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S1. Characteristics of the Type II change point v; with large |g;|

A Type II change point v; with large |g;| behaves similarly to a Type I change
point; its derivatives exhibit similar characteristics (see Figure 1 in the Supple-
mentary Materials). Specifically, a Type II change point with g; large enough
such that ¢; > ¢/ cannot generate a local extremum in the first derivative
(., (t); and the corresponding second derivative yi/(t) has only one local ex-
tremum around the change point v;. Since a; # 0 and g; > ¢/v, one has

v; +v%q; > v; + ¢, implying no local extremum in the first derivative 1 (t)
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(see Lemma 2). Additionally,

1 1
vty (72% + /G +4> >vjtey, vty <72qj — N/ VG +4> ~ ;.

(S1.1)
Hence, there is only one local extremum around v; in the second derivative /] (¢)
(see Lemma 2). Given this behavior, it is reasonable to interpret a Type II change
point with large |g;| as a special case that essentially behaves like Type I change
points (g; = oo as a; = 0).
Intuitively, for a Type II change point v;, if the |g;| is large enough such that
q; > ¢/, it indicates that the slope change dominates the jump size; thereafter,
this Type II change point behaves similarly to a Type I change point. In this
paper, we do not consider the case of large |g;|. However, as discussed above,
this case can be essentially treated as the case of Type I change points.
Figure 1 shows a Type II change point v; with large |¢;| behaves similarly to
a Type I change point, its derivatives exhibit similar characteristics. Specifically,
a Type II change point with ¢; large enough such that ¢; > ¢/~ cannot generate a
local extremum in the first derivative /. (t); and the second derivative p(t) has
only one local extremum around the change point v;. Hence, this special Type

IT change point can be essentially treated as a Type I change point.
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Figure 1: Characteristics of the Type II change point v; with large |g;|. In the left
plot of signal x(t), the slope change dominates the jump size, giving a large |¢;|.
The middle plot of the first derivative 1, shows no local extremum, and the right
plot of the second derivative zi/j(t) shows a local maximum around the change

point v;.

S2. Proofs in Section 2

Proof of Lemma 1. Recall that w.,(t) defined in equation (3) is a truncated Gaus-

sian kernel with support [—c, ¢y] and bandwidth ~y. For ¢ € (v; — ¢y, v; + ¢y),



we have
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) + [Cj + k‘jt + (Cj+1 + k:j+1t)]<I>(c) — (Cj + kjt)

Uj—

= [¢j + kit — (¢j1 + kjat) ] D(

’Uj—t

+ (kj = kjp)vo(c) + (k1 — kj)vo( )-

Similarly, we obtain that, for ¢t € (v; + ¢y, vj41 — ¢Y),

v t—s
o 0) = w0t = [ 26 e+ hyas)ds
t—cy Y Y (523)

= (¢j1 + kjat) 29(c) — 1];

and for t € (vj_1 + ¢y, v; — ¢v),

t+cy 1

() = w0 (0 = [ 2o e+ ks
t—cy (S2.4)

= (Cj + k?]t)[QCD(C) — 1]

t—s

Taking the first and second derivatives of /.. (t) in (S2.2), (S2.3) and (S2.4)

respectively, we obtain

;

LH() + (ky = k) (L) + (ky + i) P(e) —ky tE (v — ev,u;+ ),
/Lfy(t) =9 kij[2®(c) — 1] t e (vjo1+ey,v — ),

kj+1[2q)(c) - 1] te (Uj +¢Y, Vi — 07)7

\



and

a; (v;—t)+(kj41-k;)7” o ”Jj—t)

3 P te (Uj — CY, V5 + 67)7

0 otherwise.

]

Proof of Lemma 2. Note that, if a; = 0, then 1/, (t) is monotone in (v; — ¢, v; +
cv) and hence there is no local extremum. If a; # 0, by letting /() = 0, we
see that the local extremum of y// (t) is achieved at t = v; + v?q;. Similarly,

solving the equation

Mgs)(t) — [_3 + a;(v; — t) +,Y<3kj+l — k;)? ij; t]¢(

Uj—t
8

) =0,
we obtain that the local extremum of 1://(#) is achieved at

2. 2.2
V£ Aty
it — aj # 0,
t pu—

’Uj CL]' =0.

S3. Peak Height Distributions for 2/ (¢) and 2/(t)

Proof of Lemma 3 and Proposition 2. Due to the stationarity of z,(t), without
loss of generality, we only consider the case when ¢ = (. The variances of

zgd)(O), d=1,...,4, are calculated as follows.



Var0) = [ 550 *(8) :_6%/@92%5 (g/sﬁ) "

1 & & 1

562\/_2 a/me

Var(21/(0) = / i (g)d —2 /Rg;b (g) ds*/ gTo¢2 (5)

211 2 1 1 ¢ 4§<S)ds
favme Eavee  oni k' Vit \gve

1 ¢ 3" 3

T /r 4 8/rfs

Var(z®(0)) = 9/IR gTOd)Z (5) /R?‘f @ o /R @d)z (5)

91 6 f ® )4
_5_44f€3_§28f€5 5142f/ ( )S
1 ¢ 15° 15

5142\/— ) 16\/_57’

2 4
oo (o (o e
S
- 516¢ (5)“*4@8 (&)

1 9 x 36 x +42>< 3 —12 x 15 + ! ><105

B 105
32/



Hence, the parameters of the peak height distributions for 2/ (¢) and 2/(t) are

given respectively by

o Velo)
4\/_53 \/Var z’ ))Var(zy (3) ( )

