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S1. Characteristics of the Type II change point vj with large |qj|

A Type II change point vj with large |qj| behaves similarly to a Type I change

point; its derivatives exhibit similar characteristics (see Figure 1 in the Supple-

mentary Materials). Specifically, a Type II change point with qj large enough

such that qj > c/γ cannot generate a local extremum in the first derivative

µ′
γ(t); and the corresponding second derivative µ′′

γ(t) has only one local ex-

tremum around the change point vj . Since aj ̸= 0 and qj > c/γ, one has

vj + γ2qj > vj + cγ, implying no local extremum in the first derivative µ′
γ(t)
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(see Lemma 2). Additionally,

vj+
1

2

(
γ2qj + γ

√
γ2q2j + 4

)
> vj+cγ, vj+

1

2

(
γ2qj − γ

√
γ2q2j + 4

)
≈ vj.

(S1.1)

Hence, there is only one local extremum around vj in the second derivative µ′′
γ(t)

(see Lemma 2). Given this behavior, it is reasonable to interpret a Type II change

point with large |qj| as a special case that essentially behaves like Type I change

points (qj = ∞ as aj = 0).

Intuitively, for a Type II change point vj , if the |qj| is large enough such that

qj > c/γ, it indicates that the slope change dominates the jump size; thereafter,

this Type II change point behaves similarly to a Type I change point. In this

paper, we do not consider the case of large |qj|. However, as discussed above,

this case can be essentially treated as the case of Type I change points.

Figure 1 shows a Type II change point vj with large |qj| behaves similarly to

a Type I change point, its derivatives exhibit similar characteristics. Specifically,

a Type II change point with qj large enough such that qj > c/γ cannot generate a

local extremum in the first derivative µ′
γ(t); and the second derivative µ′′

γ(t) has

only one local extremum around the change point vj . Hence, this special Type

II change point can be essentially treated as a Type I change point.
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Figure 1: Characteristics of the Type II change point vj with large |qj|. In the left

plot of signal µ(t), the slope change dominates the jump size, giving a large |qj|.

The middle plot of the first derivative µ′
γ shows no local extremum, and the right

plot of the second derivative µ′′
γ(t) shows a local maximum around the change

point vj .

S2. Proofs in Section 2

Proof of Lemma 1. Recall that wγ(t) defined in equation (3) is a truncated Gaus-

sian kernel with support [−cγ, cγ] and bandwidth γ. For t ∈ (vj − cγ, vj + cγ),



we have

µγ(t) = wγ(t) ∗ µ(t) =
∫ t+cγ

t−cγ

wγ(t− s)µ(s)ds

=

∫ vj

t−cγ

1

γ
ϕ(

t− s

γ
)(cj + kjs)ds+

∫ t+cγ

vj

1

γ
ϕ(

t− s

γ
)(cj+1 + kj+1s)ds

=

∫ vj−t

γ

−c

ϕ(x)(cj + kjt+ kjγx)dx+

∫ c

vj−t

γ

ϕ(x)(cj+1 + kj+1t+ kj+1γx)dx

= [cj + kjt− (cj+1 + kj+1t)]Φ(
vj − t

γ
) + [cj + kjt+ (cj+1 + kj+1t)]Φ(c)− (cj + kjt)

+ (kj − kj+1)γϕ(c) + (kj+1 − kj)γϕ(
vj − t

γ
).

(S2.2)

Similarly, we obtain that, for t ∈ (vj + cγ, vj+1 − cγ),

µγ(t) = wγ(t) ∗ µ(t) =
∫ t+cγ

t−cγ

1

γ
ϕ(

t− s

γ
)(cj+1 + kj+1s)ds

= (cj+1 + kj+1t)[2Φ(c)− 1];

(S2.3)

and for t ∈ (vj−1 + cγ, vj − cγ),

µγ(t) = wγ(t) ∗ µ(t) =
∫ t+cγ

t−cγ

1

γ
ϕ(

t− s

γ
)(cj + kjs)ds

= (cj + kjt)[2Φ(c)− 1].

(S2.4)

Taking the first and second derivatives of µγ(t) in (S2.2), (S2.3) and (S2.4)

respectively, we obtain

µ′
γ(t) =



aj
γ
ϕ(

vj−t

γ
) + (kj − kj+1)Φ(

vj−t

γ
) + (kj + kj+1)Φ(c)− kj t ∈ (vj − cγ, vj + cγ),

kj[2Φ(c)− 1] t ∈ (vj−1 + cγ, vj − cγ),

kj+1[2Φ(c)− 1] t ∈ (vj + cγ, vj+1 − cγ),



and

µ′′
γ(t) =


aj(vj−t)+(kj+1−kj)γ

2

γ3 ϕ(
vj−t

γ
) t ∈ (vj − cγ, vj + cγ),

0 otherwise.

Proof of Lemma 2. Note that, if aj = 0, then µ′
γ(t) is monotone in (vj−cγ, vj+

cγ) and hence there is no local extremum. If aj ̸= 0, by letting µ′′
γ(t) = 0, we

see that the local extremum of µ′
γ(t) is achieved at t = vj + γ2qj . Similarly,

solving the equation

µ(3)
γ (t) = [

aj
γ3

+
aj(vj − t) + (kj+1 − kj)γ

2

γ3

vj − t

γ2
]ϕ(

vj − t

γ
) = 0,

we obtain that the local extremum of µ′′
γ(t) is achieved at

t =


vj +

γ2qj±γ
√

4+q2j γ
2

2
aj ̸= 0,

vj aj = 0.

S3. Peak Height Distributions for z′γ(t) and z′′γ(t)

Proof of Lemma 3 and Proposition 2. Due to the stationarity of zγ(t), without

loss of generality, we only consider the case when t = 0. The variances of

z
(d)
γ (0), d = 1, . . . , 4, are calculated as follows.



Var(z′γ(0)) =

∫
R
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)
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π
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√
2
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2
√
π

ξ2

2
=

1

4
√
πξ3

;

Var(z′′γ(0)) =

∫
R

1

ξ6
ϕ2

(
s

ξ

)
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s2

ξ8
ϕ2

(
s

ξ

)
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∫
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s4

ξ10
ϕ2

(
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1

ξ4
1

2
√
πξ

− 2
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4
√
πξ3

+
1
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√
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8
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;

Var(z(3)γ (0)) = 9

∫
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ξ10
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(
s

ξ

)
ds− 6
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s4

ξ12
ϕ2

(
s
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s6

ξ14
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s
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9

ξ4
1

4
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;

Var(z(4)γ (0)) = 9

∫
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ξ10
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ξ12
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ξ16
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Hence, the parameters of the peak height distributions for z′γ(t) and z′′γ(t) are

given respectively by

σ2
1 = Var(z′γ(0)) =

1

4
√
πξ3

, η1 =
Var(z′′γ(0))√

Var(z′γ(0))Var(z
(3)
γ (0))

=

√
3√
5
;

σ2
2 = Var(z′′γ(0)) =

3

8
√
πξ5

; η2 =
Var(z

(3)
γ (0))√

Var(z′′γ(0))Var(z
(4)
γ (0))

=

√
5√
7
.

