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This document provides supplementary material for the paper on Multilayer network regres-

sion with eigenvector centrality and community structure. The supplementary materials consist

of three sections. Section S1 provides theoretical supplements, including proofs of main theo-

rems, analysis under unknown community structure, and discussion of key assumptions. Section

S2 presents additional simulation results, comparisons with alternative models, and sensitivity

analyses. Section S3 offers further details on the real-data application using WIOD, including

variable definitions, estimation results, and comparisons of centrality measures. This supple-

mentary material supports the main findings and methodology presented in the paper.

S1 Theoretical supplements

In this section, we provides theoretical supplements, including complete

proofs of the main theorems, additional theoretical analysis for the case

where community information is unknown, and a detailed discussion of key
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assumptions used in the paper.

To begin with, we introduce the following notation for projection matri-

ces used throughout the analysis: PX := X(X>X)−1X>, PC := C(C>C)−1C>,

and PẐ := Ẑ(Ẑ>Ẑ)−1Ẑ>. These projection matrices play a central role in

characterizing the properties of the estimators and their asymptotic behav-

ior.

S1.1 Proof of Column Full-Rank Implication

Claim: If σmin ((IN − PX)V ) ≥ lN > 0, then W1 = (X,C) is column

full-rank.

Proof. Assume W1 = [X C] is not column full-rank. Then there exists a

non-zero vector θ = [θ>X θ>C ]> 6= 0 such that:

XθX + CθC = 0.

If θC = 0, then XθX = 0. Since X is column full-rank (by N > P + L), this

implies θX = 0, contradicting θ 6= 0. Thus, θC 6= 0.

Rearranging the equation:

CθC = −XθX .

Projecting both sides onto the orthogonal complement of X:

(IN − PX)CθC = (IN − PX)(−XθX) = 0,
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where we used (IN − PX)X = 0. Substituting C = aNV :

(IN − PX)V θC =
1

aN
(IN − PX)CθC = 0.

This implies:

σmin ((IN − PX)V ) ≤ ‖(IN − PX)V θC‖2/‖θC‖2 = 0,

which contradicts σmin ((IN − PX)V ) ≥ lN > 0. Therefore, W1 must be

column full-rank.

S1.2 Three important Lemmas

Lemma S1.1. (Davis and Kahan, 1970)Recall the network model in (2.8).

Let δ := λ1 − λ2 be the spectral gap between the largest and second largest

eigenvalues of B0. Suppose ũ1 and u1 are the top eigenvectors of B and B0,

respectively. Then we have

‖ũ1 − u1‖2 = O

(
‖E0‖2
δ

)
,

where ‖E0‖2 = max‖u‖2≤1 ‖E0u‖2 denotes the matrix operator norm.

Lemma S1.1 requires δ � ‖E0‖2 for ũ1 to converge to u1. In our

framework, this result directly translates to the estimation error bound

between the noisy and true centrality measures. Specifically, we derive the

following explicit rate for Ĉ:
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Lemma S1.2. Under Assumptions 1-3, we have

E
[
‖Ĉ − C‖2F

]
= O

(
a2NNL

δ2

)
. (S1.1)

Proof. Under Assumption 2 and the setting of Lemma S1.1, we have

‖Ĉ − C‖2F = ‖vec(Ĉ)− vec(C)‖22

= a2N ‖ũ1 − u1‖
2
2 ,

and from Lemma S1.1 we see that ‖ũ1 − u1‖2 = O
(
‖E0‖2
δ

)
. Therefore,

‖ũ1 − u1‖22 ≤ c
‖E0‖22
δ2

a.s. for some positive constant c. Therefore, we have

E
[
‖Ĉ − C‖2F

]
≤ ca2N

E [‖E0‖22]
δ2

.

Under Assumption 1 where E [‖E0‖22] = O(NL), we obtain

E
[
‖Ĉ − C‖2F

]
= O(

a2NNL

δ2
).

In what follows, Lemma S1.3 is a powerful tool, which we now explain.

It is used in the proofs of Theorem 4 and 5.

Lemma S1.3. Suppose A and B are positive semi-definite matrices with

the same size n× n. Then we have tr(AB) ≤ tr(A)tr(B).

Proof. From Cauchy-Schwarz inequality, we have

tr(AB) ≤ ‖A‖F‖B‖F =
√

tr(A2)
√

tr(B2).
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Denote the eigenvalues of A as νi ≥ 0, i = 1, · · ·n, the eigenvalues of B

as µi ≥ 0, i = 1, · · · , n. Then
√

tr(A2) =
√∑

ν2i ≤
∑
νi = tr(A), and

similarly we have
√

tr(B2) =
√∑

µ2
i ≤

∑
µi = tr(B). Finally, we have

tr(AB) ≤ tr(A)tr(B) and the proof is complete.

S1.3 Proof of Theorem 1

(i) Let W1 = (X,C) and β = (β>X , β
>
C )>, then the OLS estimator is

β̂(ols) = arg min
βX ,βC

‖y −XβX − CβC‖22 .

Define also that L := ‖y −XβX − CβC‖22, then setting the partial deriva-

tives of all the parameters as zero leads to

∂L
∂βX

= − 2

N
X>(y −XβX − CβC) = 0,

∂L
∂βC

= − 2

N
C>(y −XβX − CβC) = 0,

which gives

X>Xβ̂
(ols)
X = X>(y − Cβ̂(ols)

C ),

C>Cβ̂
(ols)
C = C>(y −Xβ̂(ols)

X ).

This further implies

β̂
(ols)
X = (X>(IN − PC)X)−1X>(IN − PC)y

= (X>(IN − PC)X)−1X>(IN − PC)(XβX + CβC + ε)

= βX + (X>(IN − PC)X)−1X>(IN − PC)(CβC + ε),
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and

β̂
(ols)
C = (C>(IN − PX)C)−1C>(IN − PX)y

= (C>(IN − PX)C)−1C>(IN − PX)(XβX + CβC + ε)

= βC + (C>(IN − PX)C)−1C>(IN − PX)(XβX + ε).

Note that the projection matrices PC and PX satisfy (IN − PC)C = 0 and

(IN − PX)X = 0, we then have

β̂
(ols)
X − βX = (X>(IN − PC)X)−1X>(IN − PC)ε,

β̂
(ols)
C − βC = (C>(IN − PX)C)−1C>(IN − PX)ε.

(S1.2)

Also, since W1 is column full rank, from the inverse formula for the parti-

tioned matrix, we see that

(W>
1 W1)

−1 =

 X>X X>C

C>X C>C


−1

=

 (X>(IN − PC)X)−1 ∗1

∗2 (C>(IN − PX)C)−1

 ,

where

∗1 = −(X>(IN − PC)X)−1X>C(C>C)−1

= −(X>X)−1X>C(C>(IN − PX)C)−1,

∗2 = −(C>(IN − PX)C)−1C>X(X>X)−1

= −(C>C)−1C>X(X>(IN − PC)X)−1,
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and

(X>(IN − PC)X)−1 =(X>X)−1 + (X>X)−1X>C(C>(IN − PX)C)−1C>X(X>X)−1,

(C>(IN − PX)C)−1 =(C>C)−1 + (C>C)−1C>X(X>(IN − PC)X)−1X>C(C>C)−1.

Here, both X>(IN − PC)X and C>(IN − PX)C are symmetric and positive

definite.

Next, we consider the asymptotic behavior of

β̂
(ols)
X − βX = (X>(IN − PC)X)−1X>(IN − PC)ε

= (
1

N
X>(IN − PC)X)−1

1

N
X>(IN − PC)ε.

We start by showing

1

N
X>PCX

L1−→ 0. (S1.3)

Note that the projection matrix PC is idempotent and rank(PC) = tr(PC) =

L. Therefore, for a fixed C, there exists an orthogonal matrix J = (Jij)
N
i,j=1

such that

JPCJ
> =

 IL 0

0 0


N×N

. (S1.4)

Here we consider each individual element of 1
N
X>PCX. Denote X =

[X1, · · · , XP ], and we have

1

N
X>PCX =

(
1

N
X>i PCXj

)P

i,j=1

.
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Denote the conditional expectation on C as EC [·] := E[·|C]. By (S1.4), we

have

EC
[∣∣∣∣ 1NX>i PCXj

∣∣∣∣] = EC


∣∣∣∣∣∣∣∣
1

N
X>i J

>

 IL 0

0 0

 JXj

∣∣∣∣∣∣∣∣


= EC
[∣∣∣∣∣ 1N

L∑
k=1

(
N∑
l=1

JklXli

)(
N∑
l=1

JklXlj

)∣∣∣∣∣
]

≤ 1

N

L∑
k=1

EC
[∣∣∣∣∣
(

N∑
l=1

JklXli

)(
N∑
l=1

JklXlj

)∣∣∣∣∣
]

≤ 1

N

L∑
k=1

EC
∣∣∣∣∣

N∑
l=1

JklXli

∣∣∣∣∣
2
 1

2
EC

∣∣∣∣∣
N∑
l=1

JklXlj

∣∣∣∣∣
2
 1

2

,

(S1.5)

where the last inequality follows from the Cauchy-Schwartz inequality.

Since J is orthogonal, we have
∑L

l=1 J
2
kl = 1, for k ∈ {1, · · · ,N}. Since

E[Xij|C,E0] = 0 and E[X2
ij|C,E0] <∞ for 1 ≤ i ≤ N, 1 ≤ j ≤ P, we obtain

EC
∣∣∣∣∣

N∑
l=1

JklXli

∣∣∣∣∣
2

= EC
(

N∑
l=1

J2
klX

2
li +

∑
l 6=l′

JklXliJkl′Xl′i

)

=
N∑
l=1

J2
klECX2

li +
∑
l 6=l′

JklJkl′EC [XliXl′i]

= ECX2
1i +

∑
l 6=l′

JklJkl′ · 0

= ECX2
1i <∞,

as Xli and Xl′i are independent for l 6= l′. Therefore, by (S1.5), we have as
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N −→∞, L/N→ 0 and

EC
[∣∣∣∣ 1NX>i PCXj

∣∣∣∣] ≤ 1

N

L∑
k=1

√
ECX2

1iECX2
1j

=
L

N

√
ECX2

1iECX2
1j −→ 0,∀i, j ∈ {1, · · · ,P}, (S1.6)

which further gives

E
[∣∣∣∣ 1NX>i PCXj

∣∣∣∣] = E
[
EC
[∣∣∣∣ 1NX>i PCXj

∣∣∣∣]]
≤ E

[
L

N

√
ECX2

1iECX2
1j

]
=

L

N

√
ECX2

1iECX2
1j −→ 0, ∀i, j ∈ {1, · · · ,P},

and proves (S1.3). Also, (S1.3) implies

1

N
X>PCX

P−→ 0. (S1.7)

By the law of large numbers, we have

1

N
X>X

P−→ VX , (S1.8)

where VX is a deterministic and nonsingular diagonal matrix. From (S1.7)

and (S1.8) we also obtain

1

N
X>(I − PC)X

P−→ VX . (S1.9)

Applying the continuous mapping theorem to (S1.9) we conclude

(
1

N
X>(I − PC)X)−1

P−→ V −1X . (S1.10)
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Now we consider the asymptotic normality of

√
N(β̂

(ols)
X − βX) = (

1

N
X>(IN − PC)X)−1

1√
N
X>(IN − PC)ε.

By (S1.3), we have

E

[∥∥∥∥ 1√
N
X>PCε

∥∥∥∥2
2

]
=
σ2
y

N
tr
(
E
[
X>PCX

])
→ 0,

which 1√
N
X>PCε

P−→ 0. Also, for 1√
N
X>ε, the central limit theorem gives

that

1√
N
X>ε

d−→ N (0, σ2
yVX).

Hence, we arrive at the asymptotic normality result:

√
N(β̂

(ols)
X − βX)

d−→ N (0, σ2
yV
−1
X ).

(ii) To prove the consistency of β̂
(ols)
C − βC , we first point out that

β̂
(ols)
C − βC = (C>(IN − PX)C)−1C>(IN − PX)ε,

and examine the `2-norm of β̂
(ols)
C − βC as follows:

E
[∥∥∥β̂(ols)

C − βC
∥∥∥2
2

]
= E

[
ε>(IN − PX)C(C>(IN − PX)C)−2C>(IN − PX)ε

]
= E

[
tr
(
ε>(IN − PX)C(C>(IN − PX)C)−2C>(IN − PX)ε

)]
= tr

(
E
[
εε>(IN − PX)C(C>(IN − PX)C)−2C>(IN − PX)

])
= σ2

ytr
(
E
[
(IN − PX)C(C>(IN − PX)C)−2C>(IN − PX)

])
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= σ2
yE
[
tr
(
(IN − PX)C(C>(IN − PX)C)−2C>(IN − PX)

)]
= σ2

yE
[
tr
(
C>(IN − PX)C(C>(IN − PX)C)−2

)]
= σ2

yE
[
tr
(
(C>(IN − PX)C)−1

)]
.

