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Supplementary Material to

Empirical Bayes data integration for multi-response regression

S.1 Convergence of the loss

We conduct a thorough simulation experiment to study the asymptotic approximation given

by Theorem 5. Specifically, we consider three scenarios:

1. Independence: Suppose X;; “C 7 such that E(X,;) = 0 and E(X}) = land E(X}?) <
oo fori=1,...,n, 5 =1,...,p. Here, the population covariance matrix is ¥, = I,.
This is satisfied by a large class of distributions, e.g. the exponential family. We set
7 to be N(0,1). Let S, = n ' X" X. For this setting, F, converges to the Marcenko-
Pastur distribution when p/n — ¢ € (0,1). Moreover, it can be shown that L;, =
tr[(S7! — £-1)28,] — 0 as n — oco. Thus Ly = lim, e Ly, = 0. We set &, to be the

proposed Stein shrinkage estimator from Theorem 6.

2. Weak dependence: Suppose XfXl P N(0,%,) for ¢ = 1,...,n where 3, ;; = 1
and X, jx = p? 7 when j # k for |p| < 1. This is an AR(1) structure. Unlike the
previous case, here an analytical form of L is unknown although the limiting spectral
distribution is known (Gray et al., 2006). We call it the weak dependence model since
Cov(X;;, Xix) = 0 as |j — k| = oo. For this case, we look at Ly, for different choices

of n. The estimator in is the same as the previous case.

1 did .
3. Strong dependence: Suppose X" ~ N(0,%,) for i = 1,...,n where &, = I, +

plp1,. We set p = 0.5. This is a spike-covariance model. Here also, L; is not
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Figure S.1: Behavior of L;, with n for concentration ratios ¢ = 0.1,0.3,0.5,0.7,0.9. The

sample size n = 50, 100, 200, 400, 800, 1000, 2000.

available analytically. We note however that F,, still converges to the Marcenko-
Pastur law (Baik and Silverstein, 2006). This is a strong dependence model since the
Cov(X;;, Xix) is constant with respect to |j — k|. Similar to the previous setting, we

look at the behaviour of L, ,, as n increases. The same estimator ¥, is also used here.

For all these cases, we report the behavior of L; ,, with n in Figure where we vary
the concentration ratio ¢ from 0.1 to 0.9 with increments of 0.2 and the sample size is
varied within {50, 100, 200, 400, 800, 1000,2000}. The results have been averaged over 100
replications. As can be seen from the results, the difference between the empirical and the
limiting loss is getting smaller for the Independence model as n grows, however, the
convergence is very slow. This is perhaps not surprising given that almost sure convergence
of even F), to F can be as slow as n~'/6 (Bai and Silverstein, 2010, Theorem 8.23), especially

when c is close to 1. For the other two models, the empirical loss also seems to be converging.
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S.2 Discussion on the risk of the proposed estimators

In this section, we provide a discussion on the risk of the proposed shrinkage rules. The
posterior expectation E(8®) | 30) = (I—C)3® where C = QY2(I+Q)~*Q /2, which is the
basis of the linear shrinkage rule. Equivalently, in matrix notation we obtain the decision
rule B(B) = B — BIQY2(I + 2)Q*%~'Q. To put things into a general framework, in the
following discussion we use the matrix-variate normal distribution |Gupta and Nagar (2018)).
A matrix X™*? is said to have a matrix-variate normal distribution with mean matrix M"*P
and covariance matrices U™*", VP*P (denoted as X ~ MN(M, U, V)) if its density function

is of the form:
1
p(X | M,U,V) x exp —Etr{Vfl(X — MU (X —M)}|.

Our current model and prior can be equivalently characterized as B | B~ MN(B,1,,Q)
and B ~ MN(0,I,,, Q'/?QQ"/?), where B and B are n x p matrices with each row containing
the vector 4® and 81, respectively. The marginal distribution of B is also a matrix-variate
normal distribution: B ~ MN(0,1,, Q"/2(I + Q)QY2). We write m(B) as the density of
the marginal distribution. The linear shrinkage rule B(B) = B + [V logm(B)]Q. This is a
generalization of Tweedie’s formula (Efron) 2011)) to the matrix-variate case. For the sequel,
let us assume @@ = 1. As long as ) is known, this assumption does not lose generality. An

adaptation of Stein’s risk result (Stein, 1981) for estimators B(B) = B+ V log m(B) in this

context gives

R(B,B) = E[tr(B — B)(B — B)"] = np — Eg[DB(B)],
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where
DB(B) = ||Vlegm(B)|} — 2V*m(B)/m(B), V*m(B) = Z Vim(B)

In the above expression, the expectation is taken with respect to the distribution of B |
B. The equality for R(E, B) quantifies the potential risk reduction for the estimator B
compared to the maximum likelihood estimator, which has np. For example, if V2m(§ ) <0
for all B , then B strictly improves over the maximum likelihood estimator.

