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The supplementary materials include additional simulation results and proofs of all theorems

and lemmas in the main text. Section S1 contains additional simulation results for unknown

cutpoint problem. Section S2 presents additional simulation results for problem with prespec-

ified cutpoint. Section S3 introduces the procedure based on the minimum p-value method.

Section S4 presents additional results on the advanced colorectal cancer dataset and extensions.

Section S5 establishes notations for clarity and coherence. Section S6 includes proofs of The-

orems 1 and 2. Section S7 contains proofs of Theorems 3 and 4 regarding hypothesis testing

with unknown cutpoint. Section S8 includes proofs of Theorems 5 and 6 regarding the limiting

distribution of the cutpoint, as well as some supporting lemmas.
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S1 Additional Discussions and Simulation Results for

Unknown Cutpoint Problem

We describe another data-driven algorithm, referred to as Method S2, that

determines m for constructing confidence intervals for the optimal cutpoint

in Subsection 5.1:

1. Consider a sequence of m’s of the form mj = ⌊qjn⌋ for j = 1, 2, ..., and

q ∈ (0, 1);

2. For each mj-out-of-n bootstrap, compute ĉ∗mj ,b
for b-th replication.

Construct the bootstrap empirical cumulative distribution function

F̂mj
(x) =

1

B

B∑
b=1

I{m1/3
j (ĉ∗mj ,b

− ĉn) ≤ x}.

3. The m will be selected as the value that minimizes the supremum

difference between two adjacent bootstrap empirical cumulative distri-

butions:

m = argminmj
sup
x

|F̂mj
(x)− F̂mj+1

(x)|,

where in the case of ties, we select the largest one.

Then, we report the empirical bias and standard error of the proposed

profile estimator ĉn in (4.10) for estimating cb under alternative hypotheses.

The simulation settings are identical to those used in the power analysis in



S1. ADDITIONAL DISCUSSIONS AND SIMULATION RESULTS FOR
UNKNOWN CUTPOINT PROBLEM

Table S1: Empirical bias and standard errors of the estimate of cb under alternative

hypothesis.

n=300 n=500

cb Bias SE Bias SE

6a 0.5 -0.0104 0.2481 0.0079 0.2325

6b 0.7 -0.1295 0.2615 -0.0846 0.242

7a 0.5 -0.0587 0.1124 -0.0398 0.0933

7b 0.7 -0.015 0.117 0.005 0.0587

8 0.5 -0.0026 0.0722 -0.0061 0.0605

9 0.52 -0.0099 0.1300 -0.0046 0.1132

Subsection 6.2, with the addition of two new cases, 6b and 7b listed in

Table 1, where cb = 0.7.

From Table S1, we observe that our method is accurate for estimating

cb across most cases, with small biases and standard errors. However, with

a smaller sample size, such as in Case 6a and 6b, it is less accurate. This

might be attributed to the small values of |θcb| (i.e. around 0.1), as listed

in Table 1, where the optimal cutpoint might be challenging to identify.
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S2 Additional Simulation Results for Problem with

prespecified cutpoint

In this section, additional simulation results when c is prespecified are pre-

sented. For each set of combination, simulations are repeated R = 1000

times. Three different sample sizes (n = 100, 300, 500) are considered for

scenarios 1-9 described in Table 1 in Section 6. It is worth noting that

the prespecified cutpoint c0 = 0.5 for Cases 1-8 and c0 = 0.52 for Case 9

are indeed the optimal cutpoints cb under the alternative hypothesis in our

settings. We calculate the empirical size and empirical power of the test

according to Theorem 2. As summarized in Table S2, for configurations

1-5, the empirical size of the test remains close to the nominal 5% level and

exhibits minimal change with increasing sample size. The empirical power

exceeds 85% in most cases, and increases with the sample size and with the

increase in true |θcb|, as listed in Table 1.

S3 Minimum p-value Method

In this section, we explore another method commonly used in the anal-

ysis of data from clinical trials known as the minimum p-value method.

Here, we define our test statistic as the most significant one, given by



S3. MINIMUM p-VALUE METHOD

Table S2: Empirical size and power (in percentage) of the test under null hypothesis

and alternative hypothesis when cutpoint c is given for significance level α = 0.05. Here

configurations 1-5 are for size, and configurations 6a-9 are for power.

n 1 2 3 4 5 6a 7a 8 9

100 4.5 4.4 4 3.7 3.5 14.3 87 100 100

300 4.9 6 5.4 5 4.3 31.2 100 100 100

500 4.5 4.5 4.2 4.2 4.4 49.4 100 100 100

supc∈[ℓ,u]

∣∣∣∣√nθ̂n,c√
σ̂2
n,c

∣∣∣∣. Meanwhile, for the bootstrap method outlined in Sec-

tion 4.1, we substitute the statistic |θ̂n,c| by
∣∣∣∣√nθ̂n,c√

σ̂2
n,c

∣∣∣∣ and use it as the basis

of the bootstrap to test whether the predictive effects exist or not. Upon

rejecting the null hypothesis, the optimal cutpoint c̃n is determined as the

value that yields the lowest among all calculated p-values by Theorem 2’s

method, expressed as:

c̃n = arg min
c∈[ℓ,u]

2

[
1− Φ

(∣∣∣∣∣
√
nθ̂n,c√
σ̂2
n,c

∣∣∣∣∣
)]

= arg max
c∈[ℓ,u]

|µc| , µc =

√
nθ̂n,c√
σ̂2
n,c

,

(S3.1)

where Φ is the distribution function of a standard normal variable.

Simulation studies are conducted to assess the performance of the min-

imum p-value method and the corresponding bootstrap test. The setups

and configurations under null hypothesis and alternative hypothesis remain

identical to those detailed in Section 6.
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Table S3: The empirical size (in percentage) and power of minimum p-value method

under null hypothesis and alternative hypothesis when the cutpoint is not given for

significance level α = 0.05. Configurations 1-5 focus on size, while configurations 6-9,

where cb is considered to be 0.5 for configurations 6-8 and 0.52 for configuration 9, are

for empirical power.

n 1 2 3 4 5 6a 7a 8 9

300 PB 4.9 4.8 4.6 4.2 5.2 14.4 98.3 100 100

WB 33.8 35.2 32 35.7 35.2 63.3 100 100 100

500 PB 4.7 4.8 4.5 6.9 5.9 21.2 100 100 100

WB 39.7 37.5 30.4 38.2 38.4 73 100 100 100

Table S4: Empirical bias and standard errors of the estimate of cb under alternative

hypothesis.

n=300 n=500

cb Bias SE Bias SE

6a 0.5 0.0095 0.226 0.0126 0.0872

6b 0.7 -0.1143 0.233 0.0151 0.0667

7a 0.5 -0.0002 0.2035 0.001 0.0524

7b 0.7 -0.0948 0.2182 0.0143 0.044

8 0.5 -0.0188 0.1098 -0.0134 0.0938

9 0.52 -0.0093 0.2070 -0.0030 0.1934

Table S3 provides the empirical size and power of the bootstrap test

(PB) based on the minimum p-value method. The results are similar to
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those by the profile method, where the empirical size of PB is close to the

nominated significant level 5% under the null hypothesis and the empirical

power increases as sample sizes increase. The minimum p-value method

also yields precise estimates, as indicated in Table S4, where the empirical

bias and standard errors demonstrate relatively small values for most con-

figurations. The trend of increasing accuracy is also seen when the sample

size is increasing and true |θcb| is larger.

S4 Additional Results on Real Data and Extensions

S4.1 Additional Results on Real Data

In this section, we present additional results on the advanced colorectal

cancer dataset.

Figure 1: (A): The histogram of HGB from baseline at 8 weeks, the vertical dash line indi-

cates the cutpoint estimated (110) by profile method and the minimum p-value method.

(B): The scatter plot illustrates the trend of θ̂n,c at each value of HGB from baseline at

8 weeks, with the most significant absolute value observed at 110.
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Table S5: Estimated ĉn and c̃n for EREG, LDH, ALKPH and HGB by profile method

and minimum p-value method respectively, and the corresponding p-values based on the

bootstrap method. The bootstrap repetition number is B=2000.

EREG LDH

Week ĉn pprofile c̃n pmini Week ĉn pprofile c̃n pmini

4 8.12 0.190 8.12 0.183 4 277 0.691 270 0.685

8 8.02 0.232 8.02 0.231 8 328 0.183 328 0.176

16 4.36 0.281 4.36 0.292 16 770 0.682 770 0.677

24 4.37 0.400 4.89 0.470 24 245 0.083 245 0.080

ALKPH HGB

Week ĉn pprofile c̃n pmini Week ĉn pprofile c̃n pmini

4 180 0.500 180 0.500 4 112 0.192 110 0.230

8 116 0.655 116 0.626 8 110 0.007 110 0.005

16 116 0.380 116 0.370 16 119 0.662 119 0.646

24 89 0.250 91 0.299 24 118 0.087 118 0.083

Table S6: Subgroup analysis of HGB based on ĉn with respect to the change score in

the physical function score at 8 weeks.

Cetuximab+BSC BSC

Biomarker Value n Mean n Mean Difference

HGB <110 27 2.78 17 -23.53 26.31

≥110 99 -4.21 72 -4.91 0.7
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S4.2 Model Dependence, Transformation Sensitivity and Exten-

sions for Multiple Biomarkers

The proposed index

θc = Pr(X1 ≤ Y2 | Z1 > c, Z2 > c)− Pr(X1 ≤ Y2 | Z1 ≤ c, Z2 ≤ c)

quantifies the difference in relative treatment effects between two subgroups

formed by dichotomizing the biomarker at a single threshold c. Hence,

θc measures the degree of predictive heterogeneity that can be captured

through this specific subgrouping rule. If the true treatment-biomarker

interaction depends on a more complex transformation f(Z) rather than

directly on Z, it is indeed possible that θc = 0 for c ∈ [ℓ, u] even when

heterogeneity exists with respect to f(Z). This reflects a limitation of the

dichotomization scheme. One could define

θ(f)c = Pr(X1 ≤ Y2 | f(Z1) > c, f(Z2) > c)−Pr(X1 ≤ Y2 | f(Z1) ≤ c, f(Z2) ≤ c),

which extends the framework to transformations or even multiple biomark-

ers.

Remark 1. θc is based on rank comparisons of biomarker values and is

therefore invariant under any strictly monotone transformation of Z (e.g.,

logarithmic or percentile transformations) that preserves ordering. Specif-

ically, if f is strictly increasing, then θ
(f)
f(c) = θc, implying that such trans-
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formations leave the null hypothesis in (1.3) unchanged. Furthermore, c∗ is

a maximizer of |θc| if and only if f(c∗) is a maximizer of |θ(f)c |.

In practice, the groups can be formed by multiple biomarkers, which

is an area of growing interest that requires further practical investigation.

Below, we outline some potential extensions for handling multiple biomark-

ers.

A straightforward approach is to test each biomarker individually and

apply multiple testing correction methods, such as the Bonferroni correc-

tion, to control the overall Type I error rate. For example, in Section 7 of

our real data application, we analyzed four biomarkers and their associa-

tion with changes in the Physical Function Scale (PFS) from baseline at

8 weeks. With four hypotheses and a desired overall significance level of

α = 0.05, the Bonferroni correction adjusts the individual significance level

to α/4 = 0.0125. In this case, HGB remains a significant biomarker, as its

p-value of 0.007 falls below the adjusted threshold.

Another approach involves combining multiple biomarkers into a single

score, as proposed by Cai et al. (2010). This aggregated score can then

be treated as a new “biomarker”, and our proposed procedure can be ap-

plied to assess its association with the outcome of interest. This method

simplifies the analysis while accounting for the combined effects of multiple
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biomarkers.

A more flexible approach is to consider a hyperplane that separates

groups formed by multiple biomarkers. Specifically, we can define the model

as follows:

θc = Pr(X1 ≤ Y2|g(γTZ1) > c, g(γTZ2) > c)−Pr(X1 ≤ Y2|g(γTZ1) ≤ c, g(γTZ2) ≤ c),

where Z = (Z1, . . . , Zp) is a p-dimensional vector of biomarker measure-

ments, γ is a vector used to combine the biomarkers, c is the unknown cut-

point, and g(·) can be some link functions. This strategy allows for multidi-

mensional group formation. Moreover, the interpretation is straightforward:

if the combination is linear (i.e., without g(·)), the signs of the parameters in

γ suggest whether a biomarker contributes to forming a treatment-sensitive

group or not. However, estimating the hyperplane efficiently presents chal-

lenges, requiring identifiability conditions, approximation techniques, and

dimensional reduction methods; see, e.g., Fan et al. (2017); Li et al. (2021).

One could also construct a predictive tree based on the probabilistic in-

dex, where decision nodes represent splits informed by individual biomark-

ers. While this method provides an interpretable structure, integrating our

testing procedure into the tree framework introduces challenges, particu-

larly in maintaining the statistical properties of the test.
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S4.3 Adjustment for Confounding Variables

The proposed method is developed in a predictive and associational frame-

work. In applications such as randomized clinical trials, the treatment in-

dicator U is independent of baseline variables by design, but the biomarker

Z is a baseline characteristic and may still depend on other covariates B.

When B influences both Z and the outcomes under each treatment, the

marginal measure

θc = Pr(X1 ≤ Y2 | Z1 > c, Z2 > c)− Pr(X1 ≤ Y2 | Z1 ≤ c, Z2 ≤ c)

can reflect heterogeneity induced by the association between B and Z, in

addition to the predictive contribution of the biomarker itself. To isolate

the biomarker-specific component, one can define the conditional quantity

θc|B1,B2 = Pr(X1 ≤ Y2 | Z1 > c, Z2 > c,B1,B2)−Pr(X1 ≤ Y2 | Z1 ≤ c, Z2 ≤ c,B1,B2),

and its population average θadjc = EB1,B2 [θc|B1,B2 ], which adjusts for the

distribution of baseline covariates and represents the biomarker’s predic-

tive contribution after accounting for baseline imbalance. Both quantities

are associational rather than causal, as the probabilistic index compares

outcome distributions without invoking potential-outcome assumptions.

Directly conditioning on high-dimensional B can be challenging. A

practical approach is to embed the probabilistic index within a regression
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framework. Following Thas et al. (2012); De Schryver and De Neve (2019),

one may specify a probabilistic-index model for

Pr(X1 ≤ Y2 | Z1, Z2,B1,B2) = m
(
α I(Z1 > c, Z2 > c)+β⊤

1 B1+β⊤
2 B2+γ

)
,

wherem(·) is a user-specified link function mapping R to (0, 1) and (α,β1,β2, γ)

are regression parameters. For fixed B1 and B2, a nonzero α indicates dif-

ferential probabilistic treatment effects between the subgroups defined by

c, after adjusting for covariates. This regression formulation is parametric

and relies on correct model specification.

