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S.1 Convergence of the loss

We conduct a thorough simulation experiment to study the asymptotic approximation given

by Theorem 5. Specifically, we consider three scenarios:

1. Independence: SupposeXij
iid∼ π such that E(Xij) = 0 and E(X2

ij) = 1 and E(X12
ij ) <

∞ for i = 1, . . . , n, j = 1, . . . , p. Here, the population covariance matrix is Σn = Ip.

This is satisfied by a large class of distributions, e.g. the exponential family. We set

π to be N(0, 1). Let Sn = n−1XTX. For this setting, Fn converges to the Marcenko-

Pastur distribution when p/n → c ∈ (0, 1). Moreover, it can be shown that L1,n =

tr[(Σ̃−1
n −Σ−1

n )2Sn] → 0 as n→ ∞. Thus L1 = limn→∞ L1,n = 0. We set Σ̃n to be the

proposed Stein shrinkage estimator from Theorem 6.

2. Weak dependence: Suppose Xp×1
i

iid∼ N(0,Σn) for i = 1, . . . , n where Σn,jj = 1

and Σn,jk = ρ|j−k| when j ̸= k for |ρ| < 1. This is an AR(1) structure. Unlike the

previous case, here an analytical form of L1 is unknown although the limiting spectral

distribution is known (Gray et al., 2006). We call it the weak dependence model since

Cov(Xij, Xik) → 0 as |j − k| → ∞. For this case, we look at L1,n for different choices

of n. The estimator Σ̃n is the same as the previous case.

3. Strong dependence: Suppose Xp×1
i

iid∼ N(0,Σn) for i = 1, . . . , n where Σn = Ip +

ρ1p1
′
p. We set ρ = 0.5. This is a spike-covariance model. Here also, L1 is not
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Figure S.1: Behavior of L1,n with n for concentration ratios c = 0.1, 0.3, 0.5, 0.7, 0.9. The

sample size n = 50, 100, 200, 400, 800, 1000, 2000.

available analytically. We note however that Fn still converges to the Marcenko-

Pastur law (Baik and Silverstein, 2006). This is a strong dependence model since the

Cov(Xij, Xik) is constant with respect to |j − k|. Similar to the previous setting, we

look at the behaviour of L1,n as n increases. The same estimator Σ̃n is also used here.

For all these cases, we report the behavior of L1,n with n in Figure S.1 where we vary

the concentration ratio c from 0.1 to 0.9 with increments of 0.2 and the sample size is

varied within {50, 100, 200, 400, 800, 1000, 2000}. The results have been averaged over 100

replications. As can be seen from the results, the difference between the empirical and the

limiting loss is getting smaller for the Independence model as n grows, however, the

convergence is very slow. This is perhaps not surprising given that almost sure convergence

of even Fn to F can be as slow as n−1/6 (Bai and Silverstein, 2010, Theorem 8.23), especially

when c is close to 1. For the other two models, the empirical loss also seems to be converging.
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S.2 Discussion on the risk of the proposed estimators

In this section, we provide a discussion on the risk of the proposed shrinkage rules. The

posterior expectation E(β(t) | β̂(t)) = (I−C)β̂(t) where C = Q1/2(I+Ω)−1Q−1/2, which is the

basis of the linear shrinkage rule. Equivalently, in matrix notation we obtain the decision

rule B̃(B̂) = B̂ − B̂[Q1/2(I + Ω)Q1/2]−1Q. To put things into a general framework, in the

following discussion we use the matrix-variate normal distribution Gupta and Nagar (2018).

A matrix Xn×p is said to have a matrix-variate normal distribution with mean matrixMn×p

and covariance matrices Un×n, V p×p (denoted as X ∼ MN(M,U, V )) if its density function

is of the form:

p(X |M,U, V ) ∝ exp

[
−1

2
tr
{
V −1(X −M)TU−1(X −M)

}]
.

Our current model and prior can be equivalently characterized as B̂ | B ∼ MN(B, In, Q)

and B ∼ MN(0, In, Q
1/2ΩQ1/2), where B̂ and B are n×p matrices with each row containing

the vector β̂(t) and β(t), respectively. The marginal distribution of B̂ is also a matrix-variate

normal distribution: B̂ ∼ MN(0, In, Q
1/2(I + Ω)Q1/2). We write m(B̂) as the density of

the marginal distribution. The linear shrinkage rule B̃(B̂) = B̂ + [∇ logm(B̂)]Q. This is a

generalization of Tweedie’s formula (Efron, 2011) to the matrix-variate case. For the sequel,

let us assume Q = I. As long as Q is known, this assumption does not lose generality. An

adaptation of Stein’s risk result (Stein, 1981) for estimators B̃(B̂) = B̂+∇ logm(B̂) in this

context gives

R(B̃, B) = EB[tr(B̃ −B)(B̃ −B)T] = np− EB[DB̃(B̂)],
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where

DB̃(B̂) = ∥∇ logm(B̂)∥2F − 2∇2m(B̂)/m(B̂), ∇2m(B̂) =
∑
j,k

∇2
jkm(B̂).

In the above expression, the expectation is taken with respect to the distribution of B̂ |

B. The equality for R(B̃, B) quantifies the potential risk reduction for the estimator B̃

compared to the maximum likelihood estimator, which has np. For example, if ∇2m(B̂) < 0

for all B̂, then B̃ strictly improves over the maximum likelihood estimator.