In the mixture setup, the marginal distribution of B is m,(B) = S memi(B), where
each my(B) is the density of a matrix-variate normal distribution with mean 0, and co-

variance matrices I,, Q2Q,Q'?. The posterior mean also has a similar decomposition

~

Bpin(B) = B+ YK | 71(B)V log mi(B) with 73(B) = mumi(B)/m.(B), i.e. Bpin(B) =
S K m5(B)Bi(B). The risk of Bip(B) is then R(Buig, B) = np — Eg[DBis(B)]. This
can be characterized following (George, (1986, Corollary 3), which gives

DBiin(B) = Z i(B) | DBy(B) — —ZWZ )| Be(B) — Bi(B)|%

k=1

Thus, the risk gains of Bz is & (posterior) weighted combination of risk gains of DBy, and

a term that gives the shrinkage conflict between rules By and B,.

S.3 Covariance estimation simulation

In this section, our main focus is to compare the risk improvement in estimating a covariance
matrix 3 using the proposed estimator S(h) = UA(h)UT where the observed sample co-
variance S has the spectral decomposition S = UAU™. Here, A(h) = diag(d(h)) and 6(h) is
constructed following Theorem 6. We choose h according to Ledoit and Wolf (2022) denoted

as hg, and the proposed data-dependent method developed in Section 3.1, denoted as h.
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Additionally, we consider an oracle choice of A which is computed as follows. Given a range
of values of h, we compute %(h), and compute the corresponding risk E[L(Z7, S(h)™1)]
approximated by taking Monte Carlo averages over 100 replications. We then select the or-
acle h for which the risk is minimum. We write the oracle choice of h as h and the resulting
estimate of ¥ as ¥ = i(ﬁ) Clearly, this selection of h requires knowledge of the true X.
This forms the baseline of risk improvement that we would consider while computing the
percentage relative improvement in average loss (PRIAL) defined as

E[LE", 7] - EL(E~Y 5(h) 7]
E[L(X1,871)] - E[L(X, 27

PRIAL[E(h)] = x 100% (S.1)

We report the PRIAL as it varies over the concentration ratio p/n over the interval {0.1,0.2,
...,0.9}. Here, the product np is fixed at 20000, and then (n,p) are chosen such that the
concentration ratio is closest to elements of the set above. The true covariance matrix in
all these cases were assumed to have a factor structure, i.e. ¥ = Z=" + [, where = € RP*¥,
We set & = 5 for all cases and generate elements of = independently from N(0,1). All
expectations are approximated by 100 independent Monte Carlo replications.

The result is summarized in Figure [S.2] which shows that for smaller concentration
ratios, the default choice suggested by Ledoit-Wolf gives better results compared to the
data-dependent method developed here. However, the benefit of the data-dependent method
becomes apparent as we move into cases with a larger p/n, where the risk improvements

are significant.

S.4 Simulations for high-dimensional settings

In this section, we extend our experiments to settings where the number of tissues/sources

is n = 200 and p = 100, 120, 150, 500. The number of data points within each tissue/source
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Figure S.2: Relative savings loss PRIAL with h chosen following [Ledoit and Wolf (2022)
(LW) and the unbiased risk estimate procedure (unbiased) when the concentration ratio

p/n varies over the interval {0.1,0.2,...,0.9}.

is N = 1000 when (n,p) = (200,500). For all other cases, we set N = 200. This is to
ensure that the OLS estimator exists for all of these settings. For these high-dimensional
examples, we compared our linear shrinkage estimator with default choice of A (LS), the
linear shrinkage estimator with the data-dependent choice of h (ULS) versus other methods
- UTMOST, ISA. We do not report the proposed local linear shrinkage estimator as the
results were almost identical with LS/ULS. Also, the existing implementation of MASH
frequently ran into convergence issues in these high-dimensional settings. Hence, we do not
report results for this method as well. Finally, we note that for the case (n,p) = (200, 500),
the ULS estimator does not work since it assumes p < n. These results are reported in Tables
5.1 5.2 and [S.4] Our conclusions from these new experiments remain consistent from
our previous experiments - the proposed method performs significantly better across all

different settings.
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Low-rank Approximately sparse

LS ULS UTMOST ISA LS ULS UTMOST ISA

p=0 10.0009 0.0008 2.89 0.0003 | 0.002 0.002 0.013 0.039
p=0.5] 0.001 0.001 2.83 0.0006 | 0.004 0.004 0.015 0.04

p=100| p=0.8 | 0.004 0.004 4.79 0.001 | 0.01 0.01 0.03 0.04

p=0 1| 0.001 0.0009 2.99 0.0003 | 0.002 0.002 0.015 0.039
p=0.51] 0.002 0.001 3.16 0.0007 | 0.004 0.004 0.015 0.041

p=120 | p=0.8| 0.005 0.004 5.08 0.001 | 0.01 0.01 0.03 0.04

p=0 | 0.001 0.001 2.63 0.0006 | 0.002 0.002 0.015 0.04
p=0.5] 0.002 0.002 3.55 0.001 | 0.005 0.005 0.016 0.045

p=150 | p=08| 0.005 0.005 5.79 0.002 | 0.012 0.012 0.031 0.049

p=0 1| 0.001 - 2.78 0.0002 | 0.002 - 0.016 0.07
p=0.51] 0.002 - 4.90 0.0003 | 0.004 - 0.027 0.09
p=2500|p=0.81| 0.005 - 6.85 0.001 | 0.009 - 0.036 0.09