Note that C>(IN−PX)C is positive definite, and we denote its eigenvalues

as µ1 ≥ · · · ≥ µL > 0. Then we have

tr
(
(C>(IN − PX)C)−1

)
=

L∑
i=1

1

µi
≤ L

µL
=

L

a2Nσ
2
min((IN − PX)V )

≤ L

a2Nl
2
N

.

Thus, as N→∞,

E
[∥∥∥β̂(ols)

C − βC
∥∥∥2
2

]
= σ2

yE
[
tr
(
(C>(IN − PX)C)−1

)]
≤ σ2

yE
[

L

a2Nl
2
N

]
=

σ2
yL

a2Nl
2
N

→ 0,

thereby verifying the consistency of β̂
(ols)
C . �

S1.4 Proof of Theorem 2:

Similar to the calculation of (S1.2), we have

β̃
(ols)
X − βX = (X>(IN − PZ)X)−1X>(IN − PZ)ε,

β̃
(ols)
Z − βZ = (Z>(IN − PX)Z)−1Z>(IN − PX)ε. (S1.11)

Applying a similar proof strategy to β̃
(ols)
X gives its consistency and asymp-

totic normality. Thus, we only need to consider β̃
(ols)
Z , and divide the proof

into three steps:
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1. Show that 1
N
Z>PXZ

P−→ 0.

2. For aN =
√
NL, show that there exists a constant m > 0 such that

1
N
‖Z‖22 ≥ m a.s..

3. Show that 1
N
Z>(IN − PX)ε

P−→ 0.

With the above three steps, we conclude that as N→∞

∣∣∣β̃(ols)
Z − βZ

∣∣∣
=
∣∣(Z>(I − PX)Z)−1Z>(IN − PX)ε

∣∣
=

(
1

N
Z>(I − PX)Z

)−1 ∣∣∣∣ 1NZ>(IN − PX)ε

∣∣∣∣
≤
(
m− 1

N
Z>PXZ

)−1 ∣∣∣∣ 1NZ>(IN − PX)ε

∣∣∣∣
P−→ m−1 · 0 = 0,

showing the consistency of β̃
(ols)
Z .

Step 1: We start the proof by showing 1
N
Z>PXZ

P−→ 0. Note that

1

N
Z>PXZ =

1

N
Z>X

(
1

N
X>X

)−1
1

N
X>Z,

where

1

N
X>Z =


1
N

∑N
i=1Xi1Zi

...

1
N

∑N
i=1XiPZi

 .
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Recall from the definition of Z (2.10) that Z represents the estimated

community-based centrality of nodes, and nodes within the same commu-

nity share the same value for the centrality measure Z. Here we rewrite Z

corresponding to R communities by {Z(1), · · · , Z(R)} i.e. Z = [Z(c1), · · · , Z(cN)]>

where Z(ci) denotes the centrality of community ci with ci ∈ {1, · · · ,R} be-

ing the community label of node i. From the definitions of Z and U , we

observe that

L
N∑
k=1

Zk = L
R∑
r=1

NrZ
(r) =

∑
i,j

Cij, (S1.12)

which further gives

NrZ
(r) ≤

R∑
r=1

NrZ
(r) =

1

L

∑
i,j

Cij ≤
1

L

√
NL
∑
i,j

C2
ij =

√
Na2N√
L

= N. (S1.13)

From Assumption 4, we have mini
Ni

N
> ε, thus

Z(r) ≤ N

Nr
≤ max

r

N

Nr
<

1

ε
. (S1.14)

Now we prove that 1
N
X>Z

P−→ 0. From (S1.14), entrywisely we have∣∣∣∣∣ 1N
N∑
i=1

XijZi

∣∣∣∣∣ =

∣∣∣∣∣ 1N
R∑
r=1

Z(r)

Nr∑
i=1

X1i

∣∣∣∣∣
≤

R∑
r=1

Z(r)

∣∣∣∣∣ 1N
Nr∑
i=1

Xij

∣∣∣∣∣
≤

R∑
r=1

1

ε

∣∣∣∣∣ 1N
Nr∑
i=1

Xij

∣∣∣∣∣ P−→ 0
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if 1
N

∑Nr

i=1Xij
P−→ 0. So now we only need to prove 1

N

∑Nr

i=1Xij
P−→ 0.

Consider the second moment of 1
N

∑Nr

i=1Xij:

E

( 1

N

Nr∑
i=1

Xij

)2
 = E

 1

N2
ENr

( Nr∑
i=1

Xij

)2


=
1

N2
E
[
NrEX2

ij

]
=

1

N
E
[
Nr
N
EX2

ij

]
≤ 1

N
EX2

ij → 0

where Nr

N
≤ 1. Thus 1

N

∑Nr

i=1Xij
L2−→ 0 and 1

N

∑Nr

i=1Xij
P−→ 0, which implies

1

N
X>Z

P−→ 0 (S1.15)

and

1

N
Z>PXZ

P−→ 0 · V −1X · 0 = 0. (S1.16)

Step 2: Now we consider 1
N
Z>Z. Since Cij > 0, with Cauchy-Schwarz

inequality, we have

1

N
‖Z‖22 =

1

N2

N∑
k=1

Z2
k

N∑
k=1

1 ≥ 1

N2

(
N∑
k=1

Zk

)2

.

Combining with equation (S1.12) and Assumption 4, we see that

1

N
‖Z‖22 ≥

1

N2

(
1

L

∑
i,j

Cij

)2

≥ 1

N2

1

L2
(N min

1≤i≤N

L∑
j=1

Cij)
2 =

1

L2
min
1≤i≤N

‖Ci‖21 �
a2N
NL
� 1.

Hence, with aN �
√
NL, there exists a constant m > 0 such that

1

N
‖Z‖22 ≥ m, a.s.. (S1.17)
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From the results of Step 1 and Step 2, by (S1.16) and (S1.17), we see

that for N sufficiently large,

1

N
Z>(IN − PX)Z =

1

N
Z>Z − 1

N
Z>PXZ

≥ m− 1

N
Z>PXZ > 0,

which gives(
1

N
Z>(IN − PX)Z

)−1
≤
(
m− 1

N
Z>PXZ

)−1
. (S1.18)

Step 3: Now we consider the behavior of

1

N
Z>(IN − PX)ε =

1

N
Z>ε− 1

N
Z>PXε. (S1.19)

For the first part of RHS of (S1.19), 1
N
Z>ε

P−→ 0 follows from the arguments

showing 1
N
X>Z

P−→ 0. Moreover, we have 1
N
X>Z

L2−→ 0:

E

[∥∥∥∥ 1

N
Z>ε

∥∥∥∥2
2

]
=

1

N2
E
[
ε>ZZ>ε

]
=
σ2
y

N2
E
[
‖Z‖22

]
. (S1.20)

And then we need to calculate E [‖Z‖22]. The randomness of Z arises from

both eigenvector centrality and community structure. Therefore, we need

to consider ‖Z‖22 from a different perspective here. From the definition of

Z in (2.10), we have

‖Z‖22 =
1

L2
‖U 1L ‖22 ≤

1

L
‖U‖2F .
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By the definition of U in (2.9), we have

‖U‖2F =
∥∥S(S>S)−1S>C

∥∥2
F

≤
∥∥S(S>S)−1S>

∥∥2
F
‖C‖2F

= tr(S(S>S)−1S>) ‖C‖2F

= tr(IR) ‖C‖2F = R ‖C‖2F .

Hence, with Assumption 4, we have the following upper bound for ‖Z‖22:

‖Z‖22 ≤
1

L
‖U‖2F ≤

R

L
‖C‖2F . (S1.21)

Then taking expectations on both sides of (S1.21) gives

E
[
‖Z‖22

]
≤ R

L
E
[
‖C‖2F

]
= O(

a2N
L

), (S1.22)

and with (S1.22), we have as N→∞

E

[∥∥∥∥ 1

N
Z>ε

∥∥∥∥2
2

]
=
σ2
y

N2
E
[
‖Z‖22

]
≤
σ2
y

N2
O(
a2N
L

)→ 0, (S1.23)

i.e. 1
N
Z>ε

L2−→ 0.

For the second part of RHS of (S1.19), using (S1.15) and the law of large

numbers, we have

1

N
Z>PXε =

1

N
Z>X

(
1

N
X>X

)−1
1

N
X>ε

P−→ 0 · V −1X · 0 = 0, (S1.24)

so that 1
N
Z>PXε

P−→ 0.

Therefore, combining (S1.23), and (S1.24), we conclude that 1
N
Z>(IN−

PX)ε
P−→ 0 and completes the proof of Step 3.
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Now we turn to the asymptotic normality of β̃
(ols)
Z .

The OLS estimator is:

β̃
(ols)
Z − βZ =

(
Z>(IN − PX)Z

)−1
Z>(IN − PX)ε.

Normalizing by
√
Z>Z/σ2

y, we have√
Z>Z

σ2
y

(
β̃
(ols)
Z − βZ

)
=
Z>Z

N

(
Z>(IN − PX)Z

N

)−1
︸ ︷︷ ︸

(A)

· Z>ε√
Z>Zσ2

y︸ ︷︷ ︸
(B)

− Z>Z

N

(
Z>(IN − PX)Z

N

)−1
· Z>PXε√

Z>Zσ2
y︸ ︷︷ ︸

(C)

.

We only need to prove that (A)
P−→ 1, (B)

d−→ N (0, 1) and (C)
d−→ 0. For

the term (A), with (S1.16), we obtain

(A) =
Z>(IN − PX)Z

N

(
Z>Z

N

)−1
P−→ 1.

The term (B) is specified by

(B) =
Z>ε√
Z>Zσ2

y

=
N∑
i=1

Ziεi√
Z>Zσ2

y

.

Define WN,i = Ziεi√
Z>Zσ2

y

, then:

E [WN,i |Z] = 0,
N∑
i=1

E
[
W2

N,i |Z
]

=

∑N
i=1 Z

2
i σ

2
y

Z>Zσ2
y

= 1.

To apply the conditional central limit theorem (Yuan et al., 2014), we
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need to show

∀ε > 0,
N∑
i=1

E
[
W2

N,i1{|WN,i|>ε} |Z
] a.s.−→ 0.

For any ε0 > 0,

1{|WN,i|>ε0} ≤
W2

N,i

ε20
.

Thus,

E
[
W2

N,i1{|WN,i|>ε0} |Z
]
≤

E
[
W4

N,i |Z
]

ε20
.

From Assumption 1, E[ε4i ] ≤ k0, then

E
[
W4

N,i |Z
]

=
Z4
i E[ε4i ]

(Z>Zσ2
y)

2
≤ k0Z

4
i

(Z>Zσ2
y)

2
.

Sum over i:
N∑
i=1

E
[
W4

N,i |Z
]
≤ k0

∑N
i=1 Z

4
i

(Z>Zσ2
y)

2
.

Since
N∑
i=1

Z4
i ≤

(
max
1≤i≤N

Z2
i

) N∑
i=1

Z2
i =

(
max
1≤i≤N

Z2
i

)
Z>Z,

we have

k0
∑N

i=1 Z
4
i

(Z>Zσ2
y)

2
≤ k0 (max1≤i≤N Z

2
i )

Z>Zσ4
y

=
k0
σ4
y

(max1≤i≤N Z
2
i )

Z>Z
.

From Assumption 4, for each community r, Nr ≥ εN. The condition Z>Z >

NrZ
2
i implies:

Z2
i <

Z>Z

Nr
∀i ∈ community r.
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Thus, there exists r0 such that max1≤i≤N Z
2
i <

Z>Z
Nr0

. Further,

k0
∑N

i=1 Z
4
i

(Z>Zσ2
y)

2
≤ k0
σ4
y

(max1≤i≤N Z
2
i )

Z>Z
<
k0
σ4
y

1

Nr0
≤ k0
σ4
y

1

εN
a.s.−→ 0.

Finally, we have

N∑
i=1

E
[
W2

N,i1{|WN,i|>ε0} |Z
]
≤ k0
σ4
y

1

εN
a.s.−→ 0,

which implies that the Lindeberg condition holds almost surely given Z.

By the conditional Lindeberg-Feller CLT, we obtain the convergence of the

conditional distribution over Z, i.e.,

∀t ∈ R, P

 Z>ε√
Z>Zσ2

y

≤ t

∣∣∣∣Z
 P−→ Φ(t).