()
| Var(:(0)
8ﬁ5 \/Var 7(0))Var(= (0)

This leads to the desired peak height distributions in Proposition 2. U

o = Var(z(0)) =

o5 = Var(z//(0)) =

SRS

S4. FDR Control and Power Consistency for Type I Change Points

Proof of Theorem 1. Note that Type I change points are detected using the sec-
ond derivative y/(t) = p(t) + 2J(t), where a change point v; becomes a local
extremum in p(t) precisely at v; by Proposition 1 and 2//(¢) is a smooth Gaus-
sian process. Moreover, £/ (t) is piecewise constant with size of jump |k; 1 — k|
at v;. Thus the detection of Type I change points using the second derivative
is essentially equivalent to the detection of change points in piecewise constant
signals ( ). Under condition (C1), by substituting the original
signal y with 11" and replacing the differential smoothed noise 2/, with 27/, we see

that Theorem 1 follows from Theorems 3.1 and 3.3 in ( ). O
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Figure 2: Illustration of the signal region S; (S; in this example), null region
So, smoothed signal region S -, (S, in this example) and smoothed null region

So- 17%°% and I5'%° are a partition of S, such that I C S; C Sj,.

S5. Supporting Results for FDR Control and Power Consistency for Type

IT Change Points

To prove Theorem 2 and Theorem 3, we require the following lemmas in this
section. It is important to note that the lemmas provided below are based on
Type II change points detection, where a; # 0.

Recall that signal region is defined as S; = U/_,S; = U/_, (v; — b,v; +b),
and the smoothed signal is generated by convolving the signal and a kernel func-
tion with support [—cv, cy]. Hence, smoothed signal regionis Sy , = U}]:1Sm =
szl(vj — ¢y,v; + ¢y), where S , is the smoothed signal region of the change

point v; (see Figure 2).

Lemma S1. Ler I5'% U I"*% = (v; — ¢y,v; + ¢y) = S;, be a partition of S ,,

where I"°% .= {t € U(L) : |t —v;] < 0} and 0 < § < min{b, v} such that



_l]‘-node C Sj. If ¢ = sup; |q;| is sufficiently small, then

)—k(t

(1). M, = inf; M; ., > 0 is fixed, where M., = ian;node W”(la—]l)l and k(t) is

the slope at t.

(2). C, =inf; C;, > 0is fixed, where C; ,, = |ai inf siae |1 (2)].

71

(3). D, =inf; D;. > 0is fixed, where D; ., = |¢+ infl;node ]uﬁ,g) (t)].

i

Proof. (1). It follows from the arguments of Lemma 1 that

o) = k() 1 ey o=t vt kO
a—j_aj[7¢( ~ ) (ky+1 kyﬂ’( ~y )+ka+1] a;
= Lo gt ¢ B kO
= Lol e k) = k).

Fort € I;"°%, (k1 —k(t))/a; = O or q; as k(t) = k; or k. If ¢ is sufficiently
small, then M, > 0 and it follows that M., = inf M; ., > 0.

(2). Note that ¢ € I$19¢ C S, implies § < |v; — t| < ¢y. By Lemma 1,
J 1Y J

Cyy = — inf [u(t)] = inf |

1 (v; =) + (kjr1 — k)" /a; (Y= t)
. Si side 3 :
|a] ];uie ];1 f‘)/ ’}/

As kjy1 —k; = Oand |v; —t| > 0 fort € I, then Cj, > 0 and C, =
infj Cjﬁ > 0.

(3). Forte I JmOde, it follows from the proof of Lemma 2 that

! 1 '—t2 (v: — t 2
joy = 7 inf !u(f’)(t) = inf |— + (vj —1)* +q;(v; — )y

D 3 5
|a’j| IJ[-DOde I[_node fy f}/ f)/




If q is sufficiently small for ¢t € I ;“Ode, then D;, > 0 and D, = inf; D;, >

0. U

To simplify the notations below, we regard T}; N I as TN Ifdeif j e Iy
and as TH_ NI ;ide if j € Z;, respectively. The same notation applies accordingly

when Ty is replaced with T};(u) or when I is replaced with ;"%

Lemma S2. For a Type 1l change point v;, suppose that ¢ = sup; lq;| is suffi-
ciently small, then 11/, (t) has a local extremum at t = v; + 7*q; € I7°%. Let

o1 = sd(2(1)), 02 = sd(2!/(t)) and o5 = sd(5(t)). Then

~ . a202
(1). P(#{t € Tun I} = 0) > 1 — exp(~ 54).

212
J 7

~ a;i|Cj aj D3
(2). P(#{t € Ty N IMo%} =1) > -1+ 29( 4% ) — exp(— 305 )

2p2
i3,

(3). P(#{t € Ta(u) N [P0 = 1) > 1 — exp(=532) — O(*=4M2) for

o1

any fixed u.

Proof. (1). As the probability that there are no local extrema of y/ () in [jide is



greater than the probability that [y/(¢)| > 0 for all ¢ € I5'%°, we have

P(#{t € Ty N I5°} = 0) > P(inf |y/(t)| > 0)

Is_,idc
J

> Plsup|2(t)] < inf [15(1)])

side
Ij

— 1= Plsup|4(0)] > inf (1))

I]side j
2,72
a;C;
> 1 — exp(— 129

where the last line holds due to the Borell-TIS inequality.

