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S.1. Supplementary Materials

We provide the proofs of the theoretical results in this document.

S.1.1 Proof of Property 1

From Eqn. 2.3, we have

∆̂(N ,α, c)

=
1

|N |

(∑
z∈N

w(z)2 −
∑
z∈NL

w(z)2 −
∑
z∈NR

w(z)2 − |N |w̄2 + |NR|w̄2
R + |NL|w̄2

L

)

=
1

|N |

(
|NR|w̄2

R + |NL|w̄2
L − |N |( |NR|w̄R

|N |
+

|NL|w̄L

|N |
)2
)

=
1

|N |2

(
(|N ||NR| − |NR|2)w̄2

R + (|N ||NL| − |NL|2)w̄2
L − 2|NR||NL|w̄Lw̄R

)



S.1.2 Proof of Theorem 2

=
|NL||NR|
|N |2

(
w̄L − w̄R

)2

.

S.1.2 Proof of Theorem 2

Since Ln are leaf nodes, we have ∆̂(Ln) ≤ rn.

Now, consider any (α, c) that splits Ln in half. Then, using Eqn. 3.5 for

that split, we have: rn ≥ |LL
n ||LR

n |
|Ln|2

(
w̄L − w̄R

)2

.

We know |LL
n ||LR

n |
|Ln|

(
w̄L−w̄R

)2

follows noncentral χ2
1(k) with a non-centrality

parameter which we call k. Therefore, we have

rn ≥ χ2
1(k)

|Ln|
=⇒ |Ln| ≥

χ2
1(k)

rn
.

As χ2
1(k) is stocahastically larger than χ2

1, we can say:

P(|Ln| ≤ M) ≤ P(χ2
1 ≤ Mrn).

As rn → 0, we can conclude that |Ln| → ∞ in probability. If we choose rn

such that the RHS of the above inequality becomes summable, then we will

have almost sure convergence as well. In that case, we use a bound given
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by Ghosh (2021):

P(χ2
1 ≤ Mrn) ≤ exp

[
1

2

(
1−Mrn + log(Mrn)

)]
=
√

Mrnexp

(
1−Mrn

2

)
≤
√
eMrn.

Therefore, if {√rn} is summable, we have |Ln| → ∞ almost surely.

S.1.3 Proof of Theorem 3

Suppose, µ(Ln) → ℓ. Since |Ln| ≈ npµ(Ln), for large n, we also have

|Ln| → ∞. Assume
⋂
n

Ln = L. As µ(L) = ℓ > 0, we have Ln → L which

is non empty. Now consider a split along the direction α and constant c,

which splits L into LL and LR. The same hyperplane also splits Ln in LL
n

and LR
n . Then, we must have LL

n → LL and LR
n → LR. As Ln are leaf

nodes, we must have ∆̂(Ln,α, c) ≤ rn. Therefore,

1

|Ln|

[ ∑
z∈Ln

(
w(x, y)− w̄

)2− ∑
z∈LR

n

(
w(x, y)− w̄R

)2 − ∑
z∈LL

n

(
w(x, y)− w̄L

)2] ≤ rn

=⇒ |LL
n ||LR

n |
|Ln|2

(
w̄L − w̄R

)2

≤ rn.

=⇒ µ(LL
n)µ(LR

n )

µ(Ln)2

(
w̄L − w̄R

)2

≤ rn.

Note that w̄R and w̄L are the averages of right and left child respectively.

Now observe:
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w̄L =
∑
z∈LL

n

w(z)/|LL
n |

=
∑
z∈LL

n

(f(z) + ϵ(z))/|LL
n |

=

1
np

∑
z∈LL

n

f(z)

|LL
n |

np

+

∑
z∈LL

n

ϵ(z)

|LL
n |

→
(∫

LL

f(z)dµ

)
/µ(LL).

As the first term is the Riemann sum of the integral of f(z)ILL
n
(z), which

is bounded by f , we can use Dominated Convergence Theorem (DCT) to

get that limit. The second term converges to 0, due to the Strong Law of

Large Numbers (SLLN). As rn → 0, combining the above two results, we

have:

µ(LL)µ(LR)

µ(L)2

(∫
LL f(z)dµ

µ(LL)
−
∫
LR f(z)dµ

µ(LR)

)2

= 0. (S.1.1)

As µ(L) ̸= 0, and the choices of α and c were arbitrary, we note that:

∫
LL f(z)dµ

µ(LL)
=

∫
LR f(z)dµ

µ(LR)

=⇒
∫
LL f(z)dµ

µ(LL)
=

∫
L f(z)dµ

µ(L)

=⇒
∫
αT z≤c

f(z)dµ

µ({αT z ≤ c}
⋂
L)

=

∫
L f(z)dµ

µ(L)
(S.1.2)

for all possible splits. Define h(z) = f(z)∫
L f(z)dµ

. Consider a random variable



S.1.4 Proof of Corollary 1

X which takes values inside L with density h(z). From Eqn. (S.1.2), we

see that:

∫
αT z≤c

h(z)dµ =
µ({αT z ≤ c}

⋂
L)

µ(L)
= P(αTX ≤ c).