Here, convergence in probability of the random probability measures means

convergence in probability in the space PM(R) of probability measures on

R metrized by weak convergence. This implies that for almost every real-

ization of Z, the conditional distribution converges to the standard normal

distribution as N→∞.

To extend this to the unconditional distribution, we integrate over Z:

P

 Z>ε√
Z>Zσ2

y

∈ A

 = E

P
 Z>ε√

Z>Zσ2
y

∈ A
∣∣∣∣Z
 ,

for any measurable setA. Since the conditional probability P(·|Z) is bounded

by 1 (i.e., 0 ≤ P(·|Z) ≤ 1 for all Z), the Dominated Convergence Theorem
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(DCT) justifies interchanging the limit and expectation:

lim
N→∞

P

 Z>ε√
Z>Zσ2

y

∈ A

 = E

 lim
N→∞

P

 Z>ε√
Z>Zσ2

y

∈ A
∣∣∣∣Z
 = Φ(A).

Thus, the unconditional distribution converges weakly:

Z>ε√
Z>Zσ2

y

d−→ N (0, 1). (S1.25)

For the term (C), we have

Z>PXε√
Z>Zσ2

y

=
Z>X(X>X)−1X>ε√

Z>Zσ2
y

=
Z>X√
Z>ZN

√
N

σ2
y

(X>X)−1X>ε

where combining (S1.17) and Z>X
N

P−→ 0, we have

Z>X√
Z>ZN

=

√
N

Z>Z

Z>X

N
P−→ 0.

Moreover, from the central limit theorem, we obtain√
N

σ2
y

(X>X)−1X>ε
d−→ N (0, V −1X ).

By Slutsky’s Theorem, we finally obtain term (C) converge to 0 in distri-

bution.

Combine the results of terms (A), (B) and (C) above, we get√
Z>Z

σ2
y

(
β̃
(ols)
Z − βZ

)
d−→ N (0, 1).

�
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S1.5 Proof of Theorem 3

We start from the two-stage estimator defined by regressing y on the aug-

mented regressor matrix Ŵ1 = (X, Ĉ). When Ŵ1 is not of full column

rank due to measurement errors in Ĉ, the usual inverse (Ŵ>
1 Ŵ1)

−1 does

not exist.

Instead, we use the Moore–Penrose pseudoinverse to define the projec-

tion matrix onto the column space of Ĉ:

PĈ := Ĉ(Ĉ>Ĉ)+Ĉ>,

which is always well-defined regardless of the rank of Ĉ.

Then, by applying the Frisch–Waugh–Lovell theorem(Lovell, 1963; Frisch

and Waugh, 1933) the estimator for βX can be expressed as the coefficient

from regressing y on X after projecting out the effect of Ĉ:

β̂X = (X>(IN − PĈ)X)−1X>(IN − PĈ)y.

Since we assume y = XβX + CβC + ε, we have for δC := C − Ĉ,

β̂X = βX + (X>(IN − PĈ)X)−1X>(IN − PĈ)(δCβC + ε). (S1.26)

We now prove the consistency of β̂X , and observe from (S1.26) that

β̂X − βX = (X>(IN − PĈ)X)−1X>(IN − PĈ)[δCβC + ε]

= (
1

N
X>(IN − PĈ)X)−1

[
1

N
X>(IN − PĈ)δCβC +

1

N
X>(IN − PĈ)ε

]
.
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Hence, as long as we justify the three convergence results below:

1. ( 1
N
X>(I − PĈ)X)−1

P−→ V −1X ,

2. 1
N
X>(IN − PĈ)ε

P−→ 0,

3. 1
N
X>(IN − PĈ)δCβC

P−→ 0,

we are able to obtain the consistency of β̂X .

Step 1: Using a similar proof strategy as for (S1.3) gives

1

N
X>PĈX

L1−→ 0, (S1.27)

which combined with the law of large numbers leads to

1

N
X>(I − PĈ)X

P−→ VX . (S1.28)

Applying the continuous mapping theorem to (S1.28), we obtain

(
1

N
X>(I − PĈ)X)−1

P−→ V −1X . (S1.29)

Step 2: Now we show that 1
N
X>(I−PĈ)ε

P−→ 0. Consider the `2-norm:

E

[∥∥∥∥ 1

N
X>PĈε

∥∥∥∥2
2

]
=

1

N2
E
[
ε>PĈXX

>PĈε
]

=
1

N2
E
[
tr(ε>PĈXX

>PĈε)
]

=
1

N2
E
[
tr(εε>PĈXX

>PĈ)
]

=
1

N2
σ2
yE
[
tr(PĈXX

>PĈ)
]
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=
σ2
y

N2
E
[
tr(X>PĈX)

]
=
σ2
y

N
tr

(
E
[

1

N
X>PĈX

])
≤
σ2
y

N
tr

(
E
[∣∣∣∣ 1NX>PĈX

∣∣∣∣])→ 0,

where the convergence is given by (S1.27) . Therefore, 1
N
X>PĈε

L2−→ 0 and

1

N
X>PĈε

P−→ 0. (S1.30)

Then combining the law of large numbers with (S1.30) gives

1

N
X>(IN − PĈ)ε

P−→ 0. (S1.31)

Step 3: For 1
N
X>(IN − PĈ)δCβC , we again consider its `2-norm:

E

[∥∥∥∥ 1

N
X>(IN − PĈ)δCβC

∥∥∥∥2
2

]
=

1

N2
E
[
β>C δ

>
C (In − PĈ)XX>(IN − PĈ)δCβC

]
=

1

N2
E
[
tr(β>C δ

>
C (In − PĈ)XX>(IN − PĈ)δCβC)

]
=

1

N2
E
[
tr(βCβ

>
C δ
>
C (In − PĈ)XX>(IN − PĈ)δC)

]
and applying Lemma S1.3 gives

≤ 1

N2
E
[
tr(βCβ

>
C )tr(δ>C (In − PĈ)XX>(IN − PĈ)δC)

]
=

1

N2
tr(βCβ

>
C )E

[
tr(δ>C (In − PĈ)XX>(IN − PĈ)δC)

]
=

1

N2
tr(βCβ

>
C )E

[
tr(δCδ

>
C (In − PĈ)XX>(IN − PĈ))

]
;

since IN − PĈ is idempotent, applying Lemma S1.3 again leads to

≤ 1

N2
tr(βCβ

>
C )E

[
tr(δCδ

>
C )tr((In − PĈ)XX>(IN − PĈ))

]
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=
1

N2
tr(βCβ

>
C )E

[
‖δC‖2F tr(X>(In − PĈ)X)

]
= tr(βCβ

>
C )

(
1

N2
E
[
‖δC‖2F tr(X>X)

]
− 1

N2
E
[
‖δC‖2F tr(X>PĈX)

])
.

Next, since EC,E0 [ 1
N
X>i Xi] <∞, for i = 1, · · · ,P, we then have

1

N2
E
[
‖δC‖2F tr(X>X)

]
=

1

N
E
[
‖δC‖2FEC,E0

[
tr(

1

N
X>X)

]]
=

1

N
E
[
‖δC‖2F tr

(
EC,E0

[
1

N
X>X

])]
=

1

N
E

[
‖δC‖2F

P∑
i=1

EC,E0

[
1

N
X>i Xi

]]
.

Also, we see from Lemma S1.2 that E [‖δC‖2F ] = O(
a2NNL

δ2
), so

1

N2
E
[
‖δC‖2F tr(X>X)

]
=

1

N
O(
a2NNL

δ2
) = O(

a2NL

δ2
). (S1.32)

Similar to (S1.6), we have for i, j = 1, · · · ,P,

EĈ
[∣∣∣∣ 1NX>i PĈXj

∣∣∣∣] = EC,E0

[∣∣∣∣ 1NX>i PĈXj

∣∣∣∣] ≤ L

N

√
EC,E0X2

1iEC,E0X2
1j = O(

L

N
),

then

1

N2
E
[
‖δC‖2F tr(X>PĈX)

]
=

1

N2
E
[
‖δC‖2FEC,E0

[
tr(X>PĈX)

]]
= E

[
1

N
‖δC‖2FEC,E0

[
tr(

1

N
X>PĈX)

]]
= E

[
1

N
‖δC‖2FEC,E0

[
tr(

1

N
X>PĈX)

]]
= E

[
1

N
‖δC‖2FO

(
L

N

)]
=

1

N
E
[
‖δC‖2F

]
O

(
L

N

)
.
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Additionally, we obtain from Lemma S1.2 that

1

N2
E
[
‖δC‖2F tr(X>PĈX)

]
=

1

N
E
[
‖δC‖2F

]
O

(
L

N

)
=

1

N
O(
a2NNL

δ2
)O

(
L

N

)
= O(

a2NL
2

Nδ2
).

(S1.33)

Combining (S1.32) and (S1.33), we have

1

N2
E
[
‖δC‖2F tr(X>X)

]
− 1

N2
E
[
‖δC‖2F tr(X>PĈX)

]
= O(

a2NL

δ2
)−O(

a2NL

δ2
L

N
) = O(

a2NL

δ2
).

Provided Assumption 4 holds, then as N→∞,

E

[∥∥∥∥ 1

N
X>(IN − PĈ)δCβC

∥∥∥∥2
2

]
≤ tr(βCβ

>
C )

(
1

N2
E
[
‖δC‖2F tr(X>X)

]
− 1

N2
E
[
‖δC‖2F tr(X>PĈX)

])
= tr(βCβ

>
C )O(

a2NL

δ2
)→ 0,

which implies 1
N
X>(IN−PĈ)δCβC

L2−→ 0, so that 1
N
X>(IN−PĈ)δCβC

P−→ 0.

This completes the proof of Step 3.

�

S1.6 Proof of Theorem 4

Similar to the calculation procedure of (S1.26) in Theorem 4, we denote

δZ = Z − Ẑ, and

β̃ =

 β̃X

β̃Z

 =

 (X>(IN − PẐ)X)−1X>(IN − PẐ)y

(Ẑ>(IN − PX)Ẑ)−1Ẑ>(IN − PX)y

 .



Z. HAN, T. WANG AND Z. YING

From the regression model y = XβX + ZβZ + ε, we have

β̃ =

 β̃X

β̃Z

 = β +

 (X>(IN − PẐ)X)−1X>(IN − PẐ)[δZβZ + ε]

(Ẑ>(IN − PX)Ẑ)−1Ẑ>(IN − PX)[δZβZ + ε]

 .

First, we show the consistency of β̃X . Since

β̃X − βX = (X>(IN − PẐ)X)−1X>(IN − PẐ)[δZβZ + ε],

then similar to the proof of (S1.29) and (S1.31), we have

(
1

N
X>(IN − PẐ)X)−1

P−→ V −1X , (S1.34)

and

1

N
X>(IN − PẐ)ε

P−→ 0. (S1.35)

Thus, it suffices to prove

1

N
X>(IN − PẐ)δZβZ

P−→ 0. (S1.36)

Here we prove (S1.36) by computing the `2-norm of 1
N
X>(IN − PẐ)δZβZ :

E

[∥∥∥∥ 1

N
X>(IN − PẐ)δZβZ

∥∥∥∥2
2

]
=

1

N2
E
[
β>Z δ

>
Z (IN − PẐ)XX>(IN − PẐ)δZβZ

]
=β2

Z

1

N2
E
[
tr(δ>Z (IN − PẐ)XX>(IN − PẐ)δZ)

]
=β2

Z

1

N2
E
[
tr(δZδ

>
Z (IN − PẐ)XX>(IN − PẐ))

]
,

and by Lemma S1.3, we have the upper bound

≤β2
Z

1

N2
E
[
tr(δZδ

>
Z )tr((IN − PẐ)XX>(IN − PẐ))

]
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=β2
Z

1

N2
E
[
tr(δZδ

>
Z )tr((IN − PẐ)XX>)

]
=β2

Z

1

N2
E
[
‖δZ‖2F tr(X>(IN − PẐ)X)

]
=β2

Z

1

N2
(E
[
‖δZ‖2F tr(X>X)

]
− E

[
‖δZ‖2F tr(X>PẐX)

]
).

(S1.37)

Now we first calculate E [‖δZ‖2F ]. From the definition of Ẑ, we see that

‖δZ‖2F =
1

L2
‖(Û − U) 1L ‖22 ≤

1

L
‖Û − U‖2F .