(S5.5)

(2). Consider here j € Z;f since the case of j € Z;; is similar. The proba-

bility that ¢/ (t) has no local maximum in Jm"de is less than the probability that

Y. (v; —6) < 0oryl(v;+d) > 0. Thus, the probability of no local maximum in

% is bounded above by

P(#{t € Ty N I}**} = 0) < P(yy(v; — 8) < 0UY(v; +0) = 0)

< P(y5(v; — 6) <0) + P(y(v; +6) 2 0)

_M%%_5%+®d4@f+®
g2 (o)

5 (vj = 9)

o)

= )

=1- +1— 9

S 9 _ 2(I)(|GJ‘C]/Y),
02

(v +0)

)

where the last line holds because pi/j(v; — 0) > |a;|C; > 0 and —pl (v; +6) >

|a;1C55 > 0.

On the other hand, the probability that y/ (¢) has at least two local maxima



in I;"°% is less than the probability that (1) > 0 for some ¢ € [ and

y§3) (t) < 0 for some other ¢ € I;“Ode. Thus, fort € TIT N I;n"de,

P(#{t € Tf NI} > 2) < P(supyP(t) > 0Nninfyl®(t) < 0)

< P(supy®(t) > 0) A P(inf yfyg) (t) <0)

o~

< P(sup zgg) (t) > inf —,u@ (t)) A P(sup 253) (t) > inf ,ugS) (1))

212
a; Dy, )
2 )

< exp(— o
3

The last line holds due to Lemma S1.
The probability that ¢/ (t) has only one local maximum in I;-“Ode is calculated

as
P(#{t € Tyf NI} = 1)

=1— P#{t e Tf N 1%} =0) — P(#{t € Ty N I™*} >2) (S5.6)
|aj|0jﬁ) _ exp(_aJQ'DJZ,’Y)'

> 1429
2 —1+29( o9 203

(3). Consider first j € Z. Since the probability that at least two local
maxima of ¢/ () in I} exceed u + k(%) is less than the probability that ¢/ (t)

has at least two maxima in []I-mde, then

P(#{t € Ty N 1% 0y (1) — k(t) > u} 2 2)

J
e a’D?
< Pl T 0 1) > 2) < oxpl- S 002)

203

2
aD
J

Similarly, P(#{t € Ty N1 [ : g/, () — k(t) < —u} > 2) < exp(—"3%%).



On the other hand, since the probability that no local maxima of ¥/ (¢) in
mode . . ey
I37o%¢ exceeding u + k(t) is less than the probability that 3/ (t) — k() < u

anywhere in I;“Ode, then

P(#{t € Tif N IM%° gl (t) — k(t) > u} = 0)
< Pyl (t) — k(t) < u, Vt € %)

= P(2(t) + pl,(t) — k(t) < u, Vt € I7°%)

u— a;M;., u — |a;| M,

<®( 77)7

=®
01 ) ( 01
where the last line holds since a; > 0 for j € Z;}.

Therefore, the probability that only one local maximum of ¥/, (t) in I jr-“"de

exceeds u + k(t) is
P(#{t € T 017y () — k(t) > u} = 1)

=1—P(#{t € Ty NIy (t) — k(t) > u} = 0)

(S5.7)
— P(#{t € Ty NIyl (8) — k(t) > u} > 2)
>1-& GGy _ %y
The case of j € Z;; can be proved similarly. O

Lemma S3. Let T, = S;, \'S; = U/_,(S;, \ S;) be the transition region.
Let Wy, = #{t € Ty N S1} and Wi, (u) = #{t € TH(U) N S1,}, where
Wit (u) = Wit (u) + Wy (u) = #{t € Tif () NSy} +#{t € Ty (u) NSy, ).

Then, under condition (C2), there exists 1 > 0 such that



(1). P(#{t € TuN'T,} > 1) = o(exp(—na?));

(2). P(Wyy = J) =1 — o(exp(—na?));

(3). P(Why(u) = J) =1 — o(exp(—na?));

(4). Wiy /L = A+ o0p(1);

(5)- Wiy (u)/ Wiy = 14 0p(1).

Proof. (1). Note that I**% C S; implies T}, C I3°. Applying Lemma S2, we

obtain

P#{t € TyNT,} > 1) < P(#{t € Ty N (U I5°)} > 1) = P(UL #{t € Ty N[5} > 1)
a’?C? J a’C?

J
side —J Y
s;[ P(#{t € Tun I;*} = 0)] <Zexp 707 >§j§;exp<— 207 )
J 0] 2
= ZLexp(= 51 = ofexp(—na?))

where 0 < 7 < C2/(203), and the last line holds because .J/L — A and

a’C? logL C? log L
Lexp(— 2027) = exp{a*( 2 2072)} = o(exp(—na?)) as = — 0.
2 2



(2). Applying Lemma S2, we have that there exists > 0 such that

P(Wi, = J) = P(#{t € TuNS1,} = J)

> Pl (#{t € Ty N 1%} = 10 44{t € Ta N [} = 0)]

J
>1-) [1=P#{te TunI*} = 1n#{t € TunI*} =0)]

j=1

J
>1-> 2= P#{t € TuNI*} =1) - P(#{t € TuN [} = 0)]

1

<.
Il

d |a;|Cj 32 32’7 CL?CJ%W
: 3 2

1

j

J aC 2,12 a2D?
>1— {201 — o(—2 L —— Y+ L — 7
Z 1= 2L = (=) + L exp( 202 ) + L exp( 507 )}

=1 — o(exp(—na?)),

where the last line holds because L[l — ®(Ka)|] < Lo(Ka)/(Ka) for any K >

0.
(3). Denote by B;, and B;; the events #{t € Tj; N I59°} = 0 and #{t €

Tu(u) N Imede} = 1, respectively. Then, by Lemma S2, there exists 77 > 0 such



P(Wy(u) = J) = P(Wy

1Ly

(u) + Wy, (u) = J) > P(N]_,(Bjo N Bjy1))

>1- > [1—P(BjpN B;y)]

2
_ 200

D u — |a;| M;
>1- Z[exp(—aigg) +O(———1

u— aMl 9 C2 2
207 p 1) + exp(—a r‘é)] =1 — o(exp(—na”)).