In the mixture setup, the marginal distribution of B is m⋆(B̂) =
∑K

k=1 πkmk(B̂), where

each mk(B) is the density of a matrix-variate normal distribution with mean 0, and co-

variance matrices In, Q
1/2ΩkQ

1/2. The posterior mean also has a similar decomposition

B̃mix(B̂) = B̂ +
∑K

k=1 π
⋆
k(B̂)∇ logmk(B̂) with π⋆k(B̂) = πkmk(B̂)/m⋆(B̂), i.e. B̃mix(B̂) =∑K

k=1 π
⋆
k(B̂)B̃k(B̂). The risk of B̃mix(B̂) is then R(B̃mix, B) = np − EB[DB̃mix(B̂)]. This

can be characterized following (George, 1986, Corollary 3), which gives

DB̃mix(B̂) =
K∑
k=1

π⋆k(B̂)

[
DB̃k(B̂)− 1

2

K∑
l=1

π⋆l (B̂)∥B̃k(B̂)− B̃l(B̂)∥2F

]

Thus, the risk gains of B̃mix is a (posterior) weighted combination of risk gains of DB̃k and

a term that gives the shrinkage conflict between rules B̃k and B̃l.

S.3 Covariance estimation simulation

In this section, our main focus is to compare the risk improvement in estimating a covariance

matrix Σ using the proposed estimator Σ̃(h) = U∆(h)UT where the observed sample co-

variance S has the spectral decomposition S = UΛUT. Here, ∆(h) = diag(δ(h)) and δ(h) is

constructed following Theorem 6. We choose h according to Ledoit and Wolf (2022) denoted

as h0, and the proposed data-dependent method developed in Section 3.1, denoted as ĥ.
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Additionally, we consider an oracle choice of h which is computed as follows. Given a range

of values of h, we compute Σ̃(h), and compute the corresponding risk E[L(Σ−1, Σ̃(h)−1)]

approximated by taking Monte Carlo averages over 100 replications. We then select the or-

acle h for which the risk is minimum. We write the oracle choice of h as h and the resulting

estimate of Σ as Σ = Σ̃(h). Clearly, this selection of h requires knowledge of the true Σ.

This forms the baseline of risk improvement that we would consider while computing the

percentage relative improvement in average loss (PRIAL) defined as

PRIAL[Σ(h)] =
E[L(Σ−1, S−1)]− E[L(Σ−1, Σ̃(h)−1]

E[L(Σ−1, S−1)]− E[L(Σ−1,Σ−1]
× 100% (S.1)

We report the PRIAL as it varies over the concentration ratio p/n over the interval {0.1, 0.2,

. . . , 0.9}. Here, the product np is fixed at 20000, and then (n, p) are chosen such that the

concentration ratio is closest to elements of the set above. The true covariance matrix in

all these cases were assumed to have a factor structure, i.e. Σ = ΞΞT + Ip where Ξ ∈ Rp×k.

We set k = 5 for all cases and generate elements of Ξ independently from N(0, 1). All

expectations are approximated by 100 independent Monte Carlo replications.

The result is summarized in Figure S.2, which shows that for smaller concentration

ratios, the default choice suggested by Ledoit-Wolf gives better results compared to the

data-dependent method developed here. However, the benefit of the data-dependent method

becomes apparent as we move into cases with a larger p/n, where the risk improvements

are significant.

S.4 Simulations for high-dimensional settings

In this section, we extend our experiments to settings where the number of tissues/sources

is n = 200 and p = 100, 120, 150, 500. The number of data points within each tissue/source
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Figure S.2: Relative savings loss PRIAL with h chosen following Ledoit and Wolf (2022)

(LW) and the unbiased risk estimate procedure (unbiased) when the concentration ratio

p/n varies over the interval {0.1, 0.2, . . . , 0.9}.

is N = 1000 when (n, p) = (200, 500). For all other cases, we set N = 200. This is to

ensure that the OLS estimator exists for all of these settings. For these high-dimensional

examples, we compared our linear shrinkage estimator with default choice of h (LS), the

linear shrinkage estimator with the data-dependent choice of h (ULS) versus other methods

- UTMOST, ISA. We do not report the proposed local linear shrinkage estimator as the

results were almost identical with LS/ULS. Also, the existing implementation of MASH

frequently ran into convergence issues in these high-dimensional settings. Hence, we do not

report results for this method as well. Finally, we note that for the case (n, p) = (200, 500),

the ULS estimator does not work since it assumes p < n. These results are reported in Tables

S.1, S.2, S.3, and S.4. Our conclusions from these new experiments remain consistent from

our previous experiments - the proposed method performs significantly better across all

different settings.
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Low-rank Approximately sparse

LS ULS UTMOST ISA LS ULS UTMOST ISA

ρ = 0 0.0009 0.0008 2.89 0.0003 0.002 0.002 0.013 0.039

p = 100

ρ = 0.5 0.001 0.001 2.83 0.0006 0.004 0.004 0.015 0.04

ρ = 0.8 0.004 0.004 4.79 0.001 0.01 0.01 0.03 0.04

ρ = 0 0.001 0.0009 2.99 0.0003 0.002 0.002 0.015 0.039

p = 120

ρ = 0.5 0.002 0.001 3.16 0.0007 0.004 0.004 0.015 0.041

ρ = 0.8 0.005 0.004 5.08 0.001 0.01 0.01 0.03 0.04

ρ = 0 0.001 0.001 2.63 0.0006 0.002 0.002 0.015 0.04

p = 150

ρ = 0.5 0.002 0.002 3.55 0.001 0.005 0.005 0.016 0.045

ρ = 0.8 0.005 0.005 5.79 0.002 0.012 0.012 0.031 0.049

ρ = 0 0.001 - 2.78 0.0002 0.002 - 0.016 0.07

p = 500

ρ = 0.5 0.002 - 4.90 0.0003 0.004 - 0.027 0.09

ρ = 0.8 0.005 - 6.85 0.001 0.009 - 0.036 0.09

Table S.1: MSE of different estimators over 20 replications in high-dimensional settings.
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Horseshoe Mixture

