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S1 Background on t-product

Before presenting the t-product and related theories (Kilmer et al., 2008
Kilmer and Martin, 2011)), we introduce some additional notations. For a tensor

A € RIv<ExIs denote the block circular matrix bcirc(\A) as

AL AU L 4®)

o A2 AL 4B

A = bcirc(A) = € Rifsxtals,
A A=) L  4(0)

The block vector-unfolding operator bvec(-) and its inverse operator bvfold(-)
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are defined as, respectively,

bvec(A) := [AY; ... ; AU] - byfold(bvec(.A)) == A.

Definition S1.1 (t-product): The t-product between A € R gnd B €

R™ 215 s defined as

A % B := bvfold(bcirc(.A) - bvec(B)) € Rt */2x1s

where x indicate the t-product.

To obtain the faster computational efficiency, the discrete Fourier transfor-
mation (DFT), connecting t-product and standard matrix product, is introduced.

Denote F,, = [wy,ws, - ,w,] as the DFT matrix, where

w; = [P0, gIx(=D). g x (= 1))

)

2mo

¥ = e » and ¢ = /—1. Thus, F, is a unitary matrix, that is, F'F, =
F.F!' = nI, and F;' = ZF!'. Then, the block-circulant matrices can be
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S1. BACKGROUND ON T-PRODUCT

blockdiagonalized, i.e.,

~ (@)
(F, @ I))A(F' @ I;,) = A = (S1.1)

~ (I3)

A

where A is obtained by \A(4, j,:) = F},.A(i, j, :). By the unitarity and (ST.1)),

Alr. (A B) = (4, 4),

A = r

L

VI3
C=AxBsC=A-B.

Next, we introduce some other definitions on tensor, generalized from the matrix

case.

Definition S1.2 (Conjugate transpose, lLu et al.|(2018)): The conjugate trans-
pose of A € Cl*12xIs g represented as A" € C2*I1*Is_ gchieved by transpos-
ing each frontal slice with conjugation and subsequently reversing the sequence

of transposed frontal slices from 2 to Is.

Definition S1.3 (Orthogonal tensor): A tensor @ € R"*12X1s js orthogonal if

0+xo"=0"x0="1T.

Definition S1.4 (F-diagonal tensor): A tensor is considered f-diagonal when
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each of its frontal slices represents a diagonal matrix.

Definition S1.5 (Identity tensor): A tensor T € R I*Is s called as identity

tensor if its first frontal slice is the identity matrix and others are all zero.

Definition S1.6 (-SVD): For a given A € RI"2%Is it has the following fac-
forization,

A=Ux8 V"

whereUU € RI<IxIs 'y ¢ RE2XXIs gre orthogonal tensors, and S € R < 12x1s

is a f-diagonal tensor.

Note that the entries of the first frontal slice in S possess the decreasing property,
1.e.,
S(1,1,1) > 8(2,2,1) > - >S(I1 N1y, I Ao, 1). (S1.2)
The property (S1.2) holds because the inverse DFT gives,
1 -
Sii1) = - ;su,z,ﬁ, (SL.3)
and the S(:,:, j) is the singular value matrix of A(:, :, j). Therefore, the ele-

ments of S(:, :, 1) are regarded as the singular values of .A.

Definition S1.7 (Tensor tubal-rank, \Lu et al.| (2018)): For A € RI*2XIs g
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S1. BACKGROUND ON T-PRODUCT

tubal-rank is the number of nonzero singular value, that is
rank(A) := #{i,8(i,4,1) # 0},

where “#” denotes the cardinality of a set.

It is easy to obtain rank,(A) < rank(A) < I3 - rank,(A); see [Lu et al.[ (2018)

for details.

Definition S1.8 Define || A|| := || Al|., as the tensor spectral norm for A €

R[l ><12><13

Definition S1.9 (+-TNN, |Lu et al.|(2018)): Let A = U xS x V! be the t-SVD of

A € RXEXIs 0 and the tubal nuclear norm is defined as

I =D 8(,i,1),
=1

where r = rank(A).

Note that the tensor spectral norm is the dual norm of t-TNN. It is easy to see

that the following properties hold,

1 —

_ ~ 1 ~
Al = [|Allop = | Allop, lLA]l« = [ All« = [l All.. (S1.4)
I3 I3

Proposition S1.1 (Lu et al., 2018) Let A € RV ywith rank (A) = 7,
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and its skinny t-SVD be U * 8 x« V™ where U € RI*ls & ¢ R™"Is gpd
V ¢ RE2*"I3 The subdifferential of t-TNN is O||Al, = {U = V' + W -

U W=0WxV=0,|W| <1}
With the above discussion, given A, B € RI1*2x1s

1

(AB)< ¢

. 1~ o~
(A, B) < ]—SHAH*HBH = || Al.[[B]]-
Moreover, let A € R %% with rank,(A) = r,
1~ (.
Al = FIAlL < VIl < VAL,

where 1/ is the rank of A and r’ < I 37 holds. To prove that t-TNN is decompos-

able, the additivity of nuclear norm is needed.

Proposition S1.2 (Recht et al.| [2010) For any A and B with the same dimen-

sion, if AB" = A"B =0, then |A + B|, = ||A]|. + || B]|.

Lemma S1.1 For any A and B with the same dimension, if AxB" = A"«B =

0, we have || A+ B||. = || A« + || B

Proof of Lemma [S1.1: Note that,

AxB'=A"«B=0- AB" = A"B =0.
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S1. BACKGROUND ON T-PRODUCT

Thus,

1 —— 1, ~ .
A+ Bl = I—SH(A + B)||. = ]—3(HA|I* + |1 Bll+) = [l A[l + [IB]].

Theorem S1.1 For any A € %+ and B € B, of the same dimension, with

tubal rank r, we have || A + B||. = || A||« + || B||.. where

QY = {u*M+N*vH M € RTXIQXIL’,?NG RIlXTXIg}’

%:{U*UH*Z—i—Z*V*VH—L{*L{H*Z*V*VH:ZGRIIXI?XL*}.

Proof of Theorem [S1.1l Note that, B € R'*2%XIs phas the skinny t-SVD, that
isB=UxS8 V" whereld € R Is & ¢ R gpd Y e RIzxrxls,
Define % = {Ll s MEN V0 M € RxExB N ¢ Rh”“3} and
B={UsUN s Z+ 2+ VAV - UUN L 25V VL E € R,
thus, B+ = {(I—L{ s UM« Zx (T -VV): Z¢ RIlXI?XIS}. It is easy
to see that B C U and U+ C PB*. Therefore, Ax B = 0 and A™ « B = 0.