Therefore, all linear combinations of X have the same distribution as lin-

ear combinations of a uniform random variable on L. Hence, by Cramér-

Wold theorem, we can say X has uniform distribution on L, i.e., h(z) =

1
µ(L) a.e. =⇒ f(z) =

∫
L f(z)dµ

µ(L) a.e. Hence f(z) is a.e. constant on L.

S.1.4 Proof of Corollary 1

As Ln are convex, so is L. Therefore, if µ(L) = 0, then it is a convex set of

dimension less than p.

Suppose, the dimension of L is k < p. Consider µk to be the Lebesgue

measure corresponding to Rk on L. Hence, we have µk(L) ̸= 0.

Now as L is of dimension k, there must exist (n − k) axes which are

not parallel to the k-dimensional affine subspace L̄ which contains L. Call

them e1, e2, . . . en−k. Let Rn−k be the subspace generated by e1, e2, . . . en−k.

Now consider Rx = zx +Rn−k, where zx is the closest lattice point to x,

and define a new function:
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Jn(x) =

∑
y∈Rx

⋂
Ln

w(y)

|Rx

⋂
Ln|

∀x ∈ L̄.

We are basically superimposing the whole image onto L̄. Now, if we define

∆J(Ln) in a similar fashion to ∆, it is easy to observe that ∆J(Ln) ≤

∆(Ln) ≤ rn. Proceeding similarly to the proof of the above theorem, we

get:

µk(L̄L
n)µk(L̄R

n )

µ(L̄n)2

(
J̄L
n − L̄R

n

)2

≤ rn,

where

J̄L
n =

∑
x∈L̄L

n

Jn(x)/|L̄L
n |

=

∫
L̄L
n

Jn(x)dµkx/(|L̄L
n |/nk),

and J̄R
n is defined in a similar fashion. Observe that if f is continuous on L,

Jn(x) converges point-wise to f(x). Using dominated convergence theorem

(DCT) on the integral, we get:∫
L̄L
n

Jn(x)dµkx →
∫
LL

f(x)dµkx.

Then, proceeding similarly as the proof of Theorem 3, we get f is a.e.

constant in L. Remember that for small enough µ(Ln), we assume only

one JLC is present in Ln. Hence, if f is not continuous on a measure set
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with respect to µk on L, the same result holds. Otherwise, because of the

assumption of a JLC being approximately a lower-dimensional plane, and L

being convex, it must mean that the JLC contains L entirely or L contains

the JLC entirely.

S.1.5 Proof of Corollary 2

Applying k = 1 in Corollary 1.

S.1.6 Proof of Property 4

Property 4 holds because at most countably many sets of these unions are

distinctly non-empty, as there are at most countably many JLCs.

S.1.7 Proof of Lemma 1

Suppose that for all n, Lx
n contains at least one discontinuity point. Con-

sider Nϵ(x) to be an ϵ ball around x. As γ(Lx
n) → 0, we can say that

for every ϵ, there exists an nϵ > 0 such that ∀m > nϵ, γ(Lx
n) < ϵ, which

implies Lx
m ⊆ Nϵ(x). However, as Lx

m contains at least one discontinuity

point, say yn. Since {yn} is a bounded sequence, there exists a convergent

subsequence. Assume that the convergent subsequence converges to y. As

y ∈
⋂
n

Lx
n, we have ∥y − x∥ = 0 =⇒ y = x. Since the set of jump points
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is closed by definition, either y is a discontinuity point or a singular point.

Both options contradict our assumption that x is a non-singular continuity

point. Therefore, Lx
n cannot contain a discontinuity point ∀ n. Since Lx

n is

a non-increasing sequence of sets, we conclude that after some N , it does

not contain any discontinuity point.

S.1.8 Proof of Theorem 5

We prove this only on continuity points for which Lx does not contain an

entire JLC as the remaining points have measure zero. We divide this proof

into three different cases:

Case 1: f is not a.e. constant in
⋂
n

Lx
n. Hence we also have lim

n→∞
µ(Lx

n) = 0.