LS ULS UTMOST ISA LS ULS UTMOST ISA

ρ = 0 0.002 0.002 13.01 14.57 0.002 0.002 23.93 73.27

p = 100

ρ = 0.5 0.004 0.004 14. 21 11.54 0.005 0.005 22.86 71.60

ρ = 0.8 0.01 0.01 16.88 13.78 0.01 0.01 28.37 71.05

ρ = 0 0.002 0.002 17.42 15.83 0.002 0.002 23.03 68.91

p = 120

ρ = 0.5 0.005 0.005 18.21 15.21 0.005 0.005 24.01 69.68

ρ = 0.8 0.013 22.81 16.37 0.012 0.012 25.77 72.31

ρ = 0 0.003 0.003 15.21 13.87 0.01 0.01 22.71 53.65

p = 150

ρ = 0.5 0.005 0.005 15.52 14.50 0.005 0.005 24.93 57.90

ρ = 0.8 0.01 0.01 16.90 14.66 0.01 0.01 28.72 65.22

ρ = 0 0.003 - 150.01 45.04 0.002 - 25.03 67.32

p = 500

ρ = 0.5 0.004 - 153.77 44.39 0.004 - 48.57 74.01

ρ = 0.8 0.01 - 152.87 59.31 0.005 - 53.97 76.29

Table S.2: MSE of different estimators over 20 replications in high-dimensional settings.
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Low-rank Approximately sparse

LS ULS UTMOST ISA LS ULS UTMOST ISA

ρ = 0 1.09 1.08 146.92 1.01 1.22 1.20 2.43 5.01

p = 100

ρ = 0.5 1.07 1.05 149.99 1.01 1.27 1.25 1.77 6.35

ρ = 0.8 1.12 1.08 86.27 1.24 1.20 1.14 1.54 5.54

ρ = 0 1.07 1.06 436.4 1.01 1.33 1.32 2.72 5.88

p = 120

ρ = 0.5 1.12 1.06 189.70 1.06 1.20 1.17 1.73 4.85

ρ = 0.8 1.16 1.12 133.76 1.22 1.28 1.26 1.85 7.41

ρ = 0 1.15 1.13 167.41 1.06 1.43 1.35 3.33 7.10

p = 150

ρ = 0.5 1.21 1.05 183.3 1.11 1.48 1.43 2.33 7.14

ρ = 0.8 1.15 1.12 182.83 1.10 1.47 1.40 2.05 5.42

ρ = 0 1.47 - 713.4 1.08 1.93 - 8.60 20.17

p = 500

ρ = 0.5 1.57 - 881.4 1.12 1.96 - 8.03 16.94

ρ = 0.8 1.47 - 525.2 1.20 1.91 - 4.65 36.13

Table S.3: PE of different estimators over 20 replications in high-dimensional settings.
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Horseshoe Mixture

LS ULS UTMOST ISA LS ULS UTMOST ISA

ρ = 0 1.23 1.20 406.1 1115.2 1.28 1.21 1072.9 4938.9

p = 100

ρ = 0.5 1.26 1.19 401.7 1025.5 1.24 1.07 1158.5 5877.7

ρ = 0.8 1.26 1.24 352.2 1067.2 1.23 1.17 953.2 6744.6

ρ = 0 1.29 1.25 652.8 1724.1 1.39 1.33 2921.2 8493.4

p = 120

ρ = 0.5 1.35 1.27 768.1 1672.5 1.29 1.12 1402.7 9736.2

ρ = 0.8 1.31 1.29 807.3 1227.7 1.30 1.26 1276.3 8506.1

ρ = 0 1.47 1.42 1382.8 2207.8 1.39 1.33 1610.5 8432.9

p = 150

ρ = 0.5 1.53 1.50 1872.2 1483.6 1.41 1.32 1849.1 7992.8

ρ = 0.8 1.55 1.52 1923.5 1973.1 1.46 1.44 1689.6 8112.6

ρ = 0 2.07 - 5 ×104 23328.9 1.93 - 11913.1 31440.7

p = 500

ρ = 0.5 2.43 - 5 ×104 20461.4 1.96 - 12135.4 34729.4

ρ = 0.8 2.63 - 5× 104 22646.5 1.99 - 12282.4 33947.3

Table S.4: PE of different estimators over 20 replications in high-dimensional settings.
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S.5 Real data application on the Yeast Cell Cycle dataset

In this section, we apply the proposed LS method to the Yeast Cell Cycle dataset Chun and

Keleş (2010), and compare it with the existing ordinary least squares (OLS), the Unified Test

for MOlecular SignaTures (UTMOST) (Hu et al., 2019), the Iterated stable autoencoder

(ISA) (Josse and Wager, 2016), and the Multivariate Adaptive Shrinkage (MASH) (Kim

et al., 2024) methods. The Yeast Cell Cycle dataset contains 18 responses and 106 covariates

for 542 genes (i.e., sample size N = 542). Each of the responses represents mRNA levels

measured at every 7 minutes during 119 minutes. The covariates consist of the binding

information for 106 transcription factors.

We conduct a 10-fold cross-validation analysis for each response to evaluate the pre-

diction performance of each method. Specifically, for each response, we randomly split all

the observed samples into 10 equally sized folds, and name them Folds 1 − 10. For each

i = 1, . . . , 10, we treat Fold i in all the tissues as a testing set, and the remaining folds in

all the tissues together as a training set. We then use the average prediction mean squared

error (PMSE) across all the folds and responses for the evaluation of prediction accuracy.

The average PMSEs of all the methods are provided in Table S.5. The results show that

the proposed method outperforms all the existing methods in terms of the average PMSE.

