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S1 Heterogeneous Linear Regression with Site-Specific
Heteroskedastic Errors

We extend the heterogeneous linear model in Remark [I} to allow each site
J its own error variance N, (0, U?Inj).
The negative log-likelihood (up to constant) is % logo? + 5 ||Y; —
J
X;Bo—W,03; H; Profiling out 0]2 or equivalently reparameterizing via weighted
least squares, one obtains the site-wise loss

Lj(IBO’B = HY/ X;ﬂo_wzﬁ]H; (81-1)

with Y = Y , X = X , W) = Wi . This weighted least squares loss simply

replaces the loss L 1n - To compute the CMLE for the parameters
{B;}}<, and variances {07}, we use a block coordinate descent (BCD)
algorlthm see Algorithm [S

By treating the number of sites K as a fixed parameter, the constrained
likelihood-ratio testing procedure and Theorem [2] remain valid without
modification.

S2 Proof of Theorem [1]

Proof. We will show that if x > |A} |, then {i € [p ]\B 37 7 0} C

{i € [p|\B : T; # 0} almost surely, where the estimators L'y, and T'jy, are
obtained from Algorithm [3| For Hy, let A° = {i € [p]\B : 8 # 0} and

Al = {i € [p\B: TP > 7}. For Hy, let A° = {i € [p|\B : 8 £ 0} UB
and A = {ic [p\B:T¥|>7}UB. Sete=Y — X,/B\Ol, where BOZ is the
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Algorithm S1 BCD for CMLE in Heterogeneous Linear Regression with Heteroskedas-
tic Errors

1: Initialize: Set ¢t = 0 and 0?(0) =1lforj=1,....K.

2: while not converged do

' . ~2(H)y .. o
3: Parameter update: Treat (SL.1)) (with the current {G;""}) as the site-wise loss

t+1
and run Algorithm [2| to obtain {,3( o o

4: Variance update: For each j =1,... K,

S2(t+1) _ HY X, 6(t+1 ~(t+1) H

J _Wﬂﬁ

2°
5: t—t+1

6: end WhileA
7: Output: {3,}7<, and {77}1,

oracle estimate that minimizes || Y — X8/|2 under the constraint B a0y = 0.
~ol
s £= {[X"2/n] < om0 {]la - 57 _<0sr)

We will show that A°AAM is eventually empty set on event E, which
has a probability tending to 1, where A denotes the symmetric difference.
By the optimality criterion Lee and Le¢| (2005) for (4.12) and (4.13), we
have

~ol  ~]t]

(8 T

Rearranging the terms, we have

)
<@ - g” XTA/n MY HI‘ ey

—XT(Y = XTY 4 ArY Hfﬂ[t,u)c

)=>o. (S2.2)

[t]

R

)
=[] =~ [¢]
<FAO\A[t 1] — ,BAO\A[t 1],X s/n — /\TV HI‘(AH_I >

) - e ($2.3)
+ <I‘A[t71]\AO - ,@A[tq]\Ao, XT/é/n — AtV ‘ I‘(A[tA])c

~[] ~ol . 1]
+ <F(A[t—l]uA0)c - ,B(A[t—uuAO)c, XTs/n — )\Tv HF —1])c

~ol ~I|t
<I“[A}t 11nA0 — IBAt 1ﬁAO7X E/Tl )\TV ‘ng[tfl])c

Let X 40 denote the matrix, whose A° columns are the same as the A°
columns of X and all other columns are zeros. Similarly, we can define

~ol ~ol
X(AO)C. NOtiCG that X - XAO + X(AO)C, /B(AO)C == 0, /8 == (XZOXAO)TXZOY,
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Y = X 00(X%X 40) X%, Y, Pao = X 40(X%,X 40) X%, as well as € = Y —
Y = (I~ Pu)Y = (I - Pa)e. Note that XT& = X7, 2.
Thus, we know that the fourth term in the last equation of ((S2.3])

vanishes, since

~|t
<FE4]t 11nA0 _,BAt 1on,X E/n—)\TVHF(At 1)

~t R
:<I‘A[A]t 11N A0 _,BAt 1] AO7XTA0 Cs/n) (824)

=~ [t]
:<X( ) (FAt 110 A0 _BA[t 1]0140) s/n) =0.