Then, by Lemma|S1.1} we have || A + B||. = || A« + || B]|x |

7



Zihao Song, Lei Wang, Riquan Zhang and Weihua Zhao

S2 Proofs and Lemmas for results in Section 2

The theoretical developments are following the roadmap below: The Lemma
approximates the difference between empirical risk and population risk via
Rademacher complexity. The Lemma illustrates that the statistical error
| >, Ly (u))y; X;/n]| is bounded by A through a kind of Talagrand’s concentra-
tion inequality (Theorem 4.2 of Bartlett et al.| (2005)). Furthermore, Theorem
[T] investigates the upper bound of estimation error with the aid of Lemma [S2.T]
and[S2.2] Then we study the size of E[|| >, 0, X and E[|| >, L}, (uf)y: X;||] in
Assumption 3 through the Lemma and the tail probability P(||X|| > M)
with a proper constant M via the Lemma [S2.4] respectively. With the above re-
sults, Corollary [T presents the statistical rate of the RSSTM estimator. Next, we
show that the RSSTM estimator enjoys the low rank guarantee of the order O(r).
Finally, we investigate the convergence analysis of the proposed algorithm.

To simplify notations, the empirical measure on the n observations is de-
noted by P, and the corresponding population counterpart is indicated by P.

That is, with any function f on the same probability space as (X, y), we have

Pf=[fdP =Ef

Lemma S2.1 Suppose Assumption 1-4 hold, for VM > 0 with E[|| X ||?] P(|| X || >
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S2. PROOFS AND LEMMAS FOR RESULTS IN SECTION 2

M) < \/4, we have

e [(PuP) Ly 5+ (B 4D, X))~ Lyl +(B", Z))]| < O

with probability 1 — Ce= ™M — CnP(||X| > M), where 7 = {(6,D) :

1Dl < 3ID°Il. + |6, E[(6 + (X, D))*] < £}.

Proof of Lemma [S2.1k For simplicity of notations, let f(6, D, X, y) = L(y(5*+
b+ (B*+ D, X)) — L,(y(8* + (B*, X))), and define F = {f(6, D, X,y) :
(0, D) € T}. Itis trivial that Var(f(0, D, X, y)) < CVar(|y(0 + (X, D))|) <
Ct? holds for f € F by virtue of the Lipschitz continuity of the smoothed func-

tion Ly(+). Then the Markov inequality suggests that,

P(|(PR, —P)f|<a)>1—c—t2 Va>0
" - na?’ '

The following inequality holds via the symmetrization Lemma (Pollard, 1984,

Sec. 11.3.8),

P(supjex|(Po — P)f| > a)
P(ilelgl(Pn—P)f\ > 2a) < I CE(n) :

where P!, denotes the empirical measure on the independent copies {(y., X))},

Of{(ywxl) zn:l‘
Let fyr = fH{||X|| < M} for f € F where 1{-} denotes the indicator
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function. Note that sup ;e (P, — P,) fy and sup ez Y, 03 fu (6, D, Xy, y:) /n
are identically distributed. By | D|. < C(|D°|. + |6]) < Ct\/7 due to the
low tubal rank, we have | fy;| < CMt\/r. Then, using Var(f) < Ct* and the

Talagrand’s concentration inequality (see Theorem A.2 of Bartlett et al.|(2005)),

we have

P(sup ZalfM 0, D, X;,y;) >]E[sup ZO‘ZfM 0,D, Xz,yz)] CMxtf)

fermn ferF
< e "
(82.5)
On the other hand, we also have

E(| Zaz’yﬂil{llxill > M}|) = nE(supy g oy(X{|| X]| > M}, A))

= nE(supy ay<t (X, ALK > M}) < nE[| X|*IP(|X] > M) < Cn),

which implies

E[?ggnzozm (6,D Xzayz):| < E[(;;;l)}e)ynzazyz (0 + (X I{]|l x| < M}, D>)]

S]E[— oy X || X < M ]( sup ’D*>—|—E[sup— aiyié}
SIS ew i) < i) (w121 v
1 1
g]E[— aiyl-?(i}- sup D*+E[— Fu XX > M }( N )
I E I (w)egl\ | I E {12 Hi Sap 1D,
1
—I—E[sup— E aiyié] < OXt/T.
s n ;
(S2.6)
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S2. PROOFS AND LEMMAS FOR RESULTS IN SECTION 2

Choosing x < n\/M and a = C\t+/r, with (S2.5)) and (S2.6)), we have

P(supser(Pn — Pp) far > a/3) < e

Then

P(supserPul(f = far) > af3) = P(supser P (f — fu) > a/3)

< P(max;|| X;]| > M) < nP(]|X]| > M).

This implies P(sup;c (P, — P)f > a) < Ce™ + CnP(|| X > M). [

Lemma S2.2 For any M > 0 satisfying E[| X |*|P(||X| > M) < /4, with

probability 1 — e~ "M _nP(||X|| > M),

x> 2| ZL’ Ny Xi/n).

Proof of Lemma [S2.2: For brevity, we indicate v; = L} (u})y;. Using the bound-
edness of L) and optimality condition, we have |v;| < 1 and E[v;X;] = 0. In
fact,

IS wifnll= STl A

Af.<1 T

Let 9 = {g : g(v, X) = (X, A), | All. <1} and gy = gl{[g| < M} —
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MI{g < =M} + MI{g > M}. Then, we have

| ZWY /nll = Sup(P P)g < sup(P, — P)gar + [sup(P — P)(g — gum)|.

S g€y

x

For the first term of the above equation, with probability 1 — e™7,

CMz C’Ma:

sup(P,—P)gy < CE[sup(P,—P)gn]+

geY¥y s

< CE[| Zuzx /n]+

where the first inequality used the improved version of Talagrand’s concen-
tration inequality (see Theorem A.2 of |Bartlett et al.| (2005))) and the last one
used the contraction property of Rademacher complexity for Lipschitz func-
tions (see Theorem 2.2 of Koltchinskii| (2011)). Taking © =< n\/M, we have
sup(P, — P)gu < M4,

geYy
Thus

P(]| ZVZX /n|l < A4+ |sup(P, — P)(g — gu)]) > 1— o—CnA/M.

geY
On the other hand, with probability 1 — nP(|| X|| > M),
[ sup(P, — P)(g — gu)| < sup [P(g — gar)| < B[ X|P]P(| X > M) < A/4.

geY geY
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S2. PROOFS AND LEMMAS FOR RESULTS IN SECTION 2

Then,

P(]| Z L () Xi/n|| < N/2) > 1 —e VM _pnp(|| x| > M).

