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S.1. Supplementary Materials

We provide the proofs of the theoretical results in this document.

S.1.1 Proof of Property 1

From Eqn. 2.3, we have
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S.1.2  Proof of Theorem 2
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S.1.2 Proof of Theorem 2

Since L,, are leaf nodes, we have ﬁ(ﬁn) < 7.

Now, consider any (e, ¢) that splits £,, in half. Then, using Eqn. 3.5 for

2
R
that split, we have: r, > % (wL - wR) .

2
We know % (w L —wR> follows noncentral x3(k) with a non-centrality

parameter which we call k. Therefore, we have

2 2
|Lal T'n

As x2(k) is stocahastically larger than y3, we can say:
P(|L,| < M) <P(xi < Mry).

As r, — 0, we can conclude that |£,,| — oo in probability. If we choose r,,
such that the RHS of the above inequality becomes summable, then we will

have almost sure convergence as well. In that case, we use a bound given
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by \Ghosh| (2021):

1
P(x? < Mr,) < exp {5 (1 — Mr, + log(Mrn))}

1—Mr,
= Mrnexp(TT) < veMr,.

Therefore, if {,/7,,} is summable, we have |£,| — oo almost surely.

S.1.3 Proof of Theorem 3

Suppose, pu(L,) — £. Since |L,| =~ nPu(L,), for large n, we also have
|L,| — oo. Assume (L, = L. As u(L) = ¢ > 0, we have £,, — £ which
is non empty. Now consider a split along the direction o and constant c,
which splits £ into £F and £F. The same hyperplane also splits £, in £X
and L. Then, we must have £ — £ and £E — L. As £, are leaf

nodes, we must have ﬁ(ﬁn, a, c¢) < r,. Therefore,

|£1n| { S (wlay) =)= > (wlz,y) —wr)’ =Y (w(z,y) _U_JL)Q] .
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Note that wgr and wy are the averages of right and left child respectively.

Now observe:
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As the first term is the Riemann sum of the integral of f(2z)I.z(2), which
is bounded by f, we can use Dominated Convergence Theorem (DCT) to
get that limit. The second term converges to 0, due to the Strong Law of
Large Numbers (SLLN). As r,, — 0, combining the above two results, we

have:

W LYLR) ([ FZ)dp [on F(2)dp\?
p(L)? < wu(LE) (LR ) = 0. (S.1.1)

As (L) # 0, and the choices of o and ¢ were arbitrary, we note that:

(S.1.2)
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for all possible splits. Define h(z) = %. Consider a random variable
L
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X which takes values inside £ with density h(z). From Eqn. (S.1.2)), we

see that:

/T  hz)du = nia ;é;mﬁ) — P(aTX < o).

Therefore, all linear combinations of X have the same distribution as lin-
ear combinations of a uniform random variable on £. Hence, by Cramér-
Wold theorem, we can say X has uniform distribution on L, i.e., h(z) =

5 e = f(z) = % a.e. Hence f(z) is a.e. constant on L.

S.1.4 Proof of Corollary 1

As L, are convex, so is L. Therefore, if (L) = 0, then it is a convex set of
dimension less than p.

Suppose, the dimension of L is k < p. Consider u; to be the Lebesgue
measure corresponding to R* on £. Hence, we have p,(L) # 0.

Now as L is of dimension k, there must exist (n — k) axes which are
not parallel to the k-dimensional affine subspace L which contains £. Call
them ey, es,...6, . Let R, _; be the subspace generated by ey, es,... €, .
Now consider R, = z, + R,_x, Where z, is the closest lattice point to a,

and define a new function:
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We are basically superimposing the whole image onto L. Now, if we define
Ay(L,) in a similar fashion to A, it is easy to observe that A;(L,) <
A(L,) < r,. Proceeding similarly to the proof of the above theorem, we

get:

pe (L5 (L) JL_ R ’ <
p(e, e\ ) =
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and J% is defined in a similar fashion. Observe that if f is continuous on £,
Jn(x) converges point-wise to f(x). Using dominated convergence theorem
(DCT) on the integral, we get:

/Jn(:c)dukx%/f(m)dukx.

