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In this supplementary material, we present additional simulation re-

sults, and the proofs of Lemma 1, Propositions 1 and 2, Theorems 1 and

2.

S1 Additional Simulation Results

For settings (i)–(iii) in Section 4 of the main article, Table 1 summarizes

the empirical coverage probabilities of the confidence interval of β1 in the

binding case (β1 = 0) and the non-binding case (β1 = 1). For settings

(i)–(iii), we also present the simulated Type I errors of the test

H0 : β1 = 0 v.s. Hα : β1 > 0 (S1.1)
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α = 5% α = 10%

n = 400 n = 800 n = 400 n = 800

Quantile 0.1 0.5 0.8 0.9 0.1 0.5 0.8 0.9 0.1 0.5 0.8 0.9 0.1 0.5 0.8 0.9

Setting (i)

RB 4.5 5.8 6.9 7.1 5.8 5.7 4.9 5.5 10.0 11.2 12.2 11.9 11.0 10.2 11.1 10.8

LR 6.5 5.6 5.9 5.5 6.2 4.9 5.1 5.9 10.1 9.9 10.1 8.6 10.4 9.3 9.1 9.9

CI(B) 95.9 94.5 94.5 96.1 94.8 95.7 95.8 94.8 93.0 92.0 92.0 92.8 92.2 92.5 92.6 92.2

CI(NB) 92.8 94.2 93.0 92.5 94.1 94.7 94.0 93.3 87.6 88.3 87.5 87.0 89.0 90.5 88.3 87.8

Setting (ii)

RB 5.9 6.2 6.0 5.5 5.0 5.7 5.6 5.0 11.9 11.9 10.8 9.8 10.4 9.9 10.3 10.3

LR 5.7 5.2 4.8 5.8 4.4 5.2 5.5 5.2 9.6 8.4 8.3 8.4 8.1 8.2 9.9 8.5

CI(B) 95.2 95.2 94.8 93.8 95.7 95.3 96.1 94.8 93.0 92.7 92.3 91.6 92.5 92.7 93.6 91.8

CI(NB) 92.0 95.0 93.2 91.7 93.5 94.9 94.1 93.8 87.4 89.5 87.8 86.2 87.6 91.2 89.3 88.1

Setting (iii)

RB 5.7 7.1 6.7 5.6 5.1 5.8 6.3 5.6 10.0 11.2 12.9 10.0 10.3 9.8 10.8 9.6

LR 5.1 4.9 4.6 4.2 5.1 4.7 4.9 4.9 8.4 7.7 8.7 8.9 9.1 8.9 8.1 9.1

CI(B) 94.4 95.5 93.8 92.8 95.6 96.2 96.2 95.5 91.8 92.9 89.7 88.9 92.6 93.0 92.9 92.8

CI(NB) 92.5 95.3 93.8 92.1 93.0 95.4 95.7 93.6 86.5 90.6 88.1 87.1 88.4 90.6 91.5 87.6

Table 1: Simulated Type I error rates (in percentage) of the likelihood ratio test (LR) and rank-

based test (RB), and coverage probability of the confidence interval (CI) for β1; (B) stands for

the binding case while (NB) stands for the non-binding case.

with TLR
n and TRB

n in Table 1.

S2 Proof of Lemma 1 of the main article

Proof of Lemma 1. Without loss of generality, assume β0 = 0. Let

Mn(β) =
n∑

i=1

(
ψτ (ϵi − x⊤i β)xi − E(ψτ (ϵi − x⊤i β)xi|Fi−1,Gi)

)
,

and

Nn(β) =
n∑

i=1

(
E(ψτ (ϵi − x⊤i β)xi|Fi−1,Gi)− E(ψτ (ϵi − x⊤i β)xi)

)
.

Denote |v| =
√
vTv for a vector v. According to Lemma A.1 and A.2 of
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the supplemental material of Wu and Zhou (2018), for any sequence δn → 0,

sup
|β|≤δn

|Mn(β) +Nn(β)− (Mn(0) +Nn(0))|

= sup
|β|≤δn

|
n∑

i=1

ψτ (ϵi − x⊤i β)xi −
n∑

i=1

E(ψτ (ϵi − x⊤i β)xi)−
n∑

i=1

ψτ (ϵi)xi|

=Op

(
(

n∑
i=1

νi(δn))
1/2 log n+

√
nδn

)
,

(S2.2)

where νi(δn) = E
(
|xi|2I(|ϵi| < |xi|δn)

)
.

