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The supplementary materials include additional simulation results and proofs of all theorems
and lemmas in the main text. Section [S1] contains additional simulation results for unknown
cutpoint problem. Section [S2] presents additional simulation results for problem with prespec-
ified cutpoint. Section introduces the procedure based on the minimum p-value method.
Section [S4] presents additional results on the advanced colorectal cancer dataset and extensions.
Section establishes notations for clarity and coherence. Section [S6| includes proofs of The-
orems [T] and 2] Section [S7] contains proofs of Theorems [3] and [4] regarding hypothesis testing
with unknown cutpoint. Section includes proofs of Theorems [5] and [f] regarding the limiting

distribution of the cutpoint, as well as some supporting lemmas.
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S1 Additional Discussions and Simulation Results for

Unknown Cutpoint Problem

We describe another data-driven algorithm, referred to as Method S2, that

determines m for constructing confidence intervals for the optimal cutpoint

in Subsection [B. Ik

1. Consider a sequence of m’s of the form m; = [¢’n] for j = 1,2, ..., and

q € (0,1);

2. For each mj-out-of-n bootstrap, compute éfnj,b for b-th replication.

Construct the bootstrap empirical cumulative distribution function
1B
- 1/3 A .
Foy(2) = & > H{mP (e, — ) < ).
b=1
3. The m will be selected as the value that minimizes the supremum
difference between two adjacent bootstrap empirical cumulative distri-
butions:

A

m = argmin,, sup |Fm] () = Fp, o ()],
x
where in the case of ties, we select the largest one.

Then, we report the empirical bias and standard error of the proposed
profile estimator ¢, in (4.10)) for estimating ¢, under alternative hypotheses.

The simulation settings are identical to those used in the power analysis in



S1. ADDITIONAL DISCUSSIONS AND SIMULATION RESULTS FOR
UNKNOWN CUTPOINT PROBLEM

Table S1: Empirical bias and standard errors of the estimate of ¢, under alternative

hypothesis.

n=300 n=500

cp Bias SE Bias SE

6a 0.5 -0.0104 0.2481 0.0079 0.2325

6b 0.7 -0.1295 0.2615 -0.0846 0.242

7a 0.5 -0.0587 0.1124 -0.0398 0.0933

b 0.7 -0.015 0.117 0.005  0.0587

8§ 0.5 -0.0026 0.0722 -0.0061 0.0605

9 052 -0.0099 0.1300 -0.0046 0.1132

Subsection [6.2] with the addition of two new cases, 6b and 7b listed in
Table [1}, where ¢, = 0.7.

From Table [S1], we observe that our method is accurate for estimating
¢p across most cases, with small biases and standard errors. However, with
a smaller sample size, such as in Case 6a and 6b, it is less accurate. This
might be attributed to the small values of |6,,| (i.e. around 0.1), as listed

in Table [I, where the optimal cutpoint might be challenging to identify.
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S2 Additional Simulation Results for Problem with

prespecified cutpoint

In this section, additional simulation results when c is prespecified are pre-
sented. For each set of combination, simulations are repeated R = 1000
times. Three different sample sizes (n = 100,300, 500) are considered for
scenarios 1-9 described in Table [I] in Section [6] It is worth noting that
the prespecified cutpoint ¢y = 0.5 for Cases 1-8 and ¢y = 0.52 for Case 9
are indeed the optimal cutpoints ¢, under the alternative hypothesis in our
settings. We calculate the empirical size and empirical power of the test
according to Theorem [2 As summarized in Table [S2, for configurations
1-5, the empirical size of the test remains close to the nominal 5% level and
exhibits minimal change with increasing sample size. The empirical power
exceeds 85% in most cases, and increases with the sample size and with the

increase in true |6,,|, as listed in Table [1]

S3 Minimum p-value Method

In this section, we explore another method commonly used in the anal-
ysis of data from clinical trials known as the minimum p-value method.

Here, we define our test statistic as the most significant one, given by



S3. MINIMUM p-VALUE METHOD

Table S2: Empirical size and power (in percentage) of the test under null hypothesis
and alternative hypothesis when cutpoint ¢ is given for significance level & = 0.05. Here

configurations 1-5 are for size, and configurations 6a-9 are for power.

n 1 2 3 4 5 6a Ta 8 9

100 45 44 4 37 35 143 8¢ 100 100

300 49 6 54 5 43 312 100 100 100

500 4.5 45 42 42 44 494 100 100 100

N

/=2 .
anc

tion [4.1, we substitute the statistic |, | by

SUD e, Meanwhile, for the bootstrap method outlined in Sec-

fe” | and use it as the basis

of the bootstrap to test whether the predictive effects exist or not. Upon
rejecting the null hypothesis, the optimal cutpoint ¢, is determined as the
value that yields the lowest among all calculated p-values by Theorem [2[s

method, expressed as:

C, = arg min 2
gce[fu]

LR celt,u) /62,

énc
)] = arg max |uc|,  fic = V1, ,

where ® is the distribution function of a standard normal variable.
Simulation studies are conducted to assess the performance of the min-

imum p-value method and the corresponding bootstrap test. The setups

and configurations under null hypothesis and alternative hypothesis remain

identical to those detailed in Section [6l
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Table S3: The empirical size (in percentage) and power of minimum p-value method
under null hypothesis and alternative hypothesis when the cutpoint is not given for
significance level @ = 0.05. Configurations 1-5 focus on size, while configurations 6-9,
where ¢ is considered to be 0.5 for configurations 6-8 and 0.52 for configuration 9, are

for empirical power.

n 1 2 3 4 5 6a Ta 8 9

300 PB 49 48 46 42 52 144 983 100 100

WB 338 352 32 357 352 633 100 100 100

500 PB 47 48 45 69 59 21.2 100 100 100

WB 39.7 375 304 382 384 73 100 100 100

Table S4: Empirical bias and standard errors of the estimate of ¢, under alternative

hypothesis.

n=300 n=500

cp Bias SE Bias SE

6a 0.5 0.0095 0.226 0.0126 0.0872

6b 0.7 -0.1143 0.233 0.0151 0.0667

7a 0.5 -0.0002 0.2035 0.001 0.0524

7 0.7 -0.0948 0.2182 0.0143 0.044

8§ 0.5 -0.0188 0.1098 -0.0134 0.0938

9 052 -0.0093 0.2070 -0.0030 0.1934

Table provides the empirical size and power of the bootstrap test

(PB) based on the minimum p-value method. The results are similar to



S4. ADDITIONAL RESULTS ON REAL DATA AND EXTENSIONS

those by the profile method, where the empirical size of PB is close to the
nominated significant level 5% under the null hypothesis and the empirical
power increases as sample sizes increase. The minimum p-value method
also yields precise estimates, as indicated in Table [S4], where the empirical
bias and standard errors demonstrate relatively small values for most con-
figurations. The trend of increasing accuracy is also seen when the sample

size is increasing and true |6,,] is larger.

S4 Additional Results on Real Data and Extensions

S4.1 Additional Results on Real Data

In this section, we present additional results on the advanced colorectal

cancer dataset.
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Figure 1: (A): The histogram of HGB from baseline at 8 weeks, the vertical dash line indi-
cates the cutpoint estimated (110) by profile method and the minimum p-value method.
(B): The scatter plot illustrates the trend of émc at each value of HGB from baseline at

8 weeks, with the most significant absolute value observed at 110.



Zehui Wang, Yanglei Song, Wenyu Jiang and Dongsheng Tu

Table S5: Estimated ¢, and ¢, for EREG, LDH, ALKPH and HGB by profile method
and minimum p-value method respectively, and the corresponding p-values based on the

bootstrap method. The bootstrap repetition number is B=2000.

EREG LDH

Week én Pprofile En Pmini Week én Pprofile 611 Pmini

4 812 0.190 812 0.183 4 277 0.691 270 0.685

8 8.02 0.232 8.02 0.231 8 328  0.183 328 0.176

16 436 0.281 436 0.292 16 770 0.682 770 0.677

24 4.37 0400 4.89 0470 24 245 0.083 245 0.080

ALKPH HGB

Week é'n, Pprofile En Pmini Week én Pprofile 671 Pming

4 180 0.500 180  0.500 4 112 0.192 110 0.230

8 116  0.655 116  0.626 8 110  0.007 110 0.005

16 116  0.380 116  0.370 16 119  0.662 119 0.646

24 89 0.250 91  0.299 24 118  0.087 118 0.083

Table S6: Subgroup analysis of HGB based on ¢, with respect to the change score in

the physical function score at 8 weeks.

Cetuximab+BSC BSC

Biomarker Value n Mean n Mean Difference

HGB <110 27 2.78 17 -23.53 26.31

>110 99 -4.21 72 -4.91 0.7
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S4.2 Model Dependence, Transformation Sensitivity and Exten-

sions for Multiple Biomarkers
The proposed index
QCZPI"(Xl S}/Z | Z1 >C,Z2>C)—PI‘(X1 S}/Q | Z1 SC,ZQ SC)

quantifies the difference in relative treatment effects between two subgroups
formed by dichotomizing the biomarker at a single threshold c¢. Hence,
6. measures the degree of predictive heterogeneity that can be captured
through this specific subgrouping rule. If the true treatment-biomarker
interaction depends on a more complex transformation f(Z) rather than
directly on Z, it is indeed possible that 6. = 0 for ¢ € [¢,u] even when
heterogeneity exists with respect to f(Z). This reflects a limitation of the

dichotomization scheme. One could define
09 =Pr(Xy < Yo | f(Z1) > ¢, f(Zo) > o)=Pr(X1 < Yo | f(Z1) S e, f(Za) < ),

which extends the framework to transformations or even multiple biomark-

ers.

Remark 1. 6. is based on rank comparisons of biomarker values and is
therefore invariant under any strictly monotone transformation of Z (e.g.,
logarithmic or percentile transformations) that preserves ordering. Specif-

ically, if f is strictly increasing, then 9;](2) = 0., implying that such trans-
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formations leave the null hypothesis in ([1.3]) unchanged. Furthermore, ¢* is

a maximizer of |6,| if and only if f(c*) is a maximizer of |#%].

In practice, the groups can be formed by multiple biomarkers, which
is an area of growing interest that requires further practical investigation.
Below, we outline some potential extensions for handling multiple biomark-
ers.

A straightforward approach is to test each biomarker individually and
apply multiple testing correction methods, such as the Bonferroni correc-
tion, to control the overall Type I error rate. For example, in Section (7| of
our real data application, we analyzed four biomarkers and their associa-
tion with changes in the Physical Function Scale (PFS) from baseline at
8 weeks. With four hypotheses and a desired overall significance level of
a = 0.05, the Bonferroni correction adjusts the individual significance level
to a/4 = 0.0125. In this case, HGB remains a significant biomarker, as its
p-value of 0.007 falls below the adjusted threshold.