This leads to the desired peak height distributions in Proposition 2.

S4. FDR Control and Power Consistency for Type I Change Points

Proof of Theorem 1. Note that Type I change points are detected using the sec-

ond derivative y′′γ(t) = µ′′
γ(t) + z′′γ(t), where a change point vj becomes a local

extremum in µ′′
γ(t) precisely at vj by Proposition 1 and z′′γ(t) is a smooth Gaus-

sian process. Moreover, µ′(t) is piecewise constant with size of jump |kj+1−kj|

at vj . Thus the detection of Type I change points using the second derivative

is essentially equivalent to the detection of change points in piecewise constant

signals (Cheng et al. 2020). Under condition (C1), by substituting the original

signal µ with µ′ and replacing the differential smoothed noise z′γ with z′′γ , we see

that Theorem 1 follows from Theorems 3.1 and 3.3 in Cheng et al. (2020).
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Figure 2: Illustration of the signal region S1 (Sj in this example), null region

S0, smoothed signal region S1,γ (Sj,γ in this example) and smoothed null region

S0,γ . Imode
j and Isidej are a partition of Sj,γ such that Imode

j ⊂ Sj ⊂ Sj,γ .

S5. Supporting Results for FDR Control and Power Consistency for Type

II Change Points

To prove Theorem 2 and Theorem 3, we require the following lemmas in this

section. It is important to note that the lemmas provided below are based on

Type II change points detection, where aj ̸= 0.

Recall that signal region is defined as S1 = ∪J
j=1Sj = ∪J

j=1(vj − b, vj + b),

and the smoothed signal is generated by convolving the signal and a kernel func-

tion with support [−cγ, cγ]. Hence, smoothed signal region is S1,γ = ∪J
j=1Sj,γ =

∪J
j=1(vj − cγ, vj + cγ), where Sj,γ is the smoothed signal region of the change

point vj (see Figure 2).

Lemma S1. Let Isidej ∪ Imode
j = (vj − cγ, vj + cγ) = Sj,γ be a partition of Sj,γ ,

where Imode
j := {t ∈ U(L) : |t − vj| ≤ δ} and 0 < δ < min{b, γ} such that



Imode
j ⊂ Sj . If q = supj |qj| is sufficiently small, then

(1). Mγ = infj Mj,γ > 0 is fixed, where Mj,γ = infImode
j

|µ′
γ(t)−k(t)|

|aj | and k(t) is

the slope at t.

(2). Cγ = infj Cj,γ > 0 is fixed, where Cj,γ = 1
|aj | infIsidej

|µ′′
γ(t)|.

(3). Dγ = infj Dj,γ > 0 is fixed, where Dj,γ = 1
|aj | infImode

j
|µ(3)

γ (t)|.

Proof. (1). It follows from the arguments of Lemma 1 that

µ′
γ(t)− k(t)

aj
=

1

aj
[
aj
γ
ϕ(

vj − t

γ
)− (kj+1 − kj)Φ(

vj − t

γ
) + kj+1]−

k(t)

aj

=
1

γ
ϕ(

vj − t

γ
)− qjΦ(

vj − t

γ
) +

kj+1 − k(t)

aj

=
1

γ
ϕ(

vj − t

γ
)− qjΦ(

vj − t

γ
) + qjI{k(t) = kj}.

For t ∈ Imode
j , (kj+1−k(t))/aj = 0 or qj as k(t) = kj or kj+1. If q is sufficiently

small, then Mj,γ > 0 and it follows that Mγ = infMj,γ > 0.

(2). Note that t ∈ Isidej ⊂ Sj,γ implies δ < |vj − t| < cγ. By Lemma 1,

Cj,γ =
1

|aj|
inf
Isidej

|µ′′
γ(t)| = inf

Isidej

|(vj − t) + (kj+1 − kj)γ
2/aj

γ3
|ϕ(vj − t

γ
).

As kj+1 − kj = 0 and |vj − t| > 0 for t ∈ Isidej , then Cj,γ > 0 and Cγ =

infj Cj,γ > 0.

(3). For t ∈ Imode
j , it follows from the proof of Lemma 2 that

Dj,γ =
1

|aj|
inf
Imode
j

|µ(3)
γ (t)| = inf

Imode
j

| 1
γ3

+
(vj − t)2 + qj(vj − t)γ2

γ5
|ϕ(vj − t

γ
).



If q is sufficiently small for t ∈ Imode
j , then Dj,γ > 0 and Dγ = infj Dj,γ >

0.

To simplify the notations below, we regard T̃II ∩ Isidej as T̃+
II ∩ Isidej if j ∈ I+

II

and as T̃−
II ∩ Isidej if j ∈ I−

II , respectively. The same notation applies accordingly

when T̃II is replaced with T̃II(u) or when Isidej is replaced with Imode
j .

Lemma S2. For a Type II change point vj , suppose that q = supj |qj| is suffi-

ciently small, then µ′
γ(t) has a local extremum at t = vj + γ2qj ∈ Imode

j . Let

σ1 = sd(z′γ(t)), σ2 = sd(z′′γ(t)) and σ3 = sd(z
(3)
γ (t)). Then

(1). P (#{t ∈ T̃II ∩ Isidej } = 0) ≥ 1− exp(−a2jC
2
j,γ

2σ2
2
).

(2). P (#{t ∈ T̃II ∩ Imode
j } = 1) ≥ −1 + 2Φ(

|aj |Cj,γ

σ2
)− exp(−a2jD

2
j,γ

2σ2
3
).

(3). P (#{t ∈ T̃II(u) ∩ Imode
j } = 1) ≥ 1 − exp(−a2jD

2
j,γ

2σ2
3
) − Φ(

u−|aj |Mj,γ

σ1
) for

any fixed u.

Proof. (1). As the probability that there are no local extrema of y′γ(t) in Isidej is



greater than the probability that |y′′γ(t)| > 0 for all t ∈ Isidej , we have

P (#{t ∈ T̃II ∩ Isidej } = 0) ≥ P ( inf
Isidej

|y′′γ(t)| > 0)

≥ P (sup
Isidej

|z′′γ(t)| < inf
Isidej

|µ′′
γ(t)|)

= 1− P (sup
Isidej

|z′′γ(t)| > inf
Isidej

|µ′′
γ(t)|)

≥ 1− exp(−
a2jC

2
j,γ

2σ2
2

),

(S5.5)

where the last line holds due to the Borell-TIS inequality.