Proof of Theorem[1: By definition of the RSSTM estimator in Section we

have

> Ln(wi(B + (B, X)) +nA|Bll. <Y Lu(yi(5° + (B, X.)) + nA| B

i=1 i=1
(52.7)

On the other hand, using the convexity of smoothed loss function L; and the

inequality (A, B) < |All[|B

« Assumption 3 and the result of Lemma

we have

Z{Lh(yz-(/%(l?,%))) Li(yi(6" + (B", X }>ZL’ (B - B,

i>+§—ﬁ*)

—HZL’ DyiXil[|B — B, —|ZL’ DillB — ﬁ\>——(HB Bl + |5 — 8*)),

=1
where we use that n\ > C+/nlogn > 2| L} (u})y;| with high probability by
i=1

Hoeffding’s inequality. Recall (S2.7),

ZLh(yi(EJr (B.X,))) ZLh yi(B°+ (B, X)) < nA(|B[|. - |1 BIl.).
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which yields that
A5 * 2 * * .
—5 (B =B + 15 = 57) < A(IB7[|. — [IB]}.)-

~ ~ ~ ~ ~ o~
Let D = B — B and ’Dl be the projection of D on % *, and ’D0 =D-D .
Also, denote 5 = B\ — [B*. Thus, by the decomposability of t-TNN, the above

inequality implies

1 ~o0 ~ 1 -~ . NN ~0
= 5P L+ D [l + [o]) < B[l = [[B" + D |l + [P |l

* * ~1 0 Nt P
<|B: = IBi +D | + D [l = =D ||« + D .,

which yields

~ 1 ~ ~
1D <3ID"[l. + 13).

That is, (5, D) € # = {(6,D) : |D*||. < 3||D°||. + |8|}.Then, by Lemma

we have, with probability 1 — e=C™M — nP(|| X|| > M),

it {2 a0l 0 B D)) Sl ()

(0,D)eT \n —
~E[Li(y(8" + 8 + (B" + D, X)))] + E[Lu(y(3" + (B", X)))]}

> —CAt/r.
(52.8)
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S2. PROOFS AND LEMMAS FOR RESULTS IN SECTION 2

Suppose E[(6 + (X, D))? > t? for some t > 0, by (S2.7), then we have

, 1< . \ 1« . )
G L 6 (B D)) — Y L5+ (B X))
E[(6+(x.D)2>2 = i=1

+\|B* +D|. — Anzs*n*} <0,

and by the convexity of the objective function,

o L 5 (B D)) — Y L5+ (B X))
E[(6+(x,D)))=2 = i—1

+A|B + Dl = A|B|..} <.
(52.9)

Thus, for some (6, D) € A satisfying E[(d + (X, D))?| = %,

E[Ln(y(5" + 0+ (B" + D, X)))| = E[Ln(y(5" + (B", X)))]

< %Z Li(y(8* + 6+ (B" + D, X))) — %Z Lu(y(5* + (B*, X)) + CAtv/r

=1

< (1Bl = IB* + D + | D°|.) + CAtv/r

< CA(ID°|l. + tv/r) < CAWT|Dllr + t/r) < CALVT,

where the first two inequalities are based on (52.8) and (S2.9), the 3rd inequality

uses the decomposibility of t-TNN, the penultimate inequality uses the low rank,
and the last one applies | D||r < Ct by E[(§ + (X, D))?*] = t* and Assumption

2, which suggests the first result. Then, under Assumption 2, we can immediately
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get the second result. By |B — B*||, < ||(B — B*)*|, + |(B — B*)||, <

C(|(B=B")°|.+|B—8*) < C/r(|B—B*||p+|3—5|) due to B—B* € A,

we have the last result. |

Lemma S2.3 Under Assumption 2, we have
B Y Ly ()X < C/n(IiIs V LIs) and B[ Y o3 Xil[] < Cy/n(L T3V L),

Proof of Lemma[S2.3t Similar to Lemma let v; = Lj(uf)y; which is

bounded. From Appendix|S1} it can be seen that || >, v;Xi|| = || 32, viXillop
where X,; € RU*EIs [t s trivial that X;,i = 1,--- ,n, are sub-Gaussian

matrices via the sub-Gaussianity of x; = vec(X;). With the boundedness of
v;, let ¢; = vec(yi) and v;x; is also sub-Gaussian. With the covering of unit
spheres w; and v; for ), v; X, defined in the proof of Lemma we have, for

anyt > 0,

P(]| Z ViXillop > 2a) < Z P(UZT(Z v X;)v; > a) < Z P((v;® ui)Tvec(Z viX;))

. AT X _ 2 _ 2
S E eftaE[et(v]®uz) VeC(Zil/ZXZ)] S 2011[3+1213€ ta+Cnt S 2011[3+1213€ ta+Cnt .

i’j

Taking t < a/n and a = C\/n((I113 V I113) — logT) for any T > 0, we have

P(|> viXillp > C/n((LiIs V L) — logr)) < 7.
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S2. PROOFS AND LEMMAS FOR RESULTS IN SECTION 2

Denotet = log(1/7) and a = C\/n(I113 V Iy13), which implies || >, v; X i/ op >
at'/? with probability at least e~*. Thus, we have

[e.9]

E[| ZViYiHOP] < Z || Z viXi lop - Halt — 1/2 <l ZVZ‘Y'HOP < atI/QH
Z at'?Pa(t — 1) < | v X|lop < at'/?) < Zat1/2 = O/n(IL I3V LIs).
We can get E[|| Y. 0. X;||] < C\/n(I113V I113) in the same way. [

Lemma S2.4 Under Assumption 2, we have P(|| X || > C/(I113 V I>I3)logn) <

Ce—c(llfgv.lglg)logn

Proof of Lemma[S2.& We have | X|| = || X ||,, where X € RIB*EE Lot
{w;} M and {v;}} be the 1/4 covering of the unit sphere in RI'" and R2's,
for X, respectively, with M, < 2013 and M, < 20%2% referred from Lemma
2.5 in|Geer|(2000). Thus, for any w,v if |[u|| = ||v|| = 1, there exists u;,v; in

the covering satisfy ||lu — u;|| < 1/4, ||lv — v;|| < 1/4, and then
— — — 1. — —
wXv=u"X(v-v)+ (u—u)" Xv; < §]|XH0p + u; Xv;.
Then, we have

— — 1 — —
[ Xlop = sup u' Xv < §||X||0p+£‘n,%,xu;erj7
i,V

[[ull=[lv]l=1
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which yields || X ||,, < 2maxy, ., u] Xv;. Thus, for any t > 0, due to the
sub-Gaussianity of u] Xv; = (v; @ u;) "vec(X), we have

B'd T oy T X .
E[etHXHOp] < E[eZtmaxui,vj u; ij} < E[ § :e2tui X'UJ]
i?j
T X ay. 2
S 2011[3+12]3 maX]E[thui X'U]] S 20]1I3+1213€Ct .