Another approach involves combining multiple biomarkers into a single
score, as proposed by |Cai et al.| (2010). This aggregated score can then
be treated as a new “biomarker”, and our proposed procedure can be ap-
plied to assess its association with the outcome of interest. This method

simplifies the analysis while accounting for the combined effects of multiple
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biomarkers.
A more flexible approach is to consider a hyperplane that separates
groups formed by multiple biomarkers. Specifically, we can define the model

as follows:

0. = Pr(Xy < Yalg(v' Z1) > ¢, 9(v" Za) > o)—Pr(Xy < Yalg(v' Z1) < ¢, 9(v" Zs) < ¢),

where Z = (Zy,...,Z,) is a p-dimensional vector of biomarker measure-
ments, 7 is a vector used to combine the biomarkers, ¢ is the unknown cut-
point, and g(+) can be some link functions. This strategy allows for multidi-
mensional group formation. Moreover, the interpretation is straightforward:
if the combination is linear (i.e., without g(-)), the signs of the parameters in
~ suggest whether a biomarker contributes to forming a treatment-sensitive
group or not. However, estimating the hyperplane efficiently presents chal-
lenges, requiring identifiability conditions, approximation techniques, and
dimensional reduction methods; see, e.g., |Fan et al.| (2017)); Li et al.| (2021)).

One could also construct a predictive tree based on the probabilistic in-
dex, where decision nodes represent splits informed by individual biomark-
ers. While this method provides an interpretable structure, integrating our
testing procedure into the tree framework introduces challenges, particu-

larly in maintaining the statistical properties of the test.
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S4.3 Adjustment for Confounding Variables

The proposed method is developed in a predictive and associational frame-
work. In applications such as randomized clinical trials, the treatment in-
dicator U is independent of baseline variables by design, but the biomarker
Z is a baseline characteristic and may still depend on other covariates B.
When B influences both Z and the outcomes under each treatment, the

marginal measure
QC:PI(Xl <Y, | 21 >C,ZQ>C)—PI"(X1 <Y, | Z1 SC,ZQ SC)

can reflect heterogeneity induced by the association between B and Z, in
addition to the predictive contribution of the biomarker itself. To isolate

the biomarker-specific component, one can define the conditional quantity
OB, = Pr(X1 <Y | Z1 > ¢, 25 > ¢, By, By)-Pr(X1 <Yy | Z1 < ¢, 2, <

and its population average 04 = Ep, p,[0,5, B,), which adjusts for the
distribution of baseline covariates and represents the biomarker’s predic-
tive contribution after accounting for baseline imbalance. Both quantities
are associational rather than causal, as the probabilistic index compares
outcome distributions without invoking potential-outcome assumptions.
Directly conditioning on high-dimensional B can be challenging. A

practical approach is to embed the probabilistic index within a regression

C, B17B2)7
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framework. Following |Thas et al.| (2012));|De Schryver and De Neve, (2019),

one may specify a probabilistic-index model for

Pr(X, <Y, | Z1,Z5, B1, By) = m(a I(Zy > ¢, Zy > ¢)+ 8, B +52TBz+’Y)7

where m(-) is a user-specified link function mapping R to (0, 1) and (a, 31, B2, )
are regression parameters. For fixed B; and Bs, a nonzero « indicates dif-
ferential probabilistic treatment effects between the subgroups defined by

¢, after adjusting for covariates. This regression formulation is parametric
and relies on correct model specification.

Alternatively, one may estimate the conditional probability index semi-
parametrically or nonparametrically using flexible machine learning (ML)
methods (Chernozhukov et al., [2018; |Mi et al.l [2021)). In particular, a
double/debiased machine learning (DML) approach could target 62¥ by
combining cross-fitted ML estimates of the nuisance components, such as
Pr(X; <Y, | Z1,Z5,By,B,) and Pr(Z > ¢ | B), in an orthogonal esti-
mating equation. Such an extension would provide a flexible adjustment
framework while preserving the associational interpretation of #24. We
view both the regression-based and DML-based extensions as interesting

directions for future research.
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S4.4 Power Considerations and Potential for Hybrid Testing

The proposed procedure is built upon the probabilistic index, which natu-
rally accommodates both continuous and ordinal outcomes. When X and
Y are ordinal, their numerical means are not well-defined or meaningful,
whereas the event {X < Y} remains well defined. This makes it challeng-
ing, in general, to combine rank-based and mean-based approaches within
a unified framework. When X and Y are numerical, however, one could

consider a mean-based contrast such as

HC:E[Xl—E|Z1>C7ZQ>C]—E[X1—§/2|Z1§C,ZQ§C],

and develop hybrid statistics that incorporate both 6. and 6. to balance
robustness (to heavy-tailed distributions) and power.

A second avenue is to consider semiparametric methods such as the
density ratio model (Fokianos and Troendle, 2007; Jiang and Tu, 2012} |Jiang
et al., |2016)), which specifies a parametric link between two distributions
while retaining flexibility. Specifically, let fi"(z) and fit(y) denote the
densities of X and Y in the biomarker-positive subgroup (Z > c¢), with

5 (z) and fy~ (y) defined analogously for the biomarker-negative subgroup.
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A density ratio model assumes

< (2) = exp(a + B"h(z)) i (2),

5 (@) = exp(y + X' g(2)) i (2),

where h(z) and g(x) are known link functions, and («, 3,7, ) are pa-
rameters. Estimation can proceed via profile likelihood methods (Qin and
Zhang|, 1997; |[Fokianos et al., [2001; Fokianos and Troendle], 2007; |Jiang and
Tu, 2012), giving fitted distributions f$°, f&&, £, <. Plugging these into

distributional definition of . in Remark [2| 8. can then be estimated as
bue = [ B @0 ) = [ B (@)aFy (o)

This framework retains flexibility while introducing a parametric compo-
nent that can improve efficiency, thus serving as a natural hybrid between
distribution-based and model-based approaches. However, it applies only
to numerical responses. A full theoretical development is beyond the scope
of the present paper and will be pursued in future work.

Finally, when a reasonable guess about the potential cutpoint is avail-

able, we can develop a hybrid test statistic to improve power. Recall the

definition of 6, in (2.6). Define

Sn,hybrid =+/n ( sup (1 — €)|én70| + €|énvcg|> )

cE[lu]
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where ¢, is a user-supplied value and € € [0, 1] determines how much weight
is given to the user-specified component. When € = 0, the statistic reduces
to S, for the unknown cutpoint problem in (1.3, while larger values of €
allow the test to focus more on 6.,. This hybridization can improve power
when ¢, is close to the true optimal cutpoint if it exists.

The bootstrap procedure described in Section[4.1]can be directly adapted
for this hybrid test. Specifically, for each bootstrap sample, we compute

the bootstrap version of the hybrid test statistic as

A:L,hbe‘id =Vn (max(l - 6)!‘92,(; - én,0| + dé;;,cg - é”v¢g|) .

cE[l,u]
The empirical distribution of S;‘L’hybmd over all bootstrap replications pro-
vides an estimate of the sampling distribution of the hybrid statistic under

the null. The p-value can be computed as 1 — F ;o i1(Sn nybria), where

F hyria denotes the distribution function of the boostrap test statistic

Ar*L,hybm'd'

Table [S7 summarizes the empirical size and power of the hybrid test
under several configurations, which are described in Table [I] of Section [6.1]
An additional Case 10 is included, in which X ~ £(0.7+0.2 x I(Z > 0.5)),
and Y ~ £(0.3 - 0.2 x I(Z > 0.5)), with ¢, = 0.5 and |0,,| = 0.2. Cases 1
and 3 are under null hypothesis, while Cases 6a and 10 are under alternative

hypothesis.
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Table S7: The empirical size and power (in percentage) of the hybrid test under the

null and alternative hypotheses at a significance level of & = 0.05. Configurations 1 and

3 correspond to empirical size, while Configurations 6a and 10 correspond to empirical

power. Bootstrap replications: B= 1000; simulation rounds: 1000.

cg = 0.3

3

6a

10

cg = 0.5

3

6a

10

cg = 0.6

3

6a

10

0.1

0.3

0.5

0.7

0.9

5.1

6.9

4.7

3.4

6.8

5.6

5.2

5.9

3.4

4.7

5.9

5.0

20.5

22.2

20.6

19.7

21.6

20.3

85.6

84.1

85.0

77.8

74.4

69.4

0.1

0.3

0.5

0.7

0.9

5.1

5.0

5.7

5.0

6.3

6.4

5.2

6.3

4.2

5.0

5.9

5.0

20.5

20.6

29.1

33.4

26.3

25.3

85.6

87.8

94.4

97.8

96.9

96.9

0.1

0.3

0.5

0.7

0.9

5.1

5.7

4.1

5.3

4.6

7.0

5.2

5.0

4.1

3.8

4.1

5.3

20.5

20.9

22.8

24.0

24.4

24.7

85.6

87.8

92.5

94.4

93.8

94.4

Each block corresponds to a different guessed cutpoint c,, and we report

results for various values of e. The results indicate that the hybrid procedure

maintains good size control while offering improved power for moderate

values of € under alternative hypothesis, particularly when the guessed ¢, is

close to the optimal cutpoint (i.e., 0.5). A systematic method for selecting

e € (0,1) is left for future research.
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S5 Notations

We first establish certain notations for clarity and coherence. For an ar-
bitrary index set S, let ¢>°(S) denote the space of uniformly bounded,
real-valued functions f : S — R equipped with the sup norm | f|le =
supseg | f(s)|. For a pseudometric space (S,d), N(S,d,€) refers to the e-
covering number of (5, d), i.e., the minimum number of closed d-balls with
radius at most € that cover S. For a probability space (S,S,P) and a
measurable function f : S — R, we use Pf to denote the integral of the
function f with respect to the probability measure P, that is, Pf = [ fdP.
For ¢ € [1,00], we use the notation ||-||p, := (P|f|)Y7 := ([|f|7dP)"4
to denote the L,(P)-norm. We write X,, = Op(1) (resp. op(1)) if the se-
quence of random variables X, is bounded in probability (resp. converges
to 0 in probability). For two sequences of positive deterministic numbers
{a, :n > 1} and {b, : n > 1}, we write a,, = O(b,) (resp. a, = o(b,)) if
lim sup,,_, ., @n /by, < 00 (resp. lim, o a,/b, = 0).

Let H be a class of symmetric measurable functions h : S™ — R, and

define the associated U-process of order r as follows:

U () = > h(Xi, X)), hEH, (85.1)

(Z) (i15eeesir)Eln,r

where (’;) = #lr), denotes the number of r-combinations, and I,, =



S5. NOTATIONS

{(i1, ..., 1) : 1 <y <y < ... <i. <n}. Foreach k=1,..,r, let P""*h de-
note the function on S* defined by P"*h(zy, ...zx) = E [h(z1, ..., Ty Xit1, - X))
For a distribution ) on S”, define ||Q||3 = supjcy |QR|.