(2). Consider here j ∈ I+
II since the case of j ∈ I−

II is similar. The proba-

bility that y′γ(t) has no local maximum in Imode
j is less than the probability that

y′′γ(vj − δ) ≤ 0 or y′′γ(vj + δ) ≥ 0. Thus, the probability of no local maximum in

Imode
j is bounded above by

P (#{t ∈ T̃+
II ∩ Imode

j } = 0) ≤ P (y′′γ(vj − δ) ≤ 0 ∪ y′′γ(vj + δ) ≥ 0)

≤ P (y′′γ(vj − δ) ≤ 0) + P (y′′γ(vj + δ) ≥ 0)

= Φ(−
µ′′
γ(vj − δ)

σ2

) + Φ(
µ′′
γ(vj + δ)

σ2

)

= 1− Φ(
µ′′
γ(vj − δ)

σ2

) + 1− Φ(−
µ′′
γ(vj + δ)

σ2

)

≤ 2− 2Φ(
|aj|Cj,γ

σ2

),

where the last line holds because µ′′
γ(vj − δ) ≥ |aj|Cj,γ > 0 and −µ′′

γ(vj + δ) ≥

|aj|Cj,γ > 0.

On the other hand, the probability that y′γ(t) has at least two local maxima



in Imode
j is less than the probability that y(3)γ (t) > 0 for some t ∈ Imode

j and

y
(3)
γ (t) < 0 for some other t ∈ Imode

j . Thus, for t ∈ T̃+
II ∩ Imode

j ,

P (#{t ∈ T̃+
II ∩ Imode

j } ≥ 2) ≤ P (sup y(3)γ (t) > 0 ∩ inf y(3)γ (t) < 0)

≤ P (sup y(3)γ (t) > 0) ∧ P (inf y(3)γ (t) < 0)

≤ P (sup z(3)γ (t) > inf −µ(3)
γ (t)) ∧ P (sup z(3)γ (t) > inf µ(3)

γ (t))

≤ exp(−
a2jD

2
j,γ

2σ2
3

),

The last line holds due to Lemma S1.

The probability that y′γ(t) has only one local maximum in Imode
j is calculated

as

P (#{t ∈ T̃+
II ∩ Imode

j } = 1)

= 1− P (#{t ∈ T̃+
II ∩ Imode

j } = 0)− P (#{t ∈ T̃+
II ∩ Imode

j } ≥ 2)

≥ −1 + 2Φ(
|aj|Cj,γ

σ2

)− exp(−
a2jD

2
j,γ

2σ2
3

).

(S5.6)

(3). Consider first j ∈ I+
II . Since the probability that at least two local

maxima of y′γ(t) in Imode
j exceed u + k(t) is less than the probability that y′γ(t)

has at least two maxima in Imode
j , then

P (#{t ∈ T̃+
II ∩ Imode

j : y′γ(t)− k(t) > u} ≥ 2)

≤ P (#{t ∈ T̃+
II ∩ Imode

j } ≥ 2) ≤ exp(−
a2jD

2
j,γ

2σ2
3

).

Similarly, P (#{t ∈ T̃−
II ∩ Imode

j : y′γ(t)− k(t) < −u} ≥ 2) ≤ exp(−a2jD
2
j,γ

2σ2
3
).



On the other hand, since the probability that no local maxima of y′γ(t) in

Imode
j exceeding u + k(t) is less than the probability that y′γ(t) − k(t) ≤ u

anywhere in Imode
j , then

P (#{t ∈ T̃+
II ∩ Imode

j : y′γ(t)− k(t) > u} = 0)

≤ P (y′γ(t)− k(t) ≤ u, ∀t ∈ Imode
j )

= P (z′γ(t) + µ′
γ(t)− k(t) ≤ u, ∀t ∈ Imode

j )

≤ Φ(
u− ajMj,γ

σ1

) = Φ(
u− |aj|Mj,γ

σ1

),

where the last line holds since aj > 0 for j ∈ I+
II .

Therefore, the probability that only one local maximum of y′γ(t) in Imode
j

exceeds u+ k(t) is

P (#{t ∈ T̃+
II ∩ Imode

j : y′γ(t)− k(t) > u} = 1)

= 1− P (#{t ∈ T̃+
II ∩ Imode

j : y′γ(t)− k(t) > u} = 0)

− P (#{t ∈ T̃+
II ∩ Imode

j : y′γ(t)− k(t) > u} ≥ 2)

≥ 1− Φ(
u− |aj|Mj,γ

σ1

)− exp(−
a2jD

2
j,γ

2σ2
3

).

(S5.7)

The case of j ∈ I−
II can be proved similarly.

Lemma S3. Let Tγ = S1,γ \ S1 = ∪J
j=1(Sj,γ \ Sj) be the transition region.

Let WII,γ = #{t ∈ T̃II ∩ S1,γ} and WII,γ(u) = #{t ∈ T̃II(u) ∩ S1,γ}, where

WII,γ(u) = W+
II,γ(u)+W−

II,γ(u) = #{t ∈ T̃+
II (u)∩S1,γ}+#{t ∈ T̃−

II (u)∩S1,γ}.

Then, under condition (C2), there exists η > 0 such that



(1). P (#{t ∈ T̃II ∩ Tγ} ≥ 1) = o(exp(−ηa2));

(2). P (WII,γ = J) = 1− o(exp(−ηa2));

(3). P (WII,γ(u) = J) = 1− o(exp(−ηa2));

(4). WII,γ/L = A+ op(1);

(5). WII,γ(u)/WII,γ = 1 + op(1).

Proof. (1). Note that Imode
j ⊂ Sj implies Tj,γ ⊂ Isidej . Applying Lemma S2, we

obtain

P (#{t ∈ T̃II ∩ Tγ} ≥ 1) ≤ P (#{t ∈ T̃II ∩ (∪J
j=1I

side
j )} ≥ 1) = P (∪J

j=1#{t ∈ T̃II ∩ Isidej } ≥ 1)

≤
J∑

j=1

[1− P (#{t ∈ T̃II ∩ Isidej } = 0)] ≤
J∑

j=1

exp(−
a2jC

2
j,γ

2σ2
2

) ≤
J∑

j=1

exp(−
a2C2

γ

2σ2
2

)

=
J

L
L exp(−

a2C2
γ

2σ2
2

) = o(exp(−ηa2)),

where 0 < η < C2
γ/(2σ

2
2), and the last line holds because J/L → A and

L exp(−
a2C2

γ

2σ2
2

) = exp{a2( logL
a2

−
C2

γ

2σ2
2

)} = o(exp(−ηa2)) as
logL

a2
→ 0.