Similar to (S1.21), replacing U and C with Û − U , and Ĉ −C respectively

yields

‖δZ‖2F ≤
1

L
‖Û − U‖2F

≤ 1

L

∥∥S(S>S)−1S>
∥∥2
F

∥∥∥Ĉ − C∥∥∥2
2

=
R

L

∥∥∥Ĉ − C∥∥∥2
2

=
R

L

∥∥∥Ĉ − C∥∥∥2
F
. (S1.38)

Then by Lemma S1.2, taking expectations on both sides of (S1.38) gives

E
[
‖δZ‖2F

]
≤ R

L
E
[∥∥∥Ĉ − C∥∥∥2

F

]
= O(

a2NN

δ2
). (S1.39)

Given the upper bound in (S1.39), we return to the `2-norm of 1
N
X>(IN−

PẐ)δZβZ as in (S1.37). Since Z and Ẑ are independent of X, we have

1

N2
E
[
‖δZ‖2F tr(X>X)

]
= E

[
1

N
‖δZ‖2F tr

(
1

N
X>X

)]
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= E
[

1

N
‖δZ‖2FEZ,Ẑ

[
tr

(
1

N
X>X

)]]
= E

[
1

N
‖δZ‖2FEC,Ĉ

[
tr

(
1

N
X>X

)]]

Since EC,E0
[
1
N
X>i Xi

]
<∞, then

1

N2
E
[
‖δZ‖2F tr(X>X)

]
= O

(
a2N
δ2

)
. (S1.40)

In addition, we see that

1

N2
E
[
‖δZ‖2F tr(X>PẐX)

]
=

1

N
E
[
‖δZ‖2FEẐ,Z

[
tr

(
1

N
X>PẐX

)]]
=

1

N
E
[
‖δZ‖2F tr

(
EZ,Ẑ

[
1

N
X>PẐX

])]
=

1

N
E

[
‖δZ‖2F

P∑
i=1

(
EZ,Ẑ

[
1

N
X>i PẐXi

])]

and EZ,Ẑ
[
1
N
X>i PẐXj

]
= O( 1

N
) gives

=
1

N
E
[
‖δZ‖2FO(

1

N
)

]
=

1

N
O(
a2NN

δ2
1

N
) = O(

a2N
Nδ2

).

Hence, when Assumption 4 holds,

E

[∥∥∥∥ 1

N
X>(IN − PẐ)δZβZ

∥∥∥∥2
2

]

≤β2
Z

1

N2

(
E
[
‖δZ‖2F tr(X>X)

]
− E

[
‖δZ‖2F tr(X>PẐX)

])
=O(

a2N
δ2

)−O(
a2N
Nδ2

) = O(
a2N
δ2

)→ 0,
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which shows 1
N
X>(IN−PẐ)δZβZ

L2−→ 0 and then 1
N
X>(IN−PẐ)δZβZ

P−→ 0,

completing the proof of (S1.36). Finally, combining (S1.34), (S1.35) and

(S1.36), we obtain

β̃X − βX = (X>(IN − PẐ)X)−1X>(IN − PẐ)[δZβZ + ε]

= (
1

N
X>(IN − PẐ)X)−1

1

N
X>(IN − PẐ)[δZβZ + ε]

P−→ V −1X (0 + 0) = 0,

showing the consistency of β̃X .

Now we consider the consistency of β̃Z . Note that

β̃Z − βZ = (Ẑ>(I − PX)Ẑ)−1Ẑ>(IN − PX)[δZβZ + ε],

and we divide the proof of the consistency of β̃Z − βZ to 2 steps:

• Step 1: Prove that with N sufficiently large, we have(
1

N
Ẑ>(IN − PX)Ẑ

)−1
≤
(
m− 2

N

R

L
a2N ‖ũ1 − u1‖2 −

1

N
Ẑ>PXẐ

)−1
P−→ m−1

where m is a positive constant.

• Step 2: Prove that 1
N
Ẑ>(IN − PX)[δZβZ + ε]

P−→ 0.

Assembling the results of Step 1 and Step 2, we obtain that as N→∞,∣∣∣β̃Z − βZ∣∣∣
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=
∣∣∣(Ẑ>(I − PX)Ẑ)−1Ẑ>(IN − PX)[δZβZ + ε]

∣∣∣
=

(
1

N
Ẑ>(I − PX)Ẑ

)−1 ∣∣∣∣ 1NẐ>(IN − PX)[δZβZ + ε]

∣∣∣∣
≤
(
m− 2

N

R

L
a2N ‖ũ1 − u1‖2 −

1

N
Ẑ>PXẐ

)−1 ∣∣∣∣ 1NẐ>(IN − PX)[δZβZ + ε]

∣∣∣∣
P−→ m−1 · 0 = 0,

which gives the consistency of β̃Z .

Step 1: Given the analogous properties of Z and Ẑ, similar to (S1.15)

and (S1.16), we have

1

N
Ẑ>X

P−→ 0. (S1.41)

and

1

N
Ẑ>PXẐ

P−→ 0. (S1.42)

Then we focus on 1
N
Ẑ>Ẑ. Since 1

N
δ>Z δZ ≥ 0, we see that

1

N
Ẑ>Ẑ =

1

N
Z>Z − 2

N
Z>δZ +

1

N
δ>Z δZ ≥

1

N
Z>Z − 2

N
Z>δZ . (S1.43)

Then with the upper bound of ‖Z‖22 and ‖δZ‖22 derived in (S1.21) and

(S1.38), we have

2

N
Z>δZ ≤

2

N
‖Z‖2‖δZ‖2 ≤

2

N

R

L
‖C‖F

∥∥∥Ĉ − C∥∥∥
F

≤ 2

N

R

L
‖C‖F

∥∥∥Ĉ − C∥∥∥
F

=
2

N

R

L
a2N ‖ũ1 − u1‖2. (S1.44)



S1. THEORETICAL SUPPLEMENTS

Plugging (S1.17) and (S1.44) into (S1.43), we see that

1

N
Ẑ>Ẑ ≥ m− 2

N

R

L
a2N ‖ũ1 − u1‖2, (S1.45)

where ũ1 and u1 are as defined in Lemma S1.1. To derive a positive lower

bound for 1
N
Ẑ>Ẑ, i.e. show that the RHS of (S1.45) is greater than zero for

N sufficiently large, we need to show that

2

N

R

L
a2N ‖ũ1 − u1‖2

P−→ 0.

Since E
[
2
N

R
L
a2N ‖ũ1 − u1‖2

]
= O(

a2N√
NLδ

) = O(aN
δ

)→ 0, we have

2

N

R

L
a2N ‖ũ1 − u1‖2

P−→ 0. (S1.46)

Then with (S1.42), (S1.45) and (S1.46), for N large enough, we have

1

N
Ẑ>(IN − PX)Ẑ =

1

N
Ẑ>Ẑ − 1

N
Ẑ>PXẐ

≥ m− 2

N

R

L
a2N ‖ũ1 − u1‖2 −

1

N
Ẑ>PXẐ > 0,

which implies(
1

N
Ẑ>(IN − PX)Ẑ

)−1
≤
(
m− 2

N

R

L
a2N ‖ũ1 − u1‖2 −

1

N
Ẑ>PXẐ

)−1
P−→ m−1. (S1.47)

Step 2: Now we consider

1

N
Ẑ>(IN − PX)[δZβZ + ε] =

1

N
Ẑ>δZβZ −

1

N
Ẑ>PXδZβZ +

1

N
Ẑ>ε− 1

N
Ẑ>PXε.

(S1.48)
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For the first part of RHS of (S1.48), the Cauchy-Schwarz inequality

gives the upper bound that

E
[∣∣∣∣ 1NẐ>δZβZ

∣∣∣∣] =
βZ
N

E
[∣∣∣Ẑ>δZ∣∣∣]

≤ βZ
N

(
E
[∥∥∥Ẑ∥∥∥2

2

]) 1
2 (

E
[
‖δZ‖22

]) 1
2 .

Similar to the calculation leading to (S1.21), replacing Z and C with Ẑ and

Ĉ respectively, we have

‖Ẑ‖22 ≤
R

L
‖Ĉ‖2F , (S1.49)

and

E
[
‖Ẑ‖22

]
≤ E

[
R

L
‖Ĉ‖2F

]
= O(

a2N
L

). (S1.50)

Then combining (S1.39) and (S1.50), provided Assumption 4 holds, we have

as N→ 0,

E
[∣∣∣∣ 1NẐ>δZβZ

∣∣∣∣] ≤ βZ
N
O(

aN√
L

)O(
aN
√
N

δ
) = O(

√
N√
Lδ

)→ 0, (S1.51)

i.e. 1
N
Ẑ>δZβZ

L1−→ 0.

For the second part in the RHS of (S1.48), also using the Cauchy-Schwarz

inequality and Lemma S1.3, we have the following upper bound:

E
[∣∣∣∣ 1NẐ>PXδZβZ

∣∣∣∣] =
βZ
N

E
[∣∣∣Ẑ>PXδZ∣∣∣]

≤ βZ
N

(
E
[∥∥∥PXẐ∥∥∥2

2

]) 1
2 (

E
[
‖δZ‖22

]) 1
2 .
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From (S1.50), we see that

E
[∥∥∥PXẐ∥∥∥2

2

]
= E

[
Ẑ>PXẐ

]
= E

[
tr
(
Ẑ>PXẐ

)]
= E

[
tr
(
ẐẐ>PX

)]
≤ E

[
tr
(
ẐẐ>

)
tr (PX)

]
= PE

[
‖Ẑ‖22

]
≤ O(

a2N
L

),

and as N→∞,

E
[∣∣∣∣ 1NẐ>PXδZβZ

∣∣∣∣] =
βZ
N
O(

aN√
L

)O(
aN
√
N

δ
) = O

( √
N

δ
√
L

)
→ 0. (S1.52)

For the third part in the RHS of (S1.48), also from Lemma S1.3 and

(S1.50) we have as N→∞,

E

[∥∥∥∥ 1

N
Ẑ>ε

∥∥∥∥2
2

]
=

1

N2
E
[
ε>ẐẐ>ε

]
=
σ2
y

N2
E
[
‖Ẑ‖22

]
= O(

a2N
N2L

)→ 0. (S1.53)

Finally, for the fourth part in the RHS of (S1.48), with (S1.41) and the law

of large numbers, we have

1

N
Ẑ>PXε =

1

N
Ẑ>X

(
1

N
X>X

)−1
1

N
X>ε

P−→ 0 · V −1X · 0 = 0. (S1.54)

By synthesizing equations (S1.51), (S1.52), (S1.53) and (S1.54), we can

demonstrate the convergence of (S1.48) which completes the proof of Step

2.

�
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S1.7 Proof of Theorem 5

Let Ẑ = Z − δZ . The OLS estimator is:

β̃Z − βZ =
(
Ẑ>(IN − PX)Ẑ

)−1
Ẑ>(IN − PX)(ε+ δZβZ).

Normalizing by
√
Z>Z/σ2

y, we have√
Z>Z

σ2
y

(
β̃Z − βZ

)
=
Z>Z

N

(
Ẑ>(IN − PX)Ẑ

N

)−1
︸ ︷︷ ︸

(D)

Ẑ>(IN − PX)ε√
Z>Zσ2

y︸ ︷︷ ︸
(E)

+
Z>Z

N

(
Ẑ>(IN − PX)Ẑ

N

)−1
Ẑ>(IN − PX)δZβZ√

Z>Zσ2
y︸ ︷︷ ︸

(F )

.

Then we only need to prove that (D)
P−→ 1, (E)

d−→ N (0, 1) and (F)
P−→ 0.

For the term (D), we notice that

Ẑ>Ẑ

N
(

1

N
Ẑ>(I − PX)Ẑ)−1 =

(
Ẑ>Ẑ

N
− Ẑ>PXẐ

N

)
(

1

N
Ẑ>(I − PX)Ẑ)−1

+
Ẑ>PXẐ

N
(

1

N
Ẑ>(I − PX)Ẑ)−1

= 1 +
Ẑ>PXẐ

N
(

1

N
Ẑ>(I − PX)Ẑ)−1.

From (S1.42) and Assumption 5, we know 1
N
Ẑ>PXẐ

P−→ 0. Also from

(S1.47), there existsm > 0 such that for N large enough,
(

1
N
Ẑ>(IN − PX)Ẑ

)−1
≤

m−1 with probability 1. Thus we have Ẑ>PX Ẑ
N

( 1
N
Ẑ>(I−PX)Ẑ)−1

P−→ 0 and

Ẑ>Ẑ
N

( 1
N
Ẑ>(I − PX)Ẑ)−1

P−→ 1 is proved.
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Then we show that Z>Z
Ẑ>Ẑ

P−→ 1. Notice that

Ẑ>Ẑ

Z>Z
=
Z>Z − 2δ>ZZ + ‖δZ‖22

Z>Z

= 1 +
‖δZ‖22 − 2δ>ZZ

‖Z‖22

= 1 +
(‖δZ‖22 − 2δ>ZZ)/N

‖Z‖22/N
.