(4). Tt follows from part (2) that

VVH,W o VVII,’y J o o
T =7 1= A(1 +0,(1)) = A+ 0,(1).

(5). Similarly to the proof of part (4), it follows from part (3) that Wy, (u)/L =

A+ 0,(1). Then

Wi (1) /Wity = (Wit (w)/L)/ (Wi /L) = 1+ 0,(1).

Remark S1. The proof of FDR control and power consistency mainly relies on
Lemma S3. While we have shown that the statements in Lemma S3 hold under
the asymptotic condition C2, we now demonstrate that this condition is stricter

than necessary.

Proposition 1. As L — co and a — oo, forany K > 0, if K — 1%1; >n >0,



then

Lexp(—Ka?) = exp{az[lociL — K]} = o(exp(—na?)).

The above Proposition 1 is straightforward to verify. By applying Propo-

sition 1, to ensure all statements in Lemma S3 hold, it suffices to set K =

log L
a2

. (C2 D? . . . .
mm{ﬁ, ﬁ} and require that < K. This implies that the asymptotic

condition log L/a* — 0 in condition C2 is overly restrictive and can be relaxed
log L . c2 D? . . .
to 5% < min{ %, 5%}, which depends on the variance of the second and third
2 3
derivatives of z,(t).
Similarly, we can also relax the asymptotic condition for log L/k in con-

dition CI, such that it is bounded by a constant that depends on the third and

fourth derivatives of z.,(t).

S6. FDR Control and Power Consistency for Type II Change Points

S6.1 FDR control

Proof of Theorem 2 (FDR control). Recall that Vij(u) = #{t € Tu(u) N S}
and VVHW(U) = #{t S ’fh(u) N Sla’)’}' Let VVH(U) = #{t € Tn(u) N Sl} and
Vit (u) = #{t € T(u) NSy }. That is, Vi (u) and Wy (u) represent the number

of local maxima above u plus local minima below —u in the null region and



S6.1 FDR control

signal region , respectively; and Vi, (u) and Wy, (u) represent the number of
local maxima above u plus local minima below —u in the smoothed null region
and smoothed signal region , respectively. Accordingly, Vi, Wi, Vi 4, and Wy,
are defined as the number of extrema in Sy, Sy, Sy, and S, 5, respectively. Note
that Ry(u) = #{t € Tu(u)} = Vi(u) + Wi(u). By the definition of FDR for

Type II change points detection, for any fixed u, we have

Vii(w)
VH(u) + WH(U)

Vir(u)/L

FDRu(u) = £ Valw)/L + Waw)/L"

| = B

(§86.8)
Note that

P(Vig(u) = Va(u)) = 1 = P(Viy (u) # Va(w)) = 1 — P(#{t € Tu(u) N T,} > 1)

>1—P#{tcTynT,}>1)=1— o(exp(—na?)).

Hence, Vi1, (u) = Vii(u) + 0,(1). Similarly, we have Wy, (u) = Wi (u) 4 0,(1).

Then it follows that

Vi(w)  Vi(u) Vi, (u) [L — J<2C'Y)]E[mz;(U(1)au)]
L - ‘/11,7(UJ> L - [1 + OP<1)] L

= (1 = 2cvA)Elimn (U(1),u)] + 0,(1),

Wi (u) _ Wi(u) Wi, (u)
L I/VII,’y(u) L

= [1+40,(1)][A+0,(1)] = A+ 0,(1).

Hence,

Vir(u)/L _ (A =2e9A) Bl (U(1), )]
Vi(u)/L + Wa(u)/L A+ (1= 2cyA)E[im (U(1), u)]

+0,(1) < 1.

(S6.9)



S6.1 FDR control

Vir(w)

S Vet +Wala) < 1, by the Dominated Convergence Theorem (DCT),

. Vil(u) /L e Vir(u)/L
im Bl /T watwyy2) ~ E L+ W)
_ (A= 2eyA) Bl (U(L), u))
A+ (1 =2eyA)Elm (U(1),u)]
That is,
FDRy(u) — 0~ 2ey4) Bl (U(L), w)) (S6.10)

A+ (1 =2cvA)Elin (U(1),u)]’
completing Part (7) in Theorem 2 for the FDR control.