Alternatively, one may estimate the conditional probability index semi-

parametrically or nonparametrically using flexible machine learning (ML)

methods (Chernozhukov et al., 2018; Mi et al., 2021). In particular, a

double/debiased machine learning (DML) approach could target θadjc by

combining cross-fitted ML estimates of the nuisance components, such as

Pr(X1 ≤ Y2 | Z1, Z2,B1,B2) and Pr(Z > c | B), in an orthogonal esti-

mating equation. Such an extension would provide a flexible adjustment

framework while preserving the associational interpretation of θadjc . We

view both the regression-based and DML-based extensions as interesting

directions for future research.
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S4.4 Power Considerations and Potential for Hybrid Testing

The proposed procedure is built upon the probabilistic index, which natu-

rally accommodates both continuous and ordinal outcomes. When X and

Y are ordinal, their numerical means are not well-defined or meaningful,

whereas the event {X ≤ Y } remains well defined. This makes it challeng-

ing, in general, to combine rank-based and mean-based approaches within

a unified framework. When X and Y are numerical, however, one could

consider a mean-based contrast such as

θ̃c = E[X1 − Y2 | Z1 > c, Z2 > c]− E[X1 − Y2 | Z1 ≤ c, Z2 ≤ c],

and develop hybrid statistics that incorporate both θc and θ̃c to balance

robustness (to heavy-tailed distributions) and power.

A second avenue is to consider semiparametric methods such as the

density ratio model (Fokianos and Troendle, 2007; Jiang and Tu, 2012; Jiang

et al., 2016), which specifies a parametric link between two distributions

while retaining flexibility. Specifically, let f c+
X (x) and f c+

Y (y) denote the

densities of X and Y in the biomarker-positive subgroup (Z > c), with

f c−
X (x) and f c−

Y (y) defined analogously for the biomarker-negative subgroup.
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A density ratio model assumes

f c+
X (x) = exp(α + β⊤h(x))f c+

Y (x),

f c−
X (x) = exp(γ + λ⊤g(x))f c−

Y (x),

where h(x) and g(x) are known link functions, and (α,β, γ,λ) are pa-

rameters. Estimation can proceed via profile likelihood methods (Qin and

Zhang, 1997; Fokianos et al., 2001; Fokianos and Troendle, 2007; Jiang and

Tu, 2012), giving fitted distributions f̂ c+
X , f̂ c+

Y , f̂ c−
X , f̂ c−

Y . Plugging these into

distributional definition of θc in Remark 2, θc can then be estimated as

θ̂n,c =

∫
F̂ c+
X (x)dF̂ c+

Y (x)−
∫

F̂ c−
X (x)dF̂ c−

Y (x).

This framework retains flexibility while introducing a parametric compo-

nent that can improve efficiency, thus serving as a natural hybrid between

distribution-based and model-based approaches. However, it applies only

to numerical responses. A full theoretical development is beyond the scope

of the present paper and will be pursued in future work.

Finally, when a reasonable guess about the potential cutpoint is avail-

able, we can develop a hybrid test statistic to improve power. Recall the

definition of θ̂n,c in (2.6). Define

Ŝn,hybrid :=
√
n

(
sup
c∈[ℓ,u]

(1− ϵ)|θ̂n,c|+ ϵ|θ̂n,cg |

)
,
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where cg is a user-supplied value and ϵ ∈ [0, 1] determines how much weight

is given to the user-specified component. When ϵ = 0, the statistic reduces

to Ŝn for the unknown cutpoint problem in (1.3), while larger values of ϵ

allow the test to focus more on θcg . This hybridization can improve power

when cg is close to the true optimal cutpoint if it exists.

The bootstrap procedure described in Section 4.1 can be directly adapted

for this hybrid test. Specifically, for each bootstrap sample, we compute

the bootstrap version of the hybrid test statistic as

Ŝ∗
n,hybrid =

√
n

(
max
c∈[ℓ,u]

(1− ϵ)|θ̂∗n,c − θ̂n,c|+ ϵ|θ̂∗n,cg − θ̂n,cg |
)
.

The empirical distribution of Ŝ∗
n,hybrid over all bootstrap replications pro-

vides an estimate of the sampling distribution of the hybrid statistic under

the null. The p-value can be computed as 1 − F ∗
n,hybrid(Ŝn,hybrid), where

F ∗
n,hybrid denotes the distribution function of the boostrap test statistic

Ŝ∗
n,hybrid.

Table S7 summarizes the empirical size and power of the hybrid test

under several configurations, which are described in Table 1 of Section 6.1.

An additional Case 10 is included, in which X ∼ E(0.7+0.2× I(Z > 0.5)),

and Y ∼ E(0.3− 0.2× I(Z > 0.5)), with cb = 0.5 and |θcb| = 0.2. Cases 1

and 3 are under null hypothesis, while Cases 6a and 10 are under alternative

hypothesis.
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Table S7: The empirical size and power (in percentage) of the hybrid test under the

null and alternative hypotheses at a significance level of α = 0.05. Configurations 1 and

3 correspond to empirical size, while Configurations 6a and 10 correspond to empirical

power. Bootstrap replications: B= 1000; simulation rounds: 1000.

cg = 0.3 cg = 0.5 cg = 0.6

ϵ 1 3 6a 10 ϵ 1 3 6a 10 ϵ 1 3 6a 10

0 5.1 5.2 20.5 85.6 0 5.1 5.2 20.5 85.6 0 5.1 5.2 20.5 85.6

0.1 6.9 5.9 22.2 84.1 0.1 5.0 6.3 20.6 87.8 0.1 5.7 5.0 20.9 87.8

0.3 4.7 3.4 20.6 85.0 0.3 5.7 4.2 29.1 94.4 0.3 4.1 4.1 22.8 92.5

0.5 3.4 4.7 19.7 77.8 0.5 5.0 5.0 33.4 97.8 0.5 5.3 3.8 24.0 94.4

0.7 6.8 5.9 21.6 74.4 0.7 6.3 5.9 26.3 96.9 0.7 4.6 4.1 24.4 93.8

0.9 5.6 5.0 20.3 69.4 0.9 6.4 5.0 25.3 96.9 0.9 7.0 5.3 24.7 94.4

Each block corresponds to a different guessed cutpoint cg, and we report

results for various values of ϵ. The results indicate that the hybrid procedure

maintains good size control while offering improved power for moderate

values of ϵ under alternative hypothesis, particularly when the guessed cg is

close to the optimal cutpoint (i.e., 0.5). A systematic method for selecting

ϵ ∈ (0, 1) is left for future research.
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S5 Notations

We first establish certain notations for clarity and coherence. For an ar-

bitrary index set S, let ℓ∞(S) denote the space of uniformly bounded,

real-valued functions f : S → R equipped with the sup norm ∥f∥∞ =

sups∈S |f(s)|. For a pseudometric space (S, d), N(S, d, ϵ) refers to the ϵ-

covering number of (S, d), i.e., the minimum number of closed d-balls with

radius at most ϵ that cover S. For a probability space (S,S, P ) and a

measurable function f : S → R, we use Pf to denote the integral of the

function f with respect to the probability measure P , that is, Pf =
∫
fdP .

For q ∈ [1,∞], we use the notation ∥·∥P,q := (P |f |q)1/q := (
∫
|f |qdP )1/q

to denote the Lq(P )-norm. We write Xn = OP (1) (resp. oP (1)) if the se-

quence of random variables Xn is bounded in probability (resp. converges

to 0 in probability). For two sequences of positive deterministic numbers

{an : n ≥ 1} and {bn : n ≥ 1}, we write an = O(bn) (resp. an = o(bn)) if

lim supn→∞ an/bn < ∞ (resp. limn→∞ an/bn = 0).

Let H be a class of symmetric measurable functions h : Sr → R, and

define the associated U -process of order r as follows:

U (r)
n (h) =

1(
n
r

) ∑
(i1,...,ir)∈In,r

h (Xi1 , ..., Xir) , h ∈ H, (S5.1)

where
(
n
r

)
= n!

r!(n−r)!
denotes the number of r-combinations, and In,r =
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{(i1, ..., ir) : 1 ≤ i1 < i2 < ... < ir ≤ n}. For each k = 1, ..., r, let P r−kh de-

note the function on Sk defined by P r−kh(x1, ...xk) = E [h(x1, ..., xk, Xk+1, ..., Xr)].

For a distribution Q on Sr, define ∥Q∥H = suph∈H |Qh|.

Define

S := {(t, u, z) ∈ R× {0, 1} × R}. (S5.2)

Recall that Di = (Ti, Ui, Zi), i ∈ [n] are independently and identically dis-

tributed observations taking values in S. For ℓ ≤ c ≤ u, we define

W (1)
c,n =

2

n(n− 1)

∑
1≤i<j≤n

w(1)
c (Di,Dj), W (2)

c,n =
2

n(n− 1)

∑
1≤i<j≤n

w(2)
c (Di,Dj),

M (1)
c,n =

2

n(n− 1)

∑
1≤i<j≤n

m(1)
c (Di,Dj), M (2)

c,n =
2

n(n− 1)

∑
1≤i<j≤n

m(2)
c (Di,Dj),

(S5.3)

which are U statistics with the symmetric kernels w
(1)
c (·, ·), w(2)

c (·, ·),m(1)
c (·, ·)

and m
(2)
c (·, ·) defined respectively as

w(1)
c (Di,Dj) := Ti,j(1− Ui)UjZ

c+
i Zc+

j + Tj,i(1− Uj)UiZ
c+
i Zc+

j ,

w(2)
c (Di,Dj) := Ti,j(1− Ui)UjZ

c−
i Zc−

j + Tj,i(1− Uj)UiZ
c−
i Zc−

j ,

m(1)
c (Di,Dj) := (1− Ui)UjZ

c+
i Zc+

j + (1− Uj)UiZ
c+
i Zc+

j ,

m(2)
c (Di,Dj) := (1− Ui)UjZ

c−
i Zc−

j + (1− Uj)UiZ
c−
i Zc−

j .

(S5.4)
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We define the following functions: for 1 ≤ i ̸= j ≤ n and c ∈ [ℓ, u],

w̄(1)
c (Di) := E

[
w(1)

c (Di,Dj)|Di

]
=
[
(1−G(+)(Ti−|c, 1))(1− Ui)λ+G(+)(Ti|c, 0)Ui(1− λ)

]
Zc+

i (1− F (c)),

w̄(2)
c (Di) := E

[
w(2)

c (Di,Dj)|Di

]
=
[
(1−G(−)(Ti−|c, 1))(1− Ui)λ+G(−)(Ti|c, 0)Ui(1− λ)

]
Zc−

i F (c),

m̄(1)
c (Di) := E

[
m(1)

c (Di,Dj)|Di

]
= [(1− Ui)λ+ Ui(1− λ)]Zc+

i (1− F (c)),

m̄(2)
c (Di) := E

[
m(2)

c (Di,Dj)|Di

]
= [(1− Ui)λ+ Ui(1− λ)]Zc−

i F (c),

(S5.5)

In the above, we recall that G(+)(t|c, k) = Pr(T ≤ t|Z > c, U = k),

G(−)(t|c, k) = Pr(T ≤ t|Z ≤ c, U = k), k = 0, 1 is defined in (2.5).

Further, note that for 1 ≤ i ̸= j ≤ n, and c ∈ [ℓ, u],

E
[
w(1)

c (Di,Dj)
]
= 2λ(1− λ) Pr(X1 ≤ Y2|Z1 > c, Z2 > c)(1− F (c))2 = E

[
W (1)

c,n

]
,

E
[
w(2)

c (Di,Dj)
]
= 2λ(1− λ) Pr(X1 ≤ Y2|Z1 ≤ c, Z2 ≤ c)F 2(c) = E

[
W (2)

c,n

]
,

E
[
m(1)

c (Di,Dj)
]
= 2λ(1− λ)(1− F (c))2 = E

[
M (1)

c0,n

]
,

E
[
m(2)

c (Di,Dj)
]
= 2λ(1− λ)F 2(c) = E

[
M (2)

c0,n

]
.

(S5.6)

Recall the definition of S in (S5.2). Define the following constant func-

tion on S2: F (1)(d1,d2) = 1 for d1,d2 ∈ S. Consider the function classes
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F1, F2, F3 and F4 on S2 defined as follows:

F1 = {S2 ∋ (d1,d2) 7→ t1,2(1− u1)u2z
c+
1 zc+2 + t2,1(1− u2)u1z

c+
1 zc+2 : c ∈ [ℓ, u]},

F2 = {S2 ∋ (d1,d2) 7→ t1,2(1− u1)u2z
c−
1 zc−2 + t2,1(1− u2)u1z

c−
1 zc−2 : c ∈ [ℓ, u]},

F3 = {S2 ∋ (d1,d2) 7→ (1− u1)u2z
c+
1 zc+2 + (1− u2)u1z

c+
1 zc+2 : c ∈ [ℓ, u]},

F4 = {S2 ∋ (d1,d2) 7→ (1− u1)u2z
c−
1 zc−2 + (1− u2)u1z

c−
1 zc−2 : c ∈ [ℓ, u]},

(S5.7)

where di = (ti, ui, zi) and ti,j = I(ti ≤ tj) for i, j ∈ {1, 2}. It is clear that

F (1)(·) is an envelope function for these function classes. Further, due to

Example 2.6.1 in Van der Vaart and Wellner (1996) and the permanence

property (Van der Vaart and Wellner, 1996, Lemma 2.6.18), F1, F2, F3

and F4 are VC-subgraph classes (Van der Vaart and Wellner, 1996, Section

2.6.2).

Note that {W (1)
c,n : c ∈ [ℓ, u]}, {W (2)

c,n : c ∈ [ℓ, u]} {M (1)
c,n : c ∈ [ℓ, u]} and

{M (2)
c,n : c ∈ [ℓ, u]} are respectively the U -processes indexed by F1, F2, F3

and F4.

S6 Proofs in the Case with prespecified cutpoint

Proof of Theorem 1. Recall that F is the distribution function of Z with

0 < F (ℓ) < F (u) < 1 and c0 ∈ [ℓ, u], and that U and Z are independent.
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We note the following decomposition:

√
n
(
θ̂n,c0 − θc0

)
=

√
n

W
(1)
c0,n

M
(1)
c0,n

− W
(2)
c0,n

M
(2)
c0,n

−

E
[
W

(1)
c0,n

]
E
[
M

(1)
c0,n

] − E
[
W

(2)
c0,n

]
E
[
M

(2)
c0,n

]
 ,

whereW
(1)
c0,n,W

(2)
c0,n,M

(1)
c0,n,M

(2)
c0,n and their kernels w

(1)
c0 (·, ·), w

(2)
c0 (·, ·),m

(1)
c0 (·, ·),

m
(2)
c0 (·, ·) are defined in (S5.3) and (S5.4) with the substitution of c by c0.

Further, the expectations above are given in (S5.6).