Table S.1: MSE of different estimators over 20 replications in high-dimensional settings.
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Horseshoe Mixture

LS ULS UTMOST ISA LS ULS UTMOST ISA

p=0 1|0.002 0.002 13.01 14.57 | 0.002 0.002 23.93 73.27
p=0.5]0.004 0.004 14. 21 11.54 | 0.005 0.005 22.86 71.60

p=100| p=0.8] 0.01 0.01 16.88 13.78 | 0.01  0.01 28.37 71.05

p=0 1]0.002 0.002 17.42 15.83 | 0.002 0.002 23.03 68.91
p=0.51]0.005 0.005 18.21 15.21 | 0.005 0.005 24.01 69.68

p=120 | p=0.8 | 0.013 22.81 16.37 0.012 | 0.012 25.77 72.31

p=0 |0.003 0.003 15.21 13.87 | 0.01 0.01 22.71 53.65
p=0.510.005 0.005 15.52 14.50 | 0.005 0.005 24.93 57.90

p=130|p=08| 0.01 0.01 16.90 14.66 | 0.01 0.01 28.72 65.22

p=0 10.003 - 150.01 45.04 | 0.002 - 25.03 67.32
p=0.510.004 - 153.77 44.39 | 0.004 - 48.57 74.01
p=29500|p=08| 0.01 - 152.87 59.31 | 0.005 - 53.97 76.29

Table S.2: MSE of different estimators over 20 replications in high-dimensional settings.
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Low-rank Approximately sparse

LS ULS UTMOST ISA | LS ULS UTMOST ISA

p=0 ]109 1.08 146.92 1.01 | 1.22 1.20 2.43 5.01
p=051]107 1.05 149.99 1.01 | 1.27 1.25 1.77 6.35

p=100|p=08| 112 1.08 86.27 1241120 1.14 1.54 5.54

p=0 | 107 1.06 436.4 1.01 ] 1.33 1.32 2.72 5.88
p=05]112 1.06 189.70 1.06 | 1.20 1.17 1.73 4.85

p=120 | p=0.8|1.16 1.12 133.76 1.22 1 1.28 1.26 1.85 7.41

p=0 115 1.13 167.41 1.06 | 1.43 1.35 3.33 7.10
p=05]121 1.05 183.3 1.11 | 148 1.43 2.33 7.14

p=130|p=08|1.15 1.12 182.83 1.10 | 1.47 1.40 2.05 5.42

p=0 | 147 - 713.4 1.08 | 1.93 - 8.60 20.17
p=05]157 - 881.4 1.12 | 1.96 - 8.03 16.94
p=29500|p=08|147 - 525.2 1.20 | 1.91 - 4.65 36.13

Table S.3: PE of different estimators over 20 replications in high-dimensional settings.
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Horseshoe Mixture

LS ULS UTMOST ISA LS ULS UTMOST ISA

p=0 |123 1.20 406.1 1115.2 | 1.28 1.21 1072.9 4938.9
p=05]126 1.19 401.7 1025.5 | 1.24 1.07 1158.5 o877.7

p=100| p=08]126 1.24 352.2 1067.2 | 1.23 1.17 953.2 6744.6

p=0 129 1.25 652.8 17241 | 1.39 1.33 2921.2 8493.4
p=05|135 1.27 768.1 16725 | 1.29 1.12 1402.7 9736.2

p=120 | p=08]1.31 1.29 807.3 12277 | 1.30 1.26 1276.3 8506.1

p=0 | 147 142 1382.8 2207.8 | 1.39 1.33 1610.5 8432.9
p=05]153 1.50 1872.2 1483.6 | 1.41 1.32 1849.1 7992.8

p=150| p=0.8]1.55 1.52 1923.5 1973.1 | 1.46 1.44 1689.6 8112.6

p=0 1207 - 5 x10% 233289193 - 11913.1  31440.7
p=05]243 - 5 x10* 204614 | 1.96 - 12135.4  34729.4
p=500|p=08]263 - 5x10%  22646.5 | 1.99 - 12282.4  33947.3

Table S.4: PE of different estimators over 20 replications in high-dimensional settings.
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S.5 Real data application on the Yeast Cell Cycle dataset

In this section, we apply the proposed LS method to the Yeast Cell Cycle dataset Chun and
Keleg (2010), and compare it with the existing ordinary least squares (OLS), the Unified Test
for MOlecular SignaTures (UTMOST) (Hu et al., 2019), the Iterated stable autoencoder
(ISA) (Josse and Wager], 2016)), and the Multivariate Adaptive Shrinkage (MASH) (Kim
et al.,[2024) methods. The Yeast Cell Cycle dataset contains 18 responses and 106 covariates
for 542 genes (i.e., sample size N = 542). Each of the responses represents mRNA levels
measured at every 7 minutes during 119 minutes. The covariates consist of the binding
information for 106 transcription factors.