(2). Applying Lemma S2, we have that there exists η > 0 such that

P (WII,γ = J) = P (#{t ∈ T̃II ∩ S1,γ} = J)

≥ P [∩J
j=1(#{t ∈ T̃II ∩ Imode

j } = 1 ∩#{t ∈ T̃II ∩ Isidej } = 0)]

≥ 1−
J∑

j=1

[1− P (#{t ∈ T̃II ∩ Imode
j } = 1 ∩#{t ∈ T̃II ∩ Isidej } = 0)]

≥ 1−
J∑

j=1

[2− P (#{t ∈ T̃II ∩ Imode
j } = 1)− P (#{t ∈ T̃II ∩ Isidej } = 0)]

≥ 1−
J∑

j=1

[2− 2Φ(
|aj|Cj,γ

σ2

) + exp(−
a2jD

2
j,γ

2σ2
3

) + exp(−
a2jC

2
j,γ

2σ2
2

)]

≥ 1− J

L
{2L[1− Φ(

aCγ

σ2

)] + L exp(−
a2C2

γ

2σ2
2

) + L exp(−
a2D2

γ

2σ2
3

)}

= 1− o(exp(−ηa2)),

where the last line holds because L[1− Φ(Ka)] ≤ Lϕ(Ka)/(Ka) for any K >

0.

(3). Denote by Bj,0 and Bj,1 the events #{t ∈ T̃II ∩ Isidej } = 0 and #{t ∈

T̃II(u) ∩ Imode
j } = 1, respectively. Then, by Lemma S2, there exists η > 0 such



that

P (WII,γ(u) = J) = P (W+
II,γ(u) +W−

II,γ(u) = J) ≥ P (∩J
j=1(Bj,0 ∩Bj,1))

≥ 1−
J∑

j=1

[1− P (Bj,0 ∩Bj,1)]

≥ 1−
J∑

j=1

[1− (P (Bj,0) + P (Bj,1)− 1)]

≥ 1−
J∑

j=1

[exp(−a2j
D2

j,γ

2σ2
3

) + Φ(
u− |aj|Mj,γ

σ1

) + exp(−a2j
C2

j,γ

2σ2
2

)]

≥ 1−
J∑

j=1

[exp(−a2
D2

γ

2σ2
3

) + Φ(
u− aMγ

σ1

) + exp(−a2
C2

γ

2σ2
2

)] = 1− o(exp(−ηa2)).

(4). It follows from part (2) that

WII,γ

L
=

WII,γ

J

J

L
= A(1 + op(1)) = A+ op(1).

(5). Similarly to the proof of part (4), it follows from part (3) that WII,γ(u)/L =

A+ op(1). Then

WII,γ(u)/WII,γ = (WII,γ(u)/L)/(WII,γ/L) = 1 + op(1).

Remark S1. The proof of FDR control and power consistency mainly relies on

Lemma S3. While we have shown that the statements in Lemma S3 hold under

the asymptotic condition C2, we now demonstrate that this condition is stricter

than necessary.

Proposition 1. As L → ∞ and a → ∞, for any K > 0, if K − logL
a2

> η > 0,



then

L exp(−Ka2) = exp{a2[ logL
a2

−K]} = o(exp(−ηa2)).

The above Proposition 1 is straightforward to verify. By applying Propo-

sition 1, to ensure all statements in Lemma S3 hold, it suffices to set K =

min{ C2
γ

2σ2
2
,
D2

γ

2σ2
3
} and require that logL

a2
< K. This implies that the asymptotic

condition logL/a2 → 0 in condition C2 is overly restrictive and can be relaxed

to logL
a2

< min{ C2
γ

2σ2
2
,
D2

γ

2σ2
3
}, which depends on the variance of the second and third

derivatives of zγ(t).

Similarly, we can also relax the asymptotic condition for logL/k in con-

dition C1, such that it is bounded by a constant that depends on the third and

fourth derivatives of zγ(t).

S6. FDR Control and Power Consistency for Type II Change Points

S6.1 FDR control

Proof of Theorem 2 (FDR control). Recall that VII(u) = #{t ∈ T̃II(u) ∩ S0}

and WII,γ(u) = #{t ∈ T̃II(u) ∩ S1,γ}. Let WII(u) = #{t ∈ T̃II(u) ∩ S1} and

VII,γ(u) = #{t ∈ T̃II(u)∩S0,γ}. That is, VII(u) and WII(u) represent the number

of local maxima above u plus local minima below −u in the null region and
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signal region , respectively; and VII,γ(u) and WII,γ(u) represent the number of

local maxima above u plus local minima below −u in the smoothed null region

and smoothed signal region , respectively. Accordingly, VII, WII, VII,γ , and WII,γ

are defined as the number of extrema in S0, S1, S0,γ , and S1,γ , respectively. Note

that RII(u) = #{t ∈ T̃II(u)} = VII(u) + WII(u). By the definition of FDR for

Type II change points detection, for any fixed u, we have

FDRII(u) = E[
VII(u)

VII(u) +WII(u)
] = E[

VII(u)/L

VII(u)/L+WII(u)/L
]. (S6.8)

Note that

P (VII,γ(u) = VII(u)) = 1− P (VII,γ(u) ̸= VII(u)) = 1− P (#{t ∈ T̃II(u) ∩ Tγ} ≥ 1)

≥ 1− P (#{t ∈ T̃II ∩ Tγ} ≥ 1) = 1− o(exp(−ηa2)).

Hence, VII,γ(u) = VII(u)+ op(1). Similarly, we have WII,γ(u) = WII(u)+ op(1).

Then it follows that

VII(u)

L
=

VII(u)

VII,γ(u)

VII,γ(u)

L
= [1 + op(1)]

[L− J(2cγ)]E[m̃z′γ (U(1), u)]

L

= (1− 2cγA)E[m̃z′γ (U(1), u)] + op(1),

WII(u)

L
=

WII(u)

WII,γ(u)

WII,γ(u)

L
= [1 + op(1)][A+ op(1)] = A+ op(1).

Hence,

VII(u)/L

VII(u)/L+WII(u)/L
=

(1− 2cγA)E[m̃z′γ (U(1), u)]

A+ (1− 2cγA)E[m̃z′γ (U(1), u)]
+ op(1) < 1.

(S6.9)
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As VII(u)
VII(u)+WII(u)

≤ 1, by the Dominated Convergence Theorem (DCT),

limE[
VII(u)/L

VII(u)/L+WII(u)/L
] = E[lim

VII(u)/L

VII(u)/L+WII(u)/L
]

=
(1− 2cγA)E[m̃z′γ (U(1), u)]

A+ (1− 2cγA)E[m̃z′γ (U(1), u)]
.

