψ1,tr + x2ψ3,tr, and (TM4)

10-layer Neural Network model with outcome y and covariates x1, x2, x3.

Following the standard model training procedure using the R functions glm

and neuralnet, we estimate the parameters βtr, γtr, ψtr using Dtr ∪Dca for

the standard bootstrap method and Dtr for the proposed conformal method.

In the application of the bootstrap method, in addition to the stan-

dard version introduced in Section 1.2, we include an additional bootstrap

method, referred to as “double bootstrap in this paper, which is operated

under a parametric bootstrap method for modeling training ηtr(w) and

a non-parametric bootstrap method for the empirical sensitivity Sens(c).

In the implementation of “double bootstrap”, we first obtain resampling

copies of ηb1tr , and then for individual copies of ηb1tr , we calculate its resam-

pled Sens(c)b2 , resulting in a construction of the confidence interval. The

details are given in the following Algorithm.

Algorithm S1. Constructing a bootstrap confidence interval for Sens(c)

with a given c ∈ R.

Step I: Train a linear classifier on training data and obtain πtr(w) = expit
(
wTβtr

)
.

Step II: For b1 ∈ {1, 2, · · · , B}, run the following loops.

Step II.a Draw bootstrap sample Db1tr = {(yb1j , xj) : yb1j ∼ Ber
(
πtr(wj)

)
}.
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Step II.b Fit the logistic training model ηb1tr on the bootstrap data Db1tr .

Step II.c: Given b1, for b2 ∈ {1, 2, · · · , B}, run the following loops.

Step II.c1: Draw bootstrap sample Db2tst = {(yb2j , x
b2
j ) : j ∈ Ib2tst} and

set Ib2tst,1 = {j ∈ Itst : yb2j = 1}.

Step II.c2: Calculate ˆSens
b1,b2

(c) = 1
ntst,1

∑
j∈Ib2tst,1

1(ηb1tr (wj) > c)

where ntst,1 = |Ib2tst,1| = |Itst,1|.

Step III: Compute the empirical CDF

F̂B(t) = 1
B2

∑B
b1,b2=1 1

[√
ntst,1

(
ˆSens

b1,b2
(c)− ˆSens(c)

)
≤ t
]
.

Step IV: Output CIB(c;α) of the form:[
ˆSens(c)− F̂−1B (1− α/2)/

√
ntst,1, ˆSens(c)− F̂−1B (α/2)/

√
ntst,1

]
.

In addition to the t-bootstrap method, we also considered two al-

ternative approached to constructing bootstrap intervals from the boot-

strap samples generated from Algorithm 1 and Algorithm S1; they are, (a)

CIB,σ(c;α) =
[

ˆSens(c) − 1.96σ̂, ˆSens(c) + 1.96σ̂
]

and (b) CIB,emp(c;α) =[
qα/2( ˆSens

b
(c)), q1−α/2( ˆSens

b
(c))
]
, where qγ( ˆSens

b
(c)) denote the γ-th quan-

tile of { ˆSens
b
(c)}Bb .

To compare the proposed conformal method, we consider the batch

conformal inference method developed in Lee et al. (2024) in a compari-

son. To reduce the randomness from the simulated data set, we repeatedly

generate the data sets Dtr,Dca and Dtst for 50 times and repeatedly imple-
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ment both bootstrap and conformal methods for each of the data set. All

the results are given in the following Tables S1 - S3. The main results for

the average coverage rate and length of the confidence interval are reported

in Table S1. The results confirmed the theoretical properties presented in

the main text: (a) The conformal confidence bands have an adequate cov-

erage (around 95% nominal level) for the oracle Sens0 and spec0; (b) the

non-parametric bootstrap confidence bands guarantee a proper coverage for

Sens0 and Spec0 only when the working model is unbiased; (c) the dou-

ble bootstrap method also shows proper coverage, but with slightly larger

length, and the batch conformal inference method has similar results as

those given by our conformal method.

In Table S2, we show that our proposed method achieves the best com-

putational efficiency; even with a large sample size of |Dtr| = |Dca| =

|Dtst| = 5000, our proposed method can easily finish the calculations within

minutes. In contrast, the double bootstrap method and the batch conformal

inference method take much longer time in their calculations.