Define

S :={(t,u,z) e R x{0,1} x R}. (S5.2)

Recall that D; = (T;,U;, Z;),i € [n| are independently and identically dis-

tributed observations taking values in S§. For £ < ¢ < u, we define

2 2
Wl = ——= > w(Dy,Dy), Wi=—"-— > u(D,Dy),
n(n —1) 1<i<j<n n(n —1) 1<i<j<n
2 2
M-t S D) MBS wD,.D)),
7 n(n —1) 1<;<n ’ 7 n(n —1) 1§;§n !

which are U statistics with the symmetric kernels w'" (), wt? (4, ), mt (+,°)

and m£2)(-, -) defined respectively as

w(Dy, D;) =Ty ;(1 — UNU;ZEHZ5+ 4+ T,(1 = Uy U Z5H 25,
w® (D;, D;) =Ty (1 — UNU;ZE Z5 + Ty(1 = Uy)U 2§ 25,

(S5.4)
m)(D;, D;) = (1 - UNU;ZHZ5+ + (1= Uy U 2§ Z5T,

mP (D, D)) == (1 = U)U; Z Z5 + (1 = Uy) Ui Zg Z5.
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We define the following functions: for 1 < i # j <n and ¢ € [(,u],

|
—
—
—
—~
)
~—

E [wM(D;, D;)|D]

= [(1 = GUTife D)1~ UA+ CP(T,[e, 0)Ui(L — N)] Z8(1 — F(o)),

X

&
—~
9
N—

i

E [w?(D;, D;)|D|]

= [(1 = GOTi|e, 1)1 = UDA + GO (Ti|e, 0)Ui(1 — N)] Z¢~ F(e),
m(D) = E [m) (D, D))[Di] = [(1 - U)A+ V(1 = V] Z£ (1~ F(e)),
m®(D,) = E [m® (D, D;)|Dy] = [(1 — U + U;(1 = N)] Z& F(e),

(S5.5)

In the above, we recall that G/ (t|c,k) = Pr(T < t|Z > ¢,U = k),
G tle, k) =Pr(T <t|Z < c,U =k),k = 0,1 is defined in (2.5).

Further, note that for 1 <i # j <n, and ¢ € [, u],

E [wM(D;,D))] =201 = N Pr(X, < Y5|Z1 > ¢, Zo > ¢)(1 — F(c))* = B [W\})

E [w®(D;,D;)] =201 - N Pr(X, < Y5|Z1 < ¢, Zy < ¢)F?(c) = E [WP)],

E[mM(D;, D)) =221 - N1 - F(e))*=E[M{" ],

co,n

E [mP(D;, D;)] = 2A(1 - N F*(c) = B [M?] .

co,m

(95.6)

Recall the definition of S in (S5.2)). Define the following constant func-

tion on S?: FM(dy,dy) = 1 for di,dy € S. Consider the function classes
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Fi, Fa, F5 and F; on S? defined as follows:

Fi1=1{8% 3 (dy,d2) — t19(1 — up)ugz{t 25t + o1 (1 — ug)us 257257 ¢ € [0, u},
Fo={8*32 (dy,d2) = t12(1 —up)ug2™ 25 +to1(1 — u)u 2525 ¢ € [, u]},
Fs=1{8% 3 (dy,da) — (1 —up)ug2St 25T + (1 — ug)u 25251 < ¢ € [, u]},

Fi={8*2 (di,do) — (1 —up)ugz{ 25 + (1 —ug)us 2§25 1 ¢ € [0, ul},
(S5.7)

where d; = (t;,u;, %) and ¢, ; = I(t; < t;) for i,j € {1,2}. It is clear that
F®)(.) is an envelope function for these function classes. Further, due to
Example 2.6.1 in [Van der Vaart and Wellner| (1996) and the permanence
property (Van der Vaart and Wellner, (1996, Lemma 2.6.18), F;, Fo, F3
and F, are VC-subgraph classes (Van der Vaart and Wellner| |1996, Section
2.6.2).

Note that {Wc(%) cc e [lul}, {Wc(i) cc € [Cu]} {Mc(ln) cc € [0,u]} and
{Mc(zn) : ¢ € [¢,u]} are respectively the U-processes indexed by Fi, Fa, F3

and ]:4.

S6 Proofs in the Case with prespecified cutpoint

Proof of Theorem[]. Recall that F' is the distribution function of Z with

0< F(f) < F(u) < 1 and ¢y € [¢,u], and that U and Z are independent.
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We note the following decomposition:

(1) (2)
. Wi, we, (W] B[]
vn <9n,co - 9co) =vn O @ o1 2 :
com con E | M:n E | Mcn

where Wc(ol,)n, WC(OQ%, Mc(ol,)n, Mé(?)n and their kernels wé(l))(-, ), w((;g)(-, ), m((;(l))(-, ),
mg)(-, -) are defined in and with the substitution of ¢ by ¢.
Further, the expectations above are given in ([S5.6)).

As the kernels w((;é)(-, ), w((;i)(-, ), m((;(l))(-, ), mg)(-, -) are all bounded, by
the central limit theorem for U-statistics (Van der Vaart, |2007, Theorem

12.3), we have

Weon = E W] @) (Di) = B [0l (D,)]
Win =BG 2 & | @8/(Di) = B[00 (Dy)]

Vi == +op(1) ~ N (0,4)
MY —E MY ] m{)(D;) — E [m})(D;)]

€o,Mm €o,M [&0] [€0]

M® — E[MY] m2(D;) — E [mP (D;)]

€0, €0, €0 €]

where W) (1), w2 (-), m& (), mP(-) are defined in (55.5), 0 = (0,0,0,0)7,

and

2 = cov (0 )(D;), 0 (D), mY (D;), m{? (D)) (S6.1)

» o ¢ ? Co

is the 4 x 4 covariance matrix. Due to condition (3.7)), ¥ has a full rank.

Consider the function g(zx,y, z,v) = E—% for x,y, 2,7 € Rand z,v # 0.

z

By assumptions, the map ¢ is differentiable at the point § = (F [Wc(ol)n], E [Wc(fgm}, E [Mc(ol)n], E[ 0(02)”]),
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with derivative
L1 BWn]  BWE
PO EMET (ena)” (elas)’

Applying the Delta method (Van der Vaart, 2007, Theorem 3.1), we

95 = (S6.2)

then obtain

@l (D;) - E [@})(D;)]

co

co

A 2 co
VI (ney = 00) === > g +op(1) ~ N(0.07,).
m)(D;) — E [mly) (D;)]

co

2 (D) ~ E [m? (D))

&)

where
0% =4g,%g . (S6.3)

2

o 1s positive. [l

Since ¥ has a full rank and g # 0, we have o

Proof of Theorem 9. We first define the jackknife pseudo-values for 1 < k <

n and their average as follows:

~ ~

. _ 1 <. -
Opi, = — 1) — (n—1)0,% . 0,:= - > Oupa.  (S64)
k=1
where é;f;o is the estimate of 6, based on the sample with the k-th ob-

servation left out. By elementary calculation, we have that &fwo can be

computed using jackknife pseudo-values:

n

R 1 ~ - 1
0721,00 = Z(en,k,Tk_en)2 =

n—1
k=1 k=1

(B~ )~ (=)

(36.5)
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For each x € R and 1 < k < n, define

Op o = Ukz,gﬁéfl{;,ﬁu—Uk)Z,jﬁéff,{’ﬁUkZ,jo—@() +(1—Up) Zo~ 9(,)”,
(S6.6)

where, éff ;m for j = 1,2, 3,4 are defined as follows:

(n — 1) Zi;ﬁk [(T‘Z < gj) (1 — UZ) Zico-i-

a1
e C 1= 0) 20| [ 2 U2 41
B (n—1) Zi;ﬁk Zj;ék T (1 — Ui)UjZfOJerOJF
(S 0= U) 20| [ Sop Uizt +1) [Son Uizet|
g . (n—1) X Iz < T)UZPT
n ke [Z#k (1—U) 2" + 1} [Z#k U, Zco+]
B (n—1) Y i Ty (1 = U U Z00 Z50*
(S 0= U) 207 +1] [ S Uizt | [Son 0 - U9 207]
g0 . (DY [T <2)(1-U) Z”
e [Z#k (1-Ui) Zicoi] [Zi#; U, Z7*~ + 1}
n (n = 1) > 2o Ty (1 = UU; Z° Z50
[Z#k (1-U) Zicof} [Z#k U, Z7*~ + 1] [Z#k U, ZCO’} ’
o (n =13 I @ <THUZP~

[Z#k (1 - Ui) Zico_ + 1] [Zz;&k Ui ZCO_}
(n—1) Zz‘yﬁk Zj;ék Ti;(1 - Ui)UszfEOiZJ?Oi

i [Z#k (1-U) Z + 1] [Z#k Uz‘ZfO_] [Z#k (1-U;) Zico_] ,

where >, represents » ;" ; ;. Then by definition, the k-th pseudo-value

9~n7k7Tk is equal to énm with x substituted by Tj.
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Further, for each x € R and 1 < k < n, define

Uy, = U ZPP W + (1= U) 2002 + U, 2008 + (1 - Uy) Zom v,

(56.7)
where

oo _ E [[(T, <) (1 =U) Z** ] Pr(Xy < YalZy > co, 22 > co)

© S TN - Fleo)? Ni-Fa)
oo _ E [[(x <TYUZP"] Pr(Xy < YalZi > co, 22 > o)

C A=A = F(e))? (1= A)(1 = F(co)) ’
pB) — _E [(Ti<2)(1-U) ZEO_} Pr(X; <Y5|Z) < ¢, Z> < cp)

“ A1 = N)F?(co) AF(co) ’
@ :_E[](ng)UZCO ] Pr(X; < Ys|Zy < ¢y, Zy < cp)

e A1 = N)F?(co) (1 —=XN)F(co) ’

In Lemma , we show that ényk@ is approximated by \i!k,x uniformly

over 1 <k <n and x € R" as n — oo, which implies that if we define

Rn,k = Qn,k,:r,c - \I’k,Tka

then M, := max<x<y, |Rnx| = op(1). Further, due to (S6.5) and by defini-

tion,
1 n 5 n
~2
Tneo =7 1 - ( k, Ty, 1 ; kT — Oco k + Z

2
1

k=
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Note that
LS Rl < My = 0p(1) LS R, <™ a2 = o)
n i ’ n—14& k=g

1 /-
n—1 Z <\Ijk,Tk - 00()) Rn,k

1 -
< (i Xl o,

where the last equality is due to the law of large numbers, since {U 1, :

> Mn = OP(]_),

k € [n]} are i.i.d.
Finally, we note that for 1 < k < n, F [@ka] = 0., and that by
definition,
-
513, = 265 (0D, o2 (D), ) (D)D)
where we recall g in and wéé’(-),wé?(-),mﬁ?(-), mﬁ?() are defined
in ,
As a result, due to the definition of ¥ in and o2 in (S6.3)), we
have
Var(Uyp,) = élg’ﬁilg’ﬁT =02,
Then the proof is complete by the law of large numbers and the central

limit theorem. O

Recall the definition of énkm and \TJM in ((S6.6|) and (S6.7) respectively.

Lemma 1. Suppose that condition holds. Then we have

max sup én;m — \T’k‘,x =op(1).

1<k<n geR
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Proof. By the definition of én;m and \ilk,x in ((S6.6|) and (S6.7)) respectively,

it suffices to show that for j =1,...,4,

i _ gl

n,k,x T

max sup = op(1).