Uy,

By Markov’s inequality,

P(| X |l > 5) < e o200 s+ 20308 < 01p=C5",

Taking s = C\/ (1113 V IyI3)logn completes the proof. [

Proof of Theorem [2: By the optimality of B, there exists Z € ||B||, such that,

n

% ;LZ(?J@(B + <l§, X))y X + AZ = 0. Thus, we have

1 & R
i=1

~ o~

where ©; = y; (5 + %(E, X)) and Z € 8||§||* Let rank(B) = 7, rank(B) =
7' < Isr and its SVD given byE =USVT, U € RuBX" vV ¢ REBX Using

(2.1) in|Koltchinskii et al.|(2011), it leads to

|Bll. ={UVT+ U W (V)T [W],, < 1},
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S2. PROOFS AND LEMMAS FOR RESULTS IN SECTION 2

where U+ € RUsx (=) qpg Vi ¢ REIxU2L=7) gre orthogonal matrices
whose columns are orthogonal to those in U and V, respectively. Let u;, v;, ] =
1,---, 7" be the columns of U and V. Pre(post)-multiplying u; and v; to (§2.10)

yields,

1 n
- > Loy Xvj = =X, j=1,--- . (S2.11)
=1

According to the optimality condition of (3%, B"), E[L}, (v} )y;u] X;v;] = 0. We
write

1 - ! (a Ty

ﬁ Z Lh(vi)yiu]’ Xi’Uj

i=1

= (Pu = P)[(L},(0:) — Ly, (v]))yiwj Xvs] + E[(L},(0:) — Ly, (v7) Jyiw; X0,

+ (Py = P) (L (0] )ysu; Xivg) + E[L (0] )yiu] Xv)]

=015 t 925 + 35
Let gk = (gk]7 7gkf’)T for k = 1a273 and o = (alv"' 7af’)T € RW

be any unit vector and v = (v; @ Uy, -, vy @ ux)a, we have ||v||5 =

Z;;l of|lv; ® uyll; = 1. Denote 9 = {B ¢ Rilsxkh . |B — B*||p <

d, = C\/7(I1I3V I113)/n}. Due to the Lipschitz continuity of L), and the
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sub-Gaussian property of X, then we have

lgallz = sup a’gs < sup  CE[(X;, B - B%) + (8 — 5")||y  vec(X5)]]
llrll2=1 Ivll2=1,BeZ

< swp COVE[X,B—B)+ (8- )P/ ElyTvec(X;)P

Ivll2=1,B€2

< suwp C(|B = Bllr +16 - 6']) < Cd,.
Beco

By similar arguments as Lemma with high probability,

7 (1113 V II3)logn L cd (7321113 V I113)*(logn)?
n " n '

g1z < Cdn\/

By similar arguments as Lemma

lgslle < C

\/(]1]3 V Ig]g)logn
n Y
with high probability. Hence,

AW < lgi]l + llgall2 + sl

< Odn\/f/(flfz V Iy 13)logn L od, (7321113 V I 13)*(logn)?

n n
+C%+C¢mgvbmb@’
n
which implies that 7 < Cr by taking A\ = C+/(I113 V I113)/n. |

Lemma S2.5 Assume E((X,D)+0)* < C(||D||%+[0|*) forany D € RIv*Ex1s § ¢
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S2. PROOFS AND LEMMAS FOR RESULTS IN SECTION 2

R and some generic positive constant C, uniformly over of = {(5,B) : |5 —

B* + ||B — B*||r < d,/I5,rank (B) < Cr},

n n

1 1
sup e Ly (i) — Ly (ui))yi X — E[~ L (u;) — Ly (u}))y: X
o5 2 Ehlw) = L) i DB ) = L))y
< Cdn(\/T(Ill?’ V I I3)logn N 32 (1 I Vv ]2]3)2(10gn)2>'
n n

with probability at least 1 — n=C.

Proof of Lemma[S2.5: We consider «/' = {(3,B) : |8 — 8*|+||B—B ||r <
dn,rank,(B) < Cr'} with v' < I3r. It can be verified that (3, B) € <" if
(8,B) € . Let q;(, B) = (L}, (vi)— L}, (v;) )y: X;—E[(L}, (vi) — L, (v])) i X3,

Denote Ny as the d,n=M-covering of &' for a sufficiently large M > 0, then

1 & —
sup ||~ Y qi(B,B)
(673)6%/ =1 op
1 & —
S max - %(6/7 B )
(8" B)EN n; op
1 & — —
+  max sup —> {a:(8,B) —4:(8,B)}
(B"B)EN 1 |-+ B-B" || p<dnn~ || T 57 op

= Sl + SQ.

Next, we separately bound Sy and Ss. For any covering of unit spheres {u; },—1,{v;};—1

and the Lipschitz continuity, using Cauchy-Schwartz inequality and assumption
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E((X, D) +6)* < C(|D||} + |6]*), we have

E[(L},(v}) — Lj,(v]))ysu] Xiv;]" < C\/ E(X;,B—B')+|p — 6*\]4\/ Elyiuw] Xv;]*
<C(B-p1+|B-B|}) < Cd.

Moreover,

i

| (Lh(v7) = L, (v])yaw] Xiv;| < C(max || Xi]lo) (1B — B

S C\/Fdn\/(lljg V Izlg)logn,

where the last result uses that maxlgignHYiHop < O\/(Illg V I 13)logn with
high probability by similar arguments as that in Lemma Hence, by Bern-

stein’s inequality, with probability at least 1 — 2e™* for any z > 0, we have

1 \ — . —
|~ (L) = L) o] Xow; — E[(L7 () — L4 () o] Xy
i=1

/ 2 !
S C ZZn +CZ\/T_dn(III3\/IQI3) — w(z)’

n

By Lemma 5.2 in|\Vershynin| (2011)), the covering number satisfies |No,| < (1 +
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S2. PROOFS AND LEMMAS FOR RESULTS IN SECTION 2

/ 9 <
M) O (st 12 13)  Then we have

L Z%’(ﬁ/’E,)

n <
=1

P(S, > Y(z)) = P( max

(ﬁ/,E,)GNdl

> w(z)>

/ 1< —
< CnCMr (I113VIa2I3) max Pl max = Zu;l'qi(ﬁ/7B/)vj > w(g)
(ﬁl’gl)e‘/\/—d/ U;,Vj n i1

S CnCMT/(11]3VIQI3)2011[3\/12136_2.

