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In this supplementary material, we present additional simulation re-
sults, and the proofs of Lemma 1, Propositions 1 and 2, Theorems 1 and

2.

S1 Additional Simulation Results

For settings (i)—(iii) in Section 4 of the main article, Table |I| summarizes
the empirical coverage probabilities of the confidence interval of 3; in the
binding case (#; = 0) and the non-binding case (; = 1). For settings

(1)—(iii), we also present the simulated Type I errors of the test

Hy:6,=0 v.s. Hy,:06,>0 (S1.1)
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a=5% a = 10%
n = 400 n = 800 n = 400 n = 800

Quantile 0.1 0.5 0.8 0.9 0.1 0.5 0.8 0.9 0.1 0.5 0.8 0.9 0.1 0.5 0.8 0.9
Setting (i)

RB 4.5 5.8 6.9 7.1 5.8 5.7 4.9 5.5 10.0 11.2 12.2 11.9 11.0 10.2 11.1 10.8

LR 6.5 5.6 5.9 5.5 6.2 4.9 5.1 5.9 10.1 9.9 10.1 8.6 10.4 9.3 9.1 9.9

CI(B) 95.9 94.5 94.5 96.1 94.8 95.7  95.8 94.8 93.0 92.0 92.0 92.8 92.2 92.5 92.6 92.2

CI(NB) 92.8 94.2 93.0 92.5 94.1 94.7  94.0 93.3 87.6 88.3 87.5 87.0 89.0  90.5 88.3 87.8
Setting (ii)

RB 5.9 6.2 6.0 5.5 5.0 5.7 5.6 5.0 11.9 11.9 10.8 9.8 10.4 9.9 10.3 10.3

LR 5.7 5.2 4.8 5.8 4.4 5.2 5.5 5.2 9.6 8.4 8.3 8.4 8.1 8.2 9.9 8.5

CI(B) 95.2 95.2 94.8 93.8 95.7 95.3  96.1 94.8 93.0 92.7 923 91.6 92.5 92.7 93.6 91.8

CI(NB) 92.0 95.0 93.2 91.7 93.5 94.9 94.1 93.8 87.4 89.5 87.8 86.2 87.6 91.2 89.3 88.1
Setting (iii)

RB 5.7 7.1 6.7 5.6 5.1 5.8 6.3 5.6 10.0 11.2 12.9 10.0 10.3 9.8 10.8 9.6

LR 5.1 4.9 4.6 4.2 5.1 4.7 4.9 4.9 8.4 7.7 8.7 8.9 9.1 8.9 8.1 9.1

CI(B) 94.4 95.5 93.8 92.8 95.6 96.2 96.2 95.5 91.8 92.9 89.7 88.9 92.6 93.0 92.9 92.8

CI(NB) 92.5 95.3 93.8 92.1 93.0 95.4 95.7 93.6 86.5 90.6 88.1 87.1 88.4  90.6 91.5 87.6

Table 1: Simulated Type I error rates (in percentage) of the likelihood ratio test (LR) and rank-
based test (RB), and coverage probability of the confidence interval (CI) for 81; (B) stands for

the binding case while (NB) stands for the non-binding case.

with TL% and TP in Table 1]

S2 Proof of Lemma 1 of the main article

Proof of Lemma 1. Without loss of generality, assume [y = 0. Let

M,(B) = Z (Ur(ei — 2 B)z; — E(W-(e; — x B)xi| Fiz1, Gi)),
and
N,(B) = Z (BE(r(e; — 2] B)ai| Fior, Gi) — Bt (e; — 2 B)z,)).

Denote |v| = vVvTv for a vector v. According to Lemma A.1 and A.2 of
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the supplemental material of Wu and Zhou| (2018)), for any sequence 6,, — 0,

sup |Mn(6) + Nn(ﬁ) - (Mn(o) + Nn(o))|

|8|<6n
_|§‘UI§ |Z¢T €; x;rﬁ)xz - ZE(¢T( €; TB xz Z¢T Ez xz
< i=1 =1
=0 ((Z (60))Y2 log n + v/nd,, ),
- (52.2)