Note that the third term in the last equation of (S2.3)) satisfies

~[¢] ~ol ~[¢] ~[t] ~ol
<F(At 1] UAO _B(At 1] UAO C,V HF(At 1 — HF Alt—1] UAO)C - ,B(A[t—l]uAO)c L 3
(S2.5)
~ol
because B 4it-1y 40 = 0.
Recalling ([S2.3)), we have
0< HX [ /n
2
~[t ~ol o
<F;]O\At 1 BAO\A[til] s XT&‘/?’L - )\Tv H]_-‘A()\A[t 1] 1)
~ol N
+ <FA[t*11\A0 — Bau- 1]\A07XT€/n>
~[t] (S2.6)
+ <F(A[t71]UAO)c ,B(A[t 1UAO)e) X 6'/71 — AtV HF Alt=11y A0)e >
<HFA0AA[t 1] ,BAOAA[FU : ||XT€||OO/?I+)\T)
~ol
+ HF(A[t 1]L_JA0 6(,475 1UA0 ||XT€|| /n—)\T)

Rearranging inequality (52.6)) imphes that

~[t] ~ol

T at-uy a0y = Bat-nya0ye '(AT— [x"ell, /n)

~[t]

< | Faonniy = Bloaar]|, ||XT | /n+ 7).

Over event F, we have
~ol

~t
§ 3 HI‘AOAA[t—l] —,BAOAA[t—l] 1

~ol

HF Alt— 1]UA0 ﬁ(At 1UA0)

~ol

<3 HFAOUAH 1] IBAOUA[t—lJ 1
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Recall that k1 = ‘{z € [p]\B; ’ﬂo]‘ > T}‘ and Kyq, = max{x, K }. With-

out loss of generality, we can assume that FEB] = 0. For the base case, we

know that
|A°A AP < |ANB| + | AN\ A < 260,

For the induction step, assume |A’AA!Y| < 2k,,,, on event E, for
t > 1. We aim to show that !AOAAM < 2Kmaz OVEr event E.
Applying Assumption (1| and (S2.6]), over event E, we have

/n

2

~ol

B

ol X[t

~1] 2 ~
€1 -I S HX(ﬁ -

~[t] Aol
< HFAOAA[t 1] _BAOAAU 1]

(HXTEHOO /n 4 AT)

ol (S2.7)
e = Blssosny |, - (X721 0 = A)
~ol
<3 )\T HI‘AOAAt 1 = Baopai- .
By Cauchy-Schwarz inequality,
f‘[t ~ol 0 [t—1] Aol 2
AN AlL—1] _,BAOAAt 1] ‘A AA | F ) (828)

Combining (S2.7)), (S2.8) and the third condition in Theorem [I]

SAT,/\AOAA# 1) < ,/|A0AAt 1), (S2.9)

Applying (S2.9) and induction assumption }AOAAV*IH < 2Kmaz, We have

H Aol t]

1
H/B \/ Qﬁma;t S 5\//€mam S \/Hmaz- (8210)

Because for any i € AM\AO, T — 3ol| = T > 7, we have
\/ AN A0 < HBOZ - f‘MH /T < \/Kmax-
2

|A°AAT| < |AN\B| + AN A?| < 260,

Thus,

By induction, we already showed that over event F, ‘AOAAM‘ < 2Kpmaz for
any 0 <t < t,,42, Where t,,,, denotes the total number of the iteration of
Algorithm 3]
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Note that Algorithm 3| is terminated at ¢ if

~[1] ~[t-1]
supp{I" }\B = supp{I'"  }\B.

We will show that over event E, for any ¢ > 1,

1
0 _ 0 -1
VIALA] < Sy flA0 AR,

If i € A%\ Al then we know that 3? # 0 and fﬁﬂ = 0. Over event E,
Lﬁ? — ﬁf?l’l| < 0.57. According to assumption x > |A} | in Theorem , we
now that

T — 3ot > T — 89| — 8% — B > 7 — 0.57 = 0.57. (S2.11)
If i € A\A°, then we know that 8% = 8% = 0 and || > 7, which implies
T — 37l = [TV > 7.

Over event FE, we obtain that for any i € A°AAMY, |f£t] — Bfl| > 71—
0.57 = 0.57. Combining ([S2.9)), we obtain

~ 1
|AOA AW < - r“] < sy/laenar-) (52.12)
In conclusion, over event E, we obtain
1
|AOA Al < 5\/2%;,%1. (52.13)

If ¢ > [Fenes)] (/JAONA] < 1, e, APAAM = .