As the kernels w
(1)
c0 (·, ·), w

(2)
c0 (·, ·), m

(1)
c0 (·, ·), m

(2)
c0 (·, ·) are all bounded, by

the central limit theorem for U -statistics (Van der Vaart, 2007, Theorem

12.3), we have

√
n



W (1)
c0,n

− E
[
W (1)

c0,n

]
W (2)

c0,n
− E

[
W (2)

c0,n

]
M (1)

c0,n
− E

[
M (1)

c0,n

]
M (2)

c0,n
− E

[
M (1)

c0,n

]


=

2√
n

n∑
i=1



w̄(1)
c0
(Di)− E

[
w̄(1)

c0
(Di)

]
w̄(2)

c0
(Di)− E

[
w̄(2)

c0
(Di)

]
m̄(1)

c0
(Di)− E

[
m̄(1)

c0
(Di)

]
m̄(2)

c0
(Di)− E

[
m̄(2)

c0
(Di)

]


+ oP (1)⇝ N (0, 4Σ),

where w̄
(1)
c0 (·), w̄

(2)
c0 (·), m̄

(1)
c0 (·), m̄

(2)
c0 (·) are defined in (S5.5), 0 = (0, 0, 0, 0)⊤,

and

Σ = cov
(
w̄(1)

c0
(Di), w̄

(2)
c0
(Di), m̄

(1)
c0
(Di), m̄

(2)
c0
(Di)

)
(S6.1)

is the 4× 4 covariance matrix. Due to condition (3.7), Σ has a full rank.

Consider the function g(x, y, z, γ) = x
z
− y

γ
for x, y, z, γ ∈ R and z, γ ̸= 0.

By assumptions, the map g is differentiable at the point β = (E[W
(1)
c0,n], E[W

(2)
c0,n], E[M

(1)
c0,n], E[M

(2)
c0,n]),
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with derivative

g′
β =

 1

E[M
(1)
c0,n]

,− 1

E[M
(2)
c0,n]

,− E[W
(1)
c0,n](

E[M
(1)
c0,n]

)2 , E[W
(2)
c0,n](

E[M
(2)
c0,n]

)2
 . (S6.2)

Applying the Delta method (Van der Vaart, 2007, Theorem 3.1), we

then obtain

√
n
(
θ̂n,c0 − θc0

)
=

2√
n

n∑
i=1

g′
β



w̄(1)
c0
(Di)− E

[
w̄(1)

c0
(Di)

]
w̄(2)

c0
(Di)− E

[
w̄(2)

c0
(Di)

]
m̄(1)

c0
(Di)− E

[
m̄(1)

c0
(Di)

]
m̄(2)

c0
(Di)− E

[
m̄(2)

c0
(Di)

]


+ oP (1)⇝ N (0, σ2

c0
),

where

σ2
c0
= 4g′

βΣg′
β
⊤
. (S6.3)

Since Σ has a full rank and g′
β ̸= 0, we have σ2

c0
is positive.

Proof of Theorem 2. We first define the jackknife pseudo-values for 1 ≤ k ≤

n and their average as follows:

θ̃n,k,Tk
:= (n− 1)θ̂n,c0 − (n− 1)θ̂−k

n,c0
, θ̄n :=

1

n

n∑
k=1

θ̃n,k,Tk
, (S6.4)

where θ̂−k
n,c0

is the estimate of θc based on the sample with the k-th ob-

servation left out. By elementary calculation, we have that σ̂2
n,c0

can be

computed using jackknife pseudo-values:

σ̂2
n,c0

=
1

n− 1

n∑
k=1

(θ̃n,k,Tk
−θ̄n)

2 =
1

n− 1

n∑
k=1

(
θ̃n,k,Tk

− θc0

)2
− n

n− 1

(
θ̄n − θc0

)2
.

(S6.5)
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For each x ∈ R and 1 ≤ k ≤ n, define

θ̃n,k,x := UkZ
c0+
k θ̃

(1)
n,k,x+(1−Uk)Z

c0+
k θ̃

(2)
n,k,x+UkZ

c0−
k θ̃

(3)
n,k,x+(1−Uk)Z

c0−
k θ̃

(4)
n,k,x,

(S6.6)

where, θ̃
(j)
n,k,x for j = 1, 2, 3, 4 are defined as follows:

θ̃
(1)
n,k,x :=

(n− 1)
∑

i ̸=k I(Ti ≤ x) (1− Ui)Z
c0+
i[∑

i ̸=k (1− Ui)Z
c0+
i

] [∑
i ̸=k UiZ

c0+
i + 1

]
−

(n− 1)
∑

i ̸=k

∑
j ̸=k Ti,j(1− Ui)UjZ

c0+
i Zc0+

j[∑
i ̸=k (1− Ui)Z

c0+
i

] [∑
i ̸=k UiZ

c0+
i + 1

] [∑
i ̸=k UiZ

c0+
i

] ,
θ̃
(2)
n,k,x :=

(n− 1)
∑

i ̸=k I(x ≤ Ti)UiZ
c0+
i[∑

i ̸=k (1− Ui)Z
c0+
i + 1

] [∑
i ̸=k UiZ

c0+
i

]
−

(n− 1)
∑

i ̸=k

∑
j ̸=k Ti,j(1− Ui)UjZ

c0+
i Zc0+

j[∑
i ̸=k (1− Ui)Z

c0+
i + 1

] [∑
i ̸=k UiZ

c0+
i

] [∑
i ̸=k (1− Ui)Z

c0+
i

] ,
θ̃
(3)
n,k,x := −

(n− 1)
∑

i ̸=k I(Ti ≤ x) (1− Ui)Z
c0−
i[∑

i ̸=k (1− Ui)Z
c0−
i

] [∑
i ̸=k UiZ

c0−
i + 1

]
+

(n− 1)
∑

i ̸=k

∑
j ̸=k Ti,j(1− Ui)UjZ

c0−
i Zc0−

j[∑
i ̸=k (1− Ui)Z

c0−
i

] [∑
i ̸=k UiZ

c0−
i + 1

] [∑
i ̸=k UiZ

c0−
i

] ,
θ̃
(4)
n,k,x := −

(n− 1)
∑

i ̸=k I(x ≤ Ti)UiZ
c0−
i[∑

i ̸=k (1− Ui)Z
c0−
i + 1

] [∑
i ̸=k UiZ

c0−
i

]
+

(n− 1)
∑

i ̸=k

∑
j ̸=k Ti,j(1− Ui)UjZ

c0−
i Zc0−

j[∑
i ̸=k (1− Ui)Z

c0−
i + 1

] [∑
i ̸=k UiZ

c0−
i

] [∑
i ̸=k (1− Ui)Z

c0−
i

] ,
where

∑
i ̸=k represents

∑n
i=1,i ̸=k. Then by definition, the k-th pseudo-value

θ̃n,k,Tk
is equal to θ̃n,k,x with x substituted by Tk.
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Further, for each x ∈ R and 1 ≤ k ≤ n, define

Ψ̃k,x = UkZ
c0+
k Ψ(1)

x + (1− Uk)Z
c0+
k Ψ(2)

x + UkZ
c0−
k Ψ(3)

x + (1− Uk)Z
c0−
k Ψ(4)

x ,

(S6.7)

where

Ψ(1)
x =

E
[
I(Ti ≤ x) (1− Ui)Z

c0+
i

]
λ(1− λ)(1− F (c0))2

− Pr(X1 ≤ Y2|Z1 > c0, Z2 > c0)

λ(1− F (c0))
,

Ψ(2)
x =

E
[
I(x ≤ Ti)UiZ

c0+
i

]
λ(1− λ)(1− F (c0))2

− Pr(X1 ≤ Y2|Z1 > c0, Z2 > c0)

(1− λ)(1− F (c0))
,

Ψ(3)
x = −

E
[
I(Ti ≤ x) (1− Ui)Z

c0−
i

]
λ(1− λ)F 2(c0)

+
Pr(X1 ≤ Y2|Z1 ≤ c0, Z2 ≤ c0)

λF (c0)
,

Ψ(4)
x = −

E
[
I(x ≤ Ti)UiZ

c0−
i

]
λ(1− λ)F 2(c0)

+
Pr(X1 ≤ Y2|Z1 ≤ c0, Z2 ≤ c0)

(1− λ)F (c0)
,

In Lemma 1, we show that θ̃n,k,x is approximated by Ψ̃k,x uniformly

over 1 ≤ k ≤ n and x ∈ Rn as n → ∞, which implies that if we define

Rn,k := θ̃n,k,Tk
− Ψ̃k,Tk

,

then Mn := max1≤k≤n |Rn,k| = oP (1). Further, due to (S6.5) and by defini-

tion,

σ̂2
n,c0

=
1

n− 1

n∑
k=1

(
Ψ̃k,Tk

− θc0

)2
+

2

n− 1

n∑
k=1

(
Ψ̃k,Tk

− θc0

)
Rn,k +

1

n− 1

n∑
k=1

R2
n,k

+
n

n− 1

(
1

n

n∑
k=1

Ψ̃k,Tk
− θc0 +

1

n

n∑
k=1

Rn,k

)2

. (S6.8)
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Note that

1

n

n∑
k=1

|Rn,k| ≤ Mn = oP (1),
1

n− 1

n∑
k=1

R2
n,k ≤

n

n− 1
M2

n = oP (1)∣∣∣∣∣ 1

n− 1

n∑
k=1

(
Ψ̃k,Tk

− θc0

)
Rn,k

∣∣∣∣∣ ≤
(

1

n− 1

n∑
k=1

∣∣∣Ψ̃k,Tk
− θc0

∣∣∣)Mn = oP (1),

where the last equality is due to the law of large numbers, since {Ψ̃k,Tk
:

k ∈ [n]} are i.i.d.

Finally, we note that for 1 ≤ k ≤ n, E
[
Ψ̃k,Tk

]
= θc0 , and that by

definition,

Ψ̃k,Tk
= 2g′

β

(
w̄(1)

c0
(Dk), w̄

(2)
c0
(Dk), m̄

(1)
c0
(Dk), m̄

(2)
c0
(Dk)

)⊤

,

where we recall g′
β in (S6.2) and w̄

(1)
c0 (·), w̄

(2)
c0 (·), m̄

(1)
c0 (·), m̄

(2)
c0 (·) are defined

in (S5.5),

As a result, due to the definition of Σ in (S6.1) and σ2
c0

in (S6.3), we

have

Var(Ψ̃k,Tk
) = 4g′

βΣg′
β
⊤
= σ2

c0
.

Then the proof is complete by the law of large numbers and the central

limit theorem.

Recall the definition of θ̃n,k,x and Ψ̃k,x in (S6.6) and (S6.7) respectively.

Lemma 1. Suppose that condition (C.0) holds. Then we have

max
1≤k≤n

sup
x∈R

∣∣∣θ̃n,k,x − Ψ̃k,x

∣∣∣ = oP (1).
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Proof. By the definition of θ̃n,k,x and Ψ̃k,x in (S6.6) and (S6.7) respectively,

it suffices to show that for j = 1, . . . , 4,

max
1≤k≤n

sup
x∈R

∣∣∣θ̃(j)n,k,x −Ψ(j)
x

∣∣∣ = oP (1).

By the union bound, it suffices to show that for any ϵ > 0 and for j =

1, . . . , 4,

lim
n→∞

nPr

(
sup
x∈R

∣∣∣θ̃(j)n,1,x − Ψ̃(j)
x

∣∣∣ > ϵ

)
= 0. (S6.9)

We only present details for the case j = 1, noting that similar arguments

apply to j = 2, 3, 4.

Due to monotonicity, it suffices to show that (S6.9) holds for all suffi-

ciently small ϵ > 0. Now, we fix some ϵ > 0 such that

ϵ ≤ min
{
(1−λ)(1−F (c0)), λ(1−F (c0)), (1−λ)F (c0), λF (c0)

}
. (S6.10)

Define the following event

Bn :=

{∣∣∣∣∣ 1

n− 1

∑
i ̸=1

(1− Ui)Z
c0+
i − (1− λ)(1− F (c0))

∣∣∣∣∣ ≤ ϵ/2,∣∣∣∣∣ 1

n− 1

∑
i ̸=1

UiZ
c0+
i − λ(1− F (c0))

∣∣∣∣∣ ≤ ϵ/2,∣∣∣∣∣ 1

n− 1

∑
i ̸=1

(1− Ui)Z
c0−
i − (1− λ)F (c0)

∣∣∣∣∣ ≤ ϵ/2,∣∣∣∣∣ 1

n− 1

∑
i ̸=1

UiZ
c0−
i − λF (c0)

∣∣∣∣∣ ≤ ϵ/2

}
.
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Due to (S6.10), on the event Bn, we have

min

{
1

n− 1

∑
i ̸=1

(1− Ui)Z
c0+
i ,

1

n− 1

∑
i ̸=1

UiZ
c0+
i

}
≥ ϵ/2

min

{
1

n− 1

∑
i ̸=1

(1− Ui)Z
c0−
i ,

1

n− 1

∑
i ̸=1

UiZ
c0−
i

}
≥ ϵ/2.

Further, we define the following event:

An,1 :=

{
sup
x∈R

∣∣∣∣∣ 1

n− 1

∑
i ̸=1

I(Ti ≤ x) (1− Ui)Z
c0+
i − E

[
I(Ti ≤ x) (1− Ui)Z

c0+
i

]∣∣∣∣∣ ≤ ϵ3

16

}
,

An,2 :=

{∣∣∣∣∣ 1

(n− 1)2

[∑
i ̸=1

(1− Ui)Z
c0+
i

][∑
i ̸=1

UiZ
c0+
i + 1

]
− λ(1− λ)(1− F (c0))

2

∣∣∣∣∣ ≤ ϵ5

16

}
,

An,3 :=

{∣∣∣∣∣ 2

(n− 1)(n− 2)

∑
2≤i<j≤n

w(1)
c0,n

(Di,Dj)− E
[
W (1)

c0,n

]∣∣∣∣∣ ≤ ϵ4

32

}
,

An,4 :=

{∣∣∣∣∣ 1

(n− 1)3

[∑
i ̸=1

(1− Ui)Z
c0+
i

][∑
i ̸=1

UiZ
c0+
i + 1

][∑
i ̸=1

UiZ
c0+
i

]
− λ2(1− λ)(1− F (c0))

3

∣∣∣∣∣ ≤ ϵ7

32

}
.

Since E
[
I(T1 ≤ x) (1− U1)Z

c0+
1

]
≤ 1 and E

[
W

(1)
c0,n

]
≤ 1, by definition, we

have

Bn ∩ An,1 ∩ An,2 ∩ An,3 ∩ An,4 ⊂
{∣∣∣θ̃(j)n,1,x − Ψ̃(j)

x

∣∣∣ ≤ ϵ.
}

By the union bound, we have

Pr

(
sup
x∈R

∣∣∣θ̃(j)n,1,x − Ψ̃(j)
x

∣∣∣ > ϵ

)
≤ Pr(B∁n) + Pr(A∁n,1) + Pr(A∁n,2) + Pr(A∁n,3) + Pr(A∁n,4).