Let δn = n−1/2 log n and integrate the above equation w.r.t β, we have

sup
|β|≤δn

|
∫ β

0

n∑
i=1

ψτ (ϵi − x⊤i s)xi −
n∑

i=1

E
(
ψτ (ϵi − x⊤i s)xi

)
−

n∑
i=1

ψτ (ϵi)xids|

=
n∑

i=1

(
ρτ (ϵi)− ρτ (ϵi − x⊤i β)

)
+

n∑
i=1

E
(
ρτ (ϵi − x⊤i β)− ρτ (ϵi)

)
− β⊤Gn

=op(1).

(S2.3)

By the convexity of ρτ and Taylor expansion, for any k = 1, . . . , n,

E
(
ρτ (ϵi −

kx⊤i β

n
)− ρτ (ϵi −

(k − 1)x⊤i β

n
)
)
≤ −E

(x⊤i β
n
ψτ (ϵi −

kx⊤i β

n
)
)

≤ −E{x
⊤
i β

n

(
τ − Fi(0)−

kx⊤i β

n
fi(0)−

kx⊤i β

n

∫ 1

0

fi(
kx⊤i β

n
s)− fi(0)ds

)
}

≤ E
(k(x⊤i β)2

n2
fi(0)

)
+Op(

k2(x⊤i β)
3

n3
),

(S2.4)

where we write Fi(x) = Fr(
i
n
, x | Fi−1,Gi) and fi(x) = fr(

i
n
, x | Fi−1,Gi)

for simplicity.
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Similarly, we have

E
(
ρτ (ϵi −

kx⊤i β

n
)− ρτ (ϵi −

(k − 1)x⊤i β

n
)
)

≥ E
((k − 1)(x⊤i β)

2

n2
fi(0)

)
+Op(

(k − 1)2(x⊤i β)
3

n3
).

(S2.5)

Summing Equation (S2.4) and (S2.5) over k from 1 to n, we get

n− 1

2n
β⊤E(fi(0)xix

⊤
i )β ≤ E{ρτ (ϵi − x⊤i β)−ρτ (ϵi)}+Op((x

⊤
i β)

3)

≤ n+ 1

2n
β⊤E(fi(0)xix

⊤
i )β.

Namely,

n∑
i=1

E{ρτ (ϵi − x⊤i β)− ρτ (ϵi)} =
1

2
β⊤Knβ + op(1). (S2.6)

We have the desired result by inserting Equation (S2.6) into Equation

(S2.3).

S3 Proof of Proposition 1 of the main article

Proof of Proposition 1. First recall that

Kn/n =
1

n

n∑
i=1

E[fr(
i

n
, 0|Fi−1,Gi)xix

⊤
i ],

M =

∫ 1

0

M(t)dt, M(t) = E[fr(t, 0|F−1,G0)Hr(t,F−1,G0)Hr(t,F−1,G0)
⊤].

Denote Zi = E[fr(
i
n
, 0|Fi−1,Gi)xix

⊤
i ] and its (j, l)th component as Zi,jl =

E[fr(
i
n
, 0|Fi−1,Gi)xi,jxi,l]. Since Zi,jl is (Fi−1,Gi) measurable and with the
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virtue of Section 2.2 of the main article, we can write the physical repre-

sentation of Zi,jl as

Zi,jk = Lr,jk(ti,Fi−1,Gi), br < t ≤ br+1,

where {Lr,jl}pj,l=1 is a set of nonlinear filters. Furthermore, define its corre-

sponding dependence measure by

∆v,jl(L, k) = max
0≤r≤R

sup
br<t≤br+1

∥∥Lr,jk(t,Fk−1,Gk)− Lr,jk(t,F∗
k−1,G∗

k)
∥∥
v
.