Next we will show the FDR control for random threshold 4. Let G (u) =
#{t € Ty(u)}/#{t € Ty} be the empirical marginal right cdf of 2! (t) given
t € Ty. By the Benjamini-Hochberg (BH) procedure, the BH threshold iy

satisfies aé(ﬂn) = ka/my = F, (@), so ay is the largest u that solves the

equation
aG(u) = F (u). (S6.11)
Note that
Glu) = Vig(u) + Wiy (w) Vi (uw) Vi, Wiy (u) Wi, |
Viiy + Wiy Vi, Vi, + Wiy Wiy Vi, + Wiy
By the weak law of large numbers or Lemma 8 in ( ),

Viy(w)/L p E[Vii,(u)] _r S6.12
Ve/L Bl =W eel




S6.1 FDR control

In addition,

Viiy Vi, /L p Elm (U(1))](1—2cvA)

~

= — — ,
Vi, + Wiy Vi /L+ Wiy /L Efie, (U(1)](1 - 2c7A) + A

and

VVH,W _ I/VYH,",//-L 5) A
Viy + Wiy Viy/L+Wuy /L Eling (U(1))](1 = 2c74) + A

Combining these with (S6.11) and Part (5) in Lemma S3, we obtain

- Elim.; (U(1)))(1 - 2¢yA) A
Glu) = FZ/V(U)E[mZ;(U(l))](l —2c7A) + A" Bl (UD))(1 - 2cy4) + A’

Plugging G/(u) by this limit in (S6.11) and solving for  gives the deterministic

solution uj; such that

aA
F. (up) = — . S6.13
() = 7 + Elm., (U1))](1 — 2¢vA) (1 — ) (5619
Note that @y is the solution of aG(u) = Fy (u) and uj is the solution of

limaG(u) = F (u), and since I, '(.) is continuous and monotonic, we have
Y

_ P .
uy — ug. That is, for any € > 0,
P(|ﬂH — ufl\ > 6) — 0.

By the definition of FDR, for the random threshold uy and € > 0,

Vir ()
Vir(an) + Wi(an)

FDRypn = FDRy(an) = E|

Vi(in) ; Vir(iin) i
= ~ = 1(|ag — S e+ FE —~ - 1l — u*l > €
V() + Wir(tr) (i = s ) [VH(UH) + Wh(an) ([t = un| > €)]
Vi) (S6.14)

= Bl Watan) L(|ag — ug| <€)+ o(1).



S6.1 FDR control

Since both Vj;(u) and Wi (u) are decreasing with respect to u, we have that, for

L large enough,

Vi () - Vi (ug, )
~ —1(|ag —up| <€) > F
Vir(an) + Wi(an) (I nl ) [VH(UH €) + Wu(
Vi () - Vir(ufy — €)
_ —1(|lag —ur| <e) < E
Vir(tin) + W () (fiy =] < ) [VH(UH +€) + Wu(ug; + €)

€

=

= |+

S <
ur — B 1(| UH|_€)]a

=

J

Additionally, note that the expectation of the number of extrema exceeing level
u is continuous in u by the Kac-Rice formula. Thus, similarly to (56.9), we have

that, for large L, as € — 0,

Vir(uj; + €)
Vir(ugy — €) + Wa(ujy — €)
Vi (ug; + €)
Vi(ufy — €) + Wi (ugy —

Vir(ug)
* * ]
Vir(ugy) + Wi(ug)
Vir(ufy + €)
Vir(ufy — €) + Wi(ug; — €)

\E[ LJan — uj < O] - B

< ‘E[ A = i < 0] - E|

O R ) I
Vir(ufy — €)/L + Wa(uj; — €)/L Vir(ufy) /L + Wi(ufy) /L
— 0
and
Vir(ug — €) Vi (ug) ’
E’ — E — 07
' ettt o) + Walwg + )~ P Valag) + Walag)
which implies
B Vir(tin) Vir(ufy) o

)H(WH —uy| <€) = E

Vir(tn) + Wi (g Vir(ug) + Wi(ug)

(S6.15)
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Therefore, by (S6.14) and (S6.15), we obtain

%I(aﬂ)

Vit () + W ()
VH(U?I)
VH(“TI) + W/H(Uﬁ)

Vi(ug)/L
Vi(ug) /L + Wi(ugy) /L
Py () Bl (U()](1 - 267A)
= Fo(u) Bl U1 — 27 A) 7 A (Y 569 and 86 1))
B[y (U@)](1 = 2cvA)
= Bl (UW)](1 = 2094) + A

lim FDRH,BH = lim E[ :ﬂ_(|’l~LH - Uikl| S 6)]

= lim E| ]

= E[lim

(by (S6.13)).

S6.2 Power consistency

Proof of Theorem 2 (power consistency). By Lemma S2, for any fixed w,
Powery;(u) = P(#{t € Tu(u) N S;} > 1)

> P(#{t € Tu(u) N [°*} > 1)

(u - |aj|Mj77
203 o1

>1—exp(— ) — 1.

Therefore,
1
Powery(u) = i ; Powery j(u) — 1.
For the random threshold uy; and arbitrary € > 0, we have
P(#{t € Ty(im) N S;} > 1) = P(#{t € Ty(an) N S;} > 1, |y — up| < e)

+ P(#{t & T'H(’IIH) N Sj} > 1, ”&/H — U;{Eglﬁ 5



where the last term is bounded above by P(|uy — uf| > €¢) — 0as e — 0.