Since Ui, Ti,j and Z+
c0

are all bounded by 1, by McDiarmid’s inequality

(McDiarmid, 1989), there exists some constant C > 0 such that for n ≥ 1

Pr(B∁n) + Pr(A∁n,2) + Pr(A∁n,3) + Pr(A∁n,4) ≤ Ce−nϵ14/C . (S6.11)
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Finally, we bound the probability of the event A∁n,1. Define

Zn := sup
x∈R

∣∣∣∣∣ 1

n− 1

∑
i ̸=1

I(Ti ≤ x) (1− Ui)Z
c0+
i − E

[
I(Ti ≤ x) (1− Ui)Z

c0+
i

]∣∣∣∣∣ .

By the bounded differences inequality (Giné and Nickl, 2021, Theorem

3.3.14) (see in particular case (b) in (Giné and Nickl, 2021, Example 3.3.13)),

there exists some constant C > 0 such that

Pr(Zn ≥ E[Zn] + t) ≤ e−2nt2 , for t > 0.

Further, by the maximal inequality (Van der Vaart and Wellner, 1996,

Corollary 2.2.8), for some constant C > 0,

E[Zn] ≤ C/
√
n.

Combining two parts, for some constant C > 0 and large enough n, we have

Pr(A∁n,1) = Pr(Zn ≥ ϵ3/16) ≤ Ce−nϵ6/C .

Thus, together with (S6.11), we prove (S6.9). The proof is complete.
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S7 Proofs regarding hypothesis testing with unknown

cut-point

Proof of Theorem 3. Under H0, θc = 0 for all c ∈ [ℓ, u]. Note that for any

c ∈ [ℓ, u],
√
nθ̂n,c can be expressed as

√
nθ̂n,c =

√
n

W
(1)
c,n

M
(1)
c,n

−
E
[
W

(1)
c,n

]
E
[
M

(1)
c,n

]
−

√
n

W
(2)
c,n

M
(2)
c,n

−
E
[
W

(2)
c,n

]
E
[
M

(2)
c,n

]


=

√
n
(
W

(1)
c,n − E

[
W

(1)
c,n

])
M

(1)
c,n

+ E
[
W (1)

c,n

]√
n

 1

M
(1)
c,n

− 1

E
[
M

(1)
c,n

]


−

√
n
(
W

(2)
c,n − E

[
W

(2)
c,n

])
M

(2)
c,n

− E
[
W (2)

c,n

]√
n

 1

M
(2)
c,n

− 1

E
[
M

(2)
c,n

]
 ,

(S7.1)

where recall that W
(1)
c,n , W

(2)
c,n , M

(1)
c,n and M

(2)
c,n are defined in (S5.3), and{

W
(1)
c,n : c ∈ [ℓ, u]

}
,
{
W

(2)
c,n : c ∈ [ℓ, u]

}
,
{
M

(1)
c,n : c ∈ [ℓ, u]

}
and

{
M

(2)
c,n : c ∈ [ℓ, u]

}
are U processes indexed by c ∈ [ℓ, u].

Define two index sets T and T ′ as follows:

T = [ℓ, u]× {1, . . . , 4}, T ′ = [ℓ, u]× {1, 2}.

Since F1, F2, F3 and F4 defined in (S5.7) are VC-subgraph classes (Van der

Vaart and Wellner, 1996, Section 2.6.2), by the central limit theorem for U

process (Peña and Giné, 1999, Theorem 5.3.3; Arcones and Gine, 1993, The-

orem 4.1), there exists a tight centered Gaussian process {G1,c, G2,c, G3,c, G4,c :
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c ∈ [ℓ, u]} such that



√
n
(
W (1)

c,n − E
[
W (1)

c,n

])
√
n
(
M (1)

c,n − E
[
M (1)

c,n

])
√
n
(
W (2)

c,n − E
[
W (2)

c,n

])
√
n
(
M (2)

c,n − E
[
M (2)

c,n

])
: c ∈ [ℓ, u]


⇝



G1,c

G2,c

G3,c

G4,c

: c ∈ [ℓ, u]


in ℓ∞(T ).

Let Dϕ = D[ℓ, u] be the space of cadlag functions on [ℓ, u] equipped

with the sup norm. Now, define the pointwise inverse map ϕ(·) : Dϕ 7→ Dϕ

as follows: for {Dc : c ∈ [ℓ, u]} ∈ Dϕ,

ϕ ({Dc : c ∈ [ℓ, u]}) =


{0 : c ∈ [ℓ, u]}, if infc∈[ℓ,u] |Dc| = 0

{Dc
−1 : c ∈ [ℓ, u]}, otherwise

. (S7.2)

By Section 2.2.4 and Lemma 12.2 of Kosorok (2008), due to condition

(C.0 ), ϕ(·) is Hadamard-differentiable, tangentially to Dϕ, at {E[M
(1)
c,n ] : c ∈

[ℓ, u]} and {E[M
(2)
c,n ] : c ∈ [ℓ, u]} with the derivative map ϕ′

{E[M
(1)
c,n]}

({Dc}) =

{−Dc/(E[M
(1)
c,n ])2} and ϕ′

{E[M
(2)
c,n]}

({Dc}) = {−Dc/(E[M
(2)
c,n ])2} respectively

for any {Dc} ∈ Dϕ, where in the above c ∈ [ℓ, u]. Then by the functional
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delta method (Kosorok, 2008, Theorem 2.8), we have

√
n
(
W (1)

c,n − E
[
W (1)

c,n

])
√
n
(
M (1)

c,n

−1 − E
[
M (1)

c,n

]−1
)

√
n
(
W (2)

c,n − E
[
W (2)

c,n

])
√
n
(
M (2)

c,n

−1 − E
[
M (2)

c,n

]−1
)
: c ∈ [ℓ, u]


⇝



G1,c

−G2,c/(E[M (1)
c,n ])

2

G3,c

−G4,c/(E[M (2)
c,n ])

2

: c ∈ [ℓ, u]


in ℓ∞(T ).

Moreover, by applying the law of large numbers for U processes (Peña and

Giné, 1999, Corollary 5.2.3) and the continuous mapping theorem (Van der

Vaart and Wellner, 1996, Theorem 1.3.6), we can conclude that almost

surely,
M (1)

c,n

−1

M (2)
c,n

−1

: c ∈ [ℓ, u]

→


E
[
M (1)

c,n

]−1

E
[
M (2)

c,n

]−1

: c ∈ [ℓ, u]

 in ℓ∞(T ′).

Then by Slutsky’s theorem (Kosorok, 2008, Theorem 7.15) and continuous

mapping (Van der Vaart andWellner, 1996, Theorem 1.3.6) again, we obtain

that under H0, {
√
nθ̂n,c : c ∈ [ℓ, u]} converges weakly to a tight centered

Gaussian process {Gc : c ∈ [ℓ, u]} in ℓ∞([ℓ, u]), where

Gc := E
[
M (1)

c,n

]−1
G1,c −

E
[
W

(1)
c,n

]
E
[
M

(1)
c,n

]2G2,c − E
[
M (2)

c,n

]−1
G3,c +

E
[
W

(2)
c,n

]
E
[
M

(2)
c,n

]2G4,c.

(S7.3)

The last statement is again due to the continuous mapping theorem (Van der

Vaart and Wellner, 1996, Theorem 1.3.6). The proof is complete.
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S7.1 Bootstrap consistency for hypothesis testing with unknown

cut-point

Proof of Theorem 4. For each c,
√
n(θ̂∗n,c − θ̂n,c) can be written as:

√
n(θ̂∗n,c − θ̂n,c) =

√
n
(
W

(1)
c,n

∗
−W

(1)
c,n

)
M

(1)
c,n

∗ +W (1)
c,n

√
n

(
1

M
(1)
c,n

∗ − 1

M
(1)
c,n

)

−

√
n
(
W

(2)
c,n

∗
−W

(2)
c,n

)
M

(2)
c,n

∗ −W (2)
c,n

√
n

(
1

M
(2)
c,n

∗ − 1

M
(2)
c,n

)
,

where W
(1)
c,n

∗
, W

(2)
c,n

∗
, M

(1)
c,n

∗
and M

(2)
c,n

∗
are defined by replacing original data

by the bootstrap data in (S5.3). We will apply the central limit theorem for

bootstrapped U -processes (Arcones and Giné, 1994, Theorem 2.1). First,

we verify the two required conditions.

Recall that the function classes F1, F2, F3 and F4 defined in (S5.7) are

VC-subgraph classes with the constant envelope function F (1)(·, ·) = 1 as

mentioned in the proof of Theorem 3. Due to Example 2.6.1 and Theorem

2.6.7 in Van der Vaart and Wellner (1996), for j = 1, . . . , 4,∫ ∞

0

(
sup
Q

logN
(
Fj, ∥·∥Q,2, ϵ∥F (1)∥Q,2

))1/2

dϵ < ∞,

where the supremum is taken over all probability measures Q on the space

S2. Thus condition (i) in (Arcones and Giné, 1994, Theorem 2.1) is satisfied.

Further, since the envelope function F (1) is constant, the condition (ii) in

(Arcones and Giné, 1994, Theorem 2.1) is also trivially met.
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Therefore, we can apply the central limit theorem for bootstrapped U -

processes (Arcones and Giné, 1994, Theorem 2.1). Recall the definitions of

G1,c, G2,c, G3,c, G4,c in Theorem 3. As n → ∞, conditional on (Ti, Ui, Zi), i ≥

1, for almost every sequence (Ti, Ui, Zi), i ≥ 1, we have:

√
n
(
W (1)

c,n

∗ − V (1)
c,w,n

)
√
n
(
M (1)

c,n

∗ − V (1)
c,m,n

)
√
n
(
W (2)

c,n

∗ − V (2)
c,w,n

)
√
n
(
M (2)

c,n

∗ − V (2)
c,m,n

)
: c ∈ [ℓ, u]


⇝



G1,c

G2,c

G3,c

G4,c

: c ∈ [ℓ, u]


in ℓ∞(T ),

where {V (1)
c,w,n : c ∈ [ℓ, u]}, {V (1)

c,m,n : c ∈ [ℓ, u]}, {V (2)
c,w,n : c ∈ [ℓ, u]} and

{V (2)
c,m,n : c ∈ [ℓ, u]} are V processes with kernels w

(1)
c (·, ·), m(1)

c (·, ·), w(2)
c (·, ·),

and m
(2)
c (·, ·) respectively. Specifically, for each c,

V (1)
c,w,n =

1

n2

n∑
i=1

n∑
j=1

w(1)
c,n(Di,Dj) =

n(n− 1)

n2
W (1)

c,n ,

V (1)
c,m,n =

1

n2

n∑
i=1

n∑
j=1

m(1)
c,n(Di,Dj) =

n(n− 1)

n2
M (1)

c,n ,

V (2)
c,w,n =

1

n2

n∑
i=1

n∑
j=1

w(2)
c (Di,Dj) =

n(n− 1)

n2
W (2)

c,n ,

V (2)
c,m,n =

1

n2

n∑
i=1

n∑
j=1

m(2)
c,n(Di,Dj) =

n(n− 1)

n2
M (2)

c,n .

As
{

1√
n
W

(1)
c,n : c ∈ [ℓ, u]

}
→ 0 in ℓ∞([ℓ, u]) almost surely (Nolan and Pollard,

1987, Theorem 7), and similar results apply to the other three terms, we can
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conclude that, conditional on (Ti, Ui, Zi), i ≥ 1, for almost every sequence

(Ti, Ui, Zi), i ≥ 1,

√
n
(
W (1)

c,n

∗ −W (1)
c,n

)
√
n
(
M (1)

c,n

∗ −M (1)
c,n

)
√
n
(
W (2)

c,n

∗ −W (2)
c,n

)
√
n
(
M (2)

c,n

∗ −M (2)
c,n

)
: c ∈ [ℓ, u]


⇝



G1,c

G2,c

G3,c

G4,c

: c ∈ [ℓ, u]


in ℓ∞(T ).

Recall that ϕ is the inverse map defined in (S7.2). By Section 2.2.4 and

Lemma 12.2 in Kosorok (2008), the map ϕ is Hadamard-differentiable with

the same derivative map as discussed in the proof of Theorem 3. Then

by the bootstrap version of the functional delta method (Kosorok, 2008,

Theorem 12.1), we obtain that

√
n
(
W (1)

c,n

∗ −W (1)
c,n

)
√
n
(
M (1)

c,n

∗−1
−M (1)

c,n

−1
)

√
n
(
W (2)

c,n

∗ −W (2)
c,n

)
√
n
(
M (2)

c,n

∗−1
−M (2)

c,n

−1
)
: c ∈ [ℓ, u]


⇝



G1,c

−G2,c/(E[M (1)
c,n ])

2

G3,c

−G4,c/(E[M (2)
c,n ])

2

: c ∈ [ℓ, u]


in ℓ∞(T ),

conditional on (Ti, Ui, Zi), i ≥ 1, for almost every sequence (Ti, Ui, Zi), i ≥ 1.

Moreover, by the bootstrap law of large numbers for U processes (Ar-

cones and Giné, 1994) and the continuous mapping theorem (Van der Vaart

and Wellner, 1996, Theorem 1.3.6), conditional on (Ti, Ui, Zi), i ≥ 1, for al-
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most every sequence (Ti, Ui, Zi), i ≥ 1, in ℓ∞(T ′),
M (1)

c,n

∗−1

M (2)
c,n

∗−1
: c ∈ [ℓ, u]

⇝

E
[
M (1)

c,n

]−1

E
[
M (2)

c,n

]−1

: c ∈ [ℓ, u]

 .

Employing the law of large numbers for U processes (Peña and Giné,

1999, Corollary 5.2.3), we can conclude that almost surely,
W (1)

c,n

W (2)
c,n

: c ∈ [ℓ, u]

⇝

E
[
W (1)

c,n

]
E
[
W (2)

c,n

] : c ∈ [ℓ, u]

 in ℓ∞(T ′).

Finally, by the Slutsky’s theorem (Kosorok, 2008, Theorem 7.15) and

continuous mapping theorem (Van der Vaart and Wellner, 1996, Theorem

1.3.6), we have that, conditional on (Ti, Ui, Zi), i ≥ 1, for almost every

sequence (Ti, Ui, Zi), i ≥ 1, the process {
√
n(θ̂∗n,c−θ̂n,c) : c ∈ [ℓ, u]} converges

to the same Gaussian process {Gc : c ∈ [ℓ, u]} in ℓ∞([ℓ, u]) defined in (S7.3).

The previous results, together with Theorem 3, imply that, under H0,

the distribution of supc∈[ℓ,u]{
√
n|θ̂n,c|} can be approximated by the distri-

bution of supc∈[ℓ,u]{
√
n|θ̂∗n,c − θ̂n,c|} by the continuous mapping theorem.