We also provide the PMSE of each response in the left plot of Figure S.3, which shows

that the proposed method produces the smallest PMSE among all the methods for most of

responses. In addition, we calculate the Pearson correlation between the predicted values

and true values for each response and each method, and present the results in the right plot

of Figure S.3. We can observe that the correlation corresponding to the proposed method

is higher than those of other methods for most responses.
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Figure S.3: Prediction mean squared error (PMSE) and correlation for each response and

each the method.

In summary, the proposed method works well in the multi-response regression for the

Yeast Cell Cycle dataset which is not related to TWAS.

Methods Proposed (LS) OLS UTMOST ISA MASH

PMSE 0.164 (0.095) 0.216 (0.103) 0.188 (0.091) 0.171 (0.089) 0.188 (0.087)

Table S.5: Average prediction mean squared errors (PMSEs) for different methods, with

standard deviation (SD) in the parentheses. “PMSE” represents the average PMSE across

all the 18 responses.
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S.6 Proofs of Sections 2 and 3

S.6.1 Proof of Proposition 1

Without loss of generality, set Q = I. Under the assumed model E(B | B̂) = B̂(I − C).

Thus,

E[L(B, B̃)] = EB̂EB|B̂[L(B, B̃)]

=EB̂EB|B̂ tr[{B̂(I− C̃)−B}{B̂(I− C̃)−B}T]

=EB̂EB|B̂[tr(BB
T)]− EB̂EB|B̂

[
tr{B(I − C̃T)B̂T)}

]
− EB̂EB|B̂

[
tr{B̂(I− C̃)BT}

]
+

+ EB̂EB|B̂[tr{B̂(I− C̃)(I− C̃T)B̂T}]

=EB̂EB|B̂[tr(BB
T)]− EB̂

[
tr{B̂(I− C)(I− C̃T)B̂T}

]
− EB̂

[
tr{B̂(I− C̃)(I− CT)B̂T}

]
+EB̂[tr{B̂(I− C̃)(I− C̃T)B̂T}].

Since EB̂EB|B̂[tr(BB
T)] = EB̂

{
EB|B̂

[∑T
t=1 β

(t)Tβ(t)
]}

, and

EB|B̂[tr(BΨBT)] =T tr[(I− CT)] + EB̂[tr(B̂(I− C)(I− CT)B̂T)],

we have

EB̂EB|B̂[L(B, B̃)] = EB̂[tr(B̂(I− C)(I− CT)B̂T)]− EB̂
[
tr{B̂(I− C)(I− C̃T)B̂T}

]
−EB̂

[
tr{B̂(I− C̃)(I− CT)B̂T}

]
+ EB̂[tr{B̂(I− C̃)(I− C̃T)B̂T}] + constant

= EB̂[tr{(I− C)− (I− C̃)}{(I− C)− (I− C̃)}TB̂TB̂] + constant

= EB̂[tr{(C̃ − C)(C̃ − C)T}B̂TB̂] + constant

= EB̂[tr{(Σ̃
−1 − Σ−1)2}B̂TB̂] + constant,

which was to show.
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S.6.2 Proof of Theorem 5

Recall that

Lm,n(Σ
−1
n , Σ̃−1

n ; I) =

∫ ∞

−∞
xmdΦ(−2)

n (x)− 2

∫ ∞

−∞

xm

δn(x)
dΦ(−1)

n (x) +

∫ ∞

−∞

xm

δ2n(x)
dFn(x).

Since xm is a continuous function and Φ
(−2)
n (x) converges weakly to Φ(−2)(x) by Lemma 1,∫ ∞

−∞
xmdΦ(−2)

n (x)
a.s.→

∫ ∞

−∞
xmdΦ(−2)(x).

Assumption 4 and the continuous mapping theorem imply that

xm

δn(x)

a.s.→ xm

δ(x)
and

xm

δ2n(x)

a.s.→ xm

δ2(x)

for x ∈ Supp(F ). In addition, the convergence is uniform for x ∈ ∪Kk=1[ak + η, bk − η]

for any small η > 0. Furthermore, there exists a finite nonrandom constant M̃ such that

|xm/δn(x)| and |xm/δ2n(x)| are uniformly bounded from above by M̃ almost surely for all

x ∈ ∪Kk=1[ak − η, bk + η], large n, and small η > 0.

By (Ledoit and Wolf, 2018, Lemma 11.1), under our working assumptions, Φ
(−1)
n (x)

converges weakly to Φ(−1)(x), Φ(−1)(x) is continuously differentiable on R, and

Φ(−1)(x) =

∫ x

−∞
ϕ(−1)(ξ)dF (ξ),

for ∀x ∈ R. Note that, by Silverstein and Choi (1995), Silverstein and Bai (1995), and

Silverstein (1995), we also have

Fn(x)
a.s.→ F (x) ∀x ∈ R,

and F (x) is continuously differentiable. Thus, similar to the proofs of (Ledoit and Wolf,

2018, Lemma 11.2), we can have∫ ∞

−∞

xm

δn(x)
dΦ(−1)

n (x)
a.s.→

K∑
k=1

∫ bk

ak

xm

δ(x)
ϕ(−1)(x)dF (x),
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and ∫ ∞

−∞

xm

δ2n(x)
dFn(x)

a.s.→
K∑
k=1

∫ bk

ak

xm

δ2(x)
dF (x).

S.6.3 Proof of Corollary 1

To find a function δ(x) that minimizes the limit in Equation (3.4), for each fixed x, we take

derivative of

−2
xm

δ(x)
ϕ(−1)(x) +

xm

δ2(x)

with respect to δ, and let it equal zero. Here we do not consider the first term in Equation

(3.4) since it does not involve δ(x). Then, the minimizer is 1/ϕ(−1)(x).