From (S1.39), ‖δZ‖22/N
P−→ 0. With (S1.45) and (S1.46), δ>ZZ/N

P−→ 0.

From (S1.17), we know that ‖Z‖22/N is lower bounded by a positive constant

m. Thus we have
(‖δZ‖22−2δ>ZZ)/N

‖Z‖22/N
P−→ 0 and Ẑ>Ẑ

Z>Z

P−→ 1. Therefore, the term

(D) converges to 1 in probability.

Then we turn to analyze term (E). Notice that

Ẑ>(IN − PX)ε√
Z>Zσ2

y

=
(Z − δZ)>(IN − PX)ε√

Z>Zσ2
y

=
Z>(IN − PX)ε√

Z>Zσ2
y

− δ>Z (IN − PX)ε√
Z>Zσ2

y

=
Z>ε√
Z>Zσ2

y

− Z>PXε√
Z>Zσ2

y

− δ>Z (IN − PX)ε√
Z>Zσ2

y

. (S1.55)

From the arguments of the convergence in the noiseless case, we know that

Z>ε√
Z>Zσ2

y

− Z>PXε√
Z>Zσ2

y

d−→ N (0, 1).

Consider

δ>Z (IN − PX)ε√
Z>Zσ2

y

=
δ>Z ε√
Z>Zσ2

y

− δ>ZPXε√
Z>Zσ2

y
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where

E

[∥∥∥∥ 1√
N
δ>Z ε

∥∥∥∥2
]
≤
σ2
y

N
E
[
‖δZ‖2F

]
= O(

a2N
δ2

)→ 0 (S1.56)

and

E

[∥∥∥∥ 1√
N
δ>ZPXε

∥∥∥∥2
]
≤
Pσ2

y

N
E
[
‖δZ‖2F

]
= O(

a2N
δ2

)→ 0,

with (S1.17), we have

δ>Z (IN − PX)ε√
Z>Zσ2

y

=

√
N√

Z>Zσ2
y

δ>Z (IN − PX)ε√
N

P−→ 0.

Thus, the term (E) converges to N (0, 1) in distribution.

For the term (F), with Cauchy-Schwarz inequality,

Ẑ>(IN − PX)δZ√
Z>Zσ2

y

=

√
N√

Z>Zσ2
y

Ẑ>(IN − PX)δZ√
N

,

where ∣∣∣∣∣Ẑ>(IN − PX)δZ√
N

∣∣∣∣∣ ≤
∣∣∣∣∣Ẑ>δZ√N

∣∣∣∣∣+

∣∣∣∣∣Ẑ>PXδZ√
N

∣∣∣∣∣ .
Consider the expectation below

E

[∣∣∣∣∣Ẑ>δZ√N
∣∣∣∣∣
]
≤ 1√

N
E
[
‖Ẑ‖‖δZ‖

]
≤ 1√

N

√
E[‖Ẑ‖2]E[‖δZ‖2].

Combining (S1.39) and (S1.50),

1√
N

√
E[‖Ẑ‖2]E[‖δZ‖2] ≤

1√
N
O(

aN√
L

)O(
aN
√
N

δ
) = O(

a2N
δ
√
L

)→ 0.

Also, ∣∣∣∣∣Ẑ>PXδZ√
N

∣∣∣∣∣ =

∣∣∣∣∣Ẑ>X√N (
1

N
X>X)−1

1

N
X>δZ

∣∣∣∣∣ .
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Similar to the arguments of (S1.25), we have Ẑ>X√
N

converges to a normal

distribution in distribution. With (S1.40),

E

[∥∥∥∥ 1

N
X>δZ

∥∥∥∥2
2

]
= O(

a2N
δ2

)→ 0

Together with (S1.8), we have Ẑ>PXδZ√
N

P−→ 0. Finally, we obtain the term

(F) converges to 0 in probability.

Combine the results above that term (D) converges to 1 in probability,

term (E) converge to the standard normal distribution in distribution, and

term (F) converges to 0 in probability, we have√
Z>Z

σ2
y

(
β̃Z − βZ

)
d−→ N (0, 1).

Asymptotic Normality of β̃X:

Recall that the OLS estimator is:

β̃X =
(
X>(IN − PẐ)X

)−1
X>(IN − PẐ)y.

We have:

√
N(β̃X − βX) =

(
X>(IN − PẐ)X

N

)−1
X>(IN − PẐ)(ε+ δZβZ)√

N
.

Define:

(A) :=

(
X>(IN − PẐ)X

N

)−1
, (B) :=

X>(IN − PẐ)ε√
N

, (C) :=
X>(IN − PẐ)δZβZ√

N
.

From (S1.34), (A)
P−→ V −1X .
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As for (B), we have

X>(IN − PẐ)ε√
N

=
X>ε√

N
− X>PẐε√

N
.

From CLT, X>ε√
N

d−→ N (0, σ2
yVX). Now we turn to

X>PẐε√
N

.

X>PẐε√
N

=
X>Ẑ(Ẑ>Ẑ)−1Ẑ>ε√

N

=
X>Ẑ

N

(
Ẑ>Ẑ

N

)−1/2
Ẑ>ε√
Ẑ>Ẑ

=
X>Ẑ

N

(
Ẑ>Ẑ

N

)−1/2 √
Z>Z√
Ẑ>Ẑ

(Z − δZ)>ε√
Z>Z

.

With (S1.41), (S1.45), Ẑ>Ẑ
Z>Z

P−→ 1 and (S1.56), we have
X>PẐε√

N

d−→ 0.

Thus, (B)
d−→ N (0, σ2

yVX).

We now prove that (C)
P−→ 0. when Assumption 4 holds,

E

[∥∥∥∥ 1

N
X>(IN − PẐ)δZβZ

∥∥∥∥2
2

]

≤β2
Z

1

N2

(
E
[
‖δZ‖2F tr(X>X)

]
− E

[
‖δZ‖2F tr(X>PẐX)

])
=O(

a2N
δ2

)−O(
a2N
Nδ2

) = O(
a2N
δ2

)→ 0,

which means (C)
P−→ 0.

By Slutsky’s Theorem:

√
N(β̃X − βX)

d−→ V −1X · N (0, σ2
yVX) = N (0, σ2

yV
−1
X ).

�



S1. THEORETICAL SUPPLEMENTS

S1.8 Community Detection and Error Propagation in CC-MNetR

In this section, we introduce a practical estimation strategy for settings

where the community structure is unknown. We also provide sufficient

conditions under which the resulting estimation error does not affect the

consistency and asymptotic normality results established in the main text.

Community Estimation Procedure

When community structure is not predefined in the data, we recommend

the following practical methodology:

Step 1: Network Aggregation

Construct the mean adjacency matrix across layers as

Ā =
1

L

L∑
`=1

A`.

This consolidates connectivity patterns while preserving consistent struc-

tural features across layers.

Step 2: Spectral Clustering

Apply spectral clustering to Ā - a well-established community detection

method for network data (von Luxburg, 2007). For multilayer networks

with consistent community structure, this approach is supported by Han

et al. (2015), who demonstrate its application to aggregated networks.

While Han et al. (2015)’s theoretical guarantees (Theorem 1) are de-
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rived under specific conditions:

• Stationary ergodic layer variations;

• Identifiable community structure (the expected cross-layer connectiv-

ity matrix M = E[P̄ ] has distinct rows) within the SBM framework.

The methodology fundamentally operates on graph topology rather than

generative mechanisms, as evidenced by its algorithmic foundation in min-

imizing the normalized cut objective (Shi and Malik, 1997):

min
Y

Tr
(
Y >(D − Ā)Y

)
s.t. Y >DY = I

where D is the degree matrix of Ā. This formulation depends solely on

connectivity patterns in the aggregated adjacency matrix Ā, independent

of underlying data-generating processes. This topological basis is further re-

inforced by empirical validation in Han et al. (2015), where spectral cluster-

ing successfully extracted communities from Bluetooth proximity networks

exhibiting non-SBM temporal dynamics (Sec. 5.3) and multi-relational net-

works with heterogeneous semantic layers (Sec. 5.4), both deviating from

strict SBM assumptions.

Error Propagation Analysis

When community assignments are estimated, we define the estimated community-

based centrality Ẑcomm analogously to Z as
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Ẑcomm =
1

L
Ŝ(Ŝ>Ŝ)−1(Ŝ>C)1L

where

• Ŝ is the estimated N×R community assignment matrix (each row has

one 1 at the estimated community);

• (Ŝ>Ŝ)−1 = diag(1/N̂1, . . . , 1/N̂R);

• N̂r =
∑N

i=1 Ŝir is the estimated size of community r.

Define community misassignment rate η as

η :=
1

N

N∑
i=1

I{ci 6= ĉi}

where ci denotes the true label of node i and ĉi represents the estimated

label of node i.

Step 1: Community matrix norms. ‖S‖F =
√∑N

i=1 ‖Si‖22 =
√
N since

each row has one 1 and others 0. Similarly ‖Ŝ‖F =
√
N.

Step 2: Community size error. For Nr (size of community r) and esti-

mate N̂r, we have

|N̂r − Nr| ≤ ηN.

Suppose the misassignment rate η vanishes as N→∞, there exists

N big enough so that η < ε/2 where ε denotes lower bound of the
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proportion of all communities. Then with Nr ≥ εN, we obtain

N̂r ≥ εN− ηN ≥ εN/2. Naturally, we have

‖(Ŝ>Ŝ)−1−(S>S)−1‖2F =
R∑
r=1

(
1

N̂r
− 1

Nr

)2

≤ R

(
ηN

(εN/2)2

)2

=
4Rη2

ε4N2

and

‖(Ŝ>Ŝ)−1 − (S>S)−1‖F = O
( η
N

)
.

Step 3: Community aggregation error.

We want to bound the error in community-aggregated features

‖(Ŝ>C)− (S>C)‖F

where Ŝ is the estimated community assignment matrix, S is the

true assignment matrix (both N×R), and C is the N×L centrality

matrix.

(a) Matrix element expression

For community r and feature `, the element-wise difference is

[(Ŝ>C)− (S>C)]r` =
N∑
i=1

(ŜirCi` − SirCi`),

which can be rewritten as

N∑
i=1

Ci`(Ŝir − Sir).
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(b) Restrict to misassigned nodes

Let M be the misassigned nodes set. For correctly assigned

nodes, Ŝir = Sir, so their contributions cancel out. Then the

error comes only from misassigned nodes in M (|M| = ηN)

which shows

[(Ŝ>C)− (S>C)]r` =
∑
i∈M

Ci`(Ŝir − Sir).

(c) Element-wise bound

Taking absolute values and using the triangle inequality, we

get ∣∣∣∣∣∑
i∈M

Ci`(Ŝir − Sir)

∣∣∣∣∣ ≤∑
i∈M

|Ci`||Ŝir − Sir|.

Since |Ŝir−Sir| ≤ 1 (as both are indicator functions), we have∣∣∣[(Ŝ>C)− (S>C)]r`

∣∣∣ ≤∑
i∈M

|Ci`|.

(d) Frobenius norm squared

The squared Frobenius norm sums over all communities and

features

‖(Ŝ>C)− (S>C)‖2F =
R∑
r=1

L∑
`=1

∣∣∣[(Ŝ>C)− (S>C)]r`

∣∣∣2 .
Using the bound from Step 3 we obtain

‖(Ŝ>C)− (S>C)‖2F ≤
R∑
r=1

L∑
`=1

(∑
i∈M

|Ci`|

)2

.
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(e) Factorize sums

Since there are R communities and L features, we can write

R∑
r=1

L∑
`=1

(∑
i∈M

|Ci`|

)2

= R
L∑
`=1

(∑
i∈M

|Ci`|

)2

(f) Uniform bound on features:

Since |Ci`| ≤ aN for all i, ` (where aN may depend on N), then

∑
i∈M

|Ci`| ≤
∑
i∈M

aN = ηNaN,

and (∑
i∈M

|Ci`|

)2

≤ (ηNaN)2.

(g) Final bound for Frobenius norm squared

Substituting back into the norm expression we get

‖(Ŝ>C)−(S>C)‖2F ≤ R
L∑
`=1

(ηNaN)2 = RL(ηNaN)2 = η2N2a2NRL.

(h) Taking square root

The Frobenius norm is

‖(Ŝ>C)− (S>C)‖F ≤
√
η2N2a2NRL = ηNaN

√
RL.