Specifically, we define J := supc∈[ℓ,u] |Gc|, and denote by FJ its cumulative

distribution function and by F−1
J its quantile function. Then we have that

supc∈[ℓ,u]

{√
n|θ̂n,c|

}
⇝ J and that conditional on (Ti, Ui, Zi), i ≥ 1, for

almost every sequence (Ti, Ui, Zi), i ≥ 1,

sup
c∈[ℓ,u]

{√
n|θ̂∗n,c − θ̂n,c|

}
⇝ J.



S8. PROOFS REGARDING CUT-POINT ESTIMATION

Since G is a tight centered Gaussian process, FJ is absolutely con-

tinuous on (0,∞), and F−1
J is continuous and strictly increasing on (0, 1)

(Ledoux and Talagrand, 1991; Davydov et al., 1998). Then by Lemma 21.2

(Van der Vaart, 2007) and the definition of weak convergence, conditional

on almost all sequences (Ti, Ui, Zi), i ≥ 1, for any α ∈ (0, 1), we have as

n → ∞,

Pr
(
p∗adjust ≤ α

)
= Pr

(
√
n sup

c∈[ℓ,u]
|θ̂n,c| ≥ (F ∗

n)
−1 (1− α)

)

→ Pr
(
J − F−1

J (1− α) ≥ 0
)
= α.

The proof is complete.

S8 Proofs regarding cut-point estimation

S8.1 Consistency and convergence rate

Proof of Theorem 5 - consistency. Note that the alternative hypothesis holds,

i.e. θcb ̸= 0. By the definition of ĉn and cb, for any ϵ > 0, we have

Pr (|ĉn − cb| ≥ ϵ) ≤ Pr

(
|θ̂n,cb| ≤ sup

|c−cb|≥ϵ,c∈[ℓ,u]
|θ̂n,c|

)
.

Then by triangle inequality, we have

Pr (|ĉn − cb| ≥ ϵ) ≤ Pr

(
|θcb | − |θ̂n,cb − θcb| ≤ sup

|c−cb|≥ϵ,c∈[ℓ,u]
|θ̂n,c − θc|+ sup

|c−cb|≥ϵ,c∈[ℓ,u]
|θc|

)

= Pr

(
inf

|c−cb|≥ϵ,c∈[ℓ,u]
|θcb| − |θc| ≤ 2 sup

c∈[ℓ,u]
|θ̂n,c − θc|

)
.
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Let δ = inf |c−cb|≥ϵ,c∈[ℓ,u] |θcb| − |θc|. By assumption (C.1 ), δ > 0, and

thus

Pr (|ĉn − cb| ≥ ϵ) ≤ Pr

(
sup
c∈[ℓ,u]

|θ̂n,c − θc| ≥ δ/2

)

≤ Pr

 sup
c∈[ℓ,u]

∣∣∣∣∣∣W
(1)
c,n

M
(1)
c,n

−
E
[
W

(1)
c,n

]
E
[
M

(1)
c,n

]
∣∣∣∣∣∣ ≥ δ

4

+ Pr

 sup
c∈[ℓ,u]

∣∣∣∣∣∣W
(2)
c,n

M
(2)
c,n

−
E
[
W

(2)
c,n

]
E
[
M

(2)
c,n

]
∣∣∣∣∣∣ ≥ δ

4


≤ Pr

 sup
c∈[ℓ,u]

∣∣∣∣∣∣
W

(1)
c,n − E

[
W

(1)
c,n

]
M

(1)
c,n

∣∣∣∣∣∣ ≥ δ

8

+ Pr

 sup
c∈[ℓ,u]

∣∣∣∣∣∣ 1

M
(1)
c,n

− 1

E
[
M

(1)
c,n

]
∣∣∣∣∣∣ ≥ δ

8


+ Pr

 sup
c∈[ℓ,u]

∣∣∣∣∣∣
W

(2)
c,n − E

[
W

(2)
c,n

]
M

(2)
c,n

∣∣∣∣∣∣ ≥ δ

8

+ Pr

 sup
c∈[ℓ,u]

∣∣∣∣∣∣ 1

M
(2)
c,n

− 1

E
[
M

(2)
c,n

]
∣∣∣∣∣∣ ≥ δ

8

 ,

where we use the fact that supc∈[ℓ,u]

∣∣∣E [W (1)
c,n

]∣∣∣ ≤ 1 and supc∈[ℓ,u]

∣∣∣E [W (2)
c,n

]∣∣∣ ≤
1 (see (S5.6)).

Since F1, F2, F3 and F4 defined in (S5.7) are VC-subgraph classes

(Van der Vaart and Wellner, 1996, Section 2.6.2), the proof is complete due

to condition (C.0 ) and the law of large numbers for U processes (Peña and

Giné, 1999, Corollary 5.2.3).

Proof of Theorem 5 - convergence rate. We assume θcb > 0, noting that the

arguments are similar for the case θcb < 0. The goal is to show that for any

ϵ > 0, there exists M > 0 such that

lim sup
n→∞

Pr(n1/3|ĉn − cb| > 2M) < ϵ.

We use a modified “peeling device” (Van der Vaart and Wellner, 1996,
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Theorem 3.2.5). Specifically, for each n, the parameter space minus the

point cb can be partitioned into “peels” Sn,j = {c ∈ [ℓ, u] : 2j−1 < n1/3|c −

cb| ≤ 2j} for j ≥ 1. Due to condition (C.0 ), and since θcb > 0 and the

function c 7→ θc is continuous on [ℓ, u], there exists ι > 0 such that

2λ(1− λ) inf
c∈[ℓ,u]

min
{
(1− F (c))2, F 2(c)

}
≥ ι, and inf

|c−cb|≤ι, c∈[ℓ,u]
θc > 0.

(S8.1)

For this positive ι, we define an event An as follows:

An :=

{
inf

c∈[ℓ,u]
M (1)

c,n ≥ ι/2, inf
c∈[ℓ,u]

M (2)
c,n ≥ ι/2, inf

|c−cb|≤ι,c∈[ℓ,u]
θ̂n,c > 0, |ĉn − cb| ≤ ζ/2

}
,

(S8.2)

where ζ > 0 appears in condition (C.2 ). By the law of large numbers

for U processes (Peña and Giné, 1999, Corollary 5.2.3) and the continuous

mapping theorem (Van der Vaart and Wellner, 1996, Theorem 1.3.6), we

have

sup
c∈[ℓ,u]

∣∣M (1)
c,n − 2λ(1− λ)(1− F (c))2

∣∣ P→ 0, sup
c∈[ℓ,u]

∣∣M (2)
c,n − 2λ(1− λ)F 2(c)

∣∣ P→ 0,

sup
c∈[ℓ,u]

∣∣∣θ̂n,c − θc

∣∣∣ P→ 0.

As a result, together with the consistency of ĉn, we have limn→∞ Pr(A∁n) = 0.
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Then due to condition (C.2 ), we have

Pr
(
n1/3|ĉn − cb| > 2M

)
≤ Pr

(
n1/3|ĉn − cb| > 2M , An

)
+ Pr

(
A∁n

)
≤

∑
j>M

2j−1≤n1/3ζ/2

Pr (ĉn ∈ Sn,j, An) + o(1),

where o(1) denotes a sequence of deterministic numbers that converges to

zero as n → ∞. Since by definition θ̂n,ĉn − θ̂n,cb ≥ 0, then on the event

{ĉn ∈ Sn,j}, it implies that supc∈Sn,j

(
θ̂n,c − θ̂n,cb

)
≥ 0. Thus, we obtain

that

Pr
(
n1/3|ĉn − cb| > 2M

)
≤

∑
j>M

2j−1≤n1/3ζ/2

Pr

(
sup
c∈Sn,j

(
θ̂n,c − θ̂n,cb

)
≥ 0, An

)
+o(1).

Further, by the definition of Sn,j and condition (C.2 ), if 2j−1 ≤ n1/3ζ/2,

then

|c− cb| ≤
2j

n1/3
≤ ζ, |c− cb| >

2j−1

n1/3
⇒ θc − θcb ≤ −κ

22j−2

n2/3
,

where the constant κ appears in condition (C.2 ) and recall that we assume

θcb > 0. Thus, by the Markov inequality, we have

Pr
(
n1/3|ĉn − cb| > 2M

)
≤

∑
j>M

2j−1≤n1/3ζ/2

Pr

(
sup
c∈Sn,j

∣∣∣θ̂n,c − θc − (θ̂n,cb − θcb)
∣∣∣ ≥ κ

22j−2

n2/3
, An

)
+ o (1)

≤ κ−1
∑
j>M

2j−1≤n1/3ζ/2

E

[
sup
c∈Sn,j

(∣∣∣θ̂n,c − θc − (θ̂n,cb − θcb)
∣∣∣)1An

]
n2/3

22j−2
+ o(1),
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Finally, by Lemma 2, for some constant C > 0,

Pr
(
n1/3|ĉn − cb| > 2M

)
≤ Cκ−1

∑
j>M

√
2j/n1/3n2/3

√
n22j−2

+o (1) = Cκ−1
∑
j>M

2−
3
2
j+2+o (1) .

We note that
∑

j>M 2−
3
2
j converges to zero as M → ∞. The proof is

complete.

Recall the constant ι > 0 in (S8.1), and the constant ζ > 0 in condition

(C.2 ). Recall the event An defined in (S8.2).

Lemma 2. Assume the conditions in Theorem 5 hold. There exists K > 0,

that only depends on F and ι, such that for every n ≥ 1 and 0 < δ ≤ ζ, we

have

E

[
sup

|c−cb|≤δ, c∈[ℓ,u]

(∣∣∣θ̂n,c − θc − (θ̂n,cb − θcb)
∣∣∣)1An

]
≤ K

√
δ√
n
.

Proof. In this proof, we use K to denote a constant, that only depends on

F , ι, which may vary from line to line. Further, c is always assumed to be

in [ℓ, u]. By the triangle inequality,

√
nE

[
sup

|c−cb|≤δ

(∣∣∣θ̂n,c − θc − (θ̂n,cb − θcb)
∣∣∣)1An

]

≤
√
n

2∑
i=1

E

 sup
|c−cb|≤δ

∣∣∣∣∣∣W
(i)
c,n

M
(i)
c,n

−
E
[
W

(i)
c,n

]
E
[
M

(i)
c,n

] −
W

(i)
cb,n

M
(i)
cb,n

−
E
[
W

(i)
cb,n

]
E
[
M

(i)
cb,n

]
∣∣∣∣∣∣
1An

 .

(S8.3)

We deal with the case i = 1, noting that the arguments for the case

i = 2 are similar. For the term above with i = 1, it can be upper bounded



Zehui Wang, Yanglei Song, Wenyu Jiang and Dongsheng Tu

by the sum of four terms Iδ, IIδ, IIIδ and IVδ, where

Iδ =
√
nE

[
sup

|c−cb|≤δ

(∣∣∣∣∣ 1

M
(1)
c,n

(
W (1)

c,n − E
[
W (1)

c,n

]
−W (1)

cb,n
+ E

[
W (1)

cb,n

])∣∣∣∣∣
)
1An

]
,

IIδ =
√
nE

 sup
|c−cb|≤δ

∣∣∣∣∣∣
E
[
W

(1)
c,n

]
M

(1)
c,nE

[
M

(1)
c,n

] (M (1)
c,n − E

[
M (1)

c,n

]
−M (1)

cb,n
+ E

[
M (1)

cb,n

])∣∣∣∣∣∣
1An

 ,

IIIδ =
√
nE

[
sup

|c−cb|≤δ

(∣∣∣∣∣(W (1)
cb,n

− E
[
W (1)

cb,n

])( 1

M
(1)
c,n

− 1

M
(1)
cb,n

)∣∣∣∣∣
)
1An

]
,

IVδ =
√
nE

 sup
|c−cb|≤δ

∣∣∣∣∣∣(M (1)
cb,n

− E
[
M (1)

cb,n

]) E
[
W

(1)
c,n

]
M

(1)
c,nE

[
M

(1)
c,n

] − E
[
W

(1)
cb,n

]
M

(1)
cb,nE

[
M

(1)
cb,n

]
∣∣∣∣∣∣
1An

 .

Then it suffices to show that Iδ, IIδ, IIIδ, IVδ ≤ K
√
δ for any 0 ≤ δ ≤ ζ

and n ≥ 1. Fix some 0 ≤ δ ≤ ζ and n ≥ 1.

Upper bounding Iδ. Define a class of functions F1
δ := {w(1)

c,n − w
(1)
cb,n :

|c−cb| ≤ δ}, where recall that w(1)
c,n(·, ·) is a function of S2 defined in (S5.4).

Since on the event An, sup|c−cn|≤δ 1/M
(1)
c,n ≤ 2/ι, we have

Iδ ≤ K
√
nE

[
sup

|c−cb|≤δ

∣∣W (1)
c,n − E

[
W (1)

c,n

]
−W (1)

cb,n
+ E

[
W (1)

cb,n

]∣∣] ,
= K

√
nE
[
∥U (2)

n (f)− P 2f∥F1
δ

]
,

where we recall the notation for U -process in (S5.1) and the definition of

∥ · ∥F1
δ
in Appendix S5. By Hoeffding decomposition (Van der Vaart, 2007),

the centered U process can be decomposed into two parts: for f ∈ F1
δ ,

U (2)
n (f)− P 2f = 2U (1)

n (π1f) + U (2)
n (π2f), (S8.4)
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where π1f(D1) = E[f(D1,D2)|D1] − P 2f , π2f(D1,D2) = f(D1,D2) −

π1f(D1)−π1f(D2)+P 2f , and both U
(1)
n (π1f) and U

(2)
n (π2f) denote the U

processes with kernels π1f and π2f respectively. Thus,

Ic ≤ K
√
n
(
E
[∥∥U (1)

n (π1f)
∥∥
F1

δ

]
+ E

[∥∥U (2)
n (π2f)

∥∥
F1

δ

])
≤ KJ1(1,F1

δ , F
1
δ )
∥∥PF 1

δ

∥∥
P,2

+
K√
n
J2(1,F1

δ , F
1
δ )
∥∥F 1

δ

∥∥
P 2,2

,

where the last inequality holds by maximal inequality for U processes (Chen

and Kato, 2019, Corollary 5.6), J1(1,F1
δ , F

1
δ ), J2(1,F1

δ , F
1
δ ) are uniform en-

tropy, defined as

Jk(1,F1
δ , F

1
δ ) =

∫ 1

0

sup
Q

[
1 + logN(P 2−kF1

δ , ∥·∥Q,2 , τ
∥∥P 2−kF 1

δ

∥∥
Q,2

)
]k/2

dτ, k = 1, 2,

where recall that N(T, d, ϵ) denotes the ϵ-covering number for pseudometric

space (T, d), supQ is taken over all finitely discrete distributions on Sk, and

F 1
δ (d1,d2) := I(cb − δ ≤ z1 ≤ cb + δ) + I(cb − δ ≤ z2 ≤ cb + δ) for

d1 = (t1, u1, z1),d2 = (t2, u2, z2) ∈ S2 is the envelope function for F1
δ .