where v;(0,) = E(|z:[*1(|&;] < |i|d,))-

Let 6, = n~Y2logn and integrate the above equation w.r.t 8, we have

sup |/ ZwT ) ZE (e — ;) sxz ZwT €;)r;ds|

181<67

—Z pT 61 ‘r € x:ﬁ)) + ZE(pT(Ez - LTZ';FB) - pf(ﬁz)) - /BTGTL

=0,(1).
(52.3)
By the convexity of p, and Taylor expansion, for any k= 1,... n,
k] k— 1)) k!
Blonte— B0y (o - BTy < p(tily (B0
T kx] kx kx|
< —B{"L (- ) - 22250 ‘”Tﬁ/ FCE ) — fi0yds))
k(xz] B)? 5
<o o) + w%»
(S2.4)
where we write Fj(z) = F.(£,2 | Fi-1,G;) and fi(z) = f,(, 2 | Fii1,G))

for simplicity.
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Similarly, we have

Blpnlei = 28y _ p (o - Bl
2 p(BZDEIBP ) g B 1PUTAP,
(52.5)
Summing Equation and over k from 1 to n, we get
" BT BU0)es] )6 < Blp(ei — 2] B)=pr(e)} + Oyl 5
< " ST B () )5,

2n

Namely,
S Elo =19 = (e} = 3T o). (20

We have the desired result by inserting Equation (S2.6)) into Equation

(52.3). 0

S3 Proof of Proposition 1 of the main article
Proof of Proposition 1. First recall that

1 '
Kn/n:ﬁzzlE[fr( 70|~E—1)gi)xixz—'r]7

1
.
1
M = / M0t M(t) = ELf, (8, 0F 1, Go) Hy (t, Fr, Go) H (1, F1,Go) ).
0

Denote Z; = E[fr(%,0|]-",-_1,gi)$ia:;] and its (j,{)th component as Z; j; =

E[fr(%, 0|Fi—1,Gi)xi jxiy]. Since Z; j is (Fi—1,G;) measurable and with the
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virtue of Section 2.2 of the main article, we can write the physical repre-

sentation of Z; j; as
Zigk = Lege(ti, Fic1, Gi), by <t < by,

where {L, ;i }/,_, is a set of nonlinear filters. Furthermore, define its corre-

sponding dependence measure by

Av,jl(La k) = max sup ||Lr7jk(t7 Jrk—b gk) - Lr,jk(ta F;—ly g]:)

OSTSR by <tSbr+l

.-
Under conditions (C1) and (C3), we have max; ;; |z j|>t"/? < M where 7
is a small positive constant. On the other hand, it turns out by Conditions

(C1) and (C2) that

HLr,jk(ta JT_-kfla gk) - Lr,jk(ta ‘/T_‘]:—la g;)

2

<||B [(f+(£,0|Fu1,Gi) = fo(t, O1F5_1, G} )) Hyj(t, Fuer, Gr) Hra(t, Frr, Gi) ] |,
+ || E [fo(t, 01 F 1, G)) (Hyj(t, Foer, G) — Hyj(t, Frioy, Gr)) Hea(t, Fue1, Gi) ]|
+ (| [ (01 F 0 G Ho (6 iy Gi) (Hoa (8 Fioer Go) = Hea(8, iy Gi)]
<O

Consequently, it is obvious to find that Ap 1= > 7% Ay ;; < oo. Followed

by Lemma 6(ii) in (Zhou, [2013), we have
1K /n = B[y /n]ll, = O(1/v/n), (S3.7)

where E[K,/n] = 23" | E{E[f(t;,01Fi—1, Gi)H, (t;, Fi1, Gi) Hy (i, Fie1,Gi) '] }-
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Next, it suffices to prove that E[K,/n| converges to M. Here, we

introduce a stationary process
Ly(t, Fior,Gi) i= E[fo(t;, 01 Fio1, Gi) Hy (5, Fir, Go) H! (85, Fir, Gi)l.
Then armed with Conditions (C1)—(C3), we have
B[Sy /n] — ElL(t, F-1,G0)]lly = O(1/n) (S3.8)
uniformly in j. Consequently by combining Eq.s and , we have
[ Kn/n — E[L(t, F-1,G0)]ll, = O(1/v/n). (S3.9)
Finally, by the definition of M = fol M (t)dt and Theorem 1.1 in Tasaki
(2009), we conclude that

=0(1/n?),

2

1 n
IE[L; (£, F_1,Go)] — M, = HH S BILI(t Fo1,Go)] — M
1=1

(S3.10)

where the first equality follows by stationarity of the process L. Combining

Egs. (S3.9) and (S3.10), the consistent result ||K,/n — M|, = O(1/y/n)

in Proposition 1 is now complete.