L<k<n ook

By the union bound, it suffices to show that for any ¢ > 0 and for j =
1,...,4,

lim nPr (Sup éﬁf)lm —yb)

n—o0 z€R

> e) = 0. (S6.9)

We only present details for the case j = 1, noting that similar arguments
apply to 7 = 2,3, 4.
Due to monotonicity, it suffices to show that (S6.9) holds for all suffi-

ciently small € > 0. Now, we fix some € > 0 such that
e < min{(l—)\)(l—F(co)), M1—F(co)), (1=N)F(co), )\F(co)}. (86.10)

Define the following event

By = { — ; (1= U3) Z2 = (1= N)(1 = F(eo))| < /2,
Ty A A Pl < 2
= ; (L=U)Z" = (L= NF(co)| < €/2
- i - ; UiZ&™ — AF(c)| < e/z}.
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Due to (S6.10)), on the event B,,, we have

1
i > (1-Ui) ze*
mm{n—l (1-U;) zZ™,

i#1

1
i 1— Zo,
mln{n_lz( U;)

i#1

Further, we define the following event:

n_

A1 = {sup
z€R

= [Z 1-v)z

i£1

(n _1 1)3 [Z (1-U)Z7

i#1

Since E [I(Ty <) (1—Uy) Z{*"] <1land E [Wc(ol)n] < 1, by definition, we

By 0 At 0 Aup 0 Ay 0 Any < {

By the union bound, we have

Pr (
zeR

j0) GV

Z‘

Since U;, T; ; and Z are all bounded by 1, by McDiarmid’s inequality

(McDiarmid, |1989)), there exists some constant C' > 0 such that for n > 1

Pr(BE) + Pr(AL,) + Pr(A% ;) + Pr(AL ) < Qe ™/C.

Apg = { Z wld) (D, D;) — E (W
<n o 1 2<z<]<n

i#1

1
] ZUiZf“} > ¢/2

} > €/2.
z;él

Y UizZet 41
i#1

co,m

Y UiZet 41
i#£1

50

n,l,z

]

4
<_
32

Z U, ZiCoJr

i#1

(S6.11)

ZIT <2)(1=U) 28t — E[I(T; < x) (1 = Uy) Z&F]

— A1 = N1 = F(c))*

M (1 —

> ) < Pr(BY) + Pr(A% ) + Pr(A% ) 4 Pr(AL ;) + Pr(AD,).




S6. PROOFS IN THE CASE WITH PRESPECIFIED CUTPOINT

Finally, we bound the probability of the event AELJ. Define

By the bounded differences inequality (Giné and Nickl, 2021, Theorem
3.3.14) (see in particular case (b) in (Giné and Nickl, 2021, Example 3.3.13)),
there exists some constant C' > 0 such that

Pr(Z, > E[Z,) +1t) < e 2™ for t > 0.

Further, by the maximal inequality (Van der Vaart and Wellner, 1996

Corollary 2.2.8), for some constant C' > 0,

E[Z,) < C/v/n.

Combining two parts, for some constant C' > 0 and large enough n, we have

Pr(AL,) = Pr(Z, > ¢8/16) < Ce™/C.

Thus, together with (S6.11)), we prove (S6.9)). The proof is complete. ]
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S7  Proofs regarding hypothesis testing with unknown

cut-point

Proof of Theorem[3. Under Hy, 6. = 0 for all ¢ € [¢,u]. Note that for any
¢ € [6,u], \/nb, . can be expressed as

(1)
wa B W]
My E [MC(},Q}

e ))

\/ﬁén,c = \/E

M) MY E [M(l)]
Vi (W - B W) | |
_ - —E[W2]vn - :
M) | ME B MG

(S7.1)
where recall that Wc(%), Wc(zl), Méln) and Mc(Qn are defined in , and
{Wc(ln) i€ [€,u]}, {Wc(zl) ic€ [f,u]}, {MC(ITB ‘Cc€ [ﬁ,u]} and {Mc(zn) e el u]}
are U processes indexed by ¢ € [(, u].

Define two index sets T and T" as follows:
T=1[0u] x{1,...,4}, T =[l,u] x {1,2}.

Since Fi, Fa, F3 and Fy defined in (S5.7) are VC-subgraph classes (Van der
Vaart and Wellner, |1996, Section 2.6.2), by the central limit theorem for U
process (Pena and Giné, 1999, Theorem 5.3.3; Arcones and Gine, |1993, The-

orem 4.1), there exists a tight centered Gaussian process {G1 ¢, Gac, Gs.¢, Gac
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CUT-POINT
¢ € [¢,u]} such that
4 ) (
V(W — B (W) G
Vi (M) — B [M)] G
cc€lul p cc€ [l ul in (7).
Vi (W~ B W) G
Vi (42 - B (M) G,
\ / \ Vs

Let Dy, = DI[¢,u] be the space of cadlag functions on [¢,u] equipped
with the sup norm. Now, define the pointwise inverse map ¢(-) : Dy — Dy

as follows: for {D, : c € [(,u]} € Dy,

{O cE [6, u]}, if infce[m] ‘DC| =0
d({D.:cellul}) = . (S7.2)

{D, 7 :ce[lu]}, otherwise

By Section 2.2.4 and Lemma 12.2 of |[Kosorok! (2008), due to condition
(C.0)l ¢(-) is Hadamard-differentiable, tangentially to D, at {E[Mc(lrz] e €
[0, u]} and {E[MS3)] : ¢ € [¢,u]} with the derivative map ¢I{E[M(1)]}({Dc}) =

{=De/(BMEN)?} and & o ({De}) = {=Def (B[MEL))?) respectively

enl}
for any {D.} € Dy, where in the above ¢ € [¢,u]. Then by the functional
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delta method (Kosorok, 2008, Theorem 2.8), we have

( 3\ r

Moreover, by applying the law of large numbers for U processes (Pena and
Giné|, |1999| Corollary 5.2.3) and the continuous mapping theorem (Van der

Vaart and Wellner| 1996, Theorem 1.3.6), we can conclude that almost

surely,
M) E[MO]™
cellul p — ce€ [l u] in (7).
ME E &)

Then by Slutsky’s theorem (Kosorok, 2008, Theorem 7.15) and continuous
mapping (Van der Vaart and Wellner, (1996, Theorem 1.3.6) again, we obtain
that under H, {\/ﬁéw . ¢ € [l,u]} converges weakly to a tight centered

Gaussian process {G, : ¢ € [(,u]} in £°([¢, u]), where

5 [ (1)] E [ (2)]
1 en -1 en
Ge=E[MY)] Gre— ———=5Gac~ E[MJ)] Gse+ ———5Gi.
E M) B [M)]
(S7.3)

The last statement is again due to the continuous mapping theorem (Van der

Vaart and Wellner| 1996, Theorem 1.3.6). The proof is complete. O]

in (7).
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S7.1 Bootstrap consistency for hypothesis testing with unknown

cut-point

Proof of Theorem[{]. For each c, \/ﬁ(é;‘w — 0,,.) can be written as:

vn (chz)* — Wc(}’b)) 1 1
. _ A~ _ ’ ) (1) _
\/ﬁ(en,c 97170) Mc(l,,z* + WC,n \/ﬁ MC(%T)* Mc(ln)
2)* (2)
n ch - Wc,n)
_\/_( — —Wn 1*_L :
M) UAMET ME)

where Wc(%)*, Wc(i)*, Mélrz* and Mé%f are defined by replacing original data
by the bootstrap data in . We will apply the central limit theorem for
bootstrapped U-processes (Arcones and Giné, 1994, Theorem 2.1). First,
we verify the two required conditions.

Recall that the function classes Fi, F2, F3 and F; defined in are
VC-subgraph classes with the constant envelope function F()(-,-) = 1 as
mentioned in the proof of Theorem 3| Due to Example 2.6.1 and Theorem

2.6.7 in [Van der Vaart and Wellner| (1996)), for j = 1,...,4,

0o 1/2
/ (sgplogzv(fj,||-HQ,2,6HF<”||Q,2>) de < o0,

where the supremum is taken over all probability measures () on the space
S?. Thus condition (i) in (Arcones and Giné, 1994, Theorem 2.1) is satisfied.
Further, since the envelope function F(!) is constant, the condition (ii) in

(Arcones and Giné, (1994, Theorem 2.1) is also trivially met.
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Therefore, we can apply the central limit theorem for bootstrapped U-
processes (Arcones and Giné, 1994, Theorem 2.1). Recall the definitions of
Gie,Gac, G3e, Gy in Theorem. Asn — oo, conditional on (T}, U;, Z;),1 >

1, for almost every sequence (1;,U;, Z;),i > 1, we have:

) ( )

(
V(W —ve,) G

) G |
ceelu] p ce € [l u in >(T),

va (we -ve,) G
) G

/ \ W

where {Vil, : ¢ € [Lu]}, {Vimn ¢ € [6u]}, (V& ¢ € [6,u]} and
(V&9 . c € [0,u]} are V processes with kernels wi (-, -), m& (-, ), w((f)(-, ),

and m(2)(-, -) respectively. Specifically, for each c,

1 n n _ 1
v, = 3w, ) = M0 Dy,
i=1 j=1 n
1 n n o 1
v, = LSS mim,py) = My
U n ) n ’
i=1 j=1

I v n(n —1)
2 —_ - § § Q. D)= 2" @
‘/::,w,n - n2 s w, (Dz; D]> = 2 ’

1 G n(n—1)
2 _ Q. Py ML) e
Von = = ;:1 ;:1 m{?(D;, D;) = — M®

As {\/LEWC(Q ccell, u]} — 0in £°°([¢, u]) almost surely (Nolan and Pollard,

1987, Theorem 7), and similar results apply to the other three terms, we can
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CUT-POINT

conclude that, conditional on (7;,U;, Z;),i > 1, for almost every sequence

(Ea Ui7 ZZ>7Z Z 17

/

Recall that ¢ is the inverse map defined in (S7.2)). By Section 2.2.4 and
Lemma 12.2 in [Kosorok (2008)), the map ¢ is Hadamard-differentiable with
the same derivative map as discussed in the proof of Theorem [3| Then

by the bootstrap version of the functional delta method (Kosorok, 2008|

Theorem 12.1), we obtain that

(

i (W = wiy)

conditional on (T}, U;, Z;),i > 1, for almost every sequence (T}, U;, Z;),i > 1.
Moreover, by the bootstrap law of large numbers for U processes (Ar-
cones and Giné, |1994) and the continuous mapping theorem (Van der Vaart

and Wellner, 1996, Theorem 1.3.6), conditional on (73, U;, Z;),i > 1, for al-

(

\

;

\

Gl,c
G2,c
tc€ [l u
G3,c

G4,c

GLC
- G2,C/(E[
G3,c

- G4,c/(E[

/

M@

c,n

in (7).

)?

Vs

in (7)),
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most every sequence (T}, U;, Z;),i > 1, in £>°(T"),

T B MG
7 ccelu] p 7 cc € [l ul
M EM&]

Employing the law of large numbers for U processes (Pena and Giné,
1999, Corollary 5.2.3), we can conclude that almost surely,

ce€lu] p € [l u in  (>(T).
w® E [W(Q)]

Finally, by the Slutsky’s theorem (Kosorokl 2008, Theorem 7.15) and
continuous mapping theorem (Van der Vaart and Wellner| |1996, Theorem
1.3.6), we have that, conditional on (7;,U;, Z;),i > 1, for almost every
sequence (13, U;, Z;),i > 1, the process {\/ﬁ(ézc—énc) : ¢ € [0, u]} converges
to the same Gaussian process {G.. : ¢ € [¢,u]} in £>°([¢, u]) defined in (S7.3]).