That is,

FDRII(u) →
(1− 2cγA)E[m̃z′γ (U(1), u)]

A+ (1− 2cγA)E[m̃z′γ (U(1), u)]
, (S6.10)

completing Part (i) in Theorem 2 for the FDR control.

Next we will show the FDR control for random threshold ũII. Let G̃(u) =

#{t ∈ T̃II(u)}/#{t ∈ T̃II} be the empirical marginal right cdf of z′γ(t) given

t ∈ T̃II. By the Benjamini-Hochberg (BH) procedure, the BH threshold ũII

satisfies αG̃(ũII) = kα/mII = Fz′γ (ũII), so ũII is the largest u that solves the

equation

αG̃(u) = Fz′γ (u). (S6.11)

Note that

G̃(u) =
VII,γ(u) +WII,γ(u)

VII,γ +WII,γ
=

VII,γ(u)

VII,γ

VII,γ

VII,γ +WII,γ
+

WII,γ(u)

WII,γ

WII,γ

VII,γ +WII,γ
,

By the weak law of large numbers or Lemma 8 in Schwartzman et al. (2011),

VII,γ(u)/L

VII,γ/L

P−→ E[VII,γ(u)]

E[VII,γ]
= Fz′γ (u). (S6.12)
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In addition,

VII,γ

VII,γ +WII,γ
=

VII,γ/L

VII,γ/L+WII,γ/L

P−→
E[m̃z′γ (U(1))](1− 2cγA)

E[m̃z′γ (U(1))](1− 2cγA) + A
,

and

WII,γ

VII,γ +WII,γ
=

WII,γ/L

VII,γ/L+WII,γ/L

P−→ A

E[m̃z′γ (U(1))](1− 2cγA) + A
.

Combining these with (S6.11) and Part (5) in Lemma S3, we obtain

G̃(u)
P−→ Fz′γ (u)

E[m̃z′γ (U(1))](1− 2cγA)

E[m̃z′γ (U(1))](1− 2cγA) + A
+

A

E[m̃z′γ (U(1))](1− 2cγA) + A
.

Plugging G̃(u) by this limit in (S6.11) and solving for u gives the deterministic

solution u∗
II such that

Fz′γ (u
∗
II) =

αA

A+ E[m̃z′γ (U(1))](1− 2cγA)(1− α)
. (S6.13)

Note that ũII is the solution of αG̃(u) = Fz′γ (u) and u∗
II is the solution of

limαG̃(u) = Fz′γ (u), and since F−1
z′γ

(·) is continuous and monotonic, we have

ũII
P−→ u∗

II. That is, for any ϵ > 0,

P (|ũII − u∗
II| > ϵ) → 0.

By the definition of FDR, for the random threshold ũII and ϵ > 0,

FDRII,BH = FDRII(ũII) = E[
VII(ũII)

VII(ũII) +WII(ũII)
]

= E[
VII(ũII)

VII(ũII) +WII(ũII)
1(|ũII − u∗

II| ≤ ϵ)] + E[
VII(ũII)

VII(ũII) +WII(ũII)
1(|ũII − u∗

II| > ϵ)]

= E[
VII(ũII)

VII(ũII) +WII(ũII)
1(|ũII − u∗

II| ≤ ϵ)] + o(1).
(S6.14)
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Since both VII(u) and WII(u) are decreasing with respect to u, we have that, for

L large enough,

E[
VII(ũII)

VII(ũII) +WII(ũII)
1(|ũII − u∗

II| ≤ ϵ) ≥ E[
VII(u

∗
II + ϵ)

VII(u∗
II − ϵ) +WII(u∗

II − ϵ)
1(|ũII − u∗

II| ≤ ϵ)],

E[
VII(ũII)

VII(ũII) +WII(ũII)
1(|ũII − u∗

II| ≤ ϵ) ≤ E[
VII(u

∗
II − ϵ)

VII(u∗
II + ϵ) +WII(u∗

II + ϵ)
].

Additionally, note that the expectation of the number of extrema exceeing level

u is continuous in u by the Kac-Rice formula. Thus, similarly to (S6.9), we have

that, for large L, as ϵ → 0,

∣∣∣∣E[
VII(u

∗
II + ϵ)

VII(u∗
II − ϵ) +WII(u∗

II − ϵ)
1(|ũII − u∗

II| ≤ ϵ)]− E[
VII(u

∗
II)

VII(u∗
II) +WII(u∗

II)
]

∣∣∣∣
≤

∣∣∣∣E[
VII(u

∗
II + ϵ)

VII(u∗
II − ϵ) +WII(u∗

II − ϵ)
1(|ũII − u∗

II| ≤ ϵ)]− E[
VII(u

∗
II + ϵ)

VII(u∗
II − ϵ) +WII(u∗

II − ϵ)
]

∣∣∣∣
+

∣∣∣∣E[
VII(u

∗
II + ϵ)/L

VII(u∗
II − ϵ)/L+WII(u∗

II − ϵ)/L
]− E[

VII(u
∗
II)/L

VII(u∗
II)/L+WII(u∗

II)/L
]

∣∣∣∣
→ 0

and

∣∣∣∣E[
VII(u

∗
II − ϵ)

VII(u∗
II + ϵ) +WII(u∗

II + ϵ)
]− E[

VII(u
∗
II)

VII(u∗
II) +WII(u∗

II)
]

∣∣∣∣ → 0,

which implies

E[
VII(ũII)

VII(ũII) +WII(ũII)
1(|ũII − u∗

II| ≤ ϵ)]− E[
VII(u

∗
II)

VII(u∗
II) +WII(u∗

II)
] → 0.

(S6.15)
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Therefore, by (S6.14) and (S6.15), we obtain

limFDRII,BH = limE[
VII(ũII)

VII(ũII) +WII(ũII)
1(|ũII − u∗

II| ≤ ϵ)]

= limE[
VII(u

∗
II)

VII(u∗
II) +WII(u∗

II)
]

= E[lim
VII(u

∗
II)/L

VII(u∗
II)/L+WII(u∗

II)/L
]

=
Fz′γ (u

∗
II)E[m̃z′γ (U(1))](1− 2cγA)

Fz′γ (u
∗
II)E[m̃z′γ (U(1))](1− 2cγA) + A

(by (S6.9) and (S6.12))

= α
E[m̃z′γ (U(1))](1− 2cγA)

E[m̃z′γ (U(1))](1− 2cγA) + A
(by (S6.13)).

(S6.16)

S6.2 Power consistency

Proof of Theorem 2 (power consistency). By Lemma S2, for any fixed u,

PowerII,j(u) = P (#{t ∈ T̃II(u) ∩ Sj} ≥ 1)

≥ P (#{t ∈ T̃II(u) ∩ Imode
j } ≥ 1)

≥ 1− exp(−
a2jD

2
j,γ

2σ3
)− Φ(

u− |aj|Mj,γ

σ1

) → 1.