Set tar = [%1 We already showed that over event F,

{i € P\B: Ty > 7} = {i € [p\B: 8 # 0}

This means that for any j & {i € [p|\B : |f£tm‘“”]] > T}, |1N1¥m”}| < 7, and
for any k € {i € [p]\B : fz[.tm“] >}, \f%m‘”” > 7. Thus, over the event £

supp{B°}1\B = {i € [p]\B : 3] # 0}

= {i e [p|\B: ’fgtmm} (52.14)

> 7} C supp{T}\B.

Next, we aim to bound the probability of event E. Let a = X'e =
(a1,---,a,)". Tt is obvious that @ = X'(I — Pyo)e = X{y0).(I — Pao)e.
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Recall the error € ~ N(0,X) with ¥ = ¢?I. By Assumption , for any
1< <p,

Var(a;) = ef XT (I — Pyo)X(I — Pyo)Xe; < 0*(XT (I — Pyo)X)y < nocs.

(52.15)
By the upper-tail inequality for sub-gaussian distribution and the third
condition in Theorem |1} we have

P(||X"€||__ /n > 0.5A7) = P(|lal|, /n > 0.5A7)
u 1 nA272 2 S2.16
§ZP(|a|l > 0.5nA7) < 2pexp (__n)\ ! ) < ( )
=1

8 o2ck ) ~ pnt

Set b := Boz — B°. A direct calculation implies that
b= (X4 X 40) X% 0e = (by,---,b,)".
By Assumption [2| for any 1 <1 < p,
Var(by) =e] (XX 40) X% EX 40 (X0 X 40) e
<o (XX a0)T), < %0%%[([ e A%).
By Assumptions [2] and (4.17)), we have

P (’ 3" - BOH > 0.57) < 3" P(bl; > 0.57)
o i€ A

<2| A% exp <—

(S2.17)

1n7‘2)§2(/-€(}{o+|3]): ( 1 )

8 022 pind pind
Case 1: x = |A} |. In this case, (S2.14) implies that over the event E

supp{B°}\B = supp{T'}\ B. (52.18)
Thus, under the requirement for (7, A) in Theorem 1]

P(supp{T}\B # A"\ B)

=P({supp{T}\B # A"\B} N E) + P({supp{T}\ B # A°\B} N E*).
(S2.19)

Notice that £ C {supp{T}\B = Altmes)\ B} and E C {Altmes]\ B = A%\ B}.
Thus, R
P({supp{T}\B # A°\B} N E) =0, and
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/

P(supp{I'}\B # A°\B) < P(E°) < 5 (S2.20)

where C’ is a absolute A(:(?nstant.

Note that {T' = 8 } = {supp{I'}\B = A°\B}. By Borel-Cantelli
lemma, we have {f‘ = BO } almost surely as n — 0.

~ol

It remains to show that 3 is a global minimizer of (4.8)) or (4.9)) with
high probability.

Applying Theorem 2 of |Shen et al. (2013)) and its proof, with the degree
of separation condition [4] we obtain

~ ~o0 1 1 |
P(B"#B") < ewp (— L (Omin—SGMUQ))

e—1 1802 n
<e+1 1 ’
~ e—1p*n?

N
where 3 denotes the global minimizer of (4.8) or (4.9). By Borel-Cantelli

—~ ~ol —~
lemma, we have {T =3 =0 0} almost surely as n — oo.

Case 2: k > |AY |. Thus, under the requirement for (7, ) in Theorem

P(supp{B°}\B ¢ supp{T'}\B)
=P({supp{B°}\B ¢ supp{T}\B} N E)
+ P({supp{B°}\B ¢ supp{T'}\B} N E°).

By (S2.14), we know that E C {supp{B°}\B C supp{f‘}\B}. Thus,

P({supp{B"}\B ¢ supp{T}\B} N E) = 0 and

!

P(supp{B°}\B ¢ supp{T'}\B) < P(E°) < % (S2.21)

By the Borel-Cantelli lemma, we have {supp{B8°}\B C supp{f}\B } almost
surely as n — oo.