S4 Proof of Theorem 1 of the main article

The following proposition is required for the proof of Theorem 1.
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Proposition 1. Under regularity conditions (C1)-(C5), we have

(i) |Bn — Bol = 0p(n"2logn) and |B, — Bo| = 0p(n~/?logn);

(ii) (B — Bo) — K" G = 0p(n™'7?);

(1) B = An| = 0p(n~"12).

Proof of Proposition 1. Without loss of generality, assume [y = 0.

(i) For any ¢ > 0, let 6, = (n""/?1logn)c and ), be the smallest eigen-
value of K,/n. By (C3) and (C4) \, is strictly positive, and 8" K,3 >,
(logn)?c*\, for |B| = 6,, By Proposition 3.1 of Wu and Zhou/ (2018), we
also have 8T G,, = O,(clogn) for |3| = §,. Note that Wu and Zhou/ (2018)
considered general M-estimation and required the stochastic Lipschiz con-
tinous and short-term dependent conditions in (C1) and (C2) to hold for
higher moments, we checked that their conditions could be relaxed in the
context of quantile regression.

By Lemma 1,

P{wi‘n% (pr(ei — 2] B) — pr(es)) <0} =0,
=1

and by the convexity of p,,

n

PLint S (pr(ei — 27 8) = peles)) < 0} 0.
i=1
Namely, for any ¢ > 0, we have

P{|n*?(logn)™B,| > ¢} =0
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The desired results for Bn can be derived in the same way.

(ii) Let 8 = K;'G,, = O,(n"*/?). By Lemma 1,
Z{ﬂf i~ a1 B) — pr(e)} + 55T = 0,(1) (S4.11)

Let 6,, = n~"2¢, by Lemma 1 and Equation (S4.11]),

n ) ) i )
IB*B&J 2 (o B) = p( 8)) = 5(8=5)" Ku(B = B) = 0,(1)

Because (8 — 3)TK,(8 — B) >, A\nc? when |8 — 3] = §,,

n

P{ inf > (p-(e; = B) = pe(ei — ] B)) <0} — 0.

1B-Bl26n
Namely /n(5 — ) = 0,(1).
(iii) By Lemma 1 and Proposition 1(ii), we have

sup |Z P+ (e pT(el)JrBTKnﬁ——ﬁTKnm = 0,(1). (S4.12)

|Bl<n=1/2logn ;¢

Recall that

— argin > (o1 — prle).

peQ =1

and

"A)/n = argmin(ﬁ - Bn)TKn<B - Bn)
BeQ

.1
= argmin(—ﬁTKnﬂ + —BTKnﬁ).
BeQ 2
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Let 6, = n~"?¢c, by elementary calculation,

Sup | Z(,Or(ﬁi - l’:ﬁ) o pf(ei - sz’Ayn))
|ﬂ—%|:5nﬂ€Q i=1
1 . . . .
- 5(/8 - 'Yn)TKn(ﬁ - ’Yn) - Vg(’}/n)—r(ﬂ - 7n)| = Op(1)7
where g(3) = —8TK,.( + %BTKnﬁ. Because ¢(-) is a convex function and

4 is the minimum of g(+), Vg(%,)" (8 — 4,) is non-negative. Also notice

that (8 — 4n) " Kn(8 — ) > Auc® when |8 — 4,| = 0, we have

n

P inf (e, —x B) — pr(e; — ) 4)) <0} = 0.
{WMZWEQ;(M i B) = prles — ] 4n)) < 0}

We have the desired result. O

Proof of Theorem 1. (i) Based on Proposition 1 of our main article, we
know | K, /n— M| = 0,(1). By Proposition 3.1 and Theorem 3.1 of Wu and
Zhou (2018), we have n='/2G,, = U. Then \/n(3, — ) = MU by the
continuous mapping theorem and Proposition 1.