The previous results, together with Theorem [3] imply that, under Hy,
the distribution of supce[&u]{\/mén,&} can be approximated by the distri-
bution of supce[&u]{\/ﬁ]é:;,C — 0|} by the continuous mapping theorem.
Specifically, we define J := sup, e, |G|, and denote by Fj its cumulative
distribution function and by FJ_1 its quantile function. Then we have that

SUD e[,y {\/ﬁ|énc|} ~» J and that conditional on (7;,U;, Z;),i > 1, for

almost every sequence (7;,U;, Z;),i > 1,

. (V)

cEl,u]
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Since G is a tight centered Gaussian process, F'; is absolutely con-
tinuous on (0,00), and F; "' is continuous and strictly increasing on (0,1)
(Ledoux and Talagrand, [1991; |Davydov et al., [1998). Then by Lemma 21.2
(Van der Vaart|, 2007) and the definition of weak convergence, conditional

on almost all sequences (T;,U;, Z;),i > 1, for any o € (0, 1), we have as

n — oo,
Pr (plgjus < @) = Pr (x/ﬁ:% el > (F)7H (1 - a))
—Pr(J-F;/'(1-a)>0)=oa
The proof is complete. ]

S8 Proofs regarding cut-point estimation

S8.1 Consistency and convergence rate

Proof of Theorem [ - consistency. Note that the alternative hypothesis holds,

i.e. 0., # 0. By the definition of ¢, and ¢, for any € > 0, we have

Pr(|é, — | > €) < Pr (lén,cblg sup |én,c|>.
]

|c—cp|>e,ce[l,u

Then by triangle inequality, we have

lc—cp|>€,cE[¢,u] |c—cp|>€,c€[,u]

Pr(|é, — | >¢€) < Pr (|0%| — |0Anjcb —0,,] < sup |énc — 0. + sup |90|>

:Pr< inf [, — 0. <2 sup |én,c—ec|> .

|c—cp|>€,c€l,u] cEl,u]
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Let 6 = infio_c,>ccefe) [0c,] — [0c|. By assumption [(C'T)}, 6 > 0, and

thus

Pr(|¢, — | > €) < Pr ( sup |0, — 0 > (5/2)

cE[l,u]

wa BRI, WS
<Pr| sup il > = sup 2~
celtu] M§1n) E [Mc(%@] 4 cellu] M(,Qn) E [Mc(zn} 4
(1) (1)
. Wil - B (W] o), 1|
< Pr | sup > - sup > —
celtad M) 8 et | M) B[R] | B
(2) (2)
Wen — B [WC,N] ) 1 )
+Pr| sup @ > = > 2|
ce[ﬁ,u] Mc’n 8 CE[@ ’LL] C, E |:MC(,2’N?i| 8
where we use the fact that sup.c, | E [W ] E [ C(Qn)} <

1 (see (S5.6)).

Since Fi, Fo, F3 and F; defined in are VC-subgraph classes
(Van der Vaart and Wellner}, |1996| Section 2.6.2), the proof is complete due
to condition and the law of large numbers for U processes (Pena and

Giné, 1999, Corollary 5.2.3). O

Proof of Theorem [ - convergence rate. We assume 6., > 0, noting that the
arguments are similar for the case 6, < 0. The goal is to show that for any

€ > 0, there exists M > 0 such that

limsup Pr(n'/3|¢, — ¢| > 2M) < e.

n—oo

We use a modified “peeling device” (Van der Vaart and Wellner, (1996,
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Theorem 3.2.5). Specifically, for each n, the parameter space minus the
point ¢, can be partitioned into “peels” S, ; = {c € [(,u] : 277! < nl/3|c —
cp] < 27} for j > 1. Due to condition |(C.0), and since 6, > 0 and the

function ¢+ 6, is continuous on [/, u], there exists ¢ > 0 such that

2/\(1 B /\) céﬁ,fid min {(1 - F(C))Q’ FQ(C)} = b and Icfcb\iﬁrbl,fce[f,u] e > 0.

(S8.1)

For this positive ¢, we define an event A, as follows:

A, = { inf MY > /2 inf M® >,/2, inf Ope>0, |60 — | < C/Z} ,
cellu] ’ cellu] ’ le—cp|<t,c€[,u)
(S8.2)
where ¢ > 0 appears in condition [[C'2)] By the law of large numbers
for U processes (Pena and Giné| 1999, Corollary 5.2.3) and the continuous

mapping theorem (Van der Vaart and Wellner, 1996, Theorem 1.3.6), we

have
P P
sup |MO) =201 = A)(1— F(¢)®| =0, sup |[MZ) —2X\1— N)F?(c)| = 0,
cell,u) c€[l,u]
sup én,c — 0. o,
c€l,u]

As aresult, together with the consistency of ¢, we have lim,, Pr(AEL) =0.
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Then due to condition |(C.2)] we have
Pr (n'/3|¢, — e > 2M) < Pr (n'?|¢, — o > 2M, A,) + Pr (Aﬁ)

< Z Pr (¢, € Snj, An) +o(1),
i>M
2j—1§n1/3</2

where o(1) denotes a sequence of deterministic numbers that converges to

~

zero as n — oo. Since by definition éncn — O, > 0, then on the event

~

{¢, € S,;}, it implies that SUPces, (9,1,,; — én,q) > 0. Thus, we obtain

that

Pr (n1/3|én — | > ZM) < Z Pr ( sup (énc — én,c;;) > O,An> +o(1).

J>M CESn,j
2j71§n1/3</2

Further, by the definition of S, ; and condition |(C.2)| if 2/~ < n'/3¢/2,

then

2j 2j—1 22j—2
|C—Cb|§—§C, |C_Cb|>_ = Qc_ecbg

—K—
nl/3 nl/3 n2/3"’

where the constant x appears in condition and recall that we assume

0., > 0. Thus, by the Markov inequality, we have
Pr (n1/3|én — ¢ > 2")

< Z Pr ( sup

J>M CESn,j
21-1<nl/3¢ /2

< k1 Z FE

i>M
27=1<nl/3¢/2

92j—2

en,c - ‘96 - (en,cb - ecb) Z FGW, An> +o0 (1)

én,c - 60 - (én,cb - 901:)

sup (
CESn,j

n
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Finally, by Lemma [2] for some constant C' > 0,

/27 /nl/3p2/3 .
Pr(n'3le, — | > 2M) < Ok Z L+0(1) = Okt Z 2—%J+2+0(1) :

2j—2
>M \/ﬁ2 >M
We note that Zj>M 937 converges to zero as M — oo. The proof is

complete. O

Recall the constant ¢ > 0 in (S8.1)), and the constant ¢ > 0 in condition

[(C:2)] Recall the event A,, defined in (S8.2).

Lemma 2. Assume the conditions in Theorem[d hold. There exists K > 0,
that only depends on F' and ¢, such that for everyn > 1 and 0 < 6 < (, we
have

~

en,c - ec - (én,cb - ecb) \/g

sup ( ) g, | < K—.
|c—cp| <8, ce[f,u] ] \/ﬁ

Proof. In this proof, we use K to denote a constant, that only depends on

E

F', 1, which may vary from line to line. Further, ¢ is always assumed to be

in [¢,u]. By the triangle inequality,

\/ﬁE sup ( émc —6.— (én,Cb — 9%) ) Ta,
IC—Cb|§6 .
2 o B o, E[W)]
ch Gn Wc n o
<vn Z E | sup i = = (Z) - : La,
i—1 |c—cp| <O MC,n E [Mc(,zn] Mcb’” E [MC(Z?TL}

(S8.3)
We deal with the case ¢ = 1, noting that the arguments for the case

1 = 2 are similar. For the term above with ¢ = 1, it can be upper bounded
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by the sum of four terms I, Il5, 115 and IVy, where

Is = VnE

1
ap (|5 002 - £ 002w s D) ) 10,

le—cp| <6

IIs = \/nE | sup

S RS B VA NN § P10 B VG W
e-alo \| MOE [ME)] (M = B [Mep] = My + B [M3])] ) T

1 1
IIIs = /nE | sup wh — g [ww —— ||| La. ]|
lc—cp| <8 <| ( . |: v }) Mc(,lrg Mc(bl,)n
B (Wil B (Wil
cn Cp,M
Vs =vnE | sup | |[(MD), - E[MD,]) - La,
|e—cp|<d . v MC(}y?E |:M(S,1n)] Mc(bl,)nE |:M(§bl,)ni|

Then it suffices to show that Is, I1s, [115, 1Vs < KW/ for any 0 < 6 < (
andn > 1. Fixsome 0 < < andn > 1.
Upper bounding Is. Define a class of functions F} := {wélz — w,(;l})n :

|c—cp| < 0}, where recall that wg})(-, 1) is a function of 82 defined in ([S5.4)).

Since on the event A, sup._., <s 1/MC(1,~2 < 2/1, we have

I < KB | swp (WG - B8] - W+ B v

Cp,n
le—cp| <6

= KynE [[UP(f) = P*fllz) .

where we recall the notation for U-process in (S5.1)) and the definition of
|-l 7 in Appendix . By Hoeffding decomposition (Van der Vaart], [2007)),

the centered U process can be decomposed into two parts: for f € F},

UD(f) = P2f = 20wy f) + U (7o f), (S8.4)
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where m, f(D1) = E[f(D1,Ds)|D:] — P*f, maf (D1, Ds) = f(D1, D) —
T f(D1) — mf(D2) + P2f, and both U (1 f) and US? (w2 f) denote the U
processes with kernels 71 f and s f respectively. Thus,

I.< K\/ﬁ (E [”Uqgl)(mf)”]:g] + FE [HUE)(@JC)H}%])

< KA(LFLED |PEY py + 2, FL R |

Jn

where the last inequality holds by maximal inequality for U processes (Chen

Ip2

and Kato, 2019, Corollary 5.6), J;(1, F§, F}), Jo(1, F}, F}) are uniform en-

tropy, defined as
1 N ) k/2
J(1, F5, FY) :/ sup [1 +1og N(P* " Fs, -l g 7 || P> FiSlHQQ)} dr,
0 Q 7 7

where recall that N(7', d, €) denotes the e-covering number for pseudometric
space (T, d), supg is taken over all finitely discrete distributions on S k and
Fi(dy,dy) == I(cy — 0 < 2z < cp+08)+I(cy — 6 < 20 < ¢+ 0) for
dy = (t1,uy,21),dy = (ta,ug, 23) € S? is the envelope function for F}.
Since Fj is a VC-type class by Lemma A.6, Corollary A.1 in Cher-
nozhukov et al.| (2014), thus Ji(1, F3, F}) < K for k = 1,2. Further, by

Jensen’s Inequality and the mean value theorem, we have

IPES ||y < 1F3 | poy < VE (Fle+0) = Fle, — 6)) < KV,

where the last inequality is because F' is continuous differentiable on [¢, —

¢, ¢y + ¢] by condition Thus, Is is upper bounded by K+/34.
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Upper bounding 77;. Define a class of functions FZ = {mg% — mg)n :

lc — ¢y < &} with envelope function FZ(dy,dy) = I(cy — 6 < 21 < ¢ +
8)+ I(cy — 0 < 29 < ¢ +0) for dy = (t1,u1, 21),dy = (to, us, 22) € S?; note
that FY = FY. As F? is also a VC-type class (Chernozhukov et al., 2014,
Lemma A.6, Corollary A.1), by similar arguments as those used for I, we

have that

g, (1,73, F3) || F? < K.