Therefore,

PowerII(u) =
1

J

J∑
j=1

PowerII,j(u) → 1.

For the random threshold ũII and arbitrary ϵ > 0, we have

P (#{t ∈ T̃II(ũII) ∩ Sj} ≥ 1) = P (#{t ∈ T̃II(ũII) ∩ Sj} ≥ 1, |ũII − u∗
II| ≤ ϵ)

+ P (#{t ∈ T̃II(ũII) ∩ Sj} ≥ 1, |ũII − u∗
II| > ϵ),
(S6.17)



where the last term is bounded above by P (|ũII − u∗
II| > ϵ) → 0 as ϵ → 0.

Moreover,

P (#{t ∈ T̃II(ũII) ∩ Sj} ≥ 1, |ũII − u∗
II| ≤ ϵ)

≥ P (#{t ∈ T̃II(u
∗
II + ϵ) ∩ Sj} ≥ 1, |ũII − u∗

II| ≤ ϵ)

≥ 1− P (#{t ∈ T̃II(u
∗
II + ϵ) ∩ Sj} = 0)− P (|ũII − u∗

II| > ϵ) → 1,

where the last line holds because for any two events A and B, P (A ∩B) = 1−

P (Ac∪Bc) ≥ 1−P (Ac)−P (Bc). Therefore, by Lemma S2, PowerII,j(ũII) → 1,

and hence

PowerII,BH = PowerII,BH(ũII) =
1

J

J∑
j=1

PowerII,j(ũII) → 1.

S7. FDR Control and Power Consistency for Mixture of Type I and Type

II Change Points

S7.1 FDR control

Proof of Theorem 3 (FDR control). Recall that the FDR for mixture of Type I

and Type II change points is defined as

FDRIII(u1, u2) = E

{
VI\II(u1) + VII(u2)

RI\II(u1) +RII(u2)

}
,
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and that S1,I\II = ∪J1
j=1(vj − b, vj + b) \S∗

II, where vj is a Type I change point and

S∗
II = ∪RII(u2)

i=1 (v̂i−2γ, v̂i+2γ) for all significant v̂i ∈ T̃II. Let S1,γ,I\II and S0,γ,I\II

be the smoothed signal region and smoothed null region of Type I change points,

denoted by S1,γ,I\II = ∪J1
j=1(vj − cγ, vj + cγ) \ S∗

II and S0,γ,I\II = U(L) \ S1,γ,I\II.

Let WI\II(u1) = #{t ∈ T̃I\II(u1)∩S1,I\II} and WI\II,γ(u1) = #{t ∈ T̃I\II(u1)∩

S1,γ,I\II}. Then RI\II(u1) = VI\II(u1) + WI\II(u1), and FDRIII(u1, u2) can be

rewritten as

FDRIII(u1, u2) = E[
VI\II(u1) + VII(u2)

VI\II(u1) +WI\II(u1) + VII(u2) +WII(u2)
]

= E{E[
VI\II(u1) + VII(u2)

VI\II(u1) +WI\II(u1) + VII(u2) +WII(u2)

∣∣VII(u2)]}

Let ∆(u2) be the length of S0,γ,I\II. Then

L− 2cγJ1 − 4γRII(u2) ≤ ∆(u2) ≤ L− 2cγJ1,

where the left inequality holds because some of the falsely detected Type II

change points may overlap with Type I change points.

Recall that for the detection of Type II change points in step 1 of Algorithm

3, we have

VII(u2)

L
→ E[m̃z′γ (U(1), u2)](1− 2cγA2),

WII(u2)

L
→ A2.

Since we assume that the distance between neighboring change points are large
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enough, and the detected Type II change points have been removed when detect-

ing Type I change points, then VI\II(u1) and WI\II(u1) only depend on VII(u2),

VI\II(u1)

L

∣∣VII(u2) ∼ E[m̃z′′γ (U(1), u1)]∆(u2)/L,

WI\II(u1)

L

∣∣VII(u2) =
WI\II(u1)

WI\II,γ(u1)

WI\II,γ(u1)

L
=

WI\II,γ(u1)

L
+ op(1).

Moreover, notice that the falsely detected Type II change points mainly result

from random noise (due to FDR control), which are uniformly distributed over

the null signal region of Type I change points. Hence in fact, ∪J1
j=1(vj − cγ, vj +

cγ) ∩ S∗
II tends to an empty set. Thus WI\II,γ(u1)

L
→ A1 and

VI\II(u1) + VII(u2)

VI\II(u1) +WI\II(u1) + VII(u2) +WII(u2)

∣∣VII(u2)

=
VI\II(u1)/L+ VII(u2)/L

VI\II(u1)/L+WI\II(u1)/L+ VII(u2)/L+WII(u2)/L

∣∣VII(u2)

∼
E[m̃z′′γ (U(1), u1)]∆(u2)/L+ VII(u2)/L

E[m̃z′′γ (U(1), u1)]∆(u2)/L+ VII(u2)/L+ A1 + A2

∣∣VII(u2).

As ∆(u2) ≤ L− 2cγJ1, by DCT, we obtain

limFDRIII(u1, u2) = limE{E[
VI\II(u1) + VII(u2)

VI\II(u1) +WI\II(u1) + VII(u2) +WII(u2)

∣∣VII(u2)]}

= E{limE[
VI\II(u1)/L+ VII(u2)/L

VI\II(u1)/L+WI\II(u1)/L+ VII(u2)/L+WII(u2)/L

∣∣VII(u2)]}

≤
E[m̃z′′γ (U(1), u1)](1− 2cγA1) + E[m̃z′γ (U(1), u2)](1− 2cγA2)

E[m̃z′′γ (U(1), u1)](1− 2cγA1) + +E[m̃z′γ (U(1), u2)](1− 2cγA2) + A
.

(S7.18)
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For the random thresholds ũI and ũII,

FDRIII(ũI, ũII) = E[
VI\II(ũI) + VII(ũII)

VI\II(ũI) +WI\II(ũI) + VII(ũII) +WII(ũII)
]

= E{E
[ VI\II(ũI) + VII(ũII)

VI\II(ũI) +WI\II(ũI) + VII(ũII) +WII(ũII)

∣∣VII(ũII)
]
}.

Similarly to (S6.16), we obtain that, as ũI
P−→ u∗

I ,

FDRIII(ũI, ũII) ∼ E
[ VII(ũII)/L+ Fz′′γ (u

∗
I )E[m̃z′′I

(U(1))]∆(ũII)/L

VII(ũII)/L+WII(ũII)/L+ Fz′′γ (u
∗
I )E[m̃z′′γ (U(1))]∆(ũII)/L+ A1

]
,

where

L− 2cγJ1 − 4γRII(ũII) ≤ ∆(ũII) ≤ L− 2cγJ1,

Fz′′γ (u
∗
I ) =

αA1

A1 + (1− α)E[m̃z′′γ (U(1))]∆(ũII)/L
.