S.6.4 Proof of Theorem 6

By the proof of (Ledoit and Wolf, 2022, Theorem 3.1), we obtain δ∗n(x)
p→ δ∗(x) for any

x ∈ Supp(F ).

S.7 Proof of Theorem 7

We record the following results from Haddouche et al. (2021); Boukehil et al. (2021) which

will be useful in proving Theorem 7.

Lemma 2. Suppose Q ∼ Wp(Σ, n), n > p and G(Q) is a p× p weakly differentiable matrix

function. If EΣ [| tr{ΣQG(Q)} |] <∞, then

EΣ

[
tr{Σ−1QG(Q)}

]
= EΣ [tr {(n− p− 1)G(Q) + 2DQ(G(Q)

TQ)}] ,

where DQ is a differential operator defined as DQ =
{

1
2
(1 + dij)

∂
∂Qij

}
for 1 ≤ i, j ≤ p with

dij = 1 if i = j and 0 otherwise.
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Lemma 3. Suppose S = PLP T and G(S) = PΨ(L)P T are the spectral decomposition of S

and G(S), respectively for symmetric positive definite S. Then,

DS{G(S)} = PΨ(1)P T +
1

2
tr{L−1Ψ(L)}(Ip − PP T),

where the j-th element of the diagonal matrix Ψ(1) is ψ
(1)
j = ∂ψi

∂li
+ 1

2

∑p
i ̸=j

ψj − ψi
lj − li

.

We are now ready to prove Theorem 7. Setting G(S) = Σ̃(h)−1 and applying Lemma 2 we

get

EΣ

[
tr
(
Σ−1SΣ̃(h)−1

)]
= EΣ [tr {(n− p− 1)G(S) + 2DS(G(S)

TS)}]

= EΣ

[
tr
{
(n− p− 1)G(S) + 2DS(Σ̃

−1
h S)

}]
= EΣ

[
tr
{
(n− p− 1)G(S) + 2DS(U∆

−1Λ∗UT)
}]

= EΣ [tr {(n− p− 1)G(S) + 2DS(Uζ(Λ
∗)UT)}]

= EΣ

[
tr
{
(n− p− 1)G(S) + 2Uζ(1)(Λ∗)UT + tr{Λ∗−1ζ(Λ∗)}(Ip − UUT)

}]
where ζ(Λ∗) is a diagonal matrix with j-th element ζj = λ∗j/δj, j = 1, . . . , p, and the last

equality follows by applying Lemma 3. Now, recall the definition of δ:

δ−1
j = c1λ

−1
j + c2λ

−1
j g∗n

(
λ−1
j

)
, g∗n(x) =

1

p

p∑
i=1

λ−1
i

λ−1
i − x

(λ−1
i − x)2 + h2λ−2

i

,

where c1 = (1− p/n) and c2 = 2(p/n). Hence,

∂δ−1
j

∂λ−1
j

= c1 + c2θ̂
(
λ−1
j

)
+ c2λ

−1
j

dg∗n(λ
−1
j )

dλ−1
j

,
dg∗n(λ

−1
j )

dλ−1
j

=
1

p

p∑
i=1

λ−1
i

(λ−1
i − λ−1

j )2 − h2λ−2
i

{(λ−1
i − λ−1

j )2 + h2λ−2
i }2

.

Therefore,

∂ζj
∂λ∗j

=
1

δj
−
λ∗j
δ2j

∂δj
∂λ∗j

=
1

δj
−

λ∗j
nδ2j

∂δj
∂λj

=
1

δj
− 1

λj

∂δ−1
j

∂λ−1
j
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S.8 Proofs of Section 3.2

S.8.1 Proof of Theorem 8

The difference between the cases m = 0 and m > 1 comes from the presence of the term

xm for m > 1. Specifically, for m > 1, using Lemma from (Ledoit and Wolf, 2018, Lemma

14.1) we get that Lm,n has the almost sure limit

Lm =

∫ ∞

−∞
xmdΦ(−2)(x)− 2

c

K∑
k=1

∫ bk

ak

xm

δ(x)
ϕ(−1)(x)dF (x) +

1

c

K∑
k=1

∫ bk

ak

xm

δ2(x)
dF (x)

+
c− 1

c

[
0m

δ2(0)
ϕ(−1)(0)− 2

ϕ(−1)(0)0m

δ(0)

]
=

∫ ∞

−∞
xmdΦ(−2)(x)− 2

K∑
k=1

∫ bk

ak

xm

δ(x)
ϕ(−1)(x)dF (x) +

K∑
k=1

∫ bk

ak

xm

δ2(x)
dF (x),

since dF (x) = (1/c)dF (x). For m = 0, Lm,n =
∫∞
−∞ dΦ

(−2)
n (x) − 2

∫∞
−∞

1
δn(x)

dΦ
(−1)
n (x) +∫∞

−∞
1

δ2n(x)
dFn(x). The limit can then be calculated using similar arguments as for the case

m > 1.

S.8.2 Proof of Corollary 2

The proof is similar to Corollary 1.

S.8.3 Proof of Theorem 9

Recall that m̆F (x) = cm̆F (x) + (c − 1)/x when p > n. Define Φ(x) = 1 − F (1/x) if x > 0

and 0 otherwise. Let Ψ(x) =
∫ x
−∞ tdΦ(t), and for any real-valued function g,

Hg(x) =
1

π
PV

∫ ∞

−∞
g(t)

1

t− x
dt
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denote the Hilbert transform of g. The following relations are true (Ledoit and Wolf, 2022,

Appendix C, D)

Re[m̆Ψ(1/x)] = −xRe[m̆F (x)]∀x ∈ Supp(F ), Re[m̆Ψ(x)] = πHψ(x),

where ψ = dΨ. Then,

δ∗(x) =
x

1− c− 2cxRe[m̆F (x)]

=
x

1− c− 2cxRe[(1/c)m̆F (x)− {(c− 1)/cx}]

=
x

c− 1− 2xRe[m̆F (x)]

=
x

c− 1 + 2Re[m̆Ψ(1/x)]

=
x

c− 1 + 2πHψ(1/x)
=

1

(c− 1)x−1 + 2πHψ(1/x)x−1
.