Moreover,
P(#{t € Tu(n) N S;} > 1, an — up| < ¢)
> P(#{t € Tu(uy +€) N S;} 2 1, Jan — uy| < ¢)
> 1 — P(#{t € Tu(uj +¢) N S;} = 0) — P(|im — uy| > ¢) — 1,
where the last line holds because for any two events A and B, P(ANB) =1 —

P(A°UB¢) > 1—P(A°)—P(B°). Therefore, by Lemma S2, Powery ;(tn) — 1,

and hence

J
. 1 Z .
POWGI‘ILBH = POWGI’]LBH (U]]) = j POWGI"][J' (U[]) — 1.
j=1

S7. FDR Control and Power Consistency for Mixture of Type I and Type

IT Change Points

S7.1 FDR control

Proof of Theorem 3 (FDR control). Recall that the FDR for mixture of Type I

and Type II change points is defined as

Vi %
FDRIH<u1,u2) - E{ I\H(ul) + II(U2> } 7

Riu(ur) + Ru(uz)
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and that Sy iy = U‘] 1(v; —b,v;+b)\ S};, where v, is a Type I change point and
S = Ufi“l(”) (0; — 2, 0; + 2) for all significant v; € Ty Let S1,4,nu and So
be the smoothed signal region and smoothed null region of Type I change points,
denoted by S; 5 nu = U;]lzl(vj —cy,v+cy)\Sfiand S nn = U(L) \ 140

Let Wi (u1) = #{t € TI\H(Ul)ﬂSLI\H} and Wi (u1) = #{t € TI\H(Ul)ﬂ
Siynaf. Then Rpp(ui) = Via(ur) + Wia(u1), and FDRyy(uy, ug) can be

rewritten as

| Vivi(ur) + Vir(ue) ]

Vivr(ur) + Win(ur) + Vir(ug) + Wi(us)
Vivi(ur) + Vi (ue)

Vivr(ur) + Win(wr) + Vi(ug) + Wi(us)

FDRIH(Ub Uz)

— B{E] \Vn uz)]}
Let A(uz) be the length of Sy, p\. Then

L —2cyJy — 4yRy(ug) < Aup) < L —2evJy,

where the left inequality holds because some of the falsely detected Type II
change points may overlap with Type I change points.

Recall that for the detection of Type II change points in step 1 of Algorithm

3, we have
VII(LW) Elim. (U(1),u2)](1 — 2cyAs)
Wi (uz)
7 AQ.

Since we assume that the distance between neighboring change points are large
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enough, and the detected Type Il change points have been removed when detect-

ing Type I change points, then Vi\y(u1) and Wiy (u,) only depend on Vi (us),

Vi (w -
&\VH () ~ Elrivay (U (1), u1)]A(uz) /L,
. I/VI\H(Ul) VVI\IL'y(ul) . VVI\II,'y(ul) 4

WI\H Ul
B S = 0,(1).
I/VI\HW(Ul) L L ()

|Vir(u

Moreover, notice that the falsely detected Type II change points mainly result
from random noise (due to FDR control), which are uniformly distributed over

the null signal region of Type I change points. Hence in fact, Uj;l (vj — ey, v +

Wi, (u1)
L

cy) NS} tends to an empty set. Thus ~ — A; and

Vi (ur) + Vir(us)
Vi (un) + Wi (u) + Vi(uz) + Wi(uz)
_ Via(ea)/ I + Vaus)/ L
Vi(u1)/ L+ Wi (u1) /L 4 Vir(ug) /L + Wy (uz) /L
Elm.,(U(1),u1)]A(uz)/L + Vii(uz) /L
" Bl (U(L), ur)]A(us) /L + Vi(ug) /L + Ay + Ag

|VH (u2)

|VH(U2)

“/II(UZ)-

As A(ug) < L — 2¢7yJ1, by DCT, we obtain

Vin(ur) + Vir(us)
Vi (ur) + Wi (ur) + Vi(uz) + Wa(us)
Vivi(ur) /L + Vi (ug) /L
Vi (u1)/L + Waa(u1) /L 4 Vir(ug) /L + Wu(ug) /L
Elmy (U(1), ur)](1 — 2eyAy) + Elrine (U(1), us)](1 — 2c7¢85).18)
= By (U(1), un)](1 = 2¢vAr) + +E[me (U(1), u2) (1 — 2e7A2) + A

lim FDRH](U,l,Ug) = lim E{E[ |V}](U2)]}

= E{lim E|

“/II ug)}
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1 FDR control

For the random thresholds @y and o,

FDRm (i, an) = E|

VI\H(ﬂI) + V()

— B{E] Vv (@) + V(i)

Vi (@) + Win (@) + Viu(an) + WII(aII>]

Vivr () + Wi (@) + Vir(@u) + Wy

Similarly to (S6.16), we obtain that, as i — ],

FDRy (i, i) ~ E|

Vir(tin) /L + Fop (up) By (U(

] |Vir(am)] }-

(i

1))]A(in) /L

where

L —2cvJy — 4yRy(in) < Alan) < L —2evJ4,

OéAl
FZ” U* == ~ ~ ’
(ur) Ay + (1 = @) Bl (U(1))] A () /L
Additionally,
B OéAlA(aH)/L
Fz” u* A u L = = )
o (up ) A () / Ar + (1 — a) Elmy (U(1))]A(tn) /L
. a Ay (1 —2cvA))
Therefore,
lim FD Ry (4, @)

Ll Vir(an) /L + Fay (ui) Bl (U (1))]A(an) /L

< FE|lim

| Vi) /L + W) /2 + Foy(uf) Eliiv.y (U(1))]A(an) /L + Af

aAi(1-2cvAq)

Viu(tm)/ L + Elmy (U(1))] A=) Bl (U(D)](1-267 A1)

Viu(tm) /L + Wi(tn) /L + Ay + Eliey (U(L)] 455

aAi(1-2c¢yAr)