Under Hy, we know that Supp{,@zo} C supp{B"}\ B, which implies that
{supp{,/B\Zl,o} C supp{f}\B} almost surely as n — oo.

Under Hy, we know that supp{,@zl} C supp{B"} U B, which implies
that {supp{B(;l} C supp{I'} U B} almost surely as n — . O
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S3 Proof of Theorem 2

Proof. By Theorem [I| we have

) ~(0)  ~ls ~(1)  ~ls
1im BT = By n (B =B ) =1 (53.22)

~(0 ~(1 ~ls ~ls
where I‘( ) and I‘( ) are obtained from Algorithm , and Bg, and By, are
obtained from (4.10]) and (4.11]), respectively.

The remainder of the proof follows the argument in Theorem 2 of Zhu
et al.| (2020), which establishes the sampling distribution of A, (B).

O
S4 Proof of Theorem (3|
Proof. By Theorem [I| we have
, ~(1) s
lim P =8 ) =1, (54.23)

n—oo

~ ~ls ~ls
where I‘(l) is obtained from Algorithm |3{ and 3 = By, is obtained from

(4.11])), supported on A°U B.
Thus, to show (5.26)), it suffices to show

V(B — B8%) —5 N(0,3), (S4.24)

as n — 00.
Let t € RB and u € RA"YB such that up =t and uge = 0. Note that

~ls
Baoup = (XgouBXAOUB)T(XZOUBXAOUB)IB?LWUB + (XEOUBXAOUB)TX%UB&)
S4.25
where X 40,5 denotes the sub-matrix with columns of A° U B.
Due to u € {& € RA"VP: ¢, = 0,i ¢ B} € R(X%,_ ), we know that

there exists vector v such that v = Xﬁou BV and

(XEOUBXAOUB) (XZ;OUBXAOUB)TU

:XEOUB (XAOUB(XgouBXAOUB)TXEULjB>U = XEOUB’U = U.

N
By direct calculation of the characteristic function of v/n(3 ; — 3%), we
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know that
E eitT\/ﬁ(E}g— %) _ EeiuT\/ﬁ(ﬁfouyBZ%B)
:EXEseiUTﬁ(XiouBXAOUB)szouBE
=Ex exp{—1/2- UQUT”<X£0UBXAOUB)TXZOUBXAOUB(XQOUBXAOUB)TU}
=Ex exp{—1/2 - oc*u” (1/n - X} o_ s X a0up) 1}
=Ex exp{—1/2-0*t"(1/n - XEOUBXAOUB)TB,Bt}'

. . t
Under the assumption of Moore-Penrose inverse o (2X%, -X40,5) BB

converges in distribution to some positive semi-definite matrix ¥, and by
applying the continuous mapping theorem, we obtain that

Ex exp{—1/2- %" (1/n - X} pXaoup)s st} — e /25, (34.26)

as n — oo, for any t € R5.

By Lévy’s continuity theorem, we complete the proof of weak conver-
gence (S4.24)). Therefore, the proof of Theorem [3|is completed. n
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S5 Top-+x index set Selection

Algorithm S2 Threshold-Based Top-x index set Selection
1: Inputs:

e Current parameter estimates {fg:]j}(k.d)es. Target sparsity level k.

e Initial thresholds a, b such that
{(k,g) - I <a}| <w and  [{(k,5): ITPL| < b} > &.

. Initialize: Set c «+ %12
while b — a is not sufficiently small do

4: Site-Level Operations: Each site counts how many local parameters satisfy

W N

|f%]J| < ¢ and sends only this count to a central location.
5: Aggregation and Update:

e Sum the local counts with the center count to get the total count
NP
H(k”]) ) < CH

o If the total is exactly x, break the loop.
e If the total is < k, set a < c¢. Otherwise, set b < ¢. Update ¢ + ”’T“’.

6: end while

7: Finalize Threshold c¢*: Let ¢* + c if the loop ended early due to an exact match,
or set ¢* < a if we finished the binary search without an exact match.

8: Construct the /; Projected Set:

o Each site identifies which local parameters exceed |ﬂ€t]j| > c*.

e Let C be the union of those parameter indices across all sites,

C= {(kz,j) : |fE]J\ > threshold c*}.

o If |C| < k, select additional k —|C| parameters with |f£:]]\ € (a,b) until |C| = k.
9: Output: The projected index set C.
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