Taking z = Cr'(1,13 V I113)logn, with probability at least 1 — n~C,

Sl S Cdn\/’r'/(lllg V ]glg)logn 4 Odn (7"/)3/2(]1]3 V ]213)2(10gn)2' (S212)

n n

Next we bound S5. Denote
~ — =Y
w(X) = SUPjs_ge 1 BB <don- w655 B) — a:i(5', B)].
Similarly, it leads to
] w(X;)v;| < sup (X;,B—B") + (B B)|u; Xv,
|B—B*|+|B—B"||p<dnn—M
S C’\/?jdnn_M(Il.& V ]ng)logn,
which implies
'd, (1113 V I315)]
S, < C\/F (1113 V Iy 13) ogn’ (S2.13)

nM

with high probability. Therefore, for sufficiently large M, together with (S2.12))
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and (S2.13),

< Odn\/rl(h[:a v ]2[3)10gn+0dn (r")3/2(1,15 V I515)*(logn)?

n n

Z% 8, B

sup
(B, B)est’

I

op
with probability at least 1 — n~C, which yields

n n

S () — L))y — BL S (L4 () — Lh(u) ]

=1 =1

< Cdn\/r(flfs Vv I I3)logn N Cdnr3/2(11[3 v 12]3)2(10gn)2.

sup
(B.B)ed

n n
|
Proof of Lemma[dl: We first prove (2.6). By the optimality of B,
1 ¢ / k+1 k F qpk+1 k|2 k+1
EZLh( ZL yi (B — B, &) + C||BU — B+ \||BH.
Z Li(uf) + | B"l..
(S2.14)

On the other hand, by the descent lemma (Beck and Teboulle,|2009, Lemma 2.1),

we get

_ZLh (v(B" + (B, &,)))

/ C h
< LS Loty ZL y (B — B Xy) + =B - B
i=1
(S2.15)
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Adding (S2.14) and (S2.13)), it can be seen that

M_Oh
—ZLh (5" 4+ (B, 1)) + N[BT+ E e B — BY
ZLh )+ AIBE.,

which leads to (2.6). Then we prove (2.7). Note that

f(ﬁk, Bk+1) o f(/BIH_l, Bk:Jrl)
= _ZLh vi(B" + (B, &) — %;Lh(yi(ﬁkﬂ + (B X))

By the iteration equation of 3%,
1 < 1
o Do L8 (B &)y = (8 - Y,
i=1

which implies, with the descent lemma,

Cr,

FIB%BM1) = (B BHY) 2 (0= S|t — B = sl — B
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Proof of Theorem [3: (1). By Lemmall|and the condition on -y, we have

FONVE) = fOWVIY) 2 A {|IBM = BY|5 + |67 = 857} = 7| W™ = WH,
(S2.16)
which means f (Wk ) is always monotonically decreasing.

(2). Note that f(WP") is bounded. Then, the sequence {W"} is also bounded
via the coerciveness of f(-) (the coerciveness of a function refers to its property
of tending toward infinity as the input variables approach infinity, i.e., a function
g(x) — +ooas ||z]| — +oo where ||x|| denotes the norm (e.g., Euclidean norm)

of x). Summing up (S2.16)) for all k > 0, we immediately have

400
FOV®) = 4> WA — WH
k=0

which implies

+o0
1
D IIWH - W < ;f(w()) < o0,

k=0

Hence, we get

limy,_, 1o (WF — WH) = 0.

(3). We only prove the accumulation point B* is a critical point of f (3, B)

since the same assertion of [ is easy to obtain. By the boundedness of {Bk }, we
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have a subsequence {B*} satisfying lim,_, , . B* = B*, and {B*'} is bounded.
Due to the optimality condition of B*™, there exists Z¥** € 9||B* ™|, such
that

1 n
AN =Y L ()i + p(BY = B) =0, (52.17)
=1

where O||Bl||. indicates the subdifferential of t-TNN. Let t — +oo in (S2.17),

then there exists Z* € 0||B*||, such that
* 1 . * *
0=AZ"+ - Ly(u)yX: € dsf(W"),
i=1

which completes the proof. [

S3 Proofs and Lemmas for results in Section 3

Lemma S3.1 Suppose Assumption 1-5 hold, with probability 1 —n=C, we have

sup ’Ql(ﬂa B) - Ql(ﬁ*vB*) - 5v5@1(ﬁ*78*) - <’D7VBQ1(5*7 B*)>

(6,D)eT

— E[Ln(y:(B + (B, X:)))] + E[Ln(y:(8" + (B, X)) )|

- C(bn\/Ft11[QI§10gn N (bn\/?t)g/Q\/hIQ[glogn)
- n vn '

Proof of Lemma [S3.1: Wirh the definition of Q+(+, -), for brevity, let f(X;, 5, D) =

Lp(u;) — Lp(u}) — 0L, (u})y; — Ly (uf)yi(D, X;). We restrict to the event

%
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maxi<i<p || ;|| < b, = C\/(.[1[2 V Iy13)logn. By a direct computation, we
have

and

F(X:,0,D) = Lij(u)y; 0" +2L; (u; )y 6(D, X;)+ Ly (u))yi (D, X3)*+o((6+(D, X3))*).

Thus,

E[f*(X:,0,D)] < Coo/rt-{E[(6+(D, X;))*|+0((0+(D, X:))*)} < Clbnv/rt)*.

For any fixed (9, D), applying Bernstein’s inequality yields

Cnu?

uby /Tt + (by/11)3

P(|(Py — P)f(X:,6,D)| > u) < exp{ - } (S3.18)

To make the bound uniformly over . .= {(6,D) : 0| + | D|. < C/rt},
we resort to the covering argument. Suppose {(01,D1), -, (0nr, D)} is C-

covering of & with M < (C/C)""2%5 . It is obvious that f(X;, 5, D) is Lipschitz

bp+/Tt1 I2I2logn
n

continuous. Then, by choosing ¢ < n~¢ and taking u = C ( +
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bnA/Tt 3/2\/I1I21210gn .
(bn vt 5=2) in (S3:18), we have

v

bpy/rtI o151 b /1132 /T I, 121
sup |(P,—P)f(X;,0,D)| < C’( w1t 1513 ogn+( NG L1 Ogn)I
(6,P)eT n \/ﬁ

with probability at least 1 — n=C. [

Lemma S3.2 Suppose Assumption 1-5 hold, with probability 1 — n=C, we have

IVsQ(8*,B)| + | VsQ(5*,BY)||

(]1]3 V ]ng)logN T(Illg V ]2[3) 7”2([1]3 \Y 1213)5/2(10gn)2
< C\/ ~ —l—C'(#\/logn—i— TG )

Proof of Lemma[S3.2: We only consider |VQ(53*,B*)|| because the bound
of |V 5Q(B*, BY)| can be derived in the same way. By the definition of Q(-,-),
it leads 1o VsQ(5*. B) = VsQu(5",B%) = VsQu(5. B) + VsQ(5.B), and

thus

IVsQ(5*, BY)|| <|[VsQi(5*, B*) — VsQi(5, B) — VsQ(5*, B")

+VsQ(B,B)| + | VsQ(8*, BY)].