Next consider the shrinkage function

δ∗n(x) =
[(p
n
− 1

)
x−1 + 2x−1g∗n(x

−1)
]−1

=
[(p
n
− 1

)
x−1 + 2x−1πHψ

n
(x−1))

]−1

,

where Φn(x) = 1− F n(1/x), Ψn(x) =
∫ x
−∞ tdΦn(t), and ψn = dΨn. The result follows from

(Ledoit and Wolf, 2022, Theorem D.1).

S.9 Algorithm to estimate (πk,Σk) from Section 4

Input: A matrix B̂⋆ with β̂
(t)
⋆ as the t-th row for t = 1, . . . , n.

Output: Mean of E(β(t) | β̂(t)) across T samples.

1. Initialize z1, . . . , zn ∈ {0, 1}K×1, where zi is the latent indicator vector corresponding

to the i-th row in B̂⋆.
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2. Set B̂k as a matrix by extracting the i-th row in B̂⋆ if and only if zik = 1, and let nk =

number of rows of B̂k, where zik is the k-th element in zi.

3. If nk > p, estimate Σk using the estimator from Theorem 6 with data B̂k.

4. If nk < p, estimate Σk using the estimator from Theorem 9 with data B̂k.

5. Estimate πk =
∑n

t=1 zk/n.

6. Sample z(t) ∼ Multinomial(p
(t)
1 , . . . , p

(t)
K ) where p

(t)
k ∝ πkf(β̂

(t)
⋆ ; 0,Σk)

7. Compute E(β(t) | β̂(t)) =
∑K

k=1 p
(t)
k (I− Ck)β

(t) where Ck = Q−1/2ΣkQ
−1/2.

8. Repeat steps 2-7 T times.
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LS ULS LLS-2 LLS-3 LLS-4 UTMOST ISA MASH LS ULS LLS-2 LLS-3 LLS-4 UTMOST ISA MASH

n = 40

p = 10

ρ = 0 0.005 0.005 0.001 0.001 0.001 3.363 3.631 7.955 0.005 0.005 0.001 0.002 0.003 0.018 0.04 0.005

ρ = 0.5 0.006 0.006 0.005 0.005 0.005 2.42 0.193 5.067 0.008 0.009 0.003 0.003 0.003 0.02 0.043 0.04

ρ = 0.8 0.015 0.015 0.016 0.012 0.022 1.992 0.333 3.579 0.017 0.017 0.012 0.013 0.012 0.029 0.037 0.036

p = 20

ρ = 0 0.004 0.004 0.003 0.004 0.003 3.333 0.003 8.156 0.006 0.005 0.002 0.002 0.001 0.018 0.043 0.005

ρ = 0.5 0.007 0.007 0.009 0.044 0.005 3.598 0.006 8.229 0.01 0.01 0.008 0.002 0.005 0.018 0.04 0.02

ρ = 0.8 0.017 0.017 0.023 0.011 0.017 4.099 0.014 7.684 0.02 0.02 0.016 0.019 0.021 0.027 0.04 0.039

p = 30

ρ = 0 0.005 0.004 0.003 0.003 0.003 3.141 0.003 7.796 0.006 0.006 0.001 0.002 0.002 0.018 0.04 0.006

ρ = 0.5 0.009 0.009 0.006 0.006 0.006 3.153 0.005 7.52 0.011 0.011 0.009 0.004 0.005 0.018 0.04 0.037

ρ = 0.8 0.02 0.02 0.018 0.011 0.011 3.549 0.012 8.07 0.023 0.023 0.059 0.016 0.081 0.026 0.04 0.04

n = 50

p = 20

ρ = 0 0.003 0.003 0.008 0.003 0.004 3.384 0.003 8.635 0.005 0.005 0.002 0.002 0.008 0.017 0.039 0.007

ρ = 0.5 0.006 0.006 0.027 0.01 0.005 3.409 0.005 8.039 0.009 0.009 0.005 0.013 0.006 0.018 0.041 0.039

ρ = 0.8 0.015 0.015 0.013 0.013 0.012 4.211 0.013 8.235 0.02 0.019 0.02 0.029 0.017 0.026 0.041 0.041

p = 30

ρ = 0 0.004 0.004 0.009 0.008 0.003 3.004 0.002 7.678 0.005 0.005 0.001 0.001 0.001 0.017 0.04 0.007

ρ = 0.5 0.007 0.007 0.005 0.009 0.005 3.638 0.004 8.861 0.01 0.01 0.003 0.009 0.003 0.018 0.039 0.038

ρ = 0.8 0.017 0.016 0.012 0.012 0.012 3.97 0.011 8.115 0.022 0.022 0.044 0.019 0.235 0.025 0.04 0.04

p = 40

ρ = 0 0.006 0.005 0.004 0.004 0.004 3.088 0.002 7.727 0.006 0.006 0.001 0.002 0.001 0.017 0.039 0.009

ρ = 0.5 0.008 0.008 0.006 0.006 0.006 3.116 0.004 7.681 0.011 0.011 0.027 0.005 0.007 0.018 0.04 0.039

ρ = 0.8 0.025 0.028 0.017 0.017 0.017 3.684 0.01 7.607 0.026 0.026 0.033 0.014 0.012 0.026 0.04 0.04