By Proposition 1 and Proposition 1(i)(iv) of |Zhou| (2015)

V(B = Bo) = VPg xa (Bn) = /1o + 0p(1)
n (S4.13)

= P s (Vi + VI Gr) = Vo + 0,(1).
Proposition 1(ii)(iv)(v) of Zhou (2015) then gives \/n(fn—50) = O (fo, M~1U).

(ii) By Lemma 1 and Proposition 1,

n

Z(pf(yz—l’jﬁn)—pr(yz—iﬁjﬁo)) = %(Bn_ﬁo)TKn<Bn_ﬁ0)_Gn(Bn_BO>+Op(1)-

=1
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By Theorem 1(i),

B 50 Kl — o) — Gl — B0) = 0:(Oq ua(o, M~ U), M, D).

Then the desired result follows trivially.

(iii) By Equation (52.2)) and Proposition 1,

B T 1 - Ny
\/ﬁ;wT(yz x; B)x; _\/ﬁ;wT(EZ)xi

n

+ % Z E(fv“(%" 0] Fier, Gi)at Y a] )Wn(Ba — Bo) + 0p(1).

=1

Therefore similar to the above arguments, we have Sy ,, = U+ MEBO, o (60, M)
and Sy, = U + MEBOg, m, (B(SAC),MEIU(AC)), which leads to the de-

sired result. ]

S5 Proof of Theorem 2 of the main article

Proof of Theorem 2. (i) By Theorem 3.3 and 3.4 in [Wu and Zhou| (2018),

T, = MU.
By Proposition 1, n'/43,—n'/4y = 0,(1), then we have A,, = Og (8o, M~1U).
(i) and (iii) are obvious.
(iv) By Proposition B.1 of the supplementary material of [Wu and Zhou

(2018), under H,,

n

Tou = MU + Op(VmLy + (0> vi(Ly))/*logn).

=1
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Thus by Proposition 1 of [Zhou (2015), the fastest rate at which d%® con-
verges to infinity is mf/i logZ n. However, similar to the proof of Lemma
1, under H,, TE® go to infinity at rate n|L,|?, which is faster than dZ%.

Therefore, P(TLR > dER) — 1. Similarly, P(TLR > dBS) — 1. 0

S6 Proof of Proposition 2 of the main article

Proof of Proposition 2. Under the null and the assumptions of the propo-
sition, we have

\/ﬁBi,n at N(O, Uz'2>7
where Bm is the unconstrained estimator of 3; and o7 is the ith row, ith

column entry of M~'U. Similarly, under H,, we have that
\/ﬁan LN Nie,a?).

Consequently, let the standardized variable Z = /no; lﬁm, then we have
Z ~ N(0,1) under Hy and Z ~ N(c/0;, 1) under the local alternative H,.

Then the asymptotic power of the unconstrained test is

Powerneonstrained = P(|Z] > z1|Hy) = P(N > 21 — ¢*) + P(N > z; + ),
(S6.14)
where N is a standard normal random variable, z; is the 1 — /2 quantile

of N and ¢* = ¢/o; > 0.
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On the other hand, denote Bm as the constrained estimator of ;. By
properties of the metric projection, Bm equals Bi,n when the latter is non-

negative and 0 otherwise. Hence we have

Powerconstrained = P(Z > 23|H,) = P(N > z5 — ¢*), (S6.15)

where 2, is the 1 — a quantile of N. Let

* Pp—
G<C ) c— Powerconstrained - Powerunconstrained

=P(N>z2—c)—P(N>z—c)—P(N >z +c).
Then simple calculations yield that the derivative

G/(C*) x ef(c*le)2/2 [6(227'21)0*6('2%723)/2 4 672210* B 1]

= e A2 ().

By the assumption that 0 < o < 0.5, we have that 0 < 25 < z;. Therefore
H(c*) is a strictly monotonically decreasing function of ¢*. Observe that
H(0) = el1729)/2 > 0 and lim,_,o, H(z) = —1 < 0. Therefore we conclude
that the function G(x) is strictly increasing on [0, ¢f] and strictly decreasing
on [c},00), where ¢} is the unique solution to the equation H(x) = 0.
Finally, observe that G(0) = 0 and lim, ,,, G(z) = 0. We then conclude

that G(x) > 0 for all x > 0. O
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