IIJSKJI(LF(??F(?)HPF(?HP,Q \/_

lp2 s <

Upper bounding /7//5. By Cauchy-Schwarz inequality, it can be up-

per bounded by the product of 1115, and 11152, which are defined as follows:

1 1

— | 14
1 1 n
My M,

2
115, == \/—\/ Wi, — [WE,},%D } [IIs = |E| sup

le—cp| <6

Note that /n (< 0 —E [Wc(bl)n])) is a normalized U statistic with a
bounded kernel wg)(-, -) in (S5.4)); thus, by (Van der Vaart| 2007, Theo-
rem 12.3), I11;; < K for n > 1. For 111, it can be further decomposed

and upper bounded by K/ 111 §’12) + Ky/II11 (%), where

r 2
1) Mé) — B [Mc(ln)] B (Mc(bl)" -k [Mc(bl)"”
5 = F S IOV
< cndiVicyn

14

n Y

111'% =B | sup
o2 emcy|<6 MM,
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By similar arguments as those used for Is, I11 §,12) < K¢. Further, by
the definition of A,, and the mean value theorem, due to condition ,
11y < K6. As avesult, I11; < K+/3.

By similar arguments as before, we can show IVy < K+/6. The proof

is complete.

S8.2 Discussions on the rate of convergence

In Theorem |5, under Assumption |(C.2)| the estimator converges at rate

1/2

n~1/3 rather than the usual parametric rate n='/2. Below we explain the

origin of this nonstandard cube-root rate. Moreover, when 6, is not smooth
at ¢, the convergence rate further accelerates to n=!.
Specifically, assume without loss of generality that 6. > 0. Under

Assumption |(C.2), we have the following expansion of the population-level

criterion ¢ — 6,: for all sufficiently small § € R,
Oupr5 — 0oy < —KG>. (S8.5)

This quadratic drift follows directly from the local condition |0, — |6,,| <
—klc — a)?.

Furthermore, Lemma [2| above gives the order of the stochastic fluctua-
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tion:

vn

The factor v/§ arises because the standard deviation of the indicator 1{c, <

; ; Vo
en’cb_HS - 0Cb+5 - (Qn,cb - gcb) - OP (— . (S86>

Z < ¢+ 0} equals

VF(e+0) = Fle) = O(V5),

so the empirical fluctuation over an interval of width § is of order v/§/1/n.
The convergence rate is then obtained by balancing the deterministic

drift and the stochastic fluctuation:

Vo

5= = = §=n"13,

vn
For a regular parameter, the quadratic expansion in still holds.
However, smoothness of the estimator, in contrast to the indicator structure
above, implies that the fluctuation term in becomes O(0) instead of
O(V/9). Balancing the deterministic drift and the stochastic fluctuation
yields

= — = §=n"Y2
which is the usual parametric rate.

As discussed in Remark [§, our main results focus on the smooth setup.

When ¢ + 6, is not smooth, the rate of convergence increases to n=!, as

established in the following theorem.
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(C2’) Assume that the function ¢ — 6. is continuous on [¢,u]|. Further,
there exist ¢ > 0 and £ > 0 such that if |c — ¢| < ¢ and ¢ € [{,u],
10.| —10.,| < —k|c—c|, and that the function ¢ — F(c) is continuously

differentiable on [¢, — (, ¢, + (].

Remark 2. Compared to condition[(C.2)], we require in the condition
that |6.] — [0.,| < —k|c — | for ¢ sufficiently close to ¢,. This occurs, for

example, when 0. = 0., — |c — ¢y + o(|c — ]).

Theorem 1. Suppose that conditions|(C.0), |(C.1) and |(C2’) hold. Then

n|é, — cp| is bounded in probability as n — oo.

Proof. By the first part of Theorem [f], which only requires conditions

. . P
and |(C.1)| we have the consistency: ¢, — ¢, as n — oo.

Here, we aim to show that for any € > 0, there exists M > 0 such that

lim sup Pr(n|é, — ¢ > 2M) < e.

n—o0

Without loss of generality, consider the case 6., > 0. Using a peeling
argument (Van der Vaart and Wellner| [1996), we partition the parameter
space into shells S, ; = {c¢: 2771 < n|ec — ¢| < 27}. Due to assumption

(C2),

27—1 271
|C_Cb|>T = 0,.—0, < —Kk—.
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By the Markov inequality, we have
Pr (nlé, — ¢| > 2M)

< Z Pr(sup

A

Qn,c - ec - (én,cb - 901;)

27—1
>k Ay | +0(1)
n

J>M CESnJ‘
29-1<nc/2
A A n
< Y E|sw (enc—ec—(emb—ecb))h (1),
cESy 7 7 "2t
j>M n.d
29-1<n¢/2

Then, by Lemma [2] that

E én,c - gc - (én,cb - ecb)

sup <
le—cp|<6, celtul

for some constant C' > 0, we have

/2
Pr (nlé, — ¢ > 2M) < Cr™! Z = to(1)=Cr! Z 2720t 16 (1).

n2i-1
i>M Vn i>M

Since .., 279/? converges to zero as M — oo, we conclude that é, — ¢, =

O,(n~1). The proof is complete. O
Under condition |(C2’)] for all sufficiently small § € R,
Ocpts — O, < —KO.

Furthermore, (S8.6) continues to hold:

: , ¥
en,cb+5 - 60b+5 - (en,cb - ecb> = OP (% .

The convergence rate is thus:

)= — = d=mn

NG
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Finally, note that our paper focuses on the smooth case described in
Theorem [0}, since in most practical applications the predictive effects vary

gradually around the optimal cutpoint.

S8.3 Limiting distribution of the profile estimator

Proof of Theorem[f. As in the proof of Theorem [3, we assume 6, > 0,
noting that arguments are similar for the case 6, < 0. Recall the constant
¢ in (S8.1)); in particular, inf|._¢,|<,, ccfeq O > 0.

Let £, = ({ — cp)n'/* and u, := (u — ¢,)n'/>. By condition [(C.3)]
lim, oo ¢, = lim,, o u, = 00. Define two stochastic processes indexed by
R as follows:

n2/3 < )

en,c +h/nt/3| T
M, () = '

en,cb

>,ﬂhewm%]

—00, otherwise

A~ ~

M, (h) := n?/3 <l9n7%+h/n1/3 - 9n70b> , for heR.

Then by definition,

n3(é, — ¢,) = argmax M, (h). (S8.7)
heR

Further, fix any K > 0. For large enough n, we have K/n'/3 <
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{t,|u — ¢, |cy — £|}. Thus for |h| < K and large enough n,

M, (h) = M,(h)1 { inf 6, > 0} + M, (h)1 { inf e < 0} ($8.9)

le—c|<t le—cp|<t

= M, (h)+ op(1),

where op(1) is uniform in |h| < K, and the last equality holds since as shown
in the proof of Theorem |5, sup, e, |énc —0.] = op(1) and by assumption
infie_c, 1<, cefeu) Oc > 0.

Since n'/3(¢, — ¢;) = Op(1) as shown in Theorem [5| in view of
and , by Theorem 3.2.2 in |Van der Vaart and Wellner| (1996)), if there
exists a tight, zero-mean Gaussian process {G(h) : h € R}, with continuous
sample paths and a unique (random) maximizer, such that {M, (k) : |h| <

K}~ {G(h) : |h| < K} in £(|-K, K]) for any K > 0, then we have

1/3(4 ~ ~
n'e(En, — ) argr}rllgﬁc(}’(h). (S8.9)

Next, we show the existence of {G(h) : h € R} and identify its distribution.
Fix K > 0.

Note the following decomposition: for |h| < K,

~

My (h) = n?/? {én,cb+h/n1/3 - 0”17%} = Ly(h) + n*/? (ecb+h/n1/3 - ecb) )
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where L, (h) is defined as

(1) (1) 1)

Lo(h) = n2/3 { —erth/ntfon Win [chh/n” ’ "] + b [ch’"]
" o 1) O

M, Man B[MO, 0 | B [ME)]

(2) (2) 2)
e Wt WL B W] EWE

2 (2) 2

Mcb+h/n1/3,n Mcbrn E [Mc(blh/nl/37nj| E |:M01722nj|

By assumption the first and second derivatives, ¢, and 6, , of the

function ¢ +— 0. at ¢, exist. Since we assume 0., > 0 and ¢, is a maximizer

as defined in (L.4), due to assumption [(C.3)} #;, = 0 and 6, < 0. Then by

Taylor expansion and condition |(C.3),
1
M, (h) = L,(h) — §h2 107 | + op(1), (S8.10)

where op(1) is uniform over h € [— K, K].
We further decompose L, (h) as LY (h) - Lg)(h) for |h| < K, where for

ie{1,2},

LY (h) = I8 (h) + 119 (h) + 111 (h) + TV, (h), (58.11)
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and
; 1 i i i i
I7(1)<h> - M(z) \/ﬁ |:n1/6 <Wc(b)+h/n1/3,n - K |:Wc(bzrh/n1/3,nj| B Wc(b?” + B [Wc(b,)n])]
cp+h/nl/3n
E [W(” } |
i _ cp+h/nt/3m 1/6 (i) (i) i i
]]é)(h) - () (3) \/ﬁ [n / (Mcb—l-h/nl/?’,n - L [Mcb+h/n1/3,n} - Mc(b?” +E [Mc(b,)”]>
Mcb+h/n1/3,n |:Mcb+h/n1/3,ni|
(@) 23 | W] E [WC(Z’)”- (M MO.]) 1 1
I (h) =n WZ —EI/VbZ - MZ —EMZ . - .
n Cp,n Cp,n i Cp,n Cp,n (3) ()
E |:Mc(b?n_ Mcb+h/n1/3,n Mcb’n
NG (Mc(;')n _E [Méj)nD Blwd } E [Wcﬁf)ﬂ]
IV (h) = — @ el e :
Mcb+h/n1/3,n E _Mc(Zl-h/nl/S,n] E [MC(Z?W]
By Lemma [§, we have that
Ln(h) = IW(h) + 1IV(h) — IP(h) — IID(h) + 0p(1), (S8.12)

where op(1) is uniform over h € [—-K, K]. For n > 1 and h € R, define

4 A
2/3 (11(1) [ 1 1 1
n / (ch+h/n1/3 n E _ch+h/n1/3,n_ B Wc(bzl +E [Wéﬁ%})
n2/3 <M<1> _glyW | =M + B[O ]>
7 (h) _ cpt+h/nt/3n L cb+h/n1/3,n_ Cp,n ChyM
2/3 (117(2) @ I 2 2
n / (ch+h/n1/3,n -k _ch+h/n1/3,n_ B Wc(b,)n + B [Wc(b}@})
2/3 ((17(2) [0/ 1 2 5
\Tl / (Mcb+h/n1/3,n -E _Mcb+h/n1/3,n_ B Mc(b,)n +E [Mc(m)n]) J

(S8.13)

By Lemma there exists a tight, zero-mean Gaussian process {é—’l(h), Ga(h), Gs(h), Ga(h) :

|h| < K} with covariance function {v,,V : s,t € [-K, K|} (see Equations
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(S5.15) and (§825)) such that, in (< ([~ K, K] x [4]),