We conduct a 10-fold cross-validation analysis for each response to evaluate the pre-
diction performance of each method. Specifically, for each response, we randomly split all
the observed samples into 10 equally sized folds, and name them Folds 1 — 10. For each
t=1,...,10, we treat Fold 7 in all the tissues as a testing set, and the remaining folds in
all the tissues together as a training set. We then use the average prediction mean squared
error (PMSE) across all the folds and responses for the evaluation of prediction accuracy.

The average PMSEs of all the methods are provided in Table[S.5] The results show that
the proposed method outperforms all the existing methods in terms of the average PMSE.
We also provide the PMSE of each response in the left plot of Figure [S.3] which shows
that the proposed method produces the smallest PMSE among all the methods for most of
responses. In addition, we calculate the Pearson correlation between the predicted values
and true values for each response and each method, and present the results in the right plot
of Figure [S.3] We can observe that the correlation corresponding to the proposed method

is higher than those of other methods for most responses.
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Figure S.3: Prediction mean squared error (PMSE) and correlation for each response and

each the method.

In summary, the proposed method works well in the multi-response regression for the

Yeast Cell Cycle dataset which is not related to TWAS.

Methods | Proposed (LS) OLS UTMOST ISA MASH

PMSE | 0.164 (0.095) 0.216 (0.103) 0.188 (0.091) 0.171 (0.089) 0.188 (0.087)

Table S.5: Average prediction mean squared errors (PMSEs) for different methods, with
standard deviation (SD) in the parentheses. “PMSE” represents the average PMSE across

all the 18 responses.
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S.6 Proofs of Sections 2 and 3

S.6.1 Proof of Proposition 1

Without loss of generality, set Q = I. Under the assumed model E(B | B) = B(I — ).

Thus,

E[L(B, B)] = E3E  5[L(B, B)

~EgEp 5 tr[{B(I— C) — BH{B(I - C) - B}"]

—E5E, pltr(BB")] - EgBy 5 [te{B(I — C) B} - BgEy 5 [{ B - O)B"}| +
+EgEp lr{B(I - O)(1 - C")B"}]

B, sltr(BB")] - Eg |tr{B(1 - C)(1 - C")B"}| — B |tr{B(1 - O)(1 - C")B"}]

+E5[tr{B(I— C)(1—C")B"}.
Since E5E  pltr(BB")] = E {EB| - [Zle B(“Tﬁ(“] } and
Eppltr(BUB")| =T tr[(I - C")] + Egltr(B(1 - C)(I - C")B")],
we have

E4E,5[L(B, B)| = Egltr(B(I - C)(1- C")B")] - E [tr{§<1 - C)(1-C")B"}
K, [tr{E(I _O)1— (JT)ET}} + E5[te{B(I— C)(1— C")B™}] + constant
= Ezltr{(I-C)— (1—C)}{(I - C) — (1— C)}"B"B] + constant
— Ex[tr{(C — C)(C — C)"}B" B] + constant

= Eé[tr{(i_l - E_I)Q}ETE] + constant,

which was to show.
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S.6.2 Proof of Theorem 5

Recall that

Lo (S50 = [ amdal? —2/00 S /Oo )
w5 = [ a2 [ Sae e+ [ )

Since #™ is a continuous function and ®5 > (z) converges weakly to ®2(z) by Lemma 1,

/ 2" dd D () 2™ dd D (z).

Assumption 4 and the continuous mapping theorem imply that

" as X

5.(1) o) 2(x) ()

for z € Supp(F). In addition, the convergence is uniform for z € UL [a) + n,bx — 7]
for any small 7 > 0. Furthermore, there exists a finite nonrandom constant M such that
|2 /6, (x)| and |z™/62(x)| are uniformly bounded from above by M almost surely for all
x € UK [ax — n, by + 1], large n, and small n > 0.

By (Ledoit and Wolf, 2018, Lemma 11.1), under our working assumptions, <I>£;”(x)

converges weakly to ®(~Y(x), ®(-1)(x) is continuously differentiable on R, and

_ / " SN E)dF ),

for Vx € R. Note that, by Silverstein and Choi (1995)), Silverstein and Bai (1995]), and

Silverstein (1995)), we also have
Fo(z) 3 F(z) Vz€eR,

and F(z) is continuously differentiable. Thus, similar to the proofs of (Ledoit and Wolf]

2018, Lemma 11.2), we can have

/Zaf& Ao, (@) = f;/bkéfﬂ“() F(o),
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and

/_ Z 6;;)%(@ 3 g / b 53’2)&?@).

1

S.6.3 Proof of Corollary 1

To find a function §(z) that minimizes the limit in Equation (3.4), for each fixed z, we take

derivative of

m

™ T
9= 4D
() +

(z) 62(x)
with respect to 9, and let it equal zero. Here we do not consider the first term in Equation
(3.4) since it does not involve d(x). Then, the minimizer is 1/¢(~Y(z).