Under conditions (C1) and (C3), we have maxi,j,lE|zi,jl|2+η/2 ≤M where η

is a small positive constant. On the other hand, it turns out by Conditions

(C1) and (C2) that

∥∥Lr,jk(t,Fk−1,Gk)− Lr,jk(t,F∗
k−1,G∗

k)
∥∥
2

≤
∥∥E [(

fr(t, 0|Fk−1,Gi)− fr(t, 0|F∗
k−1,G∗

i )
)
Hr,j(t,Fk−1,Gk)Hr,l(t,Fk−1,Gk)

]∥∥
2

+
∥∥E [

fr(t, 0|F∗
k−1,G∗

i )
(
Hr,j(t,Fk−1,Gk)−Hr,j(t,F∗

k−1,G∗
k)
)
Hr,l(t,Fk−1,Gk)

]∥∥
2

+
∥∥E [

fr(t, 0|F∗
k−1,G∗

i )Hr,j(t,F∗
k−1,G∗

k)
(
Hr,l(t,Fk−1,Gk)−Hr,l(t,F∗

k−1,G∗
k)
)]∥∥

2

≤Cχ|k|.

Consequently, it is obvious to find that ∆L :=
∑∞

k=0 ∆2,jl < ∞. Followed

by Lemma 6(ii) in (Zhou, 2013), we have

∥Kn/n− E[Kn/n]∥2 = O(1/
√
n), (S3.7)

where E[Kn/n] =
1
n

∑n
i=1E

{
E[fr(ti, 0|Fi−1,Gi)Hr(ti,Fi−1,Gi)Hr(ti,Fi−1,Gi)

⊤]
}
.
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Next, it suffices to prove that E[Kn/n] converges to M. Here, we

introduce a stationary process

L∗
r(tj,Fi−1,Gi) := E[fr(tj, 0|Fi−1,Gi)Hr(tj,Fi−1,Gi)H

⊤
r (tj,Fi−1,Gi)].

Then armed with Conditions (C1)–(C3), we have

∥E[Kn/n]− E[L∗
r(tj,F−1,G0)]∥2 = O(1/n) (S3.8)

uniformly in j. Consequently by combining Eq.s (S3.7) and (S3.8), we have

∥Kn/n− E[L∗
r(t,F−1,G0)]∥2 = O(1/

√
n). (S3.9)

Finally, by the definition of M =
∫ 1

0
M(t)dt and Theorem 1.1 in Tasaki

(2009), we conclude that

∥E[L∗
r(t,F−1,G0)]−M∥2 =

∥∥∥∥∥ 1n
n∑

i=1

E[L∗
r(t,F−1,G0)]−M

∥∥∥∥∥
2

= O(1/n2),

(S3.10)

where the first equality follows by stationarity of the process L∗
r. Combining

Eqs. (S3.9) and (S3.10), the consistent result ∥Kn/n−M∥2 = O(1/
√
n)

in Proposition 1 is now complete.

S4 Proof of Theorem 1 of the main article

The following proposition is required for the proof of Theorem 1.
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Proposition 1. Under regularity conditions (C1)-(C5), we have

(i) |β̃n − β0| = op(n
−1/2 log n) and |β̂n − β0| = op(n

−1/2 log n);

(ii) (β̃n − β0)−K−1
n Gn = op(n

−1/2);

(iii) |β̂n − γ̂n| = op(n
−1/2).

Proof of Proposition 1. Without loss of generality, assume β0 = 0.

(i) For any c > 0, let δn = (n−1/2 log n)c and λn be the smallest eigen-

value of Kn/n. By (C3) and (C4) λn is strictly positive, and β⊤Knβ ≥p

(log n)2c2λn for |β| = δn, By Proposition 3.1 of Wu and Zhou (2018), we

also have β⊤Gn = Op(c log n) for |β| = δn. Note that Wu and Zhou (2018)

considered general M-estimation and required the stochastic Lipschiz con-

tinous and short-term dependent conditions in (C1) and (C2) to hold for

higher moments, we checked that their conditions could be relaxed in the

context of quantile regression.

By Lemma 1,

P{ inf
|β|=δn

n∑
i=1

(ρτ (ϵi − x⊤i β)− ρτ (ϵi)) ≤ 0} → 0,

and by the convexity of ρτ ,

P{ inf
|β|≥δn

n∑
i=1

(ρτ (ϵi − x⊤i β)− ρτ (ϵi)) ≤ 0} → 0.