Finally, we have

‖Ŝ>C − S>C‖F = O
(
ηNaN

√
L
)
.
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Step 4: Z estimation error. Using the revised definition:

‖Ẑcomm − Z‖2 ≤
1√
L

∥∥∥Ŝ(Ŝ>Ŝ)−1(Ŝ>C)− S(S>S)−1(S>C)
∥∥∥
F

≤ 1√
L

(∥∥∥Ŝ∥∥∥
F

∥∥∥(Ŝ>Ŝ)−1
∥∥∥
2

∥∥∥(Ŝ>C)− (S>C)
∥∥∥
F

+
∥∥∥Ŝ∥∥∥

F

∥∥∥(Ŝ>Ŝ)−1 − (S>S)−1
∥∥∥
F

∥∥S>C∥∥
F

+
∥∥∥Ŝ − S∥∥∥

F

∥∥(S>S)−1
∥∥
2

∥∥S>C∥∥
F

)
= O

(
1√
L

(√
N

1

εN
ηNaN

√
L +
√
N
η

N
aN
√
N +

√
ηN

1

εN
aN
√
N

))
= O

(
aNη
√
N
)

+O

(
aN

η√
L

)
+O

(
aN

√
η

L

)
= O

(
aNη
√
N
)

+O

(
aN

√
η

L

)
Step 5: Regression coefficient impact.

For CC-MNetR estimator β̂comm = (Ŵ>
3 Ŵ3)

−1Ŵ>
3 y where Ŵ3 =

(X, Ẑcomm), we have

β̂comm =

 β̂X,comm

β̂Z,comm

 = β+

 (X>(IN − PẐcomm
)X)−1X>(IN − PẐcomm

)[δ̂ZβZ + ε]

(Ẑ>comm(IN − PX)Ẑcomm)−1Ẑ>comm(IN − PX)[δ̂ZβZ + ε]

 .

where δ̂Z = Ẑcomm−Z and PẐcomm
= Ẑcomm(Ẑ>commẐcomm)−1Ẑ>comm.

Then we proceed to discuss the additional conditions required to

ensure the consistency of the estimator.

First, we consider β̂Z,comm.

E
∥∥∥β̂Z,comm − βZ∥∥∥2

≤E
∥∥∥∥(

1

N
Ẑ>comm(IN − PX)Ẑcomm)−1

1

N
Ẑ>comm(IN − PX)[δ̂ZβZ + ε]

∥∥∥∥2
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≤E
∥∥∥∥(

1

N
Ẑ>comm(IN − PX)Ẑcomm)−1

1

N
Ẑ>comm(IN − PX)δ̂ZβZ

∥∥∥∥2
+ E

∥∥∥∥(
1

N
Ẑ>comm(IN − PX)Ẑcomm)−1

1

N
Ẑ>comm(IN − PX)ε

∥∥∥∥2

where

1

N
(Ẑ>comm(IN − PX)Ẑcomm)

=
1

N
Ẑ>commẐcomm −

1

N
Ẑ>commPXẐcomm

≥ 1

N
Z>Z − 2

N
Z>δ̂Z −

1

N
Ẑ>commPXẐcomm.

From (S1.15) and (S1.16) we know that 1
N
Ẑ>commPXẐcomm

P−→ 0.

From (S1.17), with aN =
√
NL, there exists a constant m > 0 such

that 1
N
Z>Z ≥ m, a.s.. Similar to (S1.42), we have

2

N
Z>δ̂Z ≤

2

N
‖Z‖2‖δ̂Z‖2 ≤

2‖C‖F
NL

(
O
(
aNη
√
N
)

+O

(
aN

√
η

L

))
= O

(
a2Nη√
NL

)
+O

(
a2N
NL

√
η

L

)
.

When aN �
√
NL, naturally we have O

(
a2Nη√
NL

)
+ O

(
a2N
NL

√
η
L

)
=

O
(
η
√
N
)

+O
(√

η
L

)
. If η

√
N = o(1), then 2

N
Z>δ̂Z → 0 as N→∞.

Consequently, as N→∞, we have

(
1

N
(Ẑ>comm(IN − PX)Ẑcomm)

)−1
≤
(
m− 2

N
Z>δ̂Z −

1

N
Ẑ>commPXẐcomm

)−1
→ m−1.
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Thus,

E
∥∥∥β̂Z,comm − βZ∥∥∥2

≤E
∥∥∥∥(

1

N
Ẑ>comm(IN − PX)Ẑcomm)−1

1

N
Ẑ>comm(IN − PX)δ̂ZβZ

∥∥∥∥2
+ E

∥∥∥∥(
1

N
Ẑ>comm(IN − PX)Ẑcomm)−1

1

N
Ẑ>comm(IN − PX)ε

∥∥∥∥2
≤m−1

(
E
∥∥∥∥ 1

N
Ẑ>comm(IN − PX)δ̂ZβZ

∥∥∥∥2 + E
∥∥∥∥ 1

N
Ẑ>comm(IN − PX)ε

∥∥∥∥2
)

≤m−1
(
E

[(
1

N
‖Ẑcomm‖2‖δ̂Z‖2βZ

)2
]

+
σ2
y

N2
E
[
‖(IN − PX)Ẑcomm‖2F

])
.

Here, from (S1.48), when aN �
√
NL, we have(

1

N
‖Ẑcomm‖2‖δ̂Z‖2βZ

)2

≤ 1

N2
‖Ẑcomm‖22‖δ̂Z‖22β2

Z

= O(
1

N2

a2N
L

(O(a2Nη
2N) +O(a2N

η

L
)))

= O(η2NL) +O(η)

and

σ2
y

N2
E
[
‖(IN − PX)Ẑcomm‖2F

]
≤
σ2
y

N2
E
[
‖Ẑcomm‖2F

]
= O(

a2N
N2L

) = O(
1

N
).

If η = o(1) and η2NL = o(1), then E
∥∥∥β̂Z,comm − βZ∥∥∥2 → 0.

Then, we consider β̂X,comm. The main difference between β̃X and

β̂X,comm exists in the difference between δZ and δ̂Z . From (S1.38),

we have

E
[
‖δZ‖2

]
= O(

a2NN

δ2
).
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And from above, we know that

E
[
‖δ̂Z‖2

]
= O

(
aNη
√
N
)

+O

(
aN

√
η

L

)
.

Since η2NL = o(1), E
[
‖δ̂Z‖2

]
= O

(
aNη
√
N
)

+ O
(
aN
√

η
L

)
. If

δ2η

aN
√
N

= o(1) and
δ2
√
η

aNN
√
L

= o(1), then the order of E
[
‖δ̂Z‖2

]
is

lower that the order of E [‖δZ‖2]. Therefore, the entire derivation

holds.

Now we present the additional assumptions required for the regression co-

efficients to remain consistent when community information is unknown

and obtained through estimation. Given aN �
√
NL, CC-MNetR maintains

consistency when

1. η = o(1): Community misassignment rate vanishes asymptotically.

2. η = o(1/
√
N): Cumulative misassignment (i.e. ηN) grows slower than

√
N.

3. η = o(1/
√
NL): Cumulative misassignment (i.e. ηN) grows slower than√

N
L
.

4.
δ2η

N
√
L
→ 0 and

δ2
√
η

N3/2L
→ 0 : Spectral gap interaction conditions.

Conditions 3 automatically satisfy Condition 1 and 2. To sum up, η =

o(1/
√
NL),

δ2η

N
√
L
→ 0, and

δ2
√
η

N3/2L
→ 0 guarantee consistency of β̂comm.
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S1.9 Discussion on Assumption 5

This section discusses when Assumption 5 and the regularity conditions in

Theorem 5 are expected to be satisfied or potentially violated in practical

settings. Specifically, the spectral gap condition is now stated as:

• aN
√
L

δ
→ 0, with aN �

√
NL, in Assumption 5.

• aN
√
N

δ
→ 0, with aN �

√
NL, in Theorem 5.

These conditions accommodate a broader class of multilayer networks

beyond the fixed-L setting. In particular, consistency requires the spectral

gap δ to grow faster than
√
NL, while asymptotic normality requires δ to

grow faster than
√
LN.

This formulation more accurately reflects the underlying complexity

when layers are large or heterogeneous, and it enables a meaningful com-

parison across network types with varying density and coupling structures.

In what follows, we rigorously analyze whether this updated condition

is satisfied under several representative multilayer network models.

Case 1: Dense multilayer networks (δ = Θ(NL))

Setup: Consider a multilayer network where each layer has dense intra-

layer connections, and layers are coupled via uniform inter-layer connec-
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tions. The adjacency matrix is defined as:

B0 =


p(11> − I) r11> · · ·

r11> p(11> − I) · · ·
...

...
. . .

 ,

where B0 is the supra-adjacency matrix of the multilayer network, p >

0 denotes the intra-layer coupling strength (connections within the same

layer), r > 0 denotes the inter-layer coupling strength (connections between

different layers), 1 is an N-dimensional all-ones vector, and I is the N × N

identity matrix.

Eigenvalue derivation: To understand the spectral gap δ = λ1 −

λ2, we analyze the two largest eigenvalues of B0 using their corresponding

eigenvectors:

1. Leading eigenvalue λ1:

Let v be an NL-dimensional all-ones vector. Then

B0v =


p(N− 1)1N + r(N(L− 1))1N

...

p(N− 1)1N + r(N(L− 1))1N

 = [p(N− 1) + rN(L− 1)]v

So λ1 ≥ p(N− 1) + rN(L− 1) = Θ(NL) .

2. Second eigenvalue λ2:
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Let u =


1N

−1N

0(L−2)N

 denote a contrast vector.

B0u =


p(N− 1)1N − rN1N

−p(N− 1)1N + rN1N

0(L−2)N

 = [p(N− 1)− rN]u

So λ2 ≥ p(N− 1)− rN.

3.Exact eigenvalues: The full spectrum of B0 consists of:

• λ1 = p(N− 1) + rN(L− 1), multiplicity 1;

• λ2 = p(N− 1)− rN, multiplicity L− 1;

• L(N− 1) eigenvalues equal to −p.

This confirms that λ1 and λ2 are indeed the two largest eigenvalues of

B0, and the spectral gap satisfies

δ = λ1 − λ2 = 2rN(L− 1) = Θ(NL).

With δ = Θ(NL) and aN �
√
NL, the condition aN

√
L

δ
→ 0 reduces

to
√

1
N
→ 0. This holds naturally. The condition aN

√
N

δ
→ 0 reduces to√

1
L
→ 0. This holds if the number of layers L grows with the number of

nodes N (e.g., L = O(Nα) with α < 1), ensuring asymptotic normality of

our estimates.
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The block-constant model used in our spectral gap derivation provides

a convenient analytical form, but real-world multilayer networks are rarely

so regular. In practice, intra- and inter-layer connections often exhibit

heterogeneity, with approximate block structure or community patterns.

Consider the supra-adjacency matrix B ∈ RNL×NL as a single random

graph on NL nodes. Assume its expected version B0 satisfies:

1. The minimum expected degree δmin ≥ c1NL for some constant c1 > 0

2. The maximum expected degree ∆ ≤ c2NL for some constant c2 > 0

3. The spectral gap of B0 satisfies δ0 := λ1(B0)−λ2(B0) ≥ c3NL for some

constant c3 > 0

These conditions imply B0 is dense (e.g., analogous to an Erdős-Rényi graph

with p = Θ(1)) and has a large spectral gap. Applying Graham and Rad-

cliffe (2011)’s Theorem 1 directly to the flattened matrix B:

‖λi(B)− λi(B0)‖ ≤
√

4∆ ln(2NL/ε) = O
(√

NL ln(NL)
)

with probability ≥ 1− ε when ∆ > 4
9

ln(2NL/ε). Consequently:

δ := λ1(B)− λ2(B) ≥ δ0 −O
(√

NL ln(NL)
)

= Θ(NL)−O
(√

NL ln(NL)
)

which dominates to δ = Θ(NL) for large NL. The key ratio then scales as:

aN
√
L

δ
=

√
NL
√
L

Θ(NL)
= O

(
1√
N

)
→ 0,

aN
√
N

δ
=

√
NL
√
N

Θ(NL)
= O

(
1√
L

)
→ 0
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This holds as N→∞. Such conditions arise when:

• Intra-layer connections: Each layer is dense (e.g., ER graphs with

p = Θ(1))

• Inter-layer connections: Uniform and non-vanishing coupling (e.g.,

P inter
αβ = Θ(1) for α 6= β)

Thus, our theoretical results apply more broadly to general dense multi-

layer networks that exhibit strong global connectivity but may not follow

perfectly uniform patterns.

Case 2: Sparse multilayer networks (δ = o(N))

Setup: Consider a multilayer stochastic block model (SBM) where each

layer is sparse—i.e., the expected degree per node is bounded or grows

slowly with N. For instance, each layer follows an SBM with K blocks and

intra-/inter-block connection probabilities on the order of O(1/N). Inter-

layer coupling is either absent or weak (r = o(1)).