Ty (U (D) (1—2e7 A1) -

* ~ aAi(1—2cyA
Vi(ugy) /L + E[i.y (U(1))] A1+(1—a)E[71”n(z/W/(U?l))l])(l—QcyAl)

= F| lim

aAi(1—2c¢yAr)

Vin(uf)/ L+ Wan(ui) /L + A1+ Elzy (U (D) s

T (D) (1-2e7 A1) -

Vi(tn) /L + Wa(an) /L + Foy(u) Ely (U (1))]A(tn) /L + Al}’
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where the last line holds because by (S56.16),

Vu(uﬁ)/L
Vir(ug) /L + Ag

E[lim

| <o,

and on the other hand,

~ aAi(1—2cyAq)
Elm.»(U(1))] A1+(17Q)E[%z,7,(U(1))1](17207A1)

~ aAi(1—2¢vAq)
A1 + E[mz;’(U(l))] A1+(1_Q)E[:ﬁzg(U?l);](l—QcyAl)

. (1 —2¢y A1) Elm.y(U(1))] <
Ar + (1 = 2evA1) Elmey (U(1))] —

Here we have used an evident fact that (a1 + as)/(by + b2) < aif a; /by < a,

ag/bggaandb1>0,b2>0. O

S7.2 Power consistency

Proof of Theorem 3 (power consistency). Recall that if v; is a Type II break,
then Powery j(ug) = P(#{t € Tu(uz) N S;} > 1); and if v; is a Type I break,
then Powery;(u;) = P(#{t € Ti(u;) N'S;} > 1). In the proofs of Theorems 1
and 2 it is shown that, for each j, both Power ;(u;) and Powery ;(uz) tend to 1

as L — oo. Therefore, we obtain
1
Powerpy(uy, ug) = 3 Z {Powerl,j (u1)1(v; is Type I ) 4+ Powery ;(u2)1(v; is Type 1) | — 1.
j=1

Similarly to the proofs of power consistency in Theorems 1 and 2, for the

random thresholds @ and 1y, we have that if v; is a Type I break, then Power ; () —



1; and if v, is a Type II break, then Powery ;(ty) — 1. Thus,

POW@IHLBH = POVVGI‘IH(ZNLI7 Z~LH) — 1.

S8. Extra Simulation Studies

S8.1 FDR and Power versus Jump Size

To examine the robustness of the proposed mSTEM procedure under moder-
ate or fixed jump sizes, we conducted additional simulations in which the jump
magnitude @ varied from 0.8 to 2.0, while all other parameters were fixed at
L = 1500, v = b = 10, and o = 0.05. This setting directly targets the reviewer’s
concern regarding Condition (C2), which requires ¢ — oo asymptotically. The
empirical False Discovery Rate (FDR) and power were computed from 1000
replications under the Type II change-point scenario.

The results are presented in Figure 3. Overall, the empirical FDR remains
well controlled across all jump sizes, even when a is close to 1, indicating that the
method is stable under moderate signal strengths. The empirical power increases
with a, reaching nearly 1 when a > 1.3. These findings demonstrate that the
asymptotic requirement in Condition (C2) is not restrictive in practice: mSTEM

maintains valid FDR control and high detection power even when the jump size
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is moderate and does not diverge.
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Figure 3: Empirical FDR and power versus jump size.

S8.2 FDR and Power versus Slope Change

To assess the robustness of the proposed method when Condition (C1) is re-
laxed, we generated signals with Type I change points where the size of the
slope change varies from 0.1 to 1.0. For each configuration, the empirical FDR
and power were computed over 1000 replications. The results are displayed in
Figure 4.

Figure 4 shows that the empirical FDR remains below the nominal 0.05 level
across all slope change magnitudes considered. Even when the slope change is

as small as 0.3, the method continues to maintain valid FDR control. Meanwhile,
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the empirical power rapidly increases with the slope magnitude and reaches es-
sentially 1 for slope changes above 0.3. These results indicate that the proposed
mSTEM procedure is robust to small slope changes and performs reliably even
when the theoretical spacing requirement in Condition (C1) may not be strictly

satisfied for finite samples.
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Figure 4: FDR and power versus slope change.

S8.3 Sensitivity of FDR and Power to the Bandwidth Parameter ~y

We evaluate the robustness of the proposed mSTEM procedure with respect to
the kernel bandwidth . The bandwidth determines the degree of local smooth-
ing and affects both the effective signal-to-noise ratio and the separation between

neighboring change points. We vary 7 from 3 to 18 and examine empirical FDR
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and power across four settings: Type I change points, Type II (piecewise con-
stant), Type II (piecewise linear), and the mixed Type I/II scenario. All results
are based on 1000 replications with L = 1500, b = 10, and o = 0.05.

Figure 5 shows that the proposed method is not robust to extreme bandwidth
choices. When 7 is too small, insufficient smoothing leads to a lower signal-to-
noise ratio, resulting in reduced detection power. Conversely, when v becomes
too large, the smoothing windows overlap, and the FDR begins to increase while
the power decreases due to a loss of local contrast. Across all scenarios, a mod-
erate range of ~y (approximately 8 — 12) achieves stable FDR control and near-
perfect power; therefore, it provides a practical recommendation for real-data

analysis.

S8.4 Robustness to Closely Spaced Change Points

To investigate the effect of closely spaced change points, we conducted addi-
tional experiments with minimal spacing reduced to d = 50, while keeping all
other parameters the same as in Section 4.2. The noise was generated from a
stationary ergodic Gaussian process with zero mean and variance v = 1, thereby
introducing temporal correlation.