Since F1
δ is a VC-type class by Lemma A.6, Corollary A.1 in Cher-

nozhukov et al. (2014), thus Jk(1,F1
δ , F

1
δ ) ≤ K for k = 1, 2. Further, by

Jensen’s Inequality and the mean value theorem, we have

∥∥PF 1
δ

∥∥
P,2

≤
∥∥F 1

δ

∥∥
P 2,2

≤
√

K (F (cb + δ)− F (cb − δ)) ≤ K
√
δ,

where the last inequality is because F is continuous differentiable on [cb −

ζ, cb + ζ] by condition (C.2 ). Thus, Iδ is upper bounded by K
√
δ.
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Upper bounding IIδ. Define a class of functions F2
δ = {m(1)

c,n−m
(1)
cb,n :

|c − cb| ≤ δ} with envelope function F 2
δ (d1,d2) = I(cb − δ ≤ z1 ≤ cb +

δ) + I(cb − δ ≤ z2 ≤ cb + δ) for d1 = (t1, u1, z1),d2 = (t2, u2, z2) ∈ S2; note

that F δ
2 = F δ

1 . As F2
δ is also a VC-type class (Chernozhukov et al., 2014,

Lemma A.6, Corollary A.1), by similar arguments as those used for Iδ, we

have that

IIδ ≤ KJ1(1,F2
δ , F

2
δ )
∥∥PF 2

δ

∥∥
P,2

+
K√
n
J2(1,F2

δ , F
2
δ )
∥∥F 2

δ

∥∥
P 2,2

≤ K
√
δ.

Upper bounding IIIδ. By Cauchy-Schwarz inequality, it can be up-

per bounded by the product of IIIδ,1 and IIIδ,2, which are defined as follows:

IIIδ,1 :=
√
n

√
E

[(
W

(1)
cb,n − E

[
W

(1)
cb,n

])2]
, IIIδ,2 :=

√√√√√E

 sup
|c−cb|≤δ

∣∣∣∣∣ 1

M
(1)
c,n

− 1

M
(1)
cb,n

∣∣∣∣∣
2

1An

.
Note that

√
n(
(
W

(1)
cb,n − E

[
W

(1)
cb,n

])
) is a normalized U statistic with a

bounded kernel w
(1)
cb (·, ·) in (S5.4); thus, by (Van der Vaart, 2007, Theo-

rem 12.3), IIIδ,1 ≤ K for n ≥ 1. For IIIδ,2, it can be further decomposed

and upper bounded by K
√

III
(1)
δ,2 +K

√
III

(2)
δ,2 , where

III
(1)
δ,2 := E

 sup
|c−cb|≤δ

∣∣∣∣∣∣
M

(1)
c,n − E

[
M

(1)
c,n

]
−
(
M

(1)
cb,n − E

[
M

(1)
cb,n

)]
M

(1)
c,nM

(1)
cb,n

∣∣∣∣∣∣
2

1An

 ,

III
(2)
δ,2 := E

 sup
|c−cb|≤δ

∣∣∣∣∣∣
E
[
M

(1)
c,n

]
− E

[
M

(1)
cb,n

]
M

(1)
c,nM

(1)
cb,n

∣∣∣∣∣∣
2

1An

 .
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By similar arguments as those used for Iδ, III
(1)
δ,2 ≤ Kδ. Further, by

the definition of An and the mean value theorem, due to condition (C.2 ),

III
(2)
δ,2 ≤ Kδ. As a result, IIIδ ≤ K

√
δ.

By similar arguments as before, we can show IVδ ≤ K
√
δ. The proof

is complete.

S8.2 Discussions on the rate of convergence

In Theorem 5, under Assumption (C.2 ), the estimator converges at rate

n−1/3 rather than the usual parametric rate n−1/2. Below we explain the

origin of this nonstandard cube-root rate. Moreover, when θc is not smooth

at cb, the convergence rate further accelerates to n−1.

Specifically, assume without loss of generality that θcb > 0. Under

Assumption (C.2 ), we have the following expansion of the population-level

criterion c 7→ θc: for all sufficiently small δ ∈ R,

θcb+δ − θcb ≤ −κδ2. (S8.5)

This quadratic drift follows directly from the local condition |θc| − |θcb| ≤

−κ|c− cb|2.

Furthermore, Lemma 2 above gives the order of the stochastic fluctua-
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tion:

θ̂n,cb+δ − θcb+δ − (θ̂n,cb − θcb) = OP

(√
δ√
n

)
. (S8.6)

The factor
√
δ arises because the standard deviation of the indicator 1{cb <

Z < cb + δ} equals

√
F (cb + δ)− F (cb) = O(

√
δ),

so the empirical fluctuation over an interval of width δ is of order
√
δ/
√
n.

The convergence rate is then obtained by balancing the deterministic

drift and the stochastic fluctuation:

δ2 =

√
δ√
n

⇒ δ = n−1/3.

For a regular parameter, the quadratic expansion in (S8.5) still holds.

However, smoothness of the estimator, in contrast to the indicator structure

above, implies that the fluctuation term in (S8.6) becomes O(δ) instead of

O(
√
δ). Balancing the deterministic drift and the stochastic fluctuation

yields

δ2 =
δ√
n

⇒ δ = n−1/2,

which is the usual parametric rate.

As discussed in Remark 8, our main results focus on the smooth setup.

When c 7→ θc is not smooth, the rate of convergence increases to n−1, as

established in the following theorem.
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(C2’ ) Assume that the function c 7→ θc is continuous on [ℓ, u]. Further,

there exist ζ > 0 and κ > 0 such that if |c − cb| ≤ ζ and c ∈ [ℓ, u],

|θc|−|θcb| ≤ −κ|c−cb|, and that the function c 7→ F (c) is continuously

differentiable on [cb − ζ, cb + ζ].

Remark 2. Compared to condition (C.2 ), we require in (C2’ ) the condition

that |θc| − |θcb| ≤ −κ|c − cb| for c sufficiently close to cb. This occurs, for

example, when θc = θcb − |c− cb|+ o(|c− cb|).

Theorem 1. Suppose that conditions (C.0), (C.1) and (C2’) hold. Then

n|ĉn − cb| is bounded in probability as n → ∞.

Proof. By the first part of Theorem 5, which only requires conditions (C.0 )

and (C.1 ), we have the consistency: ĉn
P→ cb as n → ∞.

Here, we aim to show that for any ϵ > 0, there exists M > 0 such that

lim sup
n→∞

Pr(n|ĉn − cb| > 2M) < ϵ.

Without loss of generality, consider the case θcb > 0. Using a peeling

argument (Van der Vaart and Wellner, 1996), we partition the parameter

space into shells Sn,j = {c : 2j−1 < n|c − cb| ≤ 2j}. Due to assumption

(C2’ ),

|c− cb| >
2j−1

n
⇒ θc − θcb ≤ −κ

2j−1

n
.
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By the Markov inequality, we have

Pr
(
n|ĉn − cb| > 2M

)
≤

∑
j>M

2j−1≤nζ/2

Pr

(
sup
c∈Sn,j

∣∣∣θ̂n,c − θc − (θ̂n,cb − θcb)
∣∣∣ ≥ κ

2j−1

n
,An

)
+ o (1)

≤ κ−1
∑
j>M

2j−1≤nζ/2

E

[
sup
c∈Sn,j

(∣∣∣θ̂n,c − θc − (θ̂n,cb − θcb)
∣∣∣)1An

]
n

2j−1
+ o(1),

Then, by Lemma 2 that

E

[
sup

|c−cb|≤δ, c∈[ℓ,u]

(∣∣∣θ̂n,c − θc − (θ̂n,cb − θcb)
∣∣∣)1An

]
≤ K

√
δ√
n
,

for some constant C > 0, we have

Pr
(
n|ĉn − cb| > 2M

)
≤ Cκ−1

∑
j>M

√
2j

n
n

√
n2j−1

+o (1) = Cκ−1
∑
j>M

2−
1
2
j+1+o (1) .

Since
∑

j>M 2−j/2 converges to zero as M → ∞, we conclude that ĉn− cb =

Op(n
−1). The proof is complete.

Under condition (C2’ ), for all sufficiently small δ ∈ R,

θcb+δ − θcb ≤ −κδ.

Furthermore, (S8.6) continues to hold:

θ̂n,cb+δ − θcb+δ − (θ̂n,cb − θcb) = OP

(√
δ√
n

)
.

The convergence rate is thus:

δ =

√
δ√
n

⇒ δ = n−1.



S8. PROOFS REGARDING CUT-POINT ESTIMATION

Finally, note that our paper focuses on the smooth case described in

Theorem 6, since in most practical applications the predictive effects vary

gradually around the optimal cutpoint.

S8.3 Limiting distribution of the profile estimator

Proof of Theorem 6. As in the proof of Theorem 5, we assume θcb > 0,

noting that arguments are similar for the case θcb < 0. Recall the constant

ι in (S8.1); in particular, inf |c−cb|≤ι, c∈[ℓ,u] θc > 0.

Let ℓn := (ℓ − cb)n
1/3 and un := (u − cb)n

1/3. By condition (C.3 ),

limn→∞ ℓn = limn→∞ un = ∞. Define two stochastic processes indexed by

R as follows:

M̃n(h) :=


n2/3

(∣∣∣θ̂n,cb+h/n1/3

∣∣∣− ∣∣∣θ̂n,cb∣∣∣) , if h ∈ [ℓn, un]

−∞, otherwise

.

Mn(h) := n2/3
(
θ̂n,cb+h/n1/3 − θ̂n,cb

)
, for h ∈ R.

Then by definition,

n1/3(ĉn − cb) = argmax
h∈R

M̃n(h). (S8.7)

Further, fix any K > 0. For large enough n, we have K/n1/3 ≤
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{ι, |u− cb|, |cb − ℓ|}. Thus for |h| ≤ K and large enough n,

M̃n(h) = M̃n(h)1

{
inf

|c−cb|≤ι
θ̂n,c > 0

}
+ M̃n(h)1

{
inf

|c−cb|≤ι
θ̂n,c ≤ 0

}
= Mn(h) + oP (1),

(S8.8)

where oP (1) is uniform in |h| ≤ K, and the last equality holds since as shown

in the proof of Theorem 5, supc∈[ℓ,u] |θ̂n,c − θc| = oP (1) and by assumption

inf |c−cb|≤ι, c∈[ℓ,u] θc > 0.

Since n1/3(ĉn − cb) = OP (1) as shown in Theorem 5, in view of (S8.7)

and (S8.8), by Theorem 3.2.2 in Van der Vaart and Wellner (1996), if there

exists a tight, zero-mean Gaussian process {G̃(h) : h ∈ R}, with continuous

sample paths and a unique (random) maximizer, such that {Mn(h) : |h| ≤

K}⇝ {G̃(h) : |h| ≤ K} in ℓ∞([−K,K]) for any K > 0, then we have

n1/3(ĉn − cb) ⇝ argmax
h∈R

G̃(h). (S8.9)

Next, we show the existence of {G̃(h) : h ∈ R} and identify its distribution.

Fix K > 0.

Note the following decomposition: for |h| ≤ K,

Mn(h) = n2/3
{
θ̂n,cb+h/n1/3 − θ̂n,cb

}
= Ln(h) + n2/3

(
θcb+h/n1/3 − θcb

)
,
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where Ln(h) is defined as

Ln(h) = n2/3

W
(1)

cb+h/n1/3,n

M
(1)

cb+h/n1/3,n

− W
(1)
cb,n

M
(1)
cb,n

−
E
[
W

(1)

cb+h/n1/3,n

]
E
[
M

(1)

cb+h/n1/3,n

] + E
[
W

(1)
cb,n

]
E
[
M

(1)
cb,n

]


− n2/3

W
(2)

cb+h/n1/3,n

M
(2)

cb+h/n1/3,n

− W
(2)
cb,n

M
(2)
cb,n

−
E
[
W

(2)

cb+h/n1/3,n

]
E
[
M

(2)

cb+h/n1/3,n

] + E
[
W

(2)
cb,n

]
E
[
M

(2)
cb,n

]
 .

By assumption (C.3 ), the first and second derivatives, θ′cb and θ′′cb , of the

function c 7→ θc at cb exist. Since we assume θcb > 0 and cb is a maximizer

as defined in (1.4), due to assumption (C.3 ), θ′cb = 0 and θ′′cb < 0. Then by

Taylor expansion and condition (C.3 ),

Mn(h) = Ln(h)−
1

2
h2
∣∣θ′′cb∣∣+ oP (1), (S8.10)

where oP (1) is uniform over h ∈ [−K,K].

We further decompose Ln(h) as L
(1)
n (h)−L

(2)
n (h) for |h| ≤ K, where for

i ∈ {1, 2},

L(i)
n (h) = I(i)n (h) + II(i)n (h) + III(i)n (h) + IV (i)

n (h), (S8.11)
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and

I(i)n (h) =
1

M
(i)

cb+h/n1/3,n

√
n
[
n1/6

(
W

(i)

cb+h/n1/3,n
− E

[
W

(i)

cb+h/n1/3,n

]
−W (i)

cb,n
+ E

[
W (i)

cb,n

])]

II(i)n (h) = −
E
[
W

(i)

cb+h/n1/3,n

]
M

(i)

cb+h/n1/3,n
E
[
M

(i)

cb+h/n1/3,n

]√n
[
n1/6

(
M

(i)

cb+h/n1/3,n
− E

[
M

(i)

cb+h/n1/3,n

]
−M (i)

cb,n
+ E

[
M (i)

cb,n

])]

III(i)n (h) = n2/3

W (i)
cb,n

− E
[
W (i)

cb,n

]
−

E
[
W

(i)
cb,n

]
E
[
M

(i)
cb,n

] (M (i)
cb,n

− E
[
M (i)

cb,n

]) 1

M
(i)

cb+h/n1/3,n

− 1

M
(i)
cb,n


IV (i)

n (h) = −

√
n
(
M

(i)
cb,n − E

[
M

(i)
cb,n

])
M

(i)

cb+h/n1/3,n

n1/6

E
[
W

(i)

cb+h/n1/3,n

]
E
[
M

(i)

cb+h/n1/3,n

] − E
[
W

(i)
cb,n

]
E
[
M

(i)
cb,n

]
 .

By Lemma 8, we have that

Ln(h) = I(1)n (h) + II(1)n (h)− I(2)n (h)− II(2)n (h) + oP (1), (S8.12)

where oP (1) is uniform over h ∈ [−K,K]. For n ≥ 1 and h ∈ R, define

Zn(h) :=



n2/3
(
W

(1)

cb+h/n1/3,n
− E

[
W

(1)

cb+h/n1/3,n

]
−W (1)

cb,n
+ E

[
W (1)

cb,n

])
n2/3

(
M

(1)

cb+h/n1/3,n
− E

[
M

(1)

cb+h/n1/3,n

]
−M (1)

cb,n
+ E

[
M (1)

cb,n

])
n2/3

(
W

(2)

cb+h/n1/3,n
− E

[
W

(2)

cb+h/n1/3,n

]
−W (2)

cb,n
+ E

[
W (2)

cb,n

])
n2/3

(
M

(2)

cb+h/n1/3,n
− E

[
M

(2)

cb+h/n1/3,n

]
−M (2)

cb,n
+ E

[
M (2)

cb,n

])


.