In this setting, the expected supra-adjacency matrix B0 has leading

eigenvalue λ1 = O(1), and the second eigenvalue may be close (e.g., due to

weak community separation or weak inter-layer coupling). The gap satisfies

δ = λ1 − λ2 = o(N).
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With aN �
√
NL and δ = o(N), the condition

aN
√
L

δ
�
√
NL

δ
6→ 0

generally fails. Therefore, Assumption 5 is violated in sparse multilayer

settings, and Theorems 3 and 4 (which rely on accurate centrality recovery

under measurement error) may no longer hold. This highlights the necessity

of sufficient network density for the theoretical guarantees to apply.

Case 3: Weakly coupled layers (δ = Θ(N))

Setup: Suppose each layer is a dense graph (e.g., complete or Erdős–Rényi

with p = Θ(1)), but inter-layer coupling is very weak or vanishing, i.e.,

r = o(1) or zero. The supra-adjacency matrix then has a block-diagonal

structure, or near block-diagonal.

Since layers are weakly coupled, the spectrum of B0 is close to that of

the block-diagonal matrix:

B0 ≈ diag(B(1), . . . , B(L)).

Each B(`) contributes a top eigenvalue λ
(`)
1 = Θ(N), and due to near in-

dependence, these top eigenvalues are nearly degenerate. Thus, the gap

between the largest and second-largest eigenvalues of the full B0 becomes:

δ = λ1 − λ2 = Θ(N).
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With aN �
√
NL and δ = Θ(N), we have

aN
√
L

δ
�
√
L2/N.

This implies the condition holds only if L = o(N1/2). Hence, when the

number of layers grows too fast (e.g., L � N1/2 or more), or inter-layer

connections are extremely weak, Assumption 5 fails. This illustrates the

sensitivity of our results to the strength of inter-layer coupling.

S2 Simulation supplements

This section contains simulation results, including extended plots omitted

from the main text, additional simulations comparing our method with

alternative models, and sensitivity analyses evaluating robustness under

various settings. Specifically, the section is organized as follows:

• Section S2.1 provides supplementary visualizations (boxplots and Q-

Q plots) for the simulation results in the main text. These plots offer

further insights into the consistency and asymptotic normality of the

proposed estimators.

• Section S2.2 compares our proposed methods (C-MNetR and CC-

MNetR) with Regression with Community Fixed Effects (RCFE).

This comparison evaluates whether including community dummies di-
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rectly in the regression captures the latent structural effects as effec-

tively as our centrality-based approaches.

• Section S2.3 benchmarks CC-MNetR against an Aggregated

Centrality baseline, which uses node-level eigenvector centrality com-

puted from a flattened network. This comparison focuses on the struc-

tural interpretability.

• Section S2.4 conducts a sensitivity analysis under varying noise

levels, examining how different magnitudes of measurement error af-

fect the performance of CC-MNetR. This analysis illustrates the ro-

bustness of our method in more challenging, noisy environments.

Together, these results demonstrate the statistical reliability and structural

advantages of CC-MNetR, especially in multilayer networks subject to mea-

surement error.

S2.1 Boxplots and QQ-plots of coefficients for C-MNetR/CC-

MNetR in Simulation part:

In this section, we present the plots of β̂(ols), β̃(ols), β̂, and β̃.
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Noiseless case
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Boxplots of parameter estimates by sample size

C-MNetR Parameter Estimation without Noise

Figure 1: Boxplots of the coefficient estimates for the C-MNetR model across different

sample sizes without measurement error.

The boxplots in Figure 1 and Figure 2 illustrate the distribution of the

coefficient estimates for C-MNetR and CC-MNetR across different sample

sizes. As the sample size increases, the estimates for all coefficients become

increasingly concentrated around their true values, demonstrating improved

consistency. Notably, in Figure 2, the spread of the estimates decreases

with larger sample sizes, indicating reduced variability. This highlights the

effectiveness of CC-MNetR in producing more reliable and stable coefficient
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estimates as the sample size grows.
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CC-MNetR Parameter Estimation without Noise

Figure 2: Boxplots of the coefficient estimates for the CC-MNetR model across different

sample sizes without measurement error.
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Figure 3: QQ-plot of the coefficient estimates for the C-MNetR model across different

sample sizes without measurement error when N = 1000.
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Figure 4: QQ-plot of the coefficient estimates for the CC-MNetR model without mea-

surement error when N = 1000.

Figure 3-4 show the coefficient estimates for C-MNetR and CC-MNetR

when the sample size is N = 1000. Both QQ-plots indicate that the coeffi-

cient estimates follow a normal distribution.

Noisy case

This subsection presents the plots of coefficient estimates for the C-MNetR

and CC-MNetR models with measurement error.
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Figure 5: Boxplots of the coefficient estimates for the C-MNetR model across different

sample sizes with measurement error. (σb = 1.)
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Figure 6: Boxplots of the coefficient estimates for the CC-MNetR model across different

sample sizes with measurement error. (σb = 1.)

The boxplots in Figure 5 and Figure 6 illustrate the distribution of the

coefficient estimates for C-MNetR and CC-MNetR across different sample

sizes.

For C-MNetR, as shown in Figure 5, β̂X is consistent under Assump-

tion 5, but β̂C exhibits persistent bias when aN =
√
NL, even as N increases.

For CC-MNetR, as the sample size increases, the estimates for all coef-

ficients become increasingly concentrated around their true values, demon-

strating improved consistency. The boxplots are shown in Figure 6.

Figure 7-8 show the QQ-plots of coefficient estimates for C-MNetR and

CC-MNetR when the sample size is N = 1000. Both QQ-plots indicate that

the coefficient estimates follow a normal distribution.
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Figure 7: QQ-plot of the coefficient estimates for the C-MNetR model across different

sample sizes with measurement error when N = 1000.
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Figure 8: QQ-plot of the coefficient estimates for the CC-MNetR model with measure-

ment error when N = 1000.
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These results highlight the robustness of the CC-MNetR model com-

pared to the C-MNetR model, particularly in scenarios involving measure-

ment error.

S2.2 Simulation results of comparison between RCEF and C-

MNetR/CC-MNetR:

In this section, we show the simulation results of both Regression with Com-

munity Fixed Effects (RCEF) and C-MNetR/CC-MNetR, which demon-

strate that RCEF does not exhibit strong consistency properties under the

same conditions when C-MNetR performs great, let alone compared to the

much better-performing CC-MNetR.

• Compared to C-MNetR: First, we have conducted a detailed com-

parison in the absence of measurement error between our method,

C-MNetR:

y = XβX + CβC + ε

and method RCFE:

y = XβX + CβC + SβS + ε

where S is the community label matrix. Results in both Table 4.1

(c) in the manuscript and Figure 9 show the consistency of β̂
(ols)
C with
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Figure 9: Boxplot of n = 1000 Estimates of 4 Coefficients β = (βX1
, βX2

, βC1
, βC2

) in

C-MNetR when aN = N without measurement error. β̂C shows consistency in this case.

aN = N in the absence of measurement error. But in Figure 10 with

the same condition, β̂S lacks consistency.

• Compared to CC-MNetR: Then, we have conducted a detailed

comparison in the absence of measurement error between our method,

CC-MNetR:

y = XβX + ZβZ + ε

and method RCFE:

y = XβX + CβC + SβS + ε

where S is the community label matrix. Our findings indicate that

directly regressing on community labels to obtain community fixed

effects does not achieve consistency.

Specifically, as is shown in Figure 10, the standard deviation of the

estimators does not decrease with increasing N. In contrast, as shown
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Figure 10: Boxplot of n = 1000 Estimates of 7 Coefficients β = (βX1
, βX2

, βC1
, βC2

, βS1
,

βS2 , βS3) in RCFE when aN = N without measurement error. Even though the order

of aN is already large, β̂S still lacks consistency.
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Figure 11: Boxplot of n = 1000 Estimates of 3 Coefficients β = (βX1 , βX2 , βZ) in CC-

MNetR when aN = N without measurement error. Compared to β̂S , β̂Z shows better

consistency.
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in Figure 11, simulation results of β̂
(ols)
Z show consistency properties

since our CC-MNetR method addresses the inconsistency of β̂
(ols)
C by

incorporating restricted community structure into the centrality mea-

sure.

S2.3 Simulation results of comparison between CC-MNetR and

Aggregated Centrality baseline

We now design a simulation experiment to compare the performance of CC-

MNetR against two benchmarks: (i) an oracle model using true community

labels, and (ii) a natural baseline that uses node-level eigenvector centrality

computed from the aggregated adjacency matrix. Although all three models

show robust estimation behavior in terms of variance, their interpretability

and structural validity differ substantially, especially when the outcome

variable is generated from latent group-level effects.

We compare the following methods:

• Model 1 (Oracle model): Uses the true community label matrix S

as regressors.

y = XβX + SβS + ε,

This serves as a gold standard benchmark, enabling direct estimation

of group-level fixed effects.
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• Model 2 (CC-MNetR): Compute node-layer centrality using the

full supra-adjacency matrix, then aggregate those values using known

community structure to obtain a community-specific scalar regressor

Z. This approach incorporates both layer-level variation and group

structure.

• Model 3 (Aggregated baseline): Flatten the multilayer network

into a single-layer network by averaging adjacency matrices across lay-

ers, then compute eigenvector centrality ECagg,i for each node i.

y = XβX + ECaggβECagg + ε.

This approach ignores inter-layer heterogeneity and assumes node im-

portance is stable across layers.

Figure 12 shows the boxplots of coefficient estimates for the Oracle

model, where both covariate and community effects are recovered accurately

with increasing sample size N. This confirms the consistency and stability

of the estimator when true community structure is directly used.

Figure 13 presents estimates from CC-MNetR, illustrating that the

community-level centrality regressor Z effectively captures the group-level

structural effects. The estimator exhibits similar stability and convergence

behavior to the Oracle model, underscoring that our method preserves
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Figure 12: Boxplot of n = 1000 estimates of coefficients β = (βX1
, βX2

, βS1
, βS2

, βS3
)

in the Oracle model with regression on community label matrix S, when aN =
√
NL

without measurement error. Estimators recover both covariate and community fixed

effects consistently.
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Figure 13: Boxplot of n = 1000 estimates of coefficients β = (βX1 , βX2 , βZ) in CC-

MNetR when aN =
√
NL without measurement error. Compared to the Oracle model,

the constructed community-level centrality regressor Z yields stable and consistent esti-

mates.
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Figure 14: Boxplot of n = 1000 estimates of coefficients β = (βX1
, βX2

, βECagg
) in the

Aggregated baseline model when aN =
√
NL without measurement error. The ag-

gregated eigenvector centrality regressor ECagg shows higher variability and less precise

estimation than CC-MNetR.

meaningful cross-layer and community information.

Figure 14 depicts results for the Aggregated baseline model. While this

method also demonstrates robustness and some consistency, the variability

in coefficient estimates tends to be higher than CC-MNetR, especially for

the network centrality coefficient. This can be attributed to the loss of inter-

layer heterogeneity and the compression of multi-layer information into a

single aggregated centrality measure, which dilutes the distinct community

signals.

Overall, while all models are technically consistent in large samples,

only CC-MNetR preserves interpretable community-level structural signals.
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Unlike the Oracle model, which treats communities as discrete and un-

ranked categories, CC-MNetR offers a meaningful scalar summary that re-

flects each community’s importance in the network. And unlike the Ag-

gregated baseline, CC-MNetR respects both group and layer structure,

avoiding bias due to structural compression. This makes it particularly

suitable for applications where community effects are both collective and

structurally embedded.

S2.4 Sensitivity of CC-MNetR to Network Measurement Noise

To assess the robustness of the proposed CC-MNetR estimator in the pres-

ence of imperfect or noisy network data, we conduct a detailed sensitivity

analysis with respect to measurement error. Specifically, we simulate multi-

layer networks with known ground-truth structure and add Gaussian noise

of varying standard deviations σb (ranging from 0.5 to 5.0) to the network

adjacency matrices to mimic network-level measurement error.

For each noise level, we recompute the centrality-based covariates from

the noisy networks and refit the CC-MNetR model. The regression coef-

ficients are held fixed across settings, allowing for a direct comparison of

estimation performance. We evaluate robustness in terms of the distribu-

tion of estimated coefficients and their average mean squared error (MSE)



S2. SIMULATION SUPPLEMENTS

across repetitions. All simulations are conducted across multiple sample

sizes, enabling analysis of how data availability interacts with noise levels.
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Figure 15: Boxplots of CC-MNetR coefficient estimates at N = 1000 across different

noise levels. Each subplot corresponds to a different standard deviation of the Gaussian

perturbation added to the network structure. Red dashed lines indicate the true param-

eter values. The estimator remains stable under moderate noise and degrades smoothly

with increasing variance.