As per the assumptions,
⋂
n

Lx
n cannot lie entirely on a JLC. Hence, we have

lim
n→∞

γ(Lx
n). Using Lemma 1, ∃ N such that Lx

n does not contain any JLC

∀ n > N . In this case, ∀z ∈ Lx
n, we have:

|w(z)− f(x)| ≤ |f(z)− f(x)|+ |ε(z)| ≤ Cℓγ((Lx
n)) + |ε(z)|

=⇒

∣∣∣∣∣∣
∑
z∈Lx

n

w(z)− f(x)

∣∣∣∣∣∣ ≤ |Lx
n|Cℓγ(Lx

n) +

∣∣∣∣∣∣
∑
z∈Lx

n

ε(z)

∣∣∣∣∣∣
=⇒

∣∣∣f̂n(x)− f(x)
∣∣∣ ≤ Cℓγ(Lx

n) +

∣∣∣∣∣∣∣
∑

z∈Lx
n

ε(z)

|Lx
N |

∣∣∣∣∣∣∣ (S.1.3)

=⇒
∣∣∣f̂n(x)− f(x)

∣∣∣ n→∞−−−→ 0, using SLLN and Corollary 1.
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Case 2: f is a.e. constant in
⋂
n

Lx
n and lim

n→∞
µ(Lx

n) ̸= 0.

In this case, we know that f is a.e. constant in
⋂
n

Lx
n. So we have:

f̂n(x)− f(x) =

∑
z∈Lx

n

(f(z)− f(x))

|Lx
n|

+

∑
z∈Lx

n

ε(z)

|Lx
n|

=

1
np

∑
z∈Lx

n

(f(z)− f(x))

|Lx
n|/np

+

∑
z∈Lx

n

ε(z)

|Lx
n|

.

The numerator of the first term converges to
∫

⋂
n
Lx
n

(f(z) − f(x)) which is 0

as f is almost surely a.e. constant there, and the denominator converges to

lim
n→∞

µ(Lx
n) which is non-zero. Therefore, we have lim

n→∞
f̂n(x) = f(x) a.s.

Case 3: f is a.e. constant on
⋂
n

Lx
n and lim

n→∞
µ(Lx

n) = 0.

Observe that if ∃ k such that lim
n→∞

µk(Lx
n) ̸= 0, we can proceed similar to

Case 2. Therefore, without any loss of generality, we can assume γ(Lx
n) → 0,

and then proceed similarly to Case 1.

From above cases, we conclude that lim
n→∞

f̂n(x) = f(x) a.e., almost surely.

S.1.9 Proof of Theorem 6

While the following diagram of Ln is drawn for the 2-D case, the general

p-dimensional situation can be understood similarly. Note that the actual

leaf node is a convex polygon in the 2-D case and a convex polyhedron in

the general p-dimensional scenario. For the simplicity of drawing, the shape
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is shown as an ellipse rather than a convex polygon with many sides.

A

B

C
D

Diagram showing the BD-axis and AC-hyperplane of a leaf node Ln.

The line BD represents the maximum possible distance in the set along a

given direction u. AC is perpendicular to the gradient f
′
(x0), and hence,

for the general p-dimension, it is a hyperplane. Next, we want to split the

line BD along AC. In the general situation, we can split it using the plane

(f
′
(x0))

t(x − x0) = 0. The intuition behind this is as follows. As the

gradient along AC is close to zero, we can ignore changes in f(x) along the

line BD. Moreover, we can move the line or hyperplane in such a manner

that it splits the set into two equal parts, which lets us equate the fraction

n1n2

|Ln|2 to 1
4
.

Without any loss of generality, we can assume that x0 is the point of

intersection. If it is not, we can work with the intersection point itself,

but the value of the function f at that point will be similar to the given

point, as |f ′
(x)| lies between 3δ and δ. We then denote the two children

of the leaf node L by A and B. Approximating the average intensity by
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the corresponding Riemann integral and applying the SLLN to the random

errors, we have

w̄1 ≈

∫
A

f(x)dx

µ(A)
+O

(√
log log |Ln|

|Ln|

)

=
1

µ(A)

∫
A

(
f(x0) + (f

′
(ζ)t(x− x0)

)
dx+O

(√
log log |Ln|

|Ln|

)

=
1

µ(A)

∫
A

(
f(x0) + (f

′
(x0) + v)t(x− x0)

)
dx+O

(√
log log |Ln|

|Ln|

)

=
1

µ(A)

∫
A

(
f(x0) + (f

′
(x0))

t(x− x0)
)
dx+O

(
|v|γ(Ln)

)
+O

(√
log log |Ln|

|Ln|

)

= f(x0) +
1

µ(A)

∫
A

(f
′
(x0))

t(x− x0)dx+O
(
|v|γ(Ln)

)
+O

(√
log log |Ln|

|Ln|

)

= f(x0) +
1

µ(A)

∫
A

(f
′
(x0))

t(x− x0)dx+O(|v|) +O

(√
log log |Ln|

|Ln|

)
.