(S8.13)

By Lemma 3, there exists a tight, zero-mean Gaussian process {G̃1(h), G̃2(h), G̃3(h), G̃4(h) :

|h| ≤ K} with covariance function {γs,tV : s, t ∈ [−K,K]} (see Equations
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(S8.18) and (S8.25)) such that, in ℓ∞([−K,K]× [4]),

{Zn(h) : |h| ≤ K}⇝
{(

G̃1(h), G̃2(h), G̃3(h), G̃4(h)
)⊤

: |h| ≤ K

}
.

Also, by the law of large numbers for U processes (Peña and Giné, 1999,

Corollary 5.2.3) and due to condition (C.2 ), in ℓ∞([−K,K]× [6]),

E
[
M

(1)

cb+h/n1/3,n

]
M

(1)

cb+h/n1/3,n

E
[
W

(1)

cb+h/n1/3,n

]
E
[
M

(2)

cb+h/n1/3,n

]
M

(2)

cb+h/n1/3,n

E
[
W

(2)

cb+h/n1/3,n

]

: |h| ≤ K



⇝



E
[
M (1)

cb,n

]
E
[
M (1)

cb,n

]
E
[
W (1)

cb,n

]
E
[
M (2)

cb,n

]
E
[
M (2)

cb,n

]
E
[
W (2)

cb,n

]


Then by Slutsky’s theorem (Kosorok, 2008, Theorem 7.15) and continuous

mapping Theorem (Van der Vaart and Wellner, 1996, Theorem 1.3.6), due

to (S8.12) and (S8.10), we obtain that

{Mn(h) : |h| ≤ K} ⇝
{
G̃(h)− 1

2
h2
∣∣θ′′cb∣∣ : |h| ≤ K

}
in ℓ∞([−K,K]),

where G̃(h) := β
(
G̃1(h), G̃2(h), G̃3(h), G̃4(h)

)⊤
, and

β :=

 1

E
[
M

(1)
cb,n

] ,− E
[
W

(1)
cb,n

]
E
[
M

(1)
cb,n

]2 ,− 1

E
[
M

(2)
cb,n

] , E
[
W

(2)
cb,n

]
E
[
M

(2)
cb,n

]2
 . (S8.14)

Recall the definitions of the scalar γs,t and matrix V in Equations

(S8.18) and (S8.25) from Lemma 3. Then the covariance function of {G̃h :
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|h| ≤ K} is given as follows: for s, t ∈ [−K,K],

Cov(G̃s, G̃t) = βγs,tVβ⊤ = 41sgn(s)=sgn(t) min(|s|, |t|)f(cb)λ(1− λ)(βVβ⊤).

Thus, if we denote by {Z(h) : |h| ≤ K} a standard two-sided Brownian

motion with Z(0) = 0 (Van der Vaart and Wellner, 1996), then {G̃(h) :

|h| ≤ K} d
= {νZ(h) : |h| ≤ K}, where d

= means equal in distribution and

ν :=
√

4f(cb)λ(1− λ)βVβ⊤. (S8.15)

Note that β and V are defined in (S8.14) and (S8.25) respectively and f(cb)

is the first derivative of the function c 7→ F (c) at cb. Thus in view of (S8.9),

we have

n1/3(ĉn − cb) ⇝ argmax
h∈R

(
νZ(h)− 1

2
h2
∣∣θ′′cb∣∣) .

By Problem 5 in Chapter 3.2 of Van der Vaart and Wellner (1996),

argmax
h∈R

(
νZ(h)− 1

2
h2
∣∣θ′′cb∣∣) d

=
(
2ν/

∣∣θ′′cb∣∣)2/3C,
where C = argmaxh∈R {Z(h)− h2} follows the Chernoff’s distribution (Groene-

boom and Wellner, 2001). The proof is complete.

For n ≥ 1 and h ∈ R, define the following functions on S2:

f̃
(1)
n,h := n1/6

(
w

(1)

cb+h/n1/3 − w(1)
cb

)
, f̃

(2)
n,h := n1/6

(
m

(1)

cb+h/n1/3 −m(1)
cb

)
,

f̃
(3)
n,h := n1/6

(
w

(2)

cb+h/n1/3 − w(2)
cb

)
, f̃

(4)
n,h := n1/6

(
m

(2)

cb+h/n1/3 −m(2)
cb

)
,

(S8.16)
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where w
(i)
c (·, ·) and m

(i)
c (·, ·) for i = 1, 2 are defined in (S5.4). Further, for

n ≥ 1 and h ∈ R, define the following functions on S:

f̄
(1)
n,h := P f̃

(1)
n,h = n1/6

(
w̄

(1)

cb+h/n1/3 − w̄(1)
cb

)
, f̄

(2)
n,h := P f̃

(2)
n,h = n1/6

(
m̄

(1)

cb+h/n1/3 − m̄(1)
cb

)
,

f̄
(3)
n,h := P f̃

(3)
n,h = n1/6

(
w̄

(2)

cb+h/n1/3 − w̄(2)
cb

)
, f̄

(4)
n,h := P f̃

(4)
n,h = n1/6

(
m̄

(2)

cb+h/n1/3 − m̄(2)
cb

)
,

(S8.17)

where w̄
(i)
c (·) and m̄

(i)
c (·) for i = 1, 2 are defined in (S5.5).

Denote by f(cb) the first derivative of the function c 7→ F (c) at cb, and

recall the definition of Zn(h) in (S8.13)

Lemma 3. Assume the conditions of Theorem 6 hold, and fix some K > 0.

There exists a tight, zero-mean Gaussian process {G̃1(h), G̃2(h), G̃3(h), G̃4(h) :

|h| ≤ K} such that, in ℓ∞([−K,K]× [4]),

{Zn(h) : |h| ≤ K}⇝
{(

G̃1(h), G̃2(h), G̃3(h), G̃4(h)
)⊤

: |h| ≤ K

}
,

and that the covariance function is given as follows: for s, t ∈ [−K,K],

Cov
((

G̃1(s), G̃2(s), G̃3(s), G̃4(s)
)
,
(
G̃1(t), G̃2(t), G̃3(t), G̃4(t)

))
= γs,tV ,

where V is a 4× 4 matrix defined in (S8.25) and γs,t is a scalar given by

γs,t := 41sgn(s)=sgn(t) min(|s|, |t|)f(cb)λ(1− λ). (S8.18)

Proof. Recall the definition of S in (S5.2). For n ≥ 1, define two functions
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as follows: for d1 = (t1, u1, z1),d2 = (t2, u2, z2) ∈ S2

Fn(d1,d2) := n1/6
(
1{|z1 − cb| ≤ K/n1/3}+ 1{|z2 − cb| ≤ K/n1/3}

)
,

F̄n(d1) := n1/6
(
1{|z1 − cb| ≤ K/n1/3}+ F (cb +K/n1/3)− F (cb −K/n1/3)

)
.

(S8.19)

Note that F̄n = PFn. By the definitions in (S8.16) and (S8.17), for any

d1,d2 ∈ S2 and |h| ≤ K,

max
1≤j≤4

∣∣∣f̃ (j)
n,h(d1,d2)

∣∣∣ ≤ Fn(d1,d2), max
1≤j≤4

∣∣∣f̄ (j)
n,h(d1)

∣∣∣ ≤ F̄n(d1). (S8.20)

Due to condition (C.2 ),

∥Fn∥P 2,1 = O(n−1/3), ∥Fn∥P 2,2 = O(1), ∥F̄n∥P,1 = O(n−1/3), ∥F̄n∥P,2 = O(1).

(S8.21)

Further, note that

Zn(h) =
√
n
(
U (2)
n

(
f̃
(1)
n,h − P 2f̃

(1)
n,h

)
, . . . , U (2)

n

(
f̃
(4)
n,h − P 2f̃

(4)
n,h

))⊤
,

where we recall the notation for U -processes in (S5.1).

By similar arguments as in Lemma 2, in particular, using (Chen and

Kato, 2019, Corollary 5.6), we have that the difference between {Zn(h) :

|h| ≤ K} and its Hajek projection process is uniformly controlled, that is,

sup
|h|≤K

∥∥∥∥Zn(h)− 2
√
n
(
U (1)
n

(
f̄
(1)
n,h − P f̄

(1)
n,h

)
, . . . , U (1)

n

(
f̄
(4)
n,h − P f̄

(4)
n,h

))⊤∥∥∥∥ = oP (1).

(S8.22)
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We now apply Theorem 2.11.22 in Van der Vaart and Wellner (1996)

to the empirical process with classes of functions changing with n, that is,

{
2
√
n
(
U (1)
n

(
f̄
(1)
n,h − P f̄

(1)
n,h

)
, . . . , U (1)

n

(
f̄
(4)
n,h − P f̄

(4)
n,h

))
: |h| ≤ K

}
,

for which F̄n in (S8.19) is an envelope function.

First, as discussed in (S8.21), PF̄ 2
n = O(1). Second, for any η > 0, we

have F̄n(·) ≤ 2n1/6 < η
√
n surely for sufficiently large n, which implies that

P
[
F̄ 2
n1{F̄ 2

n > η
√
n}
]
→ 0, as n → ∞.

Third, let δn be an arbitrary sequence of positive numbers which decreases

to zero, that is, δn ↓ 0 as n → ∞. Fix any pair s, t ∈ [−K,K] such that

s < t < s+ δn. Due to the definition of f̄
(1)
n,h in (S8.17) and w̄

(1)
c (·) in (S5.5),

we have that for d = (τ, u, z) ∈ S,

f̄ (1)
n,s(d)− f̄

(1)
n,t (d) =ξn,s(d)n

1/6
1{z ∈ (cb + s/n1/3, cb + t/n1/3]}

+n1/6(ξn,s(d)− ξn,t(d))1{z > cb + t/n1/3}.

where, due to condition (C.3 ), for h ∈ R,

ξn,h(d) :=
(
(1−G(+)(τ |cb + h/n1/3, 1))(1− u)λ+G(+)(τ |cb + h/n1/3, 0)u(1− λ)

)
× (1− F (cb + h/n1/3)),

(S8.23)

and recall that G(+)(t|c, k) = Pr(T ≤ t|Z > c, U = k), k = 0, 1 is defined in
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(2.5). Since for any h ∈ R, 0 ≤ ξn,h(·) ≤ 1, we have

P (f̄ (1)
n,s(Di)− f̄

(1)
n,t (Di))

2 ≤ 2n1/3(F (cb + t/n1/3)− F (cb + s/n1/3)) + 2n1/3P (ξn,s − ξn,t)
2 .

Thus, due to condition (C.2 ), Taylor’s Theorem and Lemma 6, as n → ∞,

sup
s,t∈[−K,K],|s−t|≤δn

P (f̄ (j)
n,s − f̄

(j)
n,t )

2 → 0,

for j = 1. Similar arguments show that the above also holds for j = 2, 3, 4.

Thus we verify the conditions listed in Equation (2.11.21) of Van der Vaart

and Wellner (1996).

Furthermore, define for j = 1, . . . , 4,

F̃ (j)
n := {f̃ (j)

n,h : |h| ≤ K}, F̄ (j)
n := {f̄ (j)

n,h : |h| ≤ K}.

By (Van der Vaart and Wellner, 1996, Theorem 2.6.7), for some absolute

constants A and v, F̃ (j)
n , together with the envelope function F̃n, is VC-

type with characteristic (A, v) for n ≥ 1 and j = 1, . . . , 4; see (Chen and

Kato, 2019, Definition 2.1). Then by (Chen and Kato, 2019, Lemma 5.4),

F̄ (j)
n , together with the envelope function F̄n, is VC-type with characteristic

(4
√
A, 2v) for n ≥ 1 and j = 1, . . . , 4. Thus, the uniform entropy condition

holds: for j = 1, . . . , 4,∫ δn

0

sup
Q

√
logN(F̄ (j)

n , ∥·∥Q,2 , ϵ∥F̄n∥Q,2)dϵ → 0

for every δn ↓ 0, where the supremum is taken over all discretely supported

probability measure Q on S.
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Finally, for n ≥ 1 and s, t ∈ [−K,K], define

Σn(s, t) := 4cov

((
f̄ (1)
n,s , f̄

(2)
n,s , f̄

(3)
n,s , f̄

(4)
n,s

)⊤
,
(
f̄
(1)
n,t , f̄

(2)
n,t , f̄

(3)
n,t , f̄

(4)
n,t

)⊤)
. (S8.24)

In Lemma 4, we show that for any s, t ∈ [−K,K], limn→∞Σn(s, t) = γs,tV ,

where γs,t is a scalar defined in (S8.18) and V is a 4× 4 symmetric matrix

such that

V1,1 = (1− F (cb))
2

{
λ

∫ (
1−G(+)(x|cb, 1)

)2 L(1)
cb
(dx) + (1− λ)

∫ (
G(+)(y|cb, 0)

)2 L(2)
cb
(dy)

}
,

V1,2 = (1− F (cb))
2

{
λ

∫ (
1−G(+)(x|cb, 1)

)
L(1)

cb
(dx) + (1− λ)

∫
G(+)(y|cb, 0)L(2)

cb
(dy)

}
,

V1,3 = −(1− F (cb))F (cb)
{
λ

∫ (
1−G(+)(x|cb, 1)

) (
1−G(−)(x|cb, 1)

)
L(1)

cb
(dx)

+ (1− λ)

∫
G(+)(y|cb, 0)G(−)(y|cb, 0)L(2)

cb
(dy)

}
,

V1,4 = −(1− F (cb))F (cb)

{
λ

∫ (
1−G(+)(x|cb, 1)

)
L(1)

cb
(dx) + (1− λ)

∫
G(+)(y|cb, 0)L(2)

cb
(dy)

}
,

V2,2 = (1− F (cb))
2 ,

V2,3 = −(1− F (cb))F (cb)

{
λ

∫ (
1−G(−)(x|cb, 1)

)
L(1)

cb
(dx) + (1− λ)

∫
G(−)(y|cb, 0)L(2)

cb
(dy)

}
,

V2,4 = −(1− F (cb))F (cb),

V3,3 = F 2(cb)

{
λ

∫ (
1−G(−)(x|cb, 1)

)2 L(1)
cb
(dx) + (1− λ)

∫ (
G(−)(y|cb, 0)

)2 L(2)
cb
(dy)

}
,

V3,4 = F 2(cb)

{
λ

∫ (
1−G(−)(x|cb, 1)

)
L(1)

cb
(dx) + (1− λ)

∫
G(−)(y|cb, 0)L(2)

cb
(dy)

}
,

V4,4 = F 2(cb),

(S8.25)

Then the proof is complete by (Van der Vaart and Wellner, 1996, The-
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orem 2.11.22).