Figures 15 and 16 provide empirical support for the theoretical insights

of Theorem 5. In particular, they illustrate that the CC-MNetR estimator

degrades gracefully under increasing noise, especially when the sample size

is moderate to large and the network retains sufficient spectral structure.

These diagnostics may aid practitioners in interpreting estimation relia-
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bility and understanding the potential effects of unobserved or suspected

measurement error in applied settings.
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Figure 16: Mean squared error (MSE) of CC-MNetR coefficient estimates across different

noise levels σb. The left panel shows all sample sizes; the right panel zooms in on N = 500

and 1000 for better resolution in moderate noise settings.

S3 Real data analysis supplements

This section presents further details on the real data application based on

the World Input-Output Database (WIOD), including variable descriptions,

full estimation results, and a comparison and interpretation of different

centrality measures.
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S3.1 Comparison with Aggregated Network Centrality

To evaluate the effectiveness of our proposed multilayer community-level

centrality measure, we compare it with a baseline approach that computes

eigenvector centrality on a single-layer aggregated network. Specifically, the

aggregated network is constructed by extracting only the diagonal intra-

layer blocks from each country’s input-output matrix, rescaling them in-

dividually, and then averaging across all layers. This results in a single-

layer adjacency matrix that retains domestic production structure but dis-

cards cross-country interactions. Eigenvector centrality is computed for

each node, and then averaged within each community to yield community-

level scores.

Figures 17 and 18 present the community-level centrality scores ob-

tained from the CC-MNetR method and the aggregated network approach,

respectively, for the year 2014. Notably, our method ranks Construction,

Manufacturing, and Wholesale and retail trade; repair of motor vehicles and

motorcycle as the top three most central communities in the global produc-

tion network. In contrast, the aggregated method identifies Construction,

Real Estate Activities, and Electricity, Gas, Steam and Air Conditioning

Supply as the most central sectors.
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Figure 17: Community-level centrality based on CC-MNetR method (sorted by 2014).
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Figure 18: Community-level centrality based on Aggregated Network (sorted by 2014).

The observed discrepancy between the two rankings reflects fundamen-

tal differences in how the methods capture economic influence across global

production networks. The CC-MNetR method leverages the multilayer

structure of the data and explicitly incorporates cross-country input-output

linkages. As a result, it highlights communities like Manufacturing and

Wholesale and retail trade, which are deeply integrated into international

supply chains and play vital roles in facilitating intermediate goods ex-

change and cross-border commerce. These sectors benefit from inter-layer
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dependencies that boost their structural centrality in the global context.

By contrast, the aggregated method flattens the multilayer network

into a purely domestic snapshot, ignoring inter-country flows and treating

each node as isolated within its national boundary. This simplification

can elevate the apparent centrality of sectors such as Real Estate Activities

and Electricity, Gas, Steam and Air Conditioning Supply, which may be

important within individual countries but are less involved in international

production networks. Consequently, the aggregated approach may overlook

globally strategic industries that operate through extensive cross-national

connections.

These findings underscore the added value of our community-based mul-

tilayer approach. By preserving and leveraging inter-country linkages, CC-

MNetR yields a more accurate and interpretable assessment of each sector’s

central role in the world economy.

S3.2 Details of variables in SEA dataset:

The variable details of the SEA dataset are summarized in Table 1, and

their relationships are visualized in the scatterplot (Figure 19).
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Values Description

GO Gross output by industry at current basic prices (in millions of national currency)

II Intermediate inputs at current purchasers’ prices (in millions of national currency)

VA Gross value added at current basic prices (in millions of national currency)

EMP Number of persons engaged (thousands)

EMPE Number of employees (thousands)

H EMPE Total hours worked by employees (millions)

COMP Compensation of employees (in millions of national currency)

LAB Labour compensation (in millions of national currency)

CAP Capital compensation (in millions of national currency)

K Nominal capital stock (in millions of national currency)

Table 1: Descriptions of 10 variables contained in SEA.

Covariate Diagnostics and Multicollinearity

We provide additional details on covariate diagnostics to support the regres-

sion analysis in Section 5. The 10 variables in the SEA dataset are listed

in Table 1. After excluding Intermediate Input (II), which directly overlaps

with the construction of centrality scores, we assess multicollinearity among

the remaining 9 variables using two tools:
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Figure 19: Scatterplot matrix of 6 variables and the lower panel of this matrix denotes

the correlation coefficient between variables.

Variance Inflation Factor (VIF). We compute the VIF for each covariate

Xi, defined as

VIF(Xi) =
1

1−R2
i

,

where R2
i is obtained from a regression of Xi on all other covariates. Ta-

ble 2 below shows the VIFs calculated using the 2014 dataset. Variables

with VIFs exceeding 5—namely VA (38.80), CAP (16.34), and COMP

(7.03)—are considered problematic due to strong collinearity. We retain

only VA among them for its interpretability and relevance.

Variable VA CAP COMP EMP K

VIF 38.80 16.34 7.03 3.44 1.41

Table 2: VIFs of 5 selected variables based on the 2014 data.
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Correlation between Z and X. To further assess the distinct contribution

of the network-based centrality measure Z, we compute its empirical cor-

relations with the remaining regressors. The centrality scores Z are weakly

correlated with all covariates used in the regression model, with absolute

correlations below 0.2. This indicates that Z captures structural infor-

mation from the multilayer network that is not reflected in conventional

production-side covariates. Therefore, the inclusion of Z provides comple-

mentary variation that enhances both the robustness and the interpretabil-

ity of the model.
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Figure 20: Correlation matrix of covariates and centrality score Z (2007 data).
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Figure 21: Correlation matrix of covariates and centrality score Z (2014 data).

Figure 20-21 present the correlation matrix of the variables included in

the final regression. These diagnostics validate the choice of covariates and

the stability of the regression model presented in the main text.

S3.3 Details of sectors:

According to ISIC Rev.4, industries in WIOD release 2016 are shown in

Table 3.

No. Industry Description Community

1 A01 Crop and animal production,

hunting and related service

activities

Agriculture, forestry and fish-

ing
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No. Industry Description Community

2 A02 Forestry and logging Agriculture, forestry and fish-

ing

3 A03 Fishing and aquaculture Agriculture, forestry and fish-

ing

4 B Mining and quarrying Mining and quarrying

5 C10-

C12

Manufacture of food products,

beverages and tobacco prod-

ucts

Manufacturing

6 C13-

C15

Manufacture of textiles, wear-

ing apparel and leather prod-

ucts

Manufacturing

7 C16 Manufacture of wood and of

products of wood and cork,

except furniture; etc.

Manufacturing

8 C17 Manufacture of paper and pa-

per products

Manufacturing

9 C18 Printing and reproduction of

recorded media

Manufacturing
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No. Industry Description Community

10 C19 Manufacture of coke and re-

fined petroleum products

Manufacturing

11 C20 Manufacture of chemicals and

chemical products

Manufacturing

12 C21 Manufacture of basic pharma-

ceutical products and phar-

maceutical preparations

Manufacturing

13 C22 Manufacture of rubber and

plastic products

Manufacturing

14 C23 Manufacture of other non-

metallic mineral products

Manufacturing

15 C24 Manufacture of basic metals Manufacturing

16 C25 Manufacture of fabricated

metal products, except

machinery and equipment

Manufacturing

17 C26 Manufacture of computer,

electronic and optical prod-

ucts

Manufacturing
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No. Industry Description Community

18 C27 Manufacture of electrical

equipment

Manufacturing

19 C28 Manufacture of machinery

and equipment n.e.c.

Manufacturing

20 C29 Manufacture of motor vehi-

cles, trailers and semi-trailers

Manufacturing

21 C30 Manufacture of other trans-

port equipment

Manufacturing

22 C31-

C32

Manufacture of furniture;

other manufacturing

Manufacturing

23 C33 Repair and installation of ma-

chinery and equipment

Manufacturing

24 D Electricity, gas, steam and air

conditioning supply

Electricity, gas, steam and air

conditioning supply

25 E36 Water collection, treatment

and supply

Water supply; sewerage,

waste management and

remediation activities
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No. Industry Description Community

26 E37-

E39

Sewerage; waste collection,

treatment and disposal activ-

ities; materials recovery; etc.

Water supply; sewerage,

waste management and

remediation activities

27 F Construction Construction

28 G45 Wholesale and retail trade

and repair of motor vehicles

and motorcycles

Wholesale and retail trade; re-

pair of motor vehicles and mo-

torcycles

29 G46 Wholesale trade, except of

motor vehicles and motorcy-

cles

Wholesale and retail trade; re-

pair of motor vehicles and mo-

torcycles

30 G47 Retail trade, except of motor

vehicles and motorcycles

Wholesale and retail trade; re-

pair of motor vehicles and mo-

torcycles

31 H49 Land transport and transport

via pipelines

Transportation and storage

32 H50 Water transport Transportation and storage

33 H51 Air transport Transportation and storage

34 H52 Warehousing and support ac-

tivities for transportation

Transportation and storage
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No. Industry Description Community

35 H53 Postal and courier activities Transportation and storage

36 I Accommodation and food ser-

vice activities

Accommodation and food ser-

vice activities

37 J58 Publishing activities Information and communica-

tion

38 J59-J60 Motion picture, video and

television program produc-

tion, sound recording and mu-

sic publishing activities; etc.

Information and communica-

tion

39 J61 Telecommunications Information and communica-

tion

40 J62-J63 Computer programming, con-

sultancy and related activi-

ties; information service activ-

ities

Information and communica-

tion

41 K64 Financial service activities,

except insurance and pension

funding

Financial and insurance activ-

ities
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No. Industry Description Community

42 K65 Insurance, reinsurance and

pension funding, except com-

pulsory social security

Financial and insurance activ-

ities

43 K66 Activities auxiliary to finan-

cial services and insurance ac-

tivities

Financial and insurance activ-

ities

44 L Real estate activities Real estate activities

45 M69-

M70

Legal and accounting activi-

ties; activities of head offices;

management consultancy ac-

tivities

Professional, scientific and

technical activities

46 M71 Architectural and engineer-

ing activities; technical test-

ing and analysis

Professional, scientific and

technical activities

47 M72 Scientific research and devel-

opment

Professional, scientific and

technical activities

48 M73 Advertising and market re-

search

Professional, scientific and

technical activities



Z. HAN, T. WANG AND Z. YING

No. Industry Description Community

49 M74-

M75

Other professional, scientific

and technical activities; vet-

erinary activities

Professional, scientific and

technical activities

50 N Rental and leasing activities,

Employment activities, Travel

services, security and services

to buildings

Administrative and support

service activities

51 O Public administration and de-

fence; compulsory social secu-

rity

Public administration and de-

fence; compulsory social secu-

rity

52 P Education Education

53 Q Human health and social work

activities

Human health and social work

activities

54 R-S Creative, Arts, Sports, Recre-

ation and entertainment ac-

tivities and all other personal

service activities

Arts, entertainment and

recreation; Other service

activities
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No. Industry Description Community

55 T Activities of households as

employers; undifferentiated

goods- and services-producing

activities of households for

own use

Activities of households as

employers; undifferentiated

goods- and services-producing

activities of households for

own use

56 U Activities of extra-territorial

organizations and bodies

Activities of extraterritorial

organizations and bodies

Table 3: 56 sectors and their corresponding communities in WIOD release 2016

S3.4 Regression results

Table 4 shows the estimated results of regression models for 2007 and 2014

WIOD tables.
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Variable Estimate Std Error F value p-value Significance

Z 0.7018 0.1136 84.68 2.03e-12 ***

VA 0.8905 0.0690 334.04 <2.2e-16 ***

EMP -0.0648 0.0625 1.14 0.2915

K 0.0057 0.0528 0.01 0.9141

Intercept -0.3778 0.0763

(a) Results for 2007

Variable Estimate Std Error F value p-value Significance

Z 0.6112 0.1319 68.08 5.90e-11 **

VA 0.9517 0.0811 269.99 <2.2e-16 ***

EMP -0.1385 0.0759 3.26 0.0769 ·

K -0.0155 0.0555 0.08 0.7809

Intercept -0.3446 0.0896

(b) Results for 2014

Table 4: Estimated coefficients, standard errors, and ANOVA results for 2007 and 2014.

Significance levels: *** (p < 0.001), ** (p < 0.01), * (p < 0.05), · (p < 0.1).
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