(2l 0] < K} = { (G0, Galt). Galt) Ga() <1 < K6}

Also, by the law of large numbers for U processes (Pena and Giné, 1999,

Corollary 5.2.3) and due to condition [(C.2)] in (*([— K, K] x [6]),

( ( ) 3 ( A

1 1

E [Mcb+h/n1/3,n:| B [Mc(b,)n]
(1) 1

Mcb+h/n1/3,n L [Mc(b,)n]

EWS, ] E[W)]
cp+h/nt/3n : |h| <K\ b
) 2

E [Mcb-l-h/nl/?’,n} B [Mc(b,)n]
2 2

Mcb+h/n1/3,n E [Mc(b,)n]
(2 (2)

\E [ch+h/n1/3,ni| ) \E [ch,n}

Then by Slutsky’s theorem (Kosorok, 2008, Theorem 7.15) and continuous

mapping Theorem (Van der Vaart and Wellner, |1996, Theorem 1.3.6), due

to ([S8.12) and ([S8.10), we obtain that

0,0 5101 < K = {G(0) = 39265 <10l < K} i ¢%(-K. KD,
where G(h) := B (G (). Ga(h). Galh), CN}4(h)>T, and
. B W] . B[wl]

8- - - , S| (s8.14)
e[| B[uB] E[ME] B [u]

Recall the definitions of the scalar «,; and matrix V in Equations

(S8.18)) and (|S8.25|) from Lemma |3 Then the covariance function of {éh ;
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|h| < K} is given as follows: for s,t € [-K, K],
Cov(Gly, Gi) = Brs VB = Allggn(s)=sgn(o min([s|, [¢]) f(c)A(1 — X)(BVBT).

Thus, if we denote by {Z(h) : |h|] < K} a standard two-sided Brownian
motion with Z(0) = 0 (Van der Vaart and Wellner| [1996), then {G(h) :

|h| < K} 4 {VZ(h) : |h| < K}, where < means equal in distribution and

v = /4f(c) M1 — \)BVBT. (S8.15)

Note that 3 and V are defined in (S8.14)) and (S8.25|) respectively and f(cp)

is the first derivative of the function ¢ — F'(¢) at ¢,. Thus in view of (S8.9)),

we have

1
1/3 /4 2
n / (Cn — Cb) > argf}?gﬂg (VZ(h) - §h }ggb‘) :

By Problem 5 in Chapter 3.2 of [Van der Vaart and Wellner| (1996),
1 2 2/3
arg max (I/Z(h) — §h ‘92'b|> (2v/ |60 ])
where C = arg max;, g {Z(h) — h*} follows the Chernoff’s distribution (Gro¢ne-

boom and Wellner, 2001)). The proof is complete. O]

For n > 1 and h € R, define the following functions on S:

) _ 1 1 7(2) nl/6 (1) 1
fn,h T nl/G <wcb+h/n1/3 - gb)> ) f / (mcb—i—h/nl/?’ - mgb)> )
73) | 2 7(4) nl/6 (2) 2
F2 = nl/o (w.ﬁbl s w(2)> i / <m6b+h/nl/3 _ m&)) ,

(S8.16)
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where wéi)(‘, -) and m((;i)(~, -) for i = 1,2 are defined in (S5.4)). Further, for

n > 1 and h € R, define the following functions on S:

F1) . pr) _ —(1) - F2) ._ pr(@) _ = (1) =

fn,h T an,h - n1/6 (wcb+h/n1/3 o wg)) ’ fn,h T an,h - n1/6 <mcb+h/n1/3 - m&?) )
4 4 _ (2 _

(})L = Pf( ]1 = n1/6 <miblh/n1/3 - mg?) )

(S8.17)

where w&“(-) and m&“(-) for i = 1,2 are defined in ([S5.5)).
Denote by f(¢,) the first derivative of the function ¢ — F'(c) at ¢, and

recall the definition of Z,(h) in (S8.13))

Lemma 3. Assume the conditions of Theorem[d hold, and fix some K > 0.
There exists a tight, zero-mean Gaussian process {Gy1(h), Ga(h), Gs(h), G4(h) :

|h| < K} such that, in (- K, K] x [4]),
(Zo(h) : |h] < K} ~ {(él(h),ég(h),ég(h),é4(h)>T  |h| < K} ,

and that the covariance function is given as follows: for s,t € |- K, K],

Cov ((Gi(s), Ga(s), Ga(s), Ga(s))  (Ga(8), Galt), Cs(1), Ga(1)) ) = sV
where V is a 4 x 4 matriz defined in (58.25)) and s, is a scalar given by
Yot = Hgnoaney min(Jsl, ) F@AL = A). (S8.18)

Proof. Recall the definition of S in ([S5.2)). For n > 1, define two functions
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as follows: for dy = (t1,uy, 21), dy = (to, U, 25) € S*

Fo(dy, do) == n'° (1|21 — eo| < K/n'P} + 1{|z — & < K/n'/?})

Fo(di) == n"% (1{|21 — &) < K/n'*} + F(ep + K/n'/*) — F(c, — K/n'/?)).
($8.19)

Note that F, = PF,. By the definitions in ((S8.16)) and (S8.17), for any

di,dy € §? and |h| < K,

max
1<j<4

Due to condition |[(C.2)|

ﬁ(j,)L(dl,dg)‘an(dl,dg), max‘ fg{g(dl)‘gﬁn(dl). (58.20)

1<;<4

[Fullpzn = O(™2), ||Eallpes = O(1), |IFullpy = O 7). |[Fullpe = O(1).
(S8.21)

Further, note that
~ - ~ T
Za(h) = v/ (U2 (70 = P270) - o2 (0 - PRI
where we recall the notation for U-processes in (S5.1]).
By similar arguments as in Lemma , in particular, using (Chen and
Kato, 2019, Corollary 5.6), we have that the difference between {Z,(h) :

|h| < K} and its Hajek projection process is uniformly controlled, that is,

sup
|h|<K

(1) = 2 (U (785~ PIR) o 02 (75 - PAR)) | = onth)

(S8.22)
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We now apply Theorem 2.11.22 in [Van der Vaart and Wellner| (1996)

to the empirical process with classes of functions changing with n, that is,
{avm (U0 (75 = PFR) . 00 (79 = PiR)) < bl < K}

for which F,, in (S8.19) is an envelope function.
First, as discussed in (S8.21)), PE? = O(1). Second, for any n > 0, we

have F,(+) < 2n'/® < ny/n surely for sufficiently large n, which implies that
P [FXL{F? > nvV/n}] =0, as n — oo.

Third, let d,, be an arbitrary sequence of positive numbers which decreases
to zero, that is, d, | 0 as n — oco. Fix any pair s,t € [—K, K| such that
s <t < s+0,. Due to the definition of £} in (S8.17) and @ (-) in (S5.5),

we have that for d = (1,u,2) € S,

FO(d) — F)(d) =€a o (d)n' o1z € (¢, + s/n'3, e+ t/n'?]}

)

+nY8(Es(d) — En(d)1{z > ¢, +t/n'/?}.

where, due to condition [(C.3)] for h € R,
Eun(d) = (1 = GD(7ley + h/n3 1)1 — W + GO (rley + h/n'/, 0)u(1 — )
x (1= F(cy + h/n'/?)),
(58.23)

and recall that G (t|c, k) = Pr(T < t|Z > ¢,U = k), k = 0,1 is defined in
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(2.5). Since for any h € R, 0 <&, ,(-) < 1, we have

P(fN(D:) = [l (D) < 20V3(F (e + t/n'?) = Fley+ 5/n'%) + 201 P (&g — 600)".
Thus, due to condition [(C-2)] Taylor’s Theorem and Lemma [6], as n — oo,

s P(fE = f)? =0,
s, €[~ K, K] |s—t|<8,
for j = 1. Similar arguments show that the above also holds for j = 2, 3, 4.
Thus we verify the conditions listed in Equation (2.11.21) of |Van der Vaart
and Wellner| (1996)).

Furthermore, define for j =1,....,4,

FP = {f9 0 < K}, FP = {f9) :|n] < K}.

n

By (Van der Vaart and Wellner, 1996, Theorem 2.6.7), for some absolute
constants A and v, .7?,&] ), together with the envelope function }*N}, is VC-
type with characteristic (A,v) for n > 1 and j = 1,...,4; see (Chen and
Kato|, 2019, Definition 2.1). Then by (Chen and Kato, 2019, Lemma 5.4),
]:"éj ), together with the envelope function F),, is VC-type with characteristic

(4V/A,2v) forn > 1 and j = 1,...,4. Thus, the uniform entropy condition

holds: for j =1,...,4,

on — —
| st o NED g 1P l2)de = 0
0

for every 9,, | 0, where the supremum is taken over all discretely supported

probability measure () on S.
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Finally, for n > 1 and s,¢ € [— K, K], define
I oy e e N T
(s, t) := deov (( WD IO T (SR R 1) ) . (S8.24)
In Lemma [i] we show that for any s,t € [—K, K7, limy, 0 B (s, 1) = Y4V,

where 7, is a scalar defined in (S8.18|) and V is a 4 x 4 symmetric matrix

such that
V= (1= Pl A [ (1= 69l )" £0(de) + 1= [ (6901 0)’ £ |
Via = (1-F(c))? {A/ (1—G(z|ey, 1)) LD (dz) + (1 — A)/G<+>(y|cb,0)£g§>(dy)} :
Vig=—(1— F(cb))F(cb){A/ (1 -G (le, 1)) (1 — G (zley, 1)) LD (da)

H1=) [ 690,06 blan0) £ ()},
Vit = —(1 - F(cy))F(cy) {)\/ (1 G (aley, 1)) LD (da) + (1 A) /G<+>(y|cb, O)cg§>(dy)} ,
Vas = (1 - Fle)?,
Yoy = —(1 — F(cy))F(cy) {)\/ (1= GO (aley, 1)) LD (da) + (1 — A) /G(_)(y|cb, O)cg)(dy)} ,
Vag = —(1 = F(a))F(e),
Vi3 = F2(c,) {/\/ (1 -G (2|, 1))2 LY (dz) + (1= N) / (GO (ylcy, o))2 £g§>(dy)} ,
Vsa = F?(c,) {A/ (1 -G (z|e, 1)) L (d) + (1 = N) /G(_)(y|cb, O)Lg?(dy)} :

Via = F?%(c),

(S8.25)

Then the proof is complete by (Van der Vaart and Wellner| 1996, The-
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orem 2.11.22). O

Recall the definition of ¥,,(s,t) in (S8.24)), the scalar 7, in (S8.18), and

the 4 x 4 symmetric matrix V in (S8.25]).

Lemma 4. Suppose the conditions in Theorem [6 hold. Fiz s,t € R and

assume s < t. Then we have
lim ¥, (s,t) = vs4V,
n—oo

Proof. We only prove the convergence result for the top left coordinate,
noting that the arguments for the other coordinates are similar. Further,
we only consider the case 0 < s < ¢, and note that the arguments for the
case s < 0 <tand s <t <0 are similar.

Specifically, the top left coordinate is
S ona(os8) = ACov (730, 7).