Figure 6 reports the empirical FDR and power across a range of bandwidth

values v € {3,...,18} for Type I, Type II (piecewise constant and piecewise
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Figure 5: Empirical FDR and power versus bandwidth ~. Results are pre-
sented for four signal scenarios: (i) Type I change points, (i1) Type 1I (piecewise
constant), (iii) Type II (piecewise linear), and (iv) the mixture of Type I and
Type II change points. Each setting uses L = 1500, b = 10, and o« = 0.05, with

averages taken over 1000 replications.
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linear), and mixed scenarios. When the spacing d becomes smaller, a moder-
ately smaller bandwidth is preferred, as a large v would cause overlapping of
smoothed neighborhoods and reduce detection accuracy. Consistent with this
intuition, y between 6 and 10 yields the best performance for d = 50, whereas
the optimal range shifts to v = 8-12 when d = 150 (Figure 5).

Importantly, the empirical FDR remains below the nominal level 0.05 for all
settings, and the detection power stays above 0.85 even when structural changes
are closely spaced. These results demonstrate that the proposed mSTEM method
is robust to moderate violations of the spacing condition and performs well under

correlated noise.

S8.5 Comparison with Baseline Methods under the Mixed Type I/II Sce-

nario

To further evaluate performance, we compared the proposed mSTEM method
with two representative change-point detection procedures: the Narrowest-Over-
Threshold (NOT) and the Narrowest Significance Pursuit (NSP).

Table 1 shows the results in the mixed Type I/II scenario based on 1000
replications with L = 1500, v = 10, b = 10, and o = 0.05. Entries show the
proportion of estimated change points within specified distance ranges from the

truth, along with empirical FDR, power, and classification error (for mSTEM).
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Figure 6: Empirical FDR and power versus bandwidth v under closely

spaced change points (d = 50).
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Table 1: Empirical performance comparison under the mixed Type I/II

change-point scenario. Results are averaged over 1000 replications with

L = 1500, v = 10, b = 10, and o = 0.05. The last column reports the em-

pirical classification error for mSTEM.

Method  Type [0,37) [37.7) [1.2v) [2v.4y) >4y FDR Power ClassError
TypeI 0.8964 0.1083 0.0115 0.0086 0.0614 0.0741 0.9970
mSTEM 0.0575
Type Il 0.9666 0.0024 0.0013 0.0154 0.0349 0.0500 0.9690
NOT 0.3403 0.1416 0.1136 0.2235 0.1200 0.4887 0.4819 -
NSP 0.1244 0.2099 0.3381 0.3203 0.1109 0.6971 0.3342 -

As shown in Table 1, the proposed mSTEM method achieves substantially

lower FDR (0.05-0.07 compared with 0.49-0.70 for NOT and NSP) and markedly

higher power (0.97-0.99 versus 0.33-0.48). Moreover, the average classification

error for mSTEM is 5.8%, showing the accurate separation of Type I and Type II

changes in mixed settings. These results demonstrate that mSTEM substantially

outperforms existing methods in both detection accuracy and type identification.
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S9.1 Global Temperature Analysis Across Bandwidth

To examine the robustness of the proposed method in the global temperature ap-
plication, we repeated the analysis over multiple bandwidth values, v € {4, 6, 8, 12}.
Figure 7 displays the estimated piecewise-linear fits for each bandwidth choice.
Consistent with the simulation studies, the detection performance is sensi-
tive when ~y is chosen to be extremely small or extremely large. When v = 4,
the procedure generates too many small fluctuations and tends to over-segment
the signal. Conversely, v = 12 leads to excessive smoothing, resulting in the
omission of moderate changes, including the 1971 shift often reported in clima-
tology. The results for v = 6 and v = 8 are highly stable and nearly identical,
both capturing the major warming trend and two primary structural shifts. These
findings further confirm that moderate bandwidth values (e.g., 6 < v < 8) pro-

vide a good balance between sensitivity and robustness in real-data settings.

S9.2 Analysis of Stock price

Through analyzing the daily stock price of Host Hotels & Resorts, Inc. (HST)
from January 1, 2018, to November 5, 2021, one can provide valuable insights

into the company’s stock performance and uncover any significant change points
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that may have occurred during this period. As the world’s largest lodging and
real estate investment trust (REIT), HST’s stock price can be influenced by
various factors, including market conditions, industry trends, company-specific
events, and macroeconomic factors. Historical data for the HST stock price is
available at Yahoo Finance.

The application of our method to detect the change points in the HST stock
price allows for the identification of periods characterized by significant shifts in
the stock’s behavior or trends. These change points may correspond to specific
events or factors that affect HST’s stock price, such as earnings releases, mergers
and acquisitions, changes in industry regulations, and market-moving news.

Figure 8 shows the results of change point detection for the HST stock price.
It is seen that NOT and NSP, particularly NSP, tend to be sensitive to variations
in the time series, resulting in the detection of numerous local extrema that can
be attributed to noise. This leads to a higher False Discovery Rate (FDR). In
contrast, our method provides detection results that are more interpretable. The
detected change points align with significant events, such as the outbreak of the
trade war between the USA and China in 2018 - 2019, which had a notable im-
pact on the S&P 500 and other large-cap stocks. Similarly, the detected change
points after 2020 correspond to the timeline of the Covid-19 outbreak, which

significantly affected the global tourism industry.


https://finance.yahoo.com
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