S.6.4 Proof of Theorem 6

By the proof of (Ledoit and Wolf, 2022, Theorem 3.1), we obtain 6% (x) 2 §*(x) for any

x € Supp(F).

S.7 Proof of Theorem 7

We record the following results from Haddouche et al.| (2021); Boukehil et al.| (2021) which

will be useful in proving Theorem 7.

Lemma 2. Suppose Q) ~ W,(X,n), n > p and G(Q) is a p x p weakly differentiable matriz

function. If Ex [| tr{EZQG(Q)} |] < oo, then

Es [1{E7'QG(Q)}] =Es [tr {(n —p — 1)G(Q) +2Do(G(Q)"Q)},

where D¢ is a differential operator defined as Dg = {%(1 + dij)%} for 1 <i,5 < p with
ij

dij =1 1fi=j and 0 otherwise.
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Lemma 3. Suppose S = PLP" and G(S) = PY(L)P" are the spectral decomposition of S
and G(S), respectively for symmetric positive definite S. Then,
1
Ds{G(S)} = PEWPT 4 5tr{L—lxlf(L)}(Ip — PPY),

— i
— 1

where the j-th element of the diagonal matriz U is w = sz + = Z#]

We are now ready to prove Theorem 7. Setting G(S) = S(h)~! and applying Lemma [2| we

get

[ ( S-S5 (h )] = Es [tr{(n —p— 1)G(S) + 2Ds(G(S)"S)}]
—Es [t {(n—p— 1G(S) +2D5(5;'9)}]

=Es [tr {(n —p— 1)G(S) +2Ds(UAT'A'U™) }]

= Eyx [tr{(n —p - 1)G(S) +2Ds(UC(A")U")}]

=Es [tr {(n —p— 1)G(S) + 2U¢W(A")U™ + tr{A*'¢(A")}(I, — UUT)}]

where ((A*) is a diagonal matrix with j-th element (; = A;/d;, j = 1,...,p, and the last

equality follows by applying Lemma [3] Now, recall the definition of o:

— X
ot = aX eXg (), ZA N 5

+ BN\

where ¢; = (1 —p/n) and ¢y = 2(p/n). Hence,

65— da* )\'—1 da* )\fl 1 p )\'—1 o )\'—1 2 h2)\-_2

_Cl+029 (/\ ) ‘f‘Cg)\j_l gn(ijl ), gn(fjl ) = —Z)\;l ( il il )2 2 i2 2"
oA dX; dX; p &= T2 RN
Therefore,

oG 1 Nos;, 1 N ay 1 108!

ON: 0, 02ON 5, mdtON o AjOA!
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S.8 Proofs of Section 3.2

S.8.1 Proof of Theorem 8

The difference between the cases m = 0 and m > 1 comes from the presence of the term
™ for m > 1. Specifically, for m > 1, using Lemma from (Ledoit and Wolf, 2018, Lemma

14.1) we get that L,,, has the almost sure limit

L= [ a2 - 23 [ 2 s @are) + 13 [ 2w
/. Z/ 50) Z/ ()
L[ O™ gy _ 0270000
=m0 ]
:/_OO xmdcb”)(x)—QZ/k;(—; (1)(x)dF(x)+Z/k%dF(:c),

since dF(z) = (1/c)dF(z). For m = 0, Ly, = [ 4o (z) — 27 A5 (z) +

on(x)

ffooo %@)an(x). The limit can then be calculated using similar arguments as for the case

m > 1.

S.8.2 Proof of Corollary 2

The proof is similar to Corollary 1.

S.8.3 Proof of Theorem 9

Recall that mp(x) = emp(z) + (¢ — 1)/x when p > n. Define ®(z) =1— F(1/z) if 2 > 0

and 0 otherwise. Let W(z) = [*_td®(t), and for any real-valued function g,

U, (z) = %PV/OO 9(t)- L

0o — X




S.18

denote the Hilbert transform of g. The following relations are true (Ledoit and Wolf, 2022}

Appendix C, D)
Relmy(1/2)] = —xRe[mp(z)] Vo € Supp(F), Re[mg(z)] = nHy(x),

where 1) = dWV. Then,

A QCaajRe[ﬁ%F(x)]
T 1-c— QCxRe[(l/c)ﬁfF(x) —{(c—1)/cz}]
T o—1- QIxRe[mF(x)]
To—1+ 2Ri[m@(1/x)]
T 1

c—1+2rHy(1/2)  (c— o=t +2rHy(1/x)z1
Next consider the shrinkage function

-1

5% (z) = [(3 _ 1) ot 2x—1g;;(x—1)} T [(3 _ 1) o2 1y (@Y)]

n n

where @, () = 1 - F,(1/z), ¥, (z) = [ td®,(t), and ¢ = dT,. The result follows from

(Ledoit and Wolf, 2022, Theorem D.1).

S.9 Algorithm to estimate (7, X;) from Section 4

Input: A matrix E* with Bit) as the t-th row fort =1,...,n.

Output: Mean of E(3®) | B®) across T samples.