Recall the definition of &, () in (S8.23) and define for h € {s,t} and

d=(1,u,2) €S,

Ay p(d) = ﬁ(ll,i(d) — &uo(d)nt/® (L{z >+ h/n*3} — 1{z > e}) -
(S8.26)

By Lemma |7 we have for h € {s,t}, ||[A,4llp2 = o(1). Due to condition
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(C.2)| for h € {s,t}, we have

Hnl/G (IL{Z > ¢+ h/n1/3} —1{z > cb}) O(n_l/G)7

HP,l -

Hn1/6 (1{z > e + h/n'?} —1{z > &}) O(1).

HP,Q -

Thus, by Cauchy-Schwarz inequality,

Sp1(8,t) = AE [£,0(D)nY (1{Z > ¢, + s/n*?} — 1{Z > &})

Eno(DINY0 (1{Z > ¢y + t/n'/*} — 1{Z > &})] + o(1),

where D = (T, U, Z) is the generic random vector as discussed in Section 2]

Since 0 < s < t, we have

cp+min{s,t}/nl/3
Spia(s,t) = 4n1/3/ f(2)E [&(D)|Z = z] dz + o(1),

p
where f(z) := F’(z) exists and is continuous in a small neighourbood of ¢,

due to condition |(C.2)l Note that &2 ,(-) does not depend on n. In Lemma
, we show that the function z — E [£2(D)|Z = z] is continuous at c.

Thus, we have

Ynaa(s,t) = 4n3min{s, t} f(c,) E 62 0(D)|Z = ) + o(1).
Finally, we note that
E[&y(D)|Z = a) =(1 = F(a)’AM(1 =)

x (A / (1= G (alep, 1LY (dx) + (1 — A) / (G (e, 1>>2££§><dy>) ,
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which implies that for 0 < s < ¢, lim,, 00 Xp1.1(5,t) = ¥s4V11. The proof

is complete. O

S8.4 Discussions on Theorem [3|

The test statistic S, /+/n defined in is the supremum of the estimators
0. for ¢ € [£,u], which is defined in (2.6). The numerators and denomina-
tors in (2.6)), which appear in the definition of én,c, ¢ € [¢,u], are U-processes.
As shown above, these U-processes are Donsker and can be analyzed us-
ing classical empirical processes techniques Pena and Giné (1999); Van der
Vaart and Wellner| (1996). Further, the non-parametric bootstrap is valid
for inference as shown in Theorem [l

Supreme-type statistics have been widely used and studied in related
scenarios and broader areas of statistics. For example, in |Cai et al.| (2010)),
supreme-type statistics are used to construct a simultaneous confidence
band for average treatment differences across a range of scores defined by
baseline covariates. |Fuentes et al. (2018)) utilizes a supreme-type statistic
to construct simultaneous confidence intervals for the means of k selected
populations, assuming independence and normality with a common vari-
ance. In |Li et al.| (2023blja), supremum-type statistics are used to test

treatment-biomarker interactions with an unknown cutpoint, under lin-
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ear and generalized-linear frameworks. Supremum-type statistics have also
been used extensively in non-parametric statistics; see, e.g., Bickel and
Rosenblatt| (1973); Einmahl and Mason| (2005)).

Finally, we should also highlight the recent developments in the dis-
tribution approximation and bootstrap of suprema of stochastic processes;
see, e.g., |(Chernozhukov et al.| (2013, |2014); |(Chen and Kato| (2019). These
works provide powerful tools for dealing with non-Donsker empirical and
U-processes. In contrast, we deal with Donsker U-processes and also need
to apply the functional delta method, which seems not covered in the ref-

erences mentioned.

S8.5 Supporting lemmas

Recall the definition of &, ,(-) in (S8.23)), which is a function on S in (S5.2)).

Note that &, o does not depend on n.

Lemma 5. Suppose the conditions in Theorem [0 hold. Then the function

2 E[&2(D)|Z = 2] is continuous at c.
Proof. Note that by definition,
E[E,(D)Z =2 =(1-F(a)’ M1 - A){)\/ (1= G (e, 1)) LD (dx)

+(1=3) [ (6l 0))” £}
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By condition , as z — o, £ Eg), £ E((;f). Again
by condition , G (-ley, 1) and G (+|ep, 0) are both continuous and
bounded functions. As a result, by the definition of weak convergence, as
Z — Cp,

B o(D)Z =2 = E[§(D)|Z =),

which completes the proof. O]

Lemma 6. Suppose the conditions in Theorem [0 hold and fix any K > 0.
Then

nl/3 sup P (s — fm)z = O(n’l/g).
s,te[—K,K]

Proof. By definition and the triangle inequality, for d = (7,u,2) € S,

1
[6ns = nil <D 1GP (7ley + 5/n' P u)) = G (7]e, + t/n' /P w))]
u=0
+ |F(e + s/n'?) — F(c, + t/n1/3)| :
Due to condition [(C.2)] and by Taylor’s theorem,

13 sup (F(ep+ s/n'?) — F(ey, + t/nl/g))2 = O(n1?).
s,te[—K,K]

n

Now we fix some u € {0,1} and assume without loss of generality —K <

s <t <min{s + 6,, K}. By the definition of G™*)(-) in (2.5)), for |h| < K,

Pr(T <7,Z>cy+h/n'3|U = u)
+) h/nl/3 ) — <7
GTles + h/n ) 1= F(c, + h/n'/3) ’
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which implies that

Pr (o, +s/n'3 < Z < ¢y +t/n'/?)

) 13 4) — G v
GO (rley + /1%, 0) = GO (e, + ¢/, w)| < L= Fley - s/n1F)

F(cy +t/n'3) — F(cy + s/n'/3)
(1 — F(cp+ s/n'/3))(1 — F(c, +t/n'/3))’

Then the proof is complete again due to condition |(C.2)|and Taylor’s the-

orem. 0
Recall the definition of A, ;(d) in ([S8.26).

Lemma 7. Suppose the conditions in Theorem[f] hold and fix h > 0. Then
[An nllp2 = of1).

Proof. Recall the definition of &, in ((S8.23)) and the calculation above this

equation. Since ﬁ%() =0, we have for d = (1,u, 2) € S,
Anpld) = 0" (Eun(d) = Eno(d)U{z > e+ h/n'/7}.
As aresult, ||A,4llpe < nY2P(E — €.0)% = o(1) due to Lemma@ O
Recall the definition of 17T (h) and IV,” () following equation (S8.11).

Lemma 8. Suppose the conditions in Theorem |6 hold. For any K > 0 and

i€ {1,2},

sup |[III(h)| = op(1), sup [TV (h)| = op(1).
Ih|<K |hl<K
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Proof. Fix some i € {0,1}. Note that [IL(f)(h) can be decomposed as

follows:
—— (i) E [M(z‘) } _E |:Mc(i)n:|
[]]}li)(h) = _A((:i)n A[[[n (h) _ \/T_LA&)n . pl/6 cb+h/n1/37n | b
" MO, ’ 2@ MO,

cp+h/nt/3n cp+h/nl/3n

where

Cp,N Cp,M

m(i)(h) = n?/? (M(i)

cp+h/nl/3n

E [WS%]

- B |M

O o]~ MO+ B [ME,])

AG W@ _ g [W(i) }

Cp,M Cp,N Cp,1

(M8~ B (M)

Cp,1 Cp,N

E | M|
By the central limit theorem for U-statistics (Van der Vaart, 2007,

Theorem 12.3),

By Lemma [3] and Taylor’s theorem, due to|(C.2)|

—— () i i
sup |17, (0)] = Op(1), n* (MO, 0| = B[M,]) = o(1),

|h|<K
where o(1) is uniform in |h| < K. Thus, by the law of large numbers for

U processes (Pena and Giné, 1999, Corollary 5.2.3) and due to condition

(C.0)} we obtain that sup, < |IIL§i)(h)| = op(1).

For I Vn(i)(h), by the central limit theorem for U statistics (Van der

Vaart, 2007, Theorem 12.3), we have

vn (M9, — E (MY ]) = 0p(1).

Cp,1 Cp,M

9
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By Taylor’s theorem and due to|(C.2)
Elwe

E W)

c+h/n1/3,ni| |: cb,n]

n'f? @ N o)~ oW
E [M% o /gm] E [Mcb,n}

where o(1) is uniform in |h| < K. Thus, again by the law of large numbers

for U processes (Pena and Giné, 1999, Corollary 5.2.3) and due to condition

(C.0)} we obtain that sup, < IV (R)] = op(1). O

S8.6 A Special Case: Finitely Discrete Biomarkers

This section considers a special but common case in subgroup analysis where
the biomarker 7 is finitely discrete, taking values in a set V' with m values:
v < Vg < ... < Up. Assume that Pr(Z = v;) > 0 for ¢ € [m], and that
< vy < vy < u for simplicity.

Note that Theorem , which concerns testing the hypothesis in ,
does not require I’ to be continuous, and thus it continues to hold when Z
is finitely discrete. Next, we focus on the cutpoint estimation problem and

define the optimal cutpoint set as
B={v; eV :10,|=r"}, where x* = ma‘)/c\ev]].
v;€

Recall the definition of é, in (#.10]). Due to remark [4] ¢, takes values in V.

The next theorem establishes the convergence rate under this framework.
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Theorem 2. Suppose that condition|(C.0) holds. Then, there exists a pos-

itiwe constant C', depending on m, X\ and F', such that

Pr(¢, € B) < Ce ™.

Remark 3. Thus, when the biomarker Z is finitely discrete, the probability

that ¢, does not belong to the optimal set decays exponentially with n.

Proof of Theorem[3. Recall that V' = {vy, ..., v,,,} represents the set of val-
ues that the biomarker Z can take. Let § = x* — max;gp [0,,|. Assume
without loss of generality that § > 0; otherwise, B =V and Pr(¢, ¢ B) =0
directly. Due to assumption , we fix some € > 0 such that

e <min{(1 — \)(1 — F(e)), N1 — F(c)), (1 — N)F(c), \F(c)}.

ceV

Define
1 n
B, = - 1-U)ZFT -1 -=N1-F <¢€/2
n {meavx n;:l( Ui) Zi7 — (1= A)( (©)| <€/2,
1 & N
_E( gt - <
x| UL ML= FO) < e/2
1 n
hl —UNZ™ — (1 — <
mex |5 20 (1= 0) 2 — (1= NF ()| < /2

ceV

1 n
=N Uz — AF
max | 2 Ui ()

< 6/2}.
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Let €; = min{J, e}, then for any j = 1,...,m,

Pr(|0,, — 0., > 6/2) < Pr(|0,, — 0,,] > €1/2)

5

" )+Pr()M“ — E[M),]

2
<Pr(BY)+ ) {Pr (‘ngn — EW) ] 55G
=1

> 6?
256 |

AsU;, T, 5, Z;” * are bounded by 1, by McDiarmid’s inequality (McDiarmid,
1989), there exists a constant C' > 0 such that, for j = 1,...,m, the above

quality can be further bounded as follows:
Pr(|6,, — 0., > §/2) < Ce™ma/C,

Finally, since

mT:l{|é’Uj - H'Ujl < 5/2} C {én S B}7
and by union bound, we have
Pr(é, € B) < mCe "1°/¢,

The proof is complete, as the right-hand side decays exponentially with

n. O
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