L 2
Then, proceeding similarly as the proof of Theorem 3, we get f is a.e.
constant in £. Remember that for small enough n(L,), we assume only

one JLC is present in £,. Hence, if f is not continuous on a measure set
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with respect to i on L, the same result holds. Otherwise, because of the
assumption of a JLC being approximately a lower-dimensional plane, and £
being convex, it must mean that the JLC contains £ entirely or £ contains

the JLC entirely.

S.1.5 Proof of Corollary 2

Applying k =1 in Corollary 1.

S.1.6 Proof of Property 4

Property 4 holds because at most countably many sets of these unions are

distinctly non-empty, as there are at most countably many JLCs.

S.1.7 Proof of Lemma 1

Suppose that for all n, £Z contains at least one discontinuity point. Con-
sider NV (x) to be an € ball around . As y(L*) — 0, we can say that
for every e, there exists an n. > 0 such that Vm > n., 7(£%) < €, which
implies £* C N (x). However, as L£F contains at least one discontinuity
point, say y,. Since {y,} is a bounded sequence, there exists a convergent
subsequence. Assume that the convergent subsequence converges to y. As

y € (L2, we have ||y — || =0 = y = . Since the set of jump points
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is closed by definition, either y is a discontinuity point or a singular point.
Both options contradict our assumption that @ is a non-singular continuity
point. Therefore, £¥ cannot contain a discontinuity point V n. Since LZ is
a non-increasing sequence of sets, we conclude that after some N, it does

not contain any discontinuity point.

S.1.8 Proof of Theorem 5

We prove this only on continuity points for which £* does not contain an
entire JLC' as the remaining points have measure zero. We divide this proof
into three different cases:

Case 1: fisnot a.e. constant in (| £¥. Hence we also have lim u(L¥) = 0.
n n—oo

As per the assumptions, [ £ cannot lie entirely on a JLC. Hence, we have
n

lim v(£?). Using Lemma 1, 3 N such that £¥ does not contain any JLC

n—o0

V' n > N. In this case, Vz € L% we have:
(w(z) — f(@)| < [f(2) = f(@)] + |e(z)] < C((L7)) + [e(2)]

— |3 w(z) - @) < 120 (e2) + |3 e(2)

2€LZ zeLZ
) > <(2)
— | ful@) — f(2)| < C(LP) + | = — (S.1.3)
%]

fa(x) = f(z)] === 0, using SLLN and Corollary 1.
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Case 2: f is a.e. constant in [ £Z and lim pu(L*) # 0.
n n—oo

In this case, we know that f is a.e. constant in [ £Z*. So we have:
n

2, (f(z) = f(=) > e(z)

-~ z€ELT z€LZ
5T UE-1@) X o)
T e e

The numerator of the first term converges to [ (f(2z) — f()) which is 0
NLE
as f is almost surely a.e. constant there, and the denominator converges to

lim p(L£Z) which is non-zero. Therefore, we have lim ﬁl(m) = f(x) as.
n—oo n— o0

Case 3: f is a.e. constant on Q[,;f and nll_)rglo u(LE) = 0.

Observe that if 3 £ such that nlgr;(} pip(L%) # 0, we can proceed similar to
Case 2. Therefore, without any loss of generality, we can assume y(LZ) — 0,
and then proceed similarly to Case 1.

From above cases, we conclude that lim f,(z) = f(x) a.c., almost surely.
n—oo

S.1.9 Proof of Theorem 6

While the following diagram of £,, is drawn for the 2-D case, the general
p-dimensional situation can be understood similarly. Note that the actual
leaf node is a convex polygon in the 2-D case and a convex polyhedron in

the general p-dimensional scenario. For the simplicity of drawing, the shape
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is shown as an ellipse rather than a convex polygon with many sides.

——

CD

Diagram showing the BD-axis and AC-hyperplane of a leaf node L,.