By a similar argument as Lemma

11[3 \% ]2]3)10gN

waa(r B < oy LBV
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Further, applying Lemma twice yields

IVEQ1(5*, B") — VQ:i(B, B) — VsQ(5*, B*) + VQ(3, B)|
< C<7”(11[37;/ I,13) \/@+ r?(Ils v [2[3)5/2(10gn)2>.

n3/2

Integrating the above two bounds completes the proof. |

Proof of Theoremd: By direct algebraic computation,

Q(B,B) — Q(8",B*) > VQs(8",B*)(B — B*) + (Qs(8",B"),B— B").

The following proof is similar to that in Theorem |l| We have (5 , 7:5) = (B —
B, B—B") € A :={(5,D) : |D*||. <3| D+ 5[} if A > 2(| Qs (8, B")|

and \ > 2|V Qz(B*, BY)|, which has been completed in Lemma with \ de-

fined in the statement of the theorem. Next, we will connect Q( B,B)— Q(ﬁ * B")
10 B[(B—*+ (X, B—B*))?] to bound the difference between empirical risk and
population risk corresponding to the central estimator. Assume E[(0, (X, D))?] >
(Lay,)?* with a,, in theorem and a sufficiently large L > 0. As in the proof of The-

orem|l] this implies

S QU B+ D)= QB B+ AIB" + Dl — AIB < 0.
E[(6+(X,D))2]>(Lan)?

Then, for some (9, D) that makes the above expression negative, using || +
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1Dl < CVr||D||r + C|d| < Cy/rLa, and Lemma|S3.1|yields

C(Lay)* < E[Lp(yi(B + (B, X)) — E[Ln(yi(8" + (B", X,)))]

<Q(B,B) - Q(B",B") — VQs(8",B")(B - ") — (Qs(8",B"), B — B*)
+C

<bn\/FLan1112J§10gn . (bn\/?Lan)?)/%/[lIg[glogn)
n NLD

%

< QB +6,B"+D) — Q5" B) + CA(|3| + | P|.)
bu/TLan I I, 120gn  (buy/TLay,)*?\/11 1, 13logn
+of + )
n vn
< A|B*[ls = A|[B" + D|l. + CA(l6| + | D)
bu/TLan I I, 120gn  (buy/TLay,)*?\/11 1, 13logn
+of + )
n vn
< A[Dlls + CA(l8] + [ D)
bu/TLan I I, 120gn  (buy/TLay)*?\/11 1, 13logn
+of — + v )

< CM\rLa, + C(bn\/FLanhIng?logn N (bn\/FLan)?ﬂjl /Illglglogn)
n n

< CLd? + CL¥?d2,

where the third inequality uses Hélder’s inequality and Lemma The above
displayed leads to a contradiction when L is large enough. Thus we have E[(S +
(X, D)2 < (La2)? and the rest of the statements can be obtained easily as for

Theorem [}

Proof of TheoremB: There exists Z € 8||B||, by the first order optimality con-
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dition. Then, we have

%iLgL(@) ZL’ 0:)yi X + — ZL’ 0:)yi X; + AZ = 0.
=1

Let rank,(B) = ¥, we have rank(B) = # < I3¥ and its SVD given by B =
USVT, U € RLsx7 v ¢ REBXY, Using (2.1) in |Koltchinskii et al.| (2011),
we have

O|B|. ={UVT +U*W (V) : [W],, < 1},

where U+ € RIsx(WB=1) gpg V- ¢ REBX(RE=T) gre orthogonal matri-
ces and their columns are orthogonal to those in U and V', respectively. Let
uj,vj,j =1,--- 7" be the columns of U and V. Pre(post)-multiplying u; and

v; to (S2.10) yields,

N
1 -
ZL/ ul l’U, X’Uj — —ZL/ A,L Z’U; X'UJ EZL%(?}Z)ylu;Xﬂ)]
=1
=3y, j: 17 T

By the similar argument as that in Theorem 2| and Lemma we have 17 <

Cr. [ |
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Table S4.1: Prediction errors (%) of different estimators with N = 10000 and different values
of m.

, d m CSL Ave Sub
Gaussian Epanechnikov Gaussian Epanechnikov Gaussian Epanechnikov
2 05 1 14.97 (0.0034)  13.44 (0.0031) 14.97 (0.0034)  13.44 (0.0031) 14.97 (0.0034)  13.44 (0.0031)
5 14.46 (0.0172)  12.60 (0.0084) 16.35(0.0094)  15.98 (0.0077) 18.44 (0.0099)  17.64 (0.0084)

10 14.79 (0.0195)  13.89 (0.0161) 17.96 (0.0218)  17.43 (0.0148) 21.73(0.0257)  21.06 (0.0193)
20 15.14 (0.0406)  14.08 (0.0369) 21.61 (0.0194) 20.01 (0.0161) 27.67 (0.0552)  26.68 (0.0579)

11 7.53(0.0032)  6.05 (0.0027) 7.53(0.0032)  6.05 (0.0027) 7.53(0.0032)  6.05 (0.0027)

5 5.04(0.0074)  4.78 (0.0077) 7.72(0.0071)  6.49 (0.0079) 779 (0.0071)  7.78 (0.0082)

10 550 (0.0154)  5.39(0.0187) 9.04(0.0175)  8.16 (0.0183) 10.36 (0.0223)  10.14 (0.0253)

20 6.32(0.0224)  6.30 (0.0152) 11.02 (0.0173)  10.96 (0.0194) 15.24 (0.0379)  14.84 (0.0330)

5 05 1 16.83 (0.0083)  14.97 (0.0024) 16.83 (0.0083)  14.97 (0.0024) 16.83 (0.0083)  14.97 (0.0024)
5 15.12(0.0120) 1350 (0.0144) 2198 (0.0184) 19.19(0.0179)  23.36(0.0185) 21.89 (0.0100)

10 16.67 (0.0203) 14.95(0.0136) 2557 (0.0307) 24.45(0.0237)  28.92(0.0336) 27.80 (0.0227)
20 17.48 (0.0453) 1532(0.0427)  31.31(0.0394) 29.63(0.0141)  37.28 (0.0898) 37.82 (0.0797)
11 6.94 (0.0027)  6.29 (0.0062) 6.94(0.0027)  6.29 (0.0062) 6.94(0.0027)  6.29 (0.0062)
5 5.94(0.0061)  5.15 (0.0104) 10.31 (0.0104)  10.24 (0.0109) 11.48 (0.0073)  11.75 (0.0073)
10 6.54(0.0109)  6.31 (0.0085) 14.55 (0.0099)  13.92 (0.0197) 15.31(0.0183)  16.16 (0.0180)
20 770 (0.0114)  7.26 (0.0107) 18.65 (0.0296) 18.48 (0.0145)  21.28 (0.0377) 23.12 (0.0583)
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Table S4.2: Prediction errors of different estimators with n = 1500 and different values of m.