Table S.6: Mean of MSE for low-rank and approximately sparse settings when the number of tissues n = 40, 50. For n = 40,

the number of covariates considered are p = 10, 20, 30, and for n = 50 they are p = 20, 30, 40. The ρ denotes correlation among

the covariates.
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LS ULS LLS-2 LLS-3 LLS-4 UTMOST ISA MASH LS ULS LLS-2 LLS-3 LLS-4 UTMOST ISA MASH

n = 40

p = 10

ρ = 0 0.005 0.005 0.001 0.001 0.003 0.389 0.222 41.78 0.005 0.005 0.00009 0.0004 0.0004 18.734 69.816 69.815

ρ = 0.5 0.009 0.009 0.002 0.001 0.002 0.099 0.467 11.757 0.009 0.009 0.0004 0.001 0.001 22.493 67.585 67.584

ρ = 0.8 0.019 0.019 0.008 0.009 0.012 0.646 0.225 43.664 0.025 0.025 0.001 0.002 0.004 36.026 68.666 68.665

p = 20

ρ = 0 0.005 0.005 0.001 0.003 0.001 5.455 0.291 29.18 0.006 0.006 0.001 0.001 0.0004 15.983 45.682 54.527

ρ = 0.5 0.01 0.01 0.003 0.004 0.002 2.262 0.205 21.588 0.01 0.01 0.001 0.004 0.005 24.738 71.846 72.975

ρ = 0.8 0.024 0.024 0.011 0.009 0.01 2.616 0.224 69.25 0.027 0.027 0.003 0.017 0.012 41.648 72.82 73.879

p = 30

ρ = 0 0.006 0.006 0.002 0.001 0.0003 0.34 0.15 21.305 0.006 0.006 0.0003 0.0002 0.0001 22.668 54.901 65.854

ρ = 0.5 0.011 0.011 0.002 0.001 0.001 0.45 0.149 5.335 0.011 0.011 0.002 0.0004 0.0003 24.979 58.82 71.139

ρ = 0.8 0.027 0.027 0.014 0.004 0.015 0.765 0.155 9.985 0.028 0.028 0.003 0.001 0.001 37.602 57.827 72.047

n = 50

p = 20

ρ = 0 0.005 0.005 0.0003 0.001 0.001 0.18 0.316 29.052 0.006 0.006 0.0001 0.014 0.0004 20.947 69.986 69.986

ρ = 0.5 0.01 0.01 0.002 0.002 0.002 0.288 0.263 13.965 0.011 0.011 0.001 0.001 0.002 23.517 70.569 70.569

ρ = 0.8 0.023 0.023 0.005 0.008 0.01 14.937 0.201 33.898 0.026 0.026 0.001 0.004 0.003 41.638 72.403 72.403

p = 30

ρ = 0 0.006 0.006 0.004 0.001 0.0003 2.107 0.119 10.879 0.006 0.006 0.003 0.001 0.0001 24.988 68.049 74.969

ρ = 0.5 0.007 0.007 0.005 0.009 0.005 3.638 0.004 8.861 0.011 0.011 0.002 0.001 0.001 23.57 62.323 67.754

ρ = 0.8 0.028 0.028 0.491 0.0003 0.002 83.803 4.601 227.233 0.029 0.029 0.009 0.002 0.002 25.804 62.456 67.89

p = 40

ρ = 0 0.006 0.006 0.004 0.0005 0.0005 20.473 3.221 3841.965 0.006 0.006 0.0002 0.0001 0.0001 30.739 59.232 72.502

ρ = 0.5 0.0121 0.0121 0.0002 0.0001 0.0004 10.9984 4.515 1253.4127 0.012 0.012 0.001 0.0004 0.0003 25.182 51.436 68.82

ρ = 0.8 0.031 0.031 0.003 0.0001 0.00009 7.493 5.558 238.306 0.03 0.03 0.002 0.001 0.001 36.298 51.744 69.121

Table S.7: Mean of MSE for Horseshoe and mixture settings with the same settings considered above.
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Low-rank Approximately sparse

LS ULS LLS-2 LLS-3 LLS-4 UTMOST ISA MASH LS ULS LLS-2 LLS-3 LLS-4 UTMOST ISA MASH

n = 40

p = 10

ρ = 0 1.052 1.052 1.056 1.06 1.052 32.243 35.378 75.498 1.061 1.061 1.071 1.074 1.084 1.195 1.429 1.06

ρ = 0.5 1.042 1.042 1.046 1.046 1.044 14.891 2.652 45.399 1.038 1.038 1.044 1.051 1.049 1.099 1.408 1.168

ρ = 0.8 1.025 1.025 1.037 1.183 1.03 16.589 2.394 59.654 1.039 1.039 1.055 1.049 1.045 1.1 1.405 1.297

p = 20

ρ = 0 1.065 1.063 1.082 1.109 1.064 59.323 1.048 146.886 1.077 1.076 1.121 1.23 1.106 1.361 1.781 1.073

ρ = 0.5 1.052 1.051 1.116 1.232 1.063 38.53 1.058 159.744 1.094 1.093 1.135 1.15 1.14 1.189 1.857 1.419

ρ = 0.8 1.064 1.064 1.101 1.075 1.1 27.509 1.129 157.787 1.037 1.036 1.068 1.092 1.088 1.124 1.728 1.616

p = 30

ρ = 0 1.146 1.138 1.146 1.167 1.147 99.17 1.081 249.926 1.185 1.181 1.188 1.198 1.207 1.552 2.202 1.186

ρ = 0.5 1.135 1.128 1.135 167.986 1.134 51.3 1.087 205.935 1.157 1.153 1.269 1.176 1.19 1.265 2.253 1.828