The line BD represents the maximum possible distance in the set along a
given direction u. AC is perpendicular to the gradient f'(a), and hence,
for the general p-dimension, it is a hyperplane. Next, we want to split the
line BD along AC. In the general situation, we can split it using the plane
(f (x0))'(x — xo) = 0. The intuition behind this is as follows. As the
gradient along AC' is close to zero, we can ignore changes in f(x) along the
line BD. Moreover, we can move the line or hyperplane in such a manner

that it splits the set into two equal parts, which lets us equate the fraction

Without any loss of generality, we can assume that xq is the point of
intersection. If it is not, we can work with the intersection point itself,
but the value of the function f at that point will be similar to the given
point, as |f ()| lies between 36 and §. We then denote the two children

of the leaf node £ by A and B. Approximating the average intensity by
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the corresponding Riemann integral and applying the SLLN to the random

errors, we have

d
I{f($) :12+O< loglog\£n|>

f(@a) + (/' (¢)' (@ — @0) )dw + O (,/ %ﬂ“)

- ﬁ/{/ (F(@o) + (f (w0) + v)! (@ — @0) ) da + O (, /%)

-5 / (F(o) + (f (o)) (@ — o) ) dz + O(fol(L2) +O (, /%)
= fl@o) + / (F (@)@ — wo)d + Ofol (£,)) + O (, | %)

= f(xo) + ﬁ A/(f’(mo))t(m — xg)dx + O(|v]) + O (, /%W) .

We have replaced f'(¢) with ( f(xo) + v) in the above expressions. There-

I
=
2~
—
VN

fore, O(]v|) = O(0), and hence we can choose  arbitrarily small. Also, note
that f'(xo)!(x — x0) = |f (x0)|H, where H, is the height of the point a
from the line or hyperplane AC, and p(A) = p(B) = su(L,). Moreover. if

the intersected part of the hyperplane has measure M with respect to p,_1,
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then 2M~(L,) > pu(L,) implying that ﬁ > m Therefore,

_ _ 9f
fi—f = A @l /de:c+/dew > /Hd +/Hda:
,U(En)
A B
S 1.4)
The above integrals are larger than the integrals restricted to the quadri-
lateral or polyhedron, and the integrated height of the polyhedron is given

by f; ﬁ) Hence, we have

nin 2 log log | £, (x0)]?

£n VIl ) nL ey
Zv(ﬁl{?éf(O;L 1)2 = ;;HB) =Ky 1W(£n>2|f'<wo)\Q(f’(w()))t%(,cn)f.

In the above expressions, %(ﬁn) represents BD as shown in the above
diagram, that is, the vector corresponding to the largest distance along the

direction u. As A <r,, we get

(f @o) ) = O((rr(La)?) IS (o) 2)) (S.1.5)

where 7, = 7, + O(|v|) + O(log\;’%” ) We can ignore O(|v|) < 0 as we
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can choose it arbitrarily small. As v(£,)* — 0, we have

(f' @o)) 7u(La)) = o(17)F). (S.1.6)

- loglog | £nl : .
Since |L£,| > x3/rn, and %ﬁl" is a decreasing function in |L£,],
n

VL]

log | log r, ‘

Hence,

log | log rn}

(F (o)) (L) = 0 (W c)/) s

Note that the order in the RHS of the Eqn. (S.1.7)) is free of u. Using

this, we have

2. (f(z) = f(®o)) 2 e(2)

-~ 2eL50 2eLn0
fn(mo) - f(wO) = |£ﬁo| + |£g0|

1/4 o
=0 (\/rn log!logrn| fo) +0(%LL”|>
L7
1/4
=0 (\/rn log!logrn| fo) +o0 ((\/rn CX%»))

1/4
=0 (\/rn log!logrn| fo) . (S.1.8)

log } log rn‘
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The above expression provides the convergence rate of fa,t the points where
the first derivative is continuous and is non-zero. If the function f behaves
like a constant locally, then the diameter of the leaf-node at those points

can have a non-zero limit as n — oo. This is due to Theorem 3.
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