CSL Ave Sub
r d m
Gaussian Epanechnikov Gaussian Epanechnikov Gaussian Epanechnikov
2 -05 1 18.46 (0.0137)  20.42 (0.0200) 18.46 (0.0137)  20.42 (0.0200) 18.46 (0.0137)  20.42 (0.0200)

5 11.20 (0.0131)  12.61 (0.0153) 13.26 (0.0173)  13.37 (0.0153) 18.29 (0.0154)  20.60 (0.0157)
10 9.91(0.0169)  11.69 (0.0250) 12.02 (0.0134)  12.94 (0.0185) 18.55 (0.0101)  20.38 (0.0206)
20 10.24 (0.0224)  11.6 (0.0192) 11.44 (0.0198)  11.90 (0.0210) 18.40 (0.0215)  20.11 (0.0241)

11 7.64 (0.0047)  9.54 (0.0093) 7.64 (0.0047)  9.54 (0.0093) 7.64 (0.0047)  9.54 (0.0093)
5 3.54(0.0066)  4.27 (0.0071) 6.34(0.0073)  6.79 (0.0081) 7.92(0.0053)  9.40 (0.0114)
10 3.38(0.0101)  3.43(0.0098) 6.49 (0.0109)  7.02(0.0122) 7.78 (0.0082)  9.72(0.0129)
20 270 (0.0057) 3.8 (0.0085) 5.96 (0.0061)  6.03 (0.0088) 8.12(0.0069) 9.2 (0.0115)

5 05 1 25.42 (0.0203)  27.28 (0.0200) 25.42(0.0203)  27.28 (0.0200) 25.42 (0.0203)  27.28 (0.0200)
5 11.23 (0.0205) 11.37 (0.0354) 16.63 (0.0211)  17.60 (0.0382) 25.26 (0.0200) 27.52(0.0392)
10 10.44 (0.0365)  10.85 (0.0242) 15.49 (0.0225) 16.61 (0.0265) 25.10(0.0210)  27.47 (0.0258)
20 9.88 (0.0266)  10.21 (0.0227) 14.95 (0.0237)  15.31 (0.0249) 25.16 (0.0251)  27.24 (0.0218)

-1 1 12.15(0.0125) 14.82(0.0182) 12.15(0.0125) 14.82 (0.0182) 12.15(0.0125) 14.82(0.0182)
5 3.95(0.0121)  3.56 (0.0094) 9.57 (0.0137)  9.92(0.0105) 11.86 (0.0091)  14.39 (0.0162)
10 3.23(0.0075)  2.69 (0.0075) 9.07 (0.0089)  9.46 (0.0085) 11.89 (0.0067) 14.73 (0.0165)
20 2.72 (0.0072)  2.66 (0.0045) 8.57(0.0078)  8.71 (0.0096) 12.17 (0.0118)  14.55(0.0149)

S4 Some results of simulations

S5 Extensions to order-d tensors

As we mentioned in Section [2} our results can be extended to the order-d
tensor. In this section, we briefly state the key ideas by introducing the order-d
t-product.

For a given high-order tensor A € R/1*/2%-*1a_the block circulant operator
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Table S4.3: Prediction errors of different estimators with n = 1500, m = 10 and different values
of I.

d I CSL Ave Sub
r

Gaussian Epanechnikov Gaussian Epanechnikov Gaussian Epanechnikov
2 -05 20 9.91 (0.0169)  11.69 (0.0250) 17.32 (0.0106)  19.03 (0.0219) 18.55(0.0101)  20.38 (0.0206)

40 11.62 (0.0321)  13.84 (0.0543) 19.28 (0.0152)  21.32(0.0207) 20.018 (0.0139)  22.89 (0.0237)
60 12.73 (0.0510)  14.23 (0.0502) 21.61(0.0193)  23.69 (0.0348) 22.56 (0.0243)  24.20 (0.0317)
100 16.79 (0.0855)  18.24 (0.0764) 25.90 (0.0257)  27.51 (0.0294) 26.43(0.0281)  28.41(0.0318)
200 20.33 (0.0204) 19.52(0.0114) 32.21(0.0943) 33.67 (0.0318) 35.45(0.1253)  34.48 (0.0254)

1 20 3.38(0.0101)  3.43(0.0098) 7.15(0.0104)  7.73 (0.0146) 7.78 (0.0082) 9.72 (0.0129)
40 4.12(0.0167)  4.57 (0.0100) 9.01 (0.0114)  10.02 (0.0135) 9.38 (0.0110)  11.74(0.0123)
60 5.23(0.0105)  6.23(0.0143) 11.73 (0.0106)  13.90 (0.0185) 11.94 (0.0089)  14.19 (0.018)

100 8.43(0.0321)  8.77 (0.0255) 15.84 (0.0384)  18.10 (0.0419) 16.64 (0.0565)  19.84 (0.0448)
200 11.92 (0.0434) 1171 (0.0108)  24.69 (0.0481) 26.81 (0.4326) 26.03 (0.0257)  27.57 (0.0304)
5 05 20 10.44 (0.0365) 10.85(0.0242)  24.80 (0.0143) 24.95 (0.0164) 25.10 (0.0210)  27.47 (0.0258)

40 1172 (0.0247) 1191 (0.0409)  26.91 (0.0344) 26.71 (0.0272) 27.37(0.0261)  29.71 (0.0312)
60 13.01 (0.0142)  13.08 (0.0223)  28.51 (0.0667) 28.94 (0.0331) 2951 (0.0235)  31.91 (0.0428)
100 16.63 (0.1101) 1678 (0.1306)  31.76 (0.0285)  33.08 (0.0271) 33.18 (0.0609)  34.22 (0.0639)
200 19.09 (0.3309)  18.99 (0.4922)  39.81(0.0374)  40.64 (0.2074) 41.90 (0.1445)  42.86 (0.1918)
1 20 323(0.0075)  2.69 (0.0075) 11.25 (0.0077)  14.05 (0.0164) 11.89 (0.0067)  14.73 (0.0165)
40 436 (0.0054)  3.62 (0.0049) 13.22(0.0162)  15.37 (0.0382) 13.87 (0.0208)  16.28 (0.0186)
60 5.38(0.0048)  4.41 (0.0083) 1453 (0.0203)  16.7 (0.0135) 15.67 (0.0162)  17.48 (0.0504)
100 9.5(0.018)  8.94 (0.0168) 19.13 (0.0188)  20.54 (0.0275) 20.14 (0.0285)  22.64 (0.0366)
200 1570 (0.022)  15.10 (0.0149)  27.65(0.0702) 29.48 (0.0615) 30.61 (0.0690)  32.86 (0.0637)
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Table S4.4: Rank estimation of different estimators with n = 1500, m = 10 and different values
of 1.