We have replaced f
′
(ζ) with

(
f

′
(x0) + v

)
in the above expressions. There-

fore, O(|v|) = O(δ), and hence we can choose δ arbitrarily small. Also, note

that f
′
(x0)

t(x − x0) = |f ′
(x0)|Hx where Hx is the height of the point x

from the line or hyperplane AC, and µ(A) = µ(B) = 1
2
µ(Ln). Moreover. if

the intersected part of the hyperplane has measure M with respect to µp−1,
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then 2Mγ(Ln) ≥ µ(Ln) implying that 1
µ(A)

≥ 1
Mγ(Ln)

. Therefore,

f̄1−f̄2 =
2|f ′

(x0)|
µ(Ln)

∫
A

Hxdx+

∫
B

Hxdx

 ≥ |f ′
(x0)|

Mγ(Ln)

∫
A

Hxdx+

∫
B

Hxdx

 .

(S.1.4)

The above integrals are larger than the integrals restricted to the quadri-

lateral or polyhedron, and the integrated height of the polyhedron is given

by H2M
p(p+1)

. Hence, we have

n1n2

|Ln|2
(
w̄1 − w̄2

)2
+O(|v|) +O

(
log log |Ln|√

|Ln|

)
>

|f ′
(x0)|2

4γ(Ln)2p2(p+ 1)2
(H2

A +H2
B)

2

≥ |f ′
(x0)|2

γ(Ln)2p2(p+ 1)2
(HA +HB)

4

16
= K−1

p γ(Ln)
−2|f ′

(x0)|−2
(
f

′
(x0))

t →γu(Ln)
)4
.

In the above expressions,
→
γu(Ln) represents BD as shown in the above

diagram, that is, the vector corresponding to the largest distance along the

direction u. As ∆ ≤ rn, we get

(
f

′
(x0))

t →γu(Ln)
)4

≤ Kpr
′

nγ(Ln)
2|f ′

(x0)|2(
f

′
(x0))

t →γu(Ln)
)
= O

((
r
′

nγ(Ln)
2
) 1

4 |f ′
(x0)|1/2

)
, (S.1.5)

where r
′
n = rn + O(|v|) + O

(
log log |Ln|√

|Ln|

)
. We can ignore O(|v|) < δ as we
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can choose it arbitrarily small. As γ(Ln)
2 → 0, we have

(f
′
(x0))

t →γu(Ln)) = o
(
(r

′

n)
1
4

)
. (S.1.6)

Since |Ln| > χ2
1/rn, and

log log |Ln|√
|Ln|

is a decreasing function in |Ln|,

o

(
log log |Ln|√

|Ln|

)
≤ o

(√
rn

∣∣∣ log ∣∣ log rn∣∣∣∣∣Cχ2
1

)
.

Hence,

(f
′
(x0))

t →γu(Ln) = o

((√
rn

∣∣∣ log ∣∣ log rn∣∣∣∣∣Cχ2
1

)1/4
)
. (S.1.7)

Note that the order in the RHS of the Eqn. (S.1.7) is free of u. Using

this, we have

f̂n(x0)− f(x0) =

∑
z∈Lx0

n

(f(z)− f(x0))

|Lx0
n |

+

∑
z∈Lx0

n

ε(z)

|Lx0
n |

= o

((√
rn

∣∣∣ log ∣∣ log rn∣∣∣∣∣Cχ2
1

)1/4
)

+ o

(
log log |Lx0

n |√
|Lx0

n |

)

= o

((√
rn

∣∣∣ log ∣∣ log rn∣∣∣∣∣Cχ2
1

)1/4
)

+ o

((√
rn

∣∣∣ log ∣∣ log rn∣∣∣∣∣Cχ2
1

))

= o

((√
rn

∣∣∣ log ∣∣ log rn∣∣∣∣∣Cχ2
1

)1/4
)
. (S.1.8)
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The above expression provides the convergence rate of f̂ at the points where

the first derivative is continuous and is non-zero. If the function f behaves

like a constant locally, then the diameter of the leaf-node at those points

can have a non-zero limit as n → ∞. This is due to Theorem 3.
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