1. Initialize zq,...,2, € {0,1}%! where z; is the latent indicator vector corresponding

to the i-th row in §*.
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2. Set B\k as a matrix by extracting the i-th row in E* if and only if z;, = 1, and let ny =

number of rows of Ek, where z;;, is the k-th element in z;.
3. If ng > p, estimate X using the estimator from Theorem 6 with data B\k
4. If ny < p, estimate ¥ using the estimator from Theorem 9 with data Ek
5. Estimate m, = > | z/n.
6. Sample z(*) ~ Multinomial(pgt), o ,p&?) where p,(f) o ka(Ait); 0,%)

7. Compute E(3® | B = Zlep,(:)(l — Cp)BY where Cp = Q71/2%,Q71/2.

8. Repeat steps 2-7 T times.



Low-rank Approximately sparse

LS ULS LLS-2 LLS-3 LLS4 UTMOST ISA MASH LS ULS LLS-2 LLS-3 LLS4 UTMOST ISA MASH

p=0 |0.005 0.005 0.001 0.001 0.001 3.363 3.631  7.955 || 0.005 0.005 0.001 0.002 0.003 0.018 0.04  0.005
p=10| p=0.5 | 0.006 0.006 0.005 0.005 0.005 2.42 0.193  5.067 || 0.008 0.009 0.003 0.003 0.003 0.02 0.043  0.04

p=2028|0.015 0015 0.016 0.012 0.022 1.992 0.333  3.579 || 0.017 0.017 0.012 0.013 0.012 0.029 0.037  0.036

p=0 |0.004 0.004 0.003 0.004 0.003 3.333 0.003  8.156 || 0.006 0.005 0.002 0.002 0.001 0.018 0.043  0.005
p=20|p=05|0.007 0.007 0.009 0.044 0.005 3.598 0.006  8.229 0.01  0.01 0.008 0.002 0.005 0.018 0.04 0.02

p=08|0.017 0017 0.023 0.011 0.017 4.099 0.014 7.684 0.02 0.02 0.016 0.019 0.021 0.027 0.04  0.039

p=0 |0.005 0.004 0.003 0.003 0.003 3.141 0.003  7.796 || 0.006 0.006 0.001 0.002 0.002 0.018 0.04  0.006
p=230|p=0.5|0.009 0009 0.006 0.006 0.006 3.153 0.005  7.52 0.011 0.011 0.009 0.004 0.005 0.018 0.04  0.037

p=08| 002 0.02 0018 0.011 0.011 3.549 0.012  8.07 || 0.023 0.023 0.059 0.016 0.081 0.026 0.04 0.04

p=0 |0.003 0.003 0.008 0.003 0.004 3.384 0.003  8.635 || 0.005 0.005 0.002 0.002 0.008 0.017 0.039  0.007
p=20|p=05 10006 0.006 0.027 0.01 0.005 3.409 0.005  8.039 || 0.009 0.009 0.005 0.013 0.006 0.018 0.041  0.039

p=081] 0015 0.015 0.013 0.013 0.012 4.211 0.013  8.235 0.02  0.019 0.02 0.029 0.017 0.026 0.041  0.041

p=0 |0.004 0.004 0.009 0.008 0.003 3.004 0.002  7.678 || 0.005 0.005 0.001 0.001 0.001 0.017 0.04  0.007
n=750 p=30|p=050.007 0.007 0.005 0.009 0.005 3.638 0.004  8.861 0.01  0.01 0.003 0.009 0.003 0.018 0.039  0.038

p=208|0.017 0016 0.012 0.012 0.012 3.97 0.011 8115 || 0.022 0.022 0.044 0.019 0.235 0.025 0.04 0.04

p=0 |0.006 0.005 0.004 0.004 0.004 3.088 0.002  7.727 || 0.006 0.006 0.001 0.002 0.001 0.017 0.039  0.009
p=40|p=0.5 | 0.008 0.008 0.006 0.006 0.006 3.116 0.004 7.681 || 0.011 0.011 0.027 0.005 0.007 0.018 0.04  0.039

p=08|0.025 0028 0017 0.017 0.017 3.684 0.01  7.607 | 0.026 0.026 0.033 0.014 0.012 0.026 0.04 0.04

Table S.6: Mean of MSE for low-rank and approximately sparse settings when the number of tissues n = 40,50. For n = 40,
the number of covariates considered are p = 10, 20, 30, and for n = 50 they are p = 20, 30,40. The p denotes correlation among