ρ = 0.8 1.137 1.136 1.185 1.137 1.137 22.861 1.203 207.818 1.134 1.131 1.357 1.161 1.467 1.176 2.105 2.07

n = 50

p = 20

ρ = 0 1.078 1.078 1.229 1.092 1.112 67.854 1.062 169.632 1.079 1.078 1.114 1.105 1.181 1.326 1.768 1.114

ρ = 0.5 1.068 1.069 1.468 1.136 1.068 36.253 1.083 149.564 1.104 1.104 1.125 1.233 1.148 1.201 1.787 1.703

ρ = 0.8 1.076 1.075 1.084 1.092 1.08 26.82 1.163 176.953 1.09 1.089 1.137 1.209 1.128 1.157 1.911 1.896

p = 30

ρ = 0 1.072 1.069 1.469 1.166 1.072 85.227 1.04 217.24 1.207 1.207 1.215 1.238 1.212 1.622 2.358 1.277

ρ = 0.5 1.078 1.078 1.078 1.16 1.078 61.998 1.05 282.444 1.168 1.166 1.18 1.255 1.169 1.285 2.235 2.039

ρ = 0.8 1.073 1.07 1.073 1.073 1.073 28.372 1.13 240.155 1.137 1.136 1.437 1.22 2.042 1.146 2.073 2.057

p = 40

ρ = 0 1.196 1.183 1.196 1.196 1.196 126.587 1.087 308.133 1.291 1.288 1.287 1.295 1.267 1.726 2.621 1.429

ρ = 0.5 1.239 1.235 1.239 1.239 1.239 62.742 1.189 325.571 1.28 1.271 1.973 1.313 1.336 1.408 2.714 2.561

ρ = 0.8 1.236 1.248 1.236 1.236 1.236 29.764 1.239 284.038 1.239 1.234 1.397 1.266 1.247 1.288 2.496 2.493

Table S.8: Mean of PE for low-rank and approximately sparse settings when the number of tissues n = 40, 50. For n = 40, the

number of covariates considered are p = 10, 20, 30, and for n = 50 they are p = 20, 30, 40. The ρ denotes correlation among the

covariates.
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LS ULS LLS-2 LLS-3 LLS-4 UTMOST ISA MASH LS ULS LLS-2 LLS-3 LLS-4 UTMOST ISA MASH

n = 40

p = 10

ρ = 0 1.03 1.03 1.033 1.031 1.06 7.905 3.253 62.921 1.072 1.072 1.072 1.077 1.071 174.86 663.571 663.568

ρ = 0.5 1.087 1.087 1.088 1.102 1.089 2.074 3.477 106.468 1.044 1.044 1.043 1.044 1.045 123.324 704.839 704.835

ρ = 0.8 1.052 1.052 1.051 1.057 1.063 3.455 3.216 349.183 1.042 1.042 1.041 1.038 1.037 155.127 744.975 744.971

p = 20

ρ = 0 1.112 1.113 1.128 1.168 1.134 85.393 6.364 320.396 1.107 1.107 1.103 1.155 1.15 444.867 1376.433 1387.943

ρ = 0.5 1.118 1.118 1.139 1.146 1.129 57.086 5.168 507.273 1.131 1.131 1.133 1.19 1.153 247.869 1341.508 1355.575

ρ = 0.8 1.114 1.114 1.148 1.136 1.143 14.528 5.073 1240.998 1.098 1.098 1.099 1.138 1.112 251.947 1518.572 1539.977

p = 30

ρ = 0 1.167 1.167 1.197 1.188 1.163 15.187 5.683 631.574 1.167 1.166 1.16 1.161 1.16 680.277 1632.223 1934.98

ρ = 0.5 1.154 1.153 1.173 1.162 1.17 14.385 5.784 158.461 1.163 1.163 1.174 1.156 1.153 379.048 1743.015 1979.399

ρ = 0.8 1.169 1.167 1.239 1.181 1.266 8.398 5.099 270.007 1.19 1.19 1.198 1.18 1.18 332.021 1780.478 2203.79

n = 50

p = 20

ρ = 0 1.109 1.109 1.11 1.118 1.12 4.448 7.113 504.101 1.111 1.111 1.111 1.295 1.111 428.534 1447.038 1447.033

ρ = 0.5 1.13 1.13 1.139 1.145 1.143 4.844 6.933 304.907 1.106 1.107 1.105 1.11 1.117 242.846 1477.281 1477.276

ρ = 0.8 1.099 1.099 1.096 1.113 1.118 143.691 5.566 711.598 1.068 1.068 1.064 1.069 1.065 253.064 1492.048 1492.043

p = 30

ρ = 0 1.149 1.15 1.214 1.158 1.153 50.395 4.671 358.337 1.142 1.142 1.217 1.164 1.137 742.768 2078.155 2299.509

ρ = 0.5 1.182 1.181 1.2 1.203 1.198 15.029 6.539 121.082 1.152 1.152 1.164 1.138 1.135 389.566 2042.295 2123.863

ρ = 0.8 1.144 1.144 2.894 1.149 1.162 960.661 122.802 3322.108 1.149 1.149 1.162 1.129 1.13 160.469 1464.253 1678.723

p = 40

ρ = 0 1.247 1.247 1.344 1.251 1.252 340.666 130.216 7640.402 1.25 1.249 1.24 1.229 1.234 1212.75 2345.017 2818.027

ρ = 0.5 1.194 1.194 1.2 1.193 1.193 317.62 185.923 55318.149 1.237 1.237 1.234 1.231 1.227 535.298 2061.745 2699.554

ρ = 0.8 1.229 1.228 1.27 1.228 1.227 79.532 286.479 11073.277 1.204 1.202 1.199 1.192 1.193 356.081 1434.132 2051.96

Table S.9: Mean of PE for Horseshoe and mixture settings with the same settings considered above.
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