Namely, for any c > 0, we have

P{|n1/2(log n)−1β̃n| > c} → 0
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The desired results for β̂n can be derived in the same way.

(ii) Let β̄ = K−1
n Gn = Op(n

−1/2). By Lemma 1,

n∑
i=1

{ρτ (ϵi − x⊤i β̄)− ρτ (ϵi)}+
1

2
β̄⊤Knβ̄ = op(1). (S4.11)

Let δn = n−1/2c, by Lemma 1 and Equation (S4.11),

sup
|β−β̄|=δn

|
n∑

i=1

(
ρτ (ϵi − x⊤i β)− ρτ (ϵi − x⊤i β̄)

)
− 1

2
(β − β̄)⊤Kn(β − β̄)| = op(1).

Because (β − β̄)⊤Kn(β − β̄) ≥p λnc
2 when |β − β̄| = δn,

P{ inf
|β−β̄|≥δn

n∑
i=1

(ρτ (ϵi − x⊤i β)− ρτ (ϵi − x⊤i β̄)) ≤ 0} → 0.

Namely
√
n(β̃ − β̄) = op(1).

(iii) By Lemma 1 and Proposition 1(ii), we have

sup
|β|≤n−1/2 logn

|
n∑

i=1

(ρτ (ϵi−x⊤i β)−ρτ (ϵi)+β⊤Knβ̃−
1

2
β⊤Knβ| = op(1). (S4.12)

Recall that

β̂n = argmin
β∈Q

n∑
i=1

(ρτ (ϵi − x⊤i β)− ρτ (ϵi)),

and

γ̂n = argmin
β∈Q

(β − β̃n)
⊤Kn(β − β̃n)

= argmin
β∈Q

(−β⊤Knβ̃ +
1

2
β⊤Knβ).
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Let δn = n−1/2c, by elementary calculation,

sup
|β−γ̂n|=δn,β∈Q

|
n∑

i=1

(ρτ (ϵi − x⊤i β)− ρτ (ϵi − x⊤i γ̂n))

− 1

2
(β − γ̂n)

⊤Kn(β − γ̂n)−▽g(γ̂n)⊤(β − γ̂n)| = op(1),

where g(β) = −β⊤Knβ̃ + 1
2
β⊤Knβ. Because g(·) is a convex function and

γ̂n is the minimum of g(·), ▽g(γ̂n)⊤(β − γ̂n) is non-negative. Also notice

that (β − γ̂n)
⊤Kn(β − γ̂n) ≥ λnc

2 when |β − γ̂n| = δn, we have

P{ inf
|β−γ̂n|≥δn,β∈Q

n∑
i=1

(ρτ (ϵi − x⊤i β)− ρτ (ϵi − x⊤i γ̂n)) ≤ 0} → 0.

We have the desired result.

Proof of Theorem 1. (i) Based on Proposition 1 of our main article, we

know |Kn/n−M| = op(1). By Proposition 3.1 and Theorem 3.1 of Wu and

Zhou (2018), we have n−1/2Gn ⇒ U . Then
√
n(β̃n − β0) ⇒ M−1U by the

continuous mapping theorem and Proposition 1.

By Proposition 1 and Proposition 1(i)(iv) of Zhou (2015)

√
n(β̂n − β0) =

√
nPQ,Kn

n
(β̃n)−

√
nβ0 + op(1)

= PQ,Kn
n
(
√
nβ0 +

√
nK−1

n Gn)−
√
nβ0 + op(1).

(S4.13)

Proposition 1(ii)(iv)(v) of Zhou (2015) then gives
√
n(β̂n−β0) ⇒ ΘQ,M(β0,M−1U).

(ii) By Lemma 1 and Proposition 1,

n∑
i=1

(ρτ (yi−x⊤i β̂n)−ρτ (yi−x⊤i β0)) =
1

2
(β̂n−β0)⊤Kn(β̂n−β0)−Gn(β̂n−β0)+op(1).
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By Theorem 1(i),

1

2
(β̂n − β0)

⊤Kn(β̂n − β0)−Gn(β̂n − β0) ⇒ g1(ΘQ,M(β0,M−1U),M, U).