Additionally,

Fz′′γ (u
∗
I )∆(ũII)/L =

αA1∆(ũII)/L

A1 + (1− α)E[m̃z′′γ (U(1))]∆(ũII)/L

≤ αA1(1− 2cγA1)

A1 + (1− α)E[m̃z′′γ (U(1))](1− 2cγA1)
.

Therefore,

limFDRIII(ũI, ũII)

= E

[
lim

VII(ũII)/L+ Fz′′γ (u
∗
I )E[m̃z′′I

(U(1))]∆(ũII)/L

VII(ũII)/L+WII(ũII)/L+ Fz′′γ (u
∗
I )E[m̃z′′γ (U(1))]∆(ũII)/L+ Ã∗

1

]

≤ E

[
lim

VII(ũII)/L+ E[m̃z′′γ (U(1))] αA1(1−2cγA1)
A1+(1−α)E[m̃z′′γ

(U(1))](1−2cγA1)

VII(ũII)/L+WII(ũII)/L+A1 + E[m̃z′′γ (U(1))] αA1(1−2cγA1)
A1+(1−α)E[m̃z′′γ

(U(1))](1−2cγA1)

]

= E

[
lim

VII(u
∗
II)/L+ E[m̃z′′γ (U(1))] αA1(1−2cγA1)

A1+(1−α)E[m̃z′′γ
(U(1))](1−2cγA1)

VII(u∗II)/L+WII(u∗II)/L+A1 + E[m̃z′′γ (U(1))] αA1(1−2cγA1)
A1+(1−α)E[m̃z′′γ

(U(1))](1−2cγA1)

]
≤ α,
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where the last line holds because by (S6.16),

E[lim
VII(u

∗
II)/L

VII(u∗
II)/L+ A2

] ≤ α,

and on the other hand,

E[m̃z′′γ (U(1))] αA1(1−2cγA1)
A1+(1−α)E[m̃z′′γ

(U(1))](1−2cγA1)

A1 + E[m̃z′′γ (U(1))] αA1(1−2cγA1)
A1+(1−α)E[m̃z′′γ

(U(1))](1−2cγA1)

= α
(1− 2cγA1)E[m̃z′′γ (U(1))]

A1 + (1− 2cγA1)E[m̃z′′γ (U(1))]
≤ α.

Here we have used an evident fact that (a1 + a2)/(b1 + b2) ≤ α if a1/b1 ≤ α,

a2/b2 ≤ α and b1 > 0, b2 > 0.

S7.2 Power consistency

Proof of Theorem 3 (power consistency). Recall that if vj is a Type II break,

then PowerII,j(u2) = P (#{t ∈ T̃II(u2) ∩ Sj} ≥ 1); and if vj is a Type I break,

then PowerI,j(u1) = P (#{t ∈ T̃I(u1) ∩ Sj} ≥ 1). In the proofs of Theorems 1

and 2 it is shown that, for each j, both PowerI,j(u1) and PowerII,j(u2) tend to 1

as L → ∞. Therefore, we obtain

PowerIII(u1, u2) =
1

J

J∑
j=1

[
PowerI,j(u1)1(vj is Type I ) + PowerII,j(u2)1(vj is Type II )

]
→ 1.

Similarly to the proofs of power consistency in Theorems 1 and 2, for the

random thresholds ũI and ũII, we have that if vj is a Type I break, then PowerI,j(ũI) →



1; and if vj is a Type II break, then PowerII,j(ũII) → 1. Thus,

PowerIII,BH = PowerIII(ũI, ũII) → 1.

S8. Extra Simulation Studies

S8.1 FDR and Power versus Jump Size

To examine the robustness of the proposed mSTEM procedure under moder-

ate or fixed jump sizes, we conducted additional simulations in which the jump

magnitude a varied from 0.8 to 2.0, while all other parameters were fixed at

L = 1500, γ = b = 10, and α = 0.05. This setting directly targets the reviewer’s

concern regarding Condition (C2), which requires a → ∞ asymptotically. The

empirical False Discovery Rate (FDR) and power were computed from 1000

replications under the Type II change-point scenario.

The results are presented in Figure 3. Overall, the empirical FDR remains

well controlled across all jump sizes, even when a is close to 1, indicating that the

method is stable under moderate signal strengths. The empirical power increases

with a, reaching nearly 1 when a ≥ 1.3. These findings demonstrate that the

asymptotic requirement in Condition (C2) is not restrictive in practice: mSTEM

maintains valid FDR control and high detection power even when the jump size
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is moderate and does not diverge.
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Figure 3: Empirical FDR and power versus jump size.

S8.2 FDR and Power versus Slope Change

To assess the robustness of the proposed method when Condition (C1) is re-

laxed, we generated signals with Type I change points where the size of the

slope change varies from 0.1 to 1.0. For each configuration, the empirical FDR

and power were computed over 1000 replications. The results are displayed in

Figure 4.

Figure 4 shows that the empirical FDR remains below the nominal 0.05 level

across all slope change magnitudes considered. Even when the slope change is

as small as 0.3, the method continues to maintain valid FDR control. Meanwhile,
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the empirical power rapidly increases with the slope magnitude and reaches es-

sentially 1 for slope changes above 0.3. These results indicate that the proposed

mSTEM procedure is robust to small slope changes and performs reliably even

when the theoretical spacing requirement in Condition (C1) may not be strictly

satisfied for finite samples.
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Figure 4: FDR and power versus slope change.

S8.3 Sensitivity of FDR and Power to the Bandwidth Parameter γ

We evaluate the robustness of the proposed mSTEM procedure with respect to

the kernel bandwidth γ. The bandwidth determines the degree of local smooth-

ing and affects both the effective signal-to-noise ratio and the separation between

neighboring change points. We vary γ from 3 to 18 and examine empirical FDR
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and power across four settings: Type I change points, Type II (piecewise con-

stant), Type II (piecewise linear), and the mixed Type I/II scenario. All results

are based on 1000 replications with L = 1500, b = 10, and α = 0.05.

Figure 5 shows that the proposed method is not robust to extreme bandwidth

choices. When γ is too small, insufficient smoothing leads to a lower signal-to-

noise ratio, resulting in reduced detection power. Conversely, when γ becomes

too large, the smoothing windows overlap, and the FDR begins to increase while

the power decreases due to a loss of local contrast. Across all scenarios, a mod-

erate range of γ (approximately 8 – 12) achieves stable FDR control and near-

perfect power; therefore, it provides a practical recommendation for real-data

analysis.