the covariates.
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Horseshoe Mixture
LS ULS LLS-2 LLS-3 LLS4 UTMOST ISA MASH LS ULS LLS-2 LLS-3 LLS4 UTMOST ISA MASH
p=0 0.005  0.005 0.001 0.001  0.003 0.389 0.222 41.78 0.005 0.005 0.00009 0.0004 0.0004 18.734  69.816 69.815
p=10| p=0.5 | 0.009 0.009 0.002 0.001 0.002 0.099 0.467  11.757 0.009 0.009 0.0004 0.001 0.001 22,493  67.585 67.584
p=081] 0.019 0.019 0.008 0.009 0.012 0.646 0.225  43.664 0.025 0.025 0.001  0.002 0.004 36.026  68.666 68.665
p=0 0.005  0.005 0.001 0.003  0.001 5.455 0.291 29.18 0.006 0.006 0.001  0.001 0.0004 15.983  45.682 54.527
n=40 p=20|p=05| 0.01 0.01  0.003 0.004 0.002 2.262 0.205  21.588 0.01 0.01 0.001 0.004 0.005 24.738  71.846 72.975
p=081] 0.024 0.024 0.011 0.009 0.01 2.616 0.224 69.25 0.027 0.027 0.003  0.017 0.012 41.648 72.82  73.879
p=0 0.006  0.006 0.002 0.001  0.0003 0.34 0.15 21.305 0.006 0.006 0.0003 0.0002 0.0001 22.668  54.901 65.854
p=30|p=05] 0011 0.011 0.002 0.001 0.001 0.45 0.149 5.335 0.011 0.011 0.002 0.0004 0.0003  24.979 58.82 71.139
p=081 0027 0.027 0.014 0.004 0.015 0.765 0.155 9.985 0.028 0.028 0.003  0.001 0.001 37.602  57.827 72.047
p=0 0.005  0.005 0.0003 0.001  0.001 0.18 0.316  29.052 0.006 0.006 0.0001 0.014 0.0004  20.947  69.986 69.986
p=20|p=05| 001 0.01  0.002 0.002  0.002 0.288 0.263  13.965 0.011 0.011  0.001  0.001  0.002 23.517  70.569 70.569
p=081 0023 0.023 0.005 0.008 0.01 14937  0.201  33.898 0.026 0.026 0.001  0.004 0.003 41.638  72.403 72.403
p=0 0.006  0.006 0.004 0.001 0.0003 2.107 0.119  10.879 0.006 0.006 0.003  0.001 0.0001 24.988  68.049 74.969
n =50 p=30|p=05] 0007 0.007 0.005 0.009 0.005 3.638 0.004 8.861 0.011 0.011  0.002  0.001 0.001 23.57 62.323 67.754
p=081] 0028 0.028 0491 0.0003 0.002 83.803  4.601 227.233 | 0.029 0.029 0.009  0.002 0.002 25.804  62.456  67.89
p=0 0.006  0.006 0.004 0.0005 0.0005 20.473  3.221 3841.965 || 0.006 0.006 0.0002 0.0001 0.0001 30.739  59.232  72.502
p=40] p=0.5 ] 0.0121 0.0121 0.0002 0.0001 0.0004 10.9984  4.515 1253.4127 || 0.012 0.012  0.001  0.0004 0.0003  25.182  51.436 68.82
p=0381] 0031 0.031 0.003 0.0001 0.00009 7.493 5.558  238.306 0.03 0.03 0.002 0.001 0.001 36.298  51.744 69.121

Table S.7: Mean of MSE for Horseshoe and mixture settings with the

same settings considered above.
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Low-rank Approximately sparse

LS ULS LLS-2 LLS-3 LLS-4 UTMOST ISA MASH LS ULS LLS-2 LLS-3 LLS-4 UTMOST ISA MASH

p=0 | 1.052 1.052 1.056 1.06 1.052 32.243 35.378 75498 || 1.061 1.061 1.071 1.074 1.084 1.195 1429  1.06
p=10|p=05 | 1.042 1.042 1.046 1.046 1.044 14.891 2.652  45.399 || 1.038 1.038 1.044 1.051 1.049 1.099 1.408  1.168

p=08] 1025 1.025 1.037 1.183 1.03 16.589 2394 59.654 || 1.039 1.039 1.055 1.049 1.045 11 1.405 1.297

p=0 | 1.065 1.063 1.082 1.109 1.064 59.323 1.048 146.886 || 1.077 1.076 1.121 1.23  1.106 1.361 1.781  1.073

n=40 p=20|p=05| 1052 1.051 1.116 1.232  1.063 38.53 1.058 159.744 || 1.094 1.093 1.135 1.15  1.14 1.189 1.857  1.419
p=0.8] 1064 1.064 1.101 1.075 1.1 27.509 1.129  157.787 || 1.037 1.036 1.068 1.092 1.088 1.124 1.728 1.616
p=0 | 1146 1.138 1.146 1.167 1.147 99.17 1.081 249.926 || 1.185 1.181 1.188 1.198 1.207 1.552 2202 1.186
p=30|p=05| 1135 1.128 1.135 167.986 1.134 51.3 1.087  205.935 || 1.157 1.153 1.269 1.176  1.19 1.265 2253  1.828
p=081] 1.137 1.136 1.18  1.137 1.137 22.861 1.203  207.818 || 1.134 1.131 1.357 1.161 1.467 1.176 2105 2.07
p=0 | 1078 1.078 1.229 1.092 1.112 67.854 1.062 169.632 || 1.079 1.078 1.114 1.105 1.181 1.326 1.768 1.114
p=20|p=05| 1.068 1.069 1.468 1.136 1.068 36.253 1.083 149.564 || 1.104 1.104 1.125 1.233 1.148 1.201 1.787  1.703
p=08] 1076 1.075 1.084 1.092 1.08 26.82 1.163 176.953 || 1.09 1.089 1.137 1.209 1.128 1.157 1.911 1.896
p=0 | 1.072 1.069 1.469 1.166 1.072 85.227 1.04  217.24 || 1.207 1.207 1.215 1.238 1.212 1.622 2.358  1.277
n = 50