Then the desired result follows trivially.

(iii) By Equation (S2.2) and Proposition 1,

1√
n

n∑
i=1

ψτ (yi−x⊤i β̂)x
(A)
i =

1√
n

n∑
i=1

ψτ (ϵi)x
(A)
i

+
1

n

n∑
i=1

E(fr(
i

n
, 0 | Fi−1,Gi)x

(A)
i x⊤i )

√
n(β̂n − β0) + op(1).

Therefore similar to the above arguments, we have S1,n ⇒ U (A)+MRBΘQ,M
(
β0,M−1U)

and S0,n ⇒ U (A) + MRB
0 ΘQ0,M0(β

(Ac)
0 ,M−1

0 U (Ac)), which leads to the de-

sired result.

S5 Proof of Theorem 2 of the main article

Proof of Theorem 2. (i) By Theorem 3.3 and 3.4 in Wu and Zhou (2018),

Υ̂n ⇒ M−1U .

By Proposition 1, n1/4β̂n−n1/4β0 = op(1), then we have Λ̂n ⇒ ΘQ,M(β0,M−1U).

(ii) and (iii) are obvious.

(iv) By Proposition B.1 of the supplementary material of Wu and Zhou

(2018), under Hα,

Υ̂0,n = M−1
0 U (Ac) +Op(

√
mL̃n + (n

n∑
i=1

νi(L̃n))
1/2 log n).
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Thus by Proposition 1 of Zhou (2015), the fastest rate at which dLRα con-

verges to infinity is mL̃2
n log

2 n. However, similar to the proof of Lemma

1, under Hα, T
LR
n go to infinity at rate n|Ln|2, which is faster than dLRα .

Therefore, P (TLR
n > dLRα ) → 1. Similarly, P (TLR

n > dRS
α ) → 1.

S6 Proof of Proposition 2 of the main article

Proof of Proposition 2. Under the null and the assumptions of the propo-

sition, we have

√
nβ̃i,n

d−→ N (0, σ2
i ),

where β̃i,n is the unconstrained estimator of βi and σ2
i is the ith row, ith

column entry of M−1U . Similarly, under Ha, we have that

√
nβ̃i,n

d−→ N (c, σ2
i ).

Consequently, let the standardized variable Z =
√
nσ−1

i β̃i,n, then we have

Z ∼ N (0, 1) under H0 and Z ∼ N (c/σi, 1) under the local alternative Ha.

Then the asymptotic power of the unconstrained test is

Powerunconstrained = P (|Z| > z1|Ha) = P (N > z1 − c∗) + P (N > z1 + c∗),

(S6.14)

where N is a standard normal random variable, z1 is the 1− α/2 quantile

of N and c∗ = c/σi > 0.
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On the other hand, denote β̂i,n as the constrained estimator of βi. By

properties of the metric projection, β̂i,n equals β̃i,n when the latter is non-

negative and 0 otherwise. Hence we have

Powerconstrained = P (Z > z2|Ha) = P (N > z2 − c∗), (S6.15)

where z2 is the 1− α quantile of N . Let

G(c∗) := Powerconstrained − Powerunconstrained

= P (N > z2 − c∗)− P (N > z1 − c∗)− P (N > z1 + c∗).

Then simple calculations yield that the derivative

G′(c∗) ∝ e−(c∗−z1)2/2[e(z2−z1)c∗e(z
2
1−z22)/2 + e−2z1c∗ − 1]

:= e−(c∗−z1)2/2H(c∗).

By the assumption that 0 < α ≤ 0.5, we have that 0 ≤ z2 < z1. Therefore

H(c∗) is a strictly monotonically decreasing function of c∗. Observe that

H(0) = e(z
2
1−z22)/2 > 0 and limx→∞H(x) = −1 < 0. Therefore we conclude

that the function G(x) is strictly increasing on [0, c∗0] and strictly decreasing

on [c∗0,∞), where c∗0 is the unique solution to the equation H(x) = 0.

Finally, observe that G(0) = 0 and limx→∞G(x) = 0. We then conclude

that G(x) > 0 for all x > 0.
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