Recall the definition of Σn(s, t) in (S8.24), the scalar γs,t in (S8.18), and

the 4× 4 symmetric matrix V in (S8.25).

Lemma 4. Suppose the conditions in Theorem 6 hold. Fix s, t ∈ R and

assume s ≤ t. Then we have

lim
n→∞

Σn(s, t) = γs,tV ,

Proof. We only prove the convergence result for the top left coordinate,

noting that the arguments for the other coordinates are similar. Further,

we only consider the case 0 ≤ s ≤ t, and note that the arguments for the

case s ≤ 0 ≤ t and s ≤ t ≤ 0 are similar.

Specifically, the top left coordinate is

Σn,1,1(s, t) := 4Cov
(
f̄ (1)
n,s , f̄

(1)
n,t

)
.

Recall the definition of ξn,h(·) in (S8.23) and define for h ∈ {s, t} and

d = (τ, u, z) ∈ S,

∆n,h(d) := f̄
(1)
n,h(d)− ξn,0(d)n

1/6
(
1{z > cb + h/n1/3} − 1{z > cb}

)
.

(S8.26)

By Lemma 7, we have for h ∈ {s, t}, ∥∆n,h∥P,2 = o(1). Due to condition
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(C.2 ), for h ∈ {s, t}, we have

∥∥n1/6
(
1{z > cb + h/n1/3} − 1{z > cb}

)∥∥
P,1

= O(n−1/6),∥∥n1/6
(
1{z > cb + h/n1/3} − 1{z > cb}

)∥∥
P,2

= O(1).

Thus, by Cauchy-Schwarz inequality,

Σn,1,1(s, t) = 4E
[
ξn,0(D)n1/6

(
1{Z > cb + s/n1/3} − 1{Z > cb}

)
ξn,0(D)n1/6

(
1{Z > cb + t/n1/3} − 1{Z > cb}

)]
+ o(1),

where D = (T, U, Z) is the generic random vector as discussed in Section 2.

Since 0 ≤ s ≤ t, we have

Σn,1,1(s, t) = 4n1/3

∫ cb+min{s,t}/n1/3

cb

f(z)E
[
ξ2n,0(D)|Z = z

]
dz + o(1),

where f(z) := F ′(z) exists and is continuous in a small neighourbood of cb

due to condition (C.2 ). Note that ξ2n,0(·) does not depend on n. In Lemma

5, we show that the function z 7→ E
[
ξ2n,0(D)|Z = z

]
is continuous at cb.

Thus, we have

Σn,1,1(s, t) = 4n1/3min{s, t}f(cb)E
[
ξ2n,0(D)|Z = cb

]
+ o(1).

Finally, we note that

E
[
ξ2n,0(D)|Z = cb

]
=(1− F (cb))

2λ(1− λ)

×
(
λ

∫
(1−G(+)(x|cb, 1))2L(1)

cb
(dx) + (1− λ)

∫
(G(+)(y|cb, 1))2L(2)

cb
(dy)

)
,
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which implies that for 0 ≤ s ≤ t, limn→∞ Σn,1,1(s, t) = γs,tV1,1. The proof

is complete.

S8.4 Discussions on Theorem 3

The test statistic Ŝn/
√
n defined in (4.9) is the supremum of the estimators

θ̂n,c for c ∈ [ℓ, u], which is defined in (2.6). The numerators and denomina-

tors in (2.6), which appear in the definition of θ̂n,c, c ∈ [ℓ, u], are U -processes.

As shown above, these U -processes are Donsker and can be analyzed us-

ing classical empirical processes techniques Peña and Giné (1999); Van der

Vaart and Wellner (1996). Further, the non-parametric bootstrap is valid

for inference as shown in Theorem 4.

Supreme-type statistics have been widely used and studied in related

scenarios and broader areas of statistics. For example, in Cai et al. (2010),

supreme-type statistics are used to construct a simultaneous confidence

band for average treatment differences across a range of scores defined by

baseline covariates. Fuentes et al. (2018) utilizes a supreme-type statistic

to construct simultaneous confidence intervals for the means of k selected

populations, assuming independence and normality with a common vari-

ance. In Li et al. (2023b,a), supremum-type statistics are used to test

treatment-biomarker interactions with an unknown cutpoint, under lin-
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ear and generalized-linear frameworks. Supremum-type statistics have also

been used extensively in non-parametric statistics; see, e.g., Bickel and

Rosenblatt (1973); Einmahl and Mason (2005).

Finally, we should also highlight the recent developments in the dis-

tribution approximation and bootstrap of suprema of stochastic processes;

see, e.g., Chernozhukov et al. (2013, 2014); Chen and Kato (2019). These

works provide powerful tools for dealing with non-Donsker empirical and

U -processes. In contrast, we deal with Donsker U -processes and also need

to apply the functional delta method, which seems not covered in the ref-

erences mentioned.

S8.5 Supporting lemmas

Recall the definition of ξn,h(·) in (S8.23), which is a function on S in (S5.2).

Note that ξn,0 does not depend on n.

Lemma 5. Suppose the conditions in Theorem 6 hold. Then the function

z 7→ E
[
ξ2n,0(D)|Z = z

]
is continuous at cb.

Proof. Note that by definition,

E
[
ξ2n,0(D)|Z = z

]
= (1− F (cb))

2 λ(1− λ)
{
λ

∫ (
1−G(+)(x|cb, 1)

)2 L(1)
z (dx)

+ (1− λ)

∫ (
G(+)(y|cb, 0)

)2 L(2)
z (dy)

}
.
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By condition (C.3 ), as z → cb, L(1)
z ⇝ L(1)

cb , L(2)
z ⇝ L(2)

cb . Again

by condition (C.3 ), G(+)(·|cb, 1) and G(−)(·|cb, 0) are both continuous and

bounded functions. As a result, by the definition of weak convergence, as

z → cb,

E
[
ξ2n,0(D)|Z = z

]
→ E

[
ξ2n,0(D)|Z = cb

]
,

which completes the proof.

Lemma 6. Suppose the conditions in Theorem 6 hold and fix any K > 0.

Then

n1/3 sup
s,t∈[−K,K]

P (ξn,s − ξn,t)
2 = O(n−1/3).

Proof. By definition and the triangle inequality, for d = (τ, u, z) ∈ S,

|ξn,s − ξn,t| ≤
1∑

u=0

∣∣G(+)(τ |cb + s/n1/3, u))−G(+)(τ |cb + t/n1/3, u))
∣∣

+
∣∣F (cb + s/n1/3)− F (cb + t/n1/3)

∣∣ .
Due to condition (C.2 ), and by Taylor’s theorem,

n1/3 sup
s,t∈[−K,K]

(
F (cb + s/n1/3)− F (cb + t/n1/3)

)2
= O(n−1/3).

Now we fix some u ∈ {0, 1} and assume without loss of generality −K ≤

s < t ≤ min{s+ δn, K}. By the definition of G(+)(·) in (2.5), for |h| ≤ K,

G(+)(τ |cb + h/n1/3, u) =
Pr
(
T ≤ τ, Z > cb + h/n1/3|U = u

)
1− F (cb + h/n1/3)

,
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which implies that

∣∣G(+)(τ |cb + s/n1/3, u)−G(+)(τ |cb + t/n1/3, u)
∣∣ ≤ Pr

(
cb + s/n1/3 < Z ≤ cb + t/n1/3

)
1− F (cb + s/n1/3)

+
F (cb + t/n1/3)− F (cb + s/n1/3)

(1− F (cb + s/n1/3))(1− F (cb + t/n1/3))
.

Then the proof is complete again due to condition (C.2 ) and Taylor’s the-

orem.

Recall the definition of ∆n,h(d) in (S8.26).

Lemma 7. Suppose the conditions in Theorem 6 hold and fix h ≥ 0. Then

∥∆n,h∥P,2 = o(1).

Proof. Recall the definition of ξn,h in (S8.23) and the calculation above this

equation. Since f̄
(1)
n,0(·) = 0, we have for d = (τ, u, z) ∈ S,

∆n,h(d) = n1/6(ξn,h(d)− ξn,0(d))1{z > cb + h/n1/3}.

As a result, ∥∆n,h∥P,2 ≤ n1/3P (ξn,h − ξn,0)
2 = o(1) due to Lemma 6.

Recall the definition of III
(i)
n (h) and IV

(i)
n (h) following equation (S8.11).

Lemma 8. Suppose the conditions in Theorem 6 hold. For any K > 0 and

i ∈ {1, 2},

sup
|h|≤K

|III(i)n (h)| = oP (1), sup
|h|≤K

|IV (i)
n (h)| = oP (1).
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Proof. Fix some i ∈ {0, 1}. Note that III
(i)
n (h) can be decomposed as

follows:

III(i)n (h) = −A(i)
cb,n

ĨIIn
(i)
(h)

M
(i)

cb+h/n1/3,n
M

(i)
cb,n

−
√
nA(i)

cb,n
· n1/6

E
[
M

(i)

cb+h/n1/3,n

]
− E

[
M

(i)
cb,n

]
M

(i)

cb+h/n1/3,n
M

(i)
cb,n

,

where

ĨIIn
(i)
(h) := n2/3

(
M

(i)

cb+h/n1/3,n
− E

[
M

(i)

cb+h/n1/3,n

]
−M (i)

cb,n
+ E

[
M (i)

cb,n

])
A(i)

cb,n
:= W (i)

cb,n
− E

[
W (i)

cb,n

]
−

E
[
W

(i)
cb,n

]
E
[
M

(i)
cb,n

] (M (i)
cb,n

− E
[
M (i)

cb,n

])
.

By the central limit theorem for U -statistics (Van der Vaart, 2007,

Theorem 12.3),

A(i)
cb,n

= oP (1),
√
nA(i)

cb,n
= OP (1).

By Lemma 3 and Taylor’s theorem, due to (C.2 ),

sup
|h|≤K

∣∣∣ĨIIn(i)(h)∣∣∣ = OP (1), n1/6
(
E
[
M

(i)

cb+h/n1/3,n

]
− E

[
M (i)

cb,n

])
= o(1),

where o(1) is uniform in |h| ≤ K. Thus, by the law of large numbers for

U processes (Peña and Giné, 1999, Corollary 5.2.3) and due to condition

(C.0 ), we obtain that sup|h|≤K |III(i)n (h)| = oP (1).

For IV
(i)
n (h), by the central limit theorem for U statistics (Van der

Vaart, 2007, Theorem 12.3), we have

√
n
(
M (i)

cb,n
− E

[
M (i)

cb,n

])
= OP (1).
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By Taylor’s theorem and due to (C.2 ),

n1/6

E
[
W

(i)

cb+h/n1/3,n

]
E
[
M

(i)

cb+h/n1/3,n

] − E
[
W

(i)
cb,n

]
E
[
M

(i)
cb,n

]
 = o(1)

where o(1) is uniform in |h| ≤ K. Thus, again by the law of large numbers

for U processes (Peña and Giné, 1999, Corollary 5.2.3) and due to condition

(C.0 ), we obtain that sup|h|≤K |IV (i)
n (h)| = oP (1).

S8.6 A Special Case: Finitely Discrete Biomarkers

This section considers a special but common case in subgroup analysis where

the biomarker Z is finitely discrete, taking values in a set V with m values:

v1 < v2 < . . . < vm. Assume that Pr(Z = vi) > 0 for i ∈ [m], and that

ℓ < v1 < vm < u for simplicity.

Note that Theorem 3, which concerns testing the hypothesis in (1.3),

does not require F to be continuous, and thus it continues to hold when Z

is finitely discrete. Next, we focus on the cutpoint estimation problem and

define the optimal cutpoint set as

B = {vi ∈ V : |θvi | = κ∗}, where κ∗ = max
vj∈V

|θvj |.

Recall the definition of ĉn in (4.10). Due to remark 4, ĉn takes values in V .

The next theorem establishes the convergence rate under this framework.
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Theorem 2. Suppose that condition (C.0) holds. Then, there exists a pos-

itive constant C, depending on m, λ and F , such that

Pr(ĉn ̸∈ B) ≤ Ce−nC .

Remark 3. Thus, when the biomarker Z is finitely discrete, the probability

that ĉn does not belong to the optimal set decays exponentially with n.

Proof of Theorem 2. Recall that V = {v1, ..., vm} represents the set of val-

ues that the biomarker Z can take. Let δ = κ∗ − maxj ̸∈B |θvj |. Assume

without loss of generality that δ > 0; otherwise, B = V and Pr(ĉn /∈ B) = 0

directly. Due to assumption (C.0 ), we fix some ϵ > 0 such that

ϵ ≤ min
c∈V

{(1− λ)(1− F (c)), λ(1− F (c)), (1− λ)F (c), λF (c)}.

Define

Bn :=

{
max
c∈V

∣∣∣∣∣ 1n
n∑

i=1

(1− Ui)Z
c+
i − (1− λ)(1− F (c))

∣∣∣∣∣ ≤ ϵ/2,

max
c∈V

∣∣∣∣∣ 1n
n∑

i=1

UiZ
c+
i − λ(1− F (c))

∣∣∣∣∣ ≤ ϵ/2,

max
c∈V

∣∣∣∣∣ 1n
n∑

i=1

(1− Ui)Z
c−
i − (1− λ)F (c)

∣∣∣∣∣ ≤ ϵ/2,

max
c∈V

∣∣∣∣∣ 1n
n∑

i=1

UiZ
c−
i − λF (c)

∣∣∣∣∣ ≤ ϵ/2

}
.
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Let ϵ1 = min{δ, ϵ}, then for any j = 1, ...,m,

Pr(|θ̂vj − θvj | > δ/2) ≤ Pr(|θ̂vj − θvj | > ϵ1/2)

≤ Pr(B∁n) +
2∑

i=1

{
Pr

(∣∣∣W (i)
vj ,n

− E[W (i)
vj ,n

]
∣∣∣ > ϵ51

256

)
+ Pr

(∣∣∣M (i)
vj ,n

− E[M (i)
vj ,n

]
∣∣∣ > ϵ51

256

)}
.

As Ui, Ti,j, Z
vj+
i are bounded by 1, by McDiarmid’s inequality (McDiarmid,

1989), there exists a constant C > 0 such that, for j = 1, ...,m, the above

quality can be further bounded as follows:

Pr(|θ̂vj − θvj | > δ/2) ≤ Ce−nϵ101 /C .

Finally, since

∩m
j=1{|θ̂vj − θvj | ≤ δ/2} ⊆ {ĉn ∈ B},

and by union bound, we have

Pr(ĉn ̸∈ B) ≤ mCe−nϵ101 /C .

The proof is complete, as the right-hand side decays exponentially with

n.
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