p=30|p=05| 1078 1.078 1.078 1.16 1.078 61.998 1.05 282444 || 1.168 1.166 1.18 1.255 1.169 1.285 2.235  2.039

p=08] 1073 1.07 1.073 1.073  1.073 28.372 113 240.155 || 1.137 1.136 1.437 122  2.042 1.146 2.073  2.057

p=0 || 1.196 1.183 1.196 1.196 1.196  126.587 1.087 308.133 || 1.291 1.288 1.287 1.295 1.267 1.726 2.621  1.429
p=40|p=05|1239 1235 1239 1.239 1.239 62.742 1189  325.571 || 1.28 1271 1.973 1.313 1.336 1.408 2,714 2.561

p=081 1236 1248 1.236 1236 1.236 29.764 1.239 284.038 || 1.239 1.234 1.397 1.266 1.247 1.288 2.496  2.493

Table S.8: Mean of PE for low-rank and approximately sparse settings when the number of tissues n = 40, 50. For n = 40, the
number of covariates considered are p = 10, 20, 30, and for n = 50 they are p = 20, 30,40. The p denotes correlation among the

covariates.
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Horseshoe Mixture

LS ULS LLS-2 LLS-3 LLS-4 UTMOST ISA MASH LS ULS LLS-2 LLS-3 LLS-4 UTMOST ISA MASH

n =40

p=0 1.03  1.03 1.033 1.031 1.06 7.905 3.253 62.921 1.072 1.072 1.072 1.077 1.071 174.86 663.571  663.568
p=10| p=0.,5 || 1.087 1.087 1.088 1.102 1.089 2.074 3.477 106.468 1.044 1.044 1.043 1.044 1.045 123.324 704.839  704.835

p=081] 1052 1.052 1.0561 1.057 1.063 3.455 3.216 349.183 1.042 1.042 1.041 1.038 1.037 155.127 744.975 744971

€C'S

p=0 | 1.112 1.113 1.128 1.168 1.134 85.393 6.364 320.396 1.107 1.107 1.103 1.155 1.15 444.867  1376.433 1387.943
p=20|p=05| 1118 1.118 1.139 1.146 1.129 57.086 5.168 507.273 1.131 1.131 1.133 1.19 1.153 247.869  1341.508 1355.575

p=08] 1114 1114 1148 1.136 1.143 14.528 5.073 1240998 || 1.098 1.098 1.099 1.138 1.112  251.947 1518.572 1539.977

p=0 | 1167 1.167 1.197 1.188 1.163 15.187 5.683 631.574 1.167 1.166 1.16 1.161 1.16 680.277  1632.223  1934.98
p=30|p=05| 1154 1153 1173 1162 1.17 14.385 5.784 158.461 1.163 1.163 1.174 1.156 1.153 379.048  1743.015 1979.399

p=081] 1169 1.167 1.239 1.181 1.266 8.398 5.099 270.007 119 119 1198 118 118 332.021  1780.478  2203.79

p=0 | 1109 1.109 1.11 1.118 1.12 4.448 7.113 504.101 1.111 1.111 1.111  1.295 1.111 428.534  1447.038 1447.033
p=20|p=05| 113 113 1139 1145 1.143 4.844 6.933 304.907 1106 1.107 1.105 1.11  1.117  242.846  1477.281 1477.276

p=081 1.099 1.099 1.096 1.113 1.118  143.691 5.566 711.598 || 1.068 1.068 1.064 1.069 1.065  253.064  1492.048 1492.043

p=0 | 1149 1.15 1214 1.158 1.153 50.395 4.671 358.337 1142 1.142 1217 1164 1.137 742.768  2078.155 2299.509

n=50 p=30]p=05] 1182 1.181 1.2 1.203  1.198 15.029 6.539 121.082 1.152 1.152 1.164 1.138 1.135 389.566  2042.295 2123.863

p=08] 1.144 1.144 2894 1.149 1.162 960.661  122.802 3322.108 || 1.149 1.149 1.162 1.129 1.13 160.469  1464.253 1678.723

p=0 | 1247 1.247 1344 1251 1.252 340.666  130.216  7640.402 1.25 1249 124 1229 1.234 1212.75  2345.017 2818.027

p=40|p=05] 1.194 1.194 1.2 1.193  1.193 317.62 185.923 55318.149 || 1.237 1.237 1.234 1.231 1.227  535.298  2061.745 2699.554

p=081] 1229 1.228 1.27 1.228 1.227 79.532 286.479 11073.277 || 1.204 1.202 1.199 1.192 1.193 356.081  1434.132  2051.96

Table S.9: Mean of PE for Horseshoe and mixture settings with the same settings considered above.
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