S8.4 Robustness to Closely Spaced Change Points

To investigate the effect of closely spaced change points, we conducted addi-

tional experiments with minimal spacing reduced to d = 50, while keeping all

other parameters the same as in Section 4.2. The noise was generated from a

stationary ergodic Gaussian process with zero mean and variance ν = 1, thereby

introducing temporal correlation.

Figure 6 reports the empirical FDR and power across a range of bandwidth

values γ ∈ {3, . . . , 18} for Type I, Type II (piecewise constant and piecewise
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Figure 5: Empirical FDR and power versus bandwidth γ. Results are pre-

sented for four signal scenarios: (i) Type I change points, (ii) Type II (piecewise

constant), (iii) Type II (piecewise linear), and (iv) the mixture of Type I and

Type II change points. Each setting uses L = 1500, b = 10, and α = 0.05, with

averages taken over 1000 replications.
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linear), and mixed scenarios. When the spacing d becomes smaller, a moder-

ately smaller bandwidth is preferred, as a large γ would cause overlapping of

smoothed neighborhoods and reduce detection accuracy. Consistent with this

intuition, γ between 6 and 10 yields the best performance for d = 50, whereas

the optimal range shifts to γ = 8–12 when d = 150 (Figure 5).

Importantly, the empirical FDR remains below the nominal level 0.05 for all

settings, and the detection power stays above 0.85 even when structural changes

are closely spaced. These results demonstrate that the proposed mSTEM method

is robust to moderate violations of the spacing condition and performs well under

correlated noise.

S8.5 Comparison with Baseline Methods under the Mixed Type I/II Sce-

nario

To further evaluate performance, we compared the proposed mSTEM method

with two representative change-point detection procedures: the Narrowest-Over-

Threshold (NOT) and the Narrowest Significance Pursuit (NSP).

Table 1 shows the results in the mixed Type I/II scenario based on 1000

replications with L = 1500, γ = 10, b = 10, and α = 0.05. Entries show the

proportion of estimated change points within specified distance ranges from the

truth, along with empirical FDR, power, and classification error (for mSTEM).
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Figure 6: Empirical FDR and power versus bandwidth γ under closely

spaced change points (d = 50).
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Table 1: Empirical performance comparison under the mixed Type I/II

change-point scenario. Results are averaged over 1000 replications with

L = 1500, γ = 10, b = 10, and α = 0.05. The last column reports the em-

pirical classification error for mSTEM.

Method Type [0, 1
3
γ) [1

3
γ, γ) [γ, 2γ) [2γ, 4γ) ≥ 4γ FDR Power ClassError

mSTEM
Type I 0.8964 0.1083 0.0115 0.0086 0.0614 0.0741 0.9970

0.0575
Type II 0.9666 0.0024 0.0013 0.0154 0.0349 0.0500 0.9690

NOT 0.3403 0.1416 0.1136 0.2235 0.1200 0.4887 0.4819 –

NSP 0.1244 0.2099 0.3381 0.3203 0.1109 0.6971 0.3342 –

As shown in Table 1, the proposed mSTEM method achieves substantially

lower FDR (0.05–0.07 compared with 0.49–0.70 for NOT and NSP) and markedly

higher power (0.97–0.99 versus 0.33–0.48). Moreover, the average classification

error for mSTEM is 5.8%, showing the accurate separation of Type I and Type II

changes in mixed settings. These results demonstrate that mSTEM substantially

outperforms existing methods in both detection accuracy and type identification.
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S9.1 Global Temperature Analysis Across Bandwidth

To examine the robustness of the proposed method in the global temperature ap-

plication, we repeated the analysis over multiple bandwidth values, γ ∈ {4, 6, 8, 12}.

Figure 7 displays the estimated piecewise-linear fits for each bandwidth choice.

Consistent with the simulation studies, the detection performance is sensi-

tive when γ is chosen to be extremely small or extremely large. When γ = 4,

the procedure generates too many small fluctuations and tends to over-segment

the signal. Conversely, γ = 12 leads to excessive smoothing, resulting in the

omission of moderate changes, including the 1971 shift often reported in clima-

tology. The results for γ = 6 and γ = 8 are highly stable and nearly identical,

both capturing the major warming trend and two primary structural shifts. These

findings further confirm that moderate bandwidth values (e.g., 6 ≤ γ ≤ 8) pro-

vide a good balance between sensitivity and robustness in real-data settings.

S9.2 Analysis of Stock price

Through analyzing the daily stock price of Host Hotels & Resorts, Inc. (HST)

from January 1, 2018, to November 5, 2021, one can provide valuable insights

into the company’s stock performance and uncover any significant change points



S9.2 Analysis of Stock price

gamma = 4

G
lo

ba
l m

ea
n 

te
m

pe
ra

tu
re

 d
ev

ia
tio

ns
 (°

C
)

1880 1900 1920 1940 1960 1980 2000 2020

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

gamma = 6

G
lo

ba
l m

ea
n 

te
m

pe
ra

tu
re

 d
ev

ia
tio

ns
 (°

C
)

1880 1900 1920 1940 1960 1980 2000 2020

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

gamma = 8

G
lo

ba
l m

ea
n 

te
m

pe
ra

tu
re

 d
ev

ia
tio

ns
 (°

C
)

1880 1900 1920 1940 1960 1980 2000 2020

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

gamma = 12

G
lo

ba
l m

ea
n 

te
m

pe
ra

tu
re

 d
ev

ia
tio

ns
 (°

C
)

1880 1900 1920 1940 1960 1980 2000 2020

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 7: Global temperature analysis under different bandwidth values.
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that may have occurred during this period. As the world’s largest lodging and

real estate investment trust (REIT), HST’s stock price can be influenced by

various factors, including market conditions, industry trends, company-specific

events, and macroeconomic factors. Historical data for the HST stock price is

available at Yahoo Finance.

The application of our method to detect the change points in the HST stock

price allows for the identification of periods characterized by significant shifts in

the stock’s behavior or trends. These change points may correspond to specific

events or factors that affect HST’s stock price, such as earnings releases, mergers

and acquisitions, changes in industry regulations, and market-moving news.

Figure 8 shows the results of change point detection for the HST stock price.

It is seen that NOT and NSP, particularly NSP, tend to be sensitive to variations

in the time series, resulting in the detection of numerous local extrema that can

be attributed to noise. This leads to a higher False Discovery Rate (FDR). In

contrast, our method provides detection results that are more interpretable. The

detected change points align with significant events, such as the outbreak of the

trade war between the USA and China in 2018 - 2019, which had a notable im-

pact on the S&P 500 and other large-cap stocks. Similarly, the detected change

points after 2020 correspond to the timeline of the Covid-19 outbreak, which

significantly affected the global tourism industry.

https://finance.yahoo.com
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