Finally, to explain the bad coverage for non-parametric bootstrap method,

we present Table S3 to show that this method only tries to cover Sens(c)

but not the real target Sens0(c), leading to under-estimated uncertainty,

which is problematic in practice.
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coverage for Sens0(c) average length

(TM1) (TM2) (TM3) (TM4) (TM1) (TM2) (TM3) (TM4)

non-parametric

bootstrap (B=1000)

t-bootstrap 0.933 0.734 0.324 0.951 0.23 0.22 0.25 0.23

2-sigma bootstrap 0.932 0.503 0.335 0.952 0.22 0.22 0.24 0.23

empirical bootstrap 0.943 0.689 0.325 0.945 0.22 0.23 0.25 0.22

double bootstrap

(B1 = B2 = 500)

t-bootstrap 0.986 0.962 0.984 0.961 0.35 0.59 0.81 0.31

2-sigma bootstrap 0.965 0.975 0.973 0.973 0.35 0.62 0.82 0.35

empirical bootstrap 0.978 0.965 0.981 0.982 0.34 0.63 0.79 0.31

conformal method
batch conformal inference 0.952 0.952 0.932 0.943 0.31 0.56 0.78 0.28

our proposed method 0.945 0.941 0.935 0.956 0.33 0.55 0.75 0.31

Table S1: Comparisons on coverage rate and average interval length across two bootstrap

methods (non-parametric and double bootstrap), three interval construction approaches,

and two conformal methods among four classifiers (TM1)-(TM4). “B” stands for the

bootstrap sample size, and 50 rounds of simulations are conducted to draw the summary

statistics.

S2.2 Additional numerical results in Section 3

In this section, we first provide the averaged confidence intervals for AUC

of specificity using conformal method: the 80% CI is [0.462, 0.890], the 90%

CI is [0.384, 0.921] and the 95% CI is [0.246, 0.925]. As discussed in the

main text, all three confidence intervals for specificity contain 0.5, showing

the existence of large uncertainty in the prediction of partial maturation.

Next, we provide some supplementary figures to the plots in Section 3

of the main text at higher confidence levels. Figures S1 and S2 correspond
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ntr = nca = ntst = 500 ntr = nca = ntst = 5000

TM1 TM2 TM3 TM4 TM1 TM2 TM3 TM4

non-parametric

bootstrap (B=1000)

t-bootstrap 31s 30s 27s 123s 73s 68s 62s 933s

2-sigma bootstrap 30s 31s 28s 129s 70s 64s 60s 930s

empirical bootstrap 28s 26s 25s 121s 62s 59s 58s 921s

double bootstrap

(B1 = B2 = 500)

t-bootstrap 423s 412s 392s 874s 1623s 1587s 1566s ≥1hr

2-sigma bootstrap 427s 410s 402s 862s 1634s 1601s 1543s ≥1hr

empirical bootstrap 398s 388s 374s 802s 1602s 1520s 1459s ≥1hr

conformal method
batch conformal inference 623s 612s 589s 1211s ≥1hr ≥1hr ≥1hr ≥1hr

our proposed method 6s 5s 5s 30s 25s 21s 20s 198s

Table S2: Comparison of run-time (in seconds) for one round of simulation under two

bootstrap methods (non-parametric and double bootstrap), three interval construction

approaches, and two conformal methods among four classifiers (TM1)-(TM4). “B”

stands for the bootstrap sample size, and 50 rounds of simulations are conducted to

draw the summary statistics.

to the 90% and 95% confidence bands for sensitivity and specificity, respec-

tively. We can see from these two figures that the 90% and 95% confidence

bands are wider and only 90% confidence interval for AUC of sensitivity is

above 0.5. This indicates that the prediction model exhibits a large uncer-

tainty at the confidence level 90% and 95%.
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Figure S1: The 90% ROC confidence bands for sensitivity (left) and specificity (right)

produced by conformal and bootstrap methods. Black solid line is the ROC of the

sexual maturation prediction; the green solid and dashed line correspond to the upper

confidence bands, while the blue solid and dashed line are the lower confidence bands of

the conformal and bootstrap methods, respectively. The red dashed line is the reference

line of random decision.
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Figure S2: The 95% ROC confidence bands for sensitivity (left) and specificity (right)

produced by conformal and bootstrap methods. Black solid line is the ROC of the

sexual maturation prediction; the green solid and dashed line correspond to the upper

confidence bands, while the blue solid and dashed line are the lower confidence bands of

the conformal and bootstrap methods, respectively. The red dashed line is the reference

line of random decision.
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coverage for Sens(c)

(TM1) (TM2) (TM3) (TM4)

non-parametric

bootstrap (B=1000)

t-bootstrap 0.962 0.953 0.954 0.993

2-sigma bootstrap 0.974 0.945 0.945 0.982

empirical bootstrap 0.959 0.952 0.962 0.987

double bootstrap

(B1 = B2 = 500)

t-bootstrap 1 1 0.992 1

2-sigma bootstrap 1 0.995 0.995 1

empirical bootstrap 0.991 0.993 0.986 0.999

conformal method
batch conformal inference 0.996 0.991 0.982 1

our proposed method 1 1 0.995 1

Table S3: Comparisons on Coverage for the empirical sensitivity Sens(c) across two boot-

strap methods (non-parametric and double bootstrap), three interval construction ap-

proaches, and two conformal methods among four classifiers (TM1)-(TM4). “B” stands

for the bootstrap sample size, and 50 rounds of simulations are conducted to draw the

summary statistics.
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