CSL Ave Sub

Gaussian Epanechnikov Gaussian Epanechnikov Gaussian Epanechnikov
2 -05 20 2.30 (0.5408)  2.02 (0.6224) 2.40 (0.6135)  2.20 (0.3448) 2.36 (0.4800) 2.10 (0.3265)
40 1.96 (0.6351)  1.94 (0.7514) 2.22(0.4463) 1.76 (0.6853) 2.16 (0.4249)  1.88 (0.2894)

60 2.02(0.5996) 2 (0.6531) 1.98 (0.4992)  2.12 (0.2971) 1.96 (0.3873)  2.20 (0.4490)
100 1.94 (0.8739)  1.98 (0.6792) 2.14(0.3732)  1.88(0.3367) 1.88 (0.8462)  2.14 (0.2698)
200 1.54 (0.6176)  1.34 (0.8820) 1(0) 1(0) 1(0) 1(0)

1 20 2.02(0.7347)  2.02 (0.3873) 2.32(0.4751)  2.08 (0.3184) 2.08 (0.4016) 2.1 (0.2959)
40 2.08 (0.6955)  2.06 (0.518) 192 (0.4637)  2.12(0.3491) 2.12(0.4392)  1.94 (0.5065)

60 1.96 (0.5310)  2.18 (0.5936) 1.88 (0.5934)  2.22 (0.4715) 1.92 (0.4490)  2.34 (0.3139)
100 2.08(0.8506) 1.96 (0.6147) 2.08(0.3349)  2.14 (0.6947) 216 (0.6327)  2.16(0.3412)
200 1.63(0.6174) 1.5 (0.6231) 1(0) 1(0) 1(0) 1(0)

5 05 20 5(0.6122)  5.04 (0.4065) 478 (0.4632)  4.88 (0.4641) 4.56(0.3331)  5.14 (0.4494)
40 4.96 (0.4882)  5.04 (0.6045) 5.12(0.4673)  4.92 (0.7639) 5.54(0.5392)  4.84 (0.6106)
60 4.88 (0.4082)  5.08 (0.4914) 4.98 (0.7614)  5.08 (0.6431) 5.18(0.2731)  4.92(0.3269)
100 4.98(0.7106) 4.96 (1.0600) 5.06 (0.7616)  5.14 (0.5273) 4.94(0.6149)  4.86 (0.8555)

200  4.18(0.9130)  4.74 (0.9420) 1.96 (0.6427)  1.88 (0.8466) 1.94 (0.1567)  1.92 (0.1982)
1 20 5.18 (0.3955)  5.02 (0.4282) 5.02 (0.4672)  5.08 (0.6416) 4.56 (0.2922)  4.98 (0.4282)
40 5(0.4868)  4.98 (0.6224) 4.88 (0.5271)  5.12 (0.9461) 5.26 (0.3596)  5.06 (0.4392)

60 5.02 (0.6302)  5.02 (0.5506) 4.96 (0.2597)  4.98 (0.4157) 5.32(0.6302)  5.18 (0.4812)
100 5.12(0.5669) 5.34 (0.3922) 5.12 (0.4634)  4.82 (0.4483) 4.88 (0.0200)  4.32 (0.1016)
200  2.57(0.2857) 2.74(0.4412) 1.88 (0.8196)  1.76 (0.6582) 2(0) 1.68 (0.7310)
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circ(+) is defined on the d-th index of tensor A as

Al Ad e A2

A, A . A3
circ(\A) := ;

A Agr - A

which is of size [1 [y X Isly X - -+ X Ig_ol; X I;_1. A block unfolding operator
bvec(-), along with its corresponding inverse operator bvfold(-), functions on

the d-th index of a high-order tensor, are defined as

bvec(A) = [A;,- -, AqglT, bvfold(bvec(A)) := A,

where bvec(-) maps A to an order-(d — 1) tensor of size [11; X I3 X + -+ X I4_1.
Thus, the order-d t-product (Martin et al., 2013) is a recursive generalization

from the order-3 t-product (Kilmer and Martin, [2011)).

Definition S5.1 Martin et al.| (2013)(order-d t-product): The t-product between

A € Rivilzx-xla gnd B ¢ RI2xxxla js defined in a recursive pattern,

A x B := bvfold(circ(.A) * bvec(B)),
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whichisan I; x | x --- x 1, real tensor.

Specifically, at the base level of recursion, we replace the operator cric(.A)
with A = bcirc(.A) which is a block circulant matrix of size I, I3l - - I; X
I 131, - - I;. Similarly, instead of bvec(B), we adopt bunfold(B), which is a
block matrix of I5131,--- I; x [ generated in the form of recursion from B.

Similarly, by DFT, we have

(P®I11)Z(PH®I12):A: )

~ ()

A

WhereP:F1d®FId71®"'F13’PH :FE®FI|:71®“'FI|;’J:I3"']d
and A = fit(A,[],i) fori = 3,--- ,d (using the MATLAB command for ease

of exposition). By the unitary invariance, it also yields that,

1

Al = r

1~ -
—||Al|r, (A, B A A),
C=AxBsC=A B

The order-d conjugate transpose is relatively complex. Since the denifinition
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of the orthogonal tensor, the f-diagonal tensor and so on can be easily general-

ized from Appendix

Definition S5.2 |Qin et al.| (2022)(order-d Conjugate transpose): We employ
AN € ClxIvXla 1o represent the conjugate transpose of A € Ch>xT2xxla

where .:ZtH(:,:,z'g,--- Jig) = (.A(:,:,ig,--~ ,id))Hfor i, € {1,---,d,} with

pe{3,--,d}.

With the above arguments of order-d t-product, the t-SVD, tubal rank and
t-TNN can also be extended to order-d tensors. We refer the readers to Martin
et al. (2013); Qin et al. (2022); Song et al. (2025) for more discussions. Our
analysis mainly rely on the operator norm and the decomposability of the t-TNN

for which we list the key results which can be proved similarly as Appendix

Definition S5.3 Define || A| = | Al|,, as the tensor spectral norm for A €

Rll ><12><---Id

Theorem S5.1 For any order-d tensor A € %+ and any B € B, of the same

dimension, with tubal rank r, we have || A+ B|. = || All. + | B

« Where

U= {Us M N VP M e RN € R,

‘%:{”*”H*Z+Z*V*VH—u*uH*z*v*vH:ZGRII”QX"'X“}.

Based on Definition [S5.3] and Theorem [S5.1] by the same argument as Sections
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and [3) we can extend the derived convergence rate to the order-d tensor. For

example, with the same condition as Corollary |1} we have

7’(11[3[4 .. '[d V [2[3]4 s Id)>

(G- 57 +I1B-B3 < 0 -

for the estimated order-d tensor parameter, where B and B are obtained by the
same way as in Section[2] The distributed estimator in Section [3|can be general-

ized in the same way.
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