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S1 Proofs

S1.1 Proof of Theorem 1

In order to prove Theorem 1, two lemmas are needed. We first give the
representations of Ay(x) needed to prove the lemma. For convenience, we
will denote g;(x), Aj(x) as g;, Ay and omit x from all notations.

For Ay, denote A = Hf:_lz(l — g1) + Agp_2gr—29k—1 and B = Hf:_ll(l —
g0) + TIZ 0 = g)ge + [As = TIZ( = 90| gragi 1. When & >

IT7(1—g:) = 1 and ]}, g: = 1. Then

k—2

A=111—-g)+ Ap—20k—29k-1
1

o
Il
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(51 (k=2 k—1
= H (1—g) H gt
=1 \ t=1 t=k—2(1—1)

il —g)+ I A= g) Tl oge+ -+ 11 g kisodd,

k 2( —g1) + H ( - 9t) Hf:_;_z g+ -+ Ht , g kis even.

k-1 k-3 k-3
B = H(1 —g) + H(l — 9)Gk—1 + | A2 — H(l - gt)] Ik—29k—1
=1 t=1 =1
51 [k1-2 k1
= H (1= g) H gt
=1\ t=1 t=k-+1-2(—1)

(1 —g1) + Ht 1 (1 — 9) k-1 + -+ Hf;zl g: kis odd,

Pl —g)+ T = g)grr + -+ 12 ¢ kis even.
Let v € RP denote the parameter vector, i.e., v = (y1,... ,Pyp)T =
(017 cee 79J71718T)T'

For an exact design

Ty - Ty,
gexact - 5
Ny -+ Ny

the corresponding information matrix is given in the following lemma.

Lemma S1. Suppose Assumptions 1 and 2 hold, the Fisher information

matriz for Model (2.2) under the exact design &epaer can be written as

gexact Z nz
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where M(x;) = (M, )<, <, 8 @ p X p matriz with

J
o 1 87Tj($i) Gﬂj(wi)
My, = Z Wj(xi) 875 a’Yt ‘

j=1
Lemma [S1| comes from supplementary material of Ai et al.| (2023]).
Remark S1. From Lemma [S1] the Fisher information matrix for Model

(2.2) under an approximate design

wl PR wm
wl ... wm

can be written as

m

M(€) = wiM ().

=1

Let Om(x)/0~ " denote a J x p matrix, whose (I, j)th entry is Om(x) /0;,

where x € X is a design point. We have the following lemma.

Lemma S2. For Model (2.2),

where U(x) and H(x) are defined in Section (2.2).

Proof of Lemma[S3. Introduce the following two functions needed for the
proof.

——— t—c<0,
fiee = ¢ 1s a constant.

t—c>0,
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—1% t—c <0,

gt

Yt—c =930 t—c=0, cisa constant.
L t—c>0,
\gt

And denote I(] < J—Z(Z—l)), I(] Z J—Q(l— ]_)) as Ij<J_2(l_]_)7 ]jZJ_Q(l_l).
The rest is similar.

We first prove that the following equation

om _ -
a0,

holds for j =1,...,J — 1.

From Section 2.2, we have

(41 [ -2 J—1 HJflg
Aj= H(l_gt) H g |, m =22

=1 \ t=1 t=J—2(1-1) A
Then
om o = ON; T B
(9_9] N (39]' tl_‘[gt> As 04, Hgt AJQ
[ dg; J-1 (41 /-2 J-1
(B Tle) S (THo-o0 1T o
i J t=1 =1 \ t=1 t=J—2(1-1)
dg; 41 J—21 J-1 J-1 ,
—%Z v [[0=a) I o) 11| 2
J =1 t=1 t=J—2(1-1) t=1
141 (-2 J-1 J—1
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J—21 J-1 J-1
—93 Z Yj—(J—21+1) H (1= o) H 9e | 9ifi—1 H gt Af
t=1 t=J-2(1-1) t=1
J—21 J-1 J-1
= Q;Z Ticy—a0- 1)H 1—g:) H 9 fj—1Hgt
t=J-2(1-1) t=1

+g};(

2l

J-1 J-1
Ii>j-20-1) (1—9t) H gt fg;ngt
t=J—2(1-1) t=1

[g] J=21 J—1 J-1
— 9 Z Ljcs—20-1)Yj-(I-21+1) H (1—g) H g | 9ifi H g
t=1 t=J-2(1-1) t=1

J-2l J-1 J-1
—Q;Z (IpJ 2(1-1)Yj—(J—2141) H 1—g) H 9t | 9ifi—1 Hgt AP
t=1

=1 =1 t=J—2(1-1)
[4] J—2l J—1 J-1
= Q;Z Ticy—a0- 1)H 1—g:) H 9 fj—1H9t
=1 t=J—2(I-1) t=1
Ea J—2 J—1 J—1
—932 Tjcy—20-1)Yj—(s-21+1) H (1—g:) H 9¢ | 9ifi— Hgt A2
=1 =1 t=J—2(1—1) =1
Ed J—2l J—1 J—2l J-1
1> N e [[0=a) 1] o+Lesan[[0-90) ]
=1 =1 t=J—2(1-1) t=1 t=J—2(1—1)
J—1 Ed J—2l J—1 J-1
X fi-1 H 9t —9; Z Li<j—a1yj—(-2141)9; H (1—gt) H ge | fi— H ge| AF°
=1 =1 =1 t=J—2(1—1) =1
[41 J—21 J-1
= 9; Z —Lj<j-ayj—(-a+1)(1 — g;) H (1— o) H 9t
=1 =1 t=J—2(1-1)
J—21 J—1 J—1
+ Li—j_aiq1 H (1—g¢) H gt | fi—1 H 9t
t=1 t=J—2(1-1) t=1
Ea J—21 J—1 J-1
—9} Z li<i-21yj—(1-2141)9; H (1—g:) H 9 | fia Hgt AEZ
=1 =1 t=J—2(1—1) =1

5
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(21 J—2l J-1
- 9;‘ Thj<I-2Yj-(7-21+1) H (1—ge) H gt
=1 t=1 t=J—2(1-1)
J—21 J—1 J-1
+ lj=j-211 H (1—9¢) H g | fia H gt A}2
t=1 t=J—2(1—1) t=1
k3 J=21 J—1 J—1
= |9 Z licy-20-1) H (1—g) H Gt H g | A
=1 t=1,t#j t=J—2(1-1) t=1,t£]
(21 J—2l J—1 J—1
= Z Licy—o0-1) H (1—q) H gy g;. H gtAf
=1 t=1,t#j t=J—2(1—1) t=1,t#]
:ulja

which implies Equation holds for j =1,...,J — 1.
Secondly, we prove that the following equation

Omji

00

= Uj+1,55 (S3>

holds for j =1,...,J — 1.
From Section 2.2, we have

(=) [T 0

Tj+1 = A,
Then

o [ 5 j J—1 oA, j J-1 ,
o0, |96 (H(l—gt) H g | Ay — 20, [T -9 H gr| A

L t=1 t=5+1 t=1 t=j+1

i 99, j-1 g1 51 [J-2 J-1

- _0_0]«1_[(1_9'5) gt H(l_gt) H 9t
i J =1 t=j+1 I=1 \ t=1 t=J—2(1-1)
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9g. [41 J—21 J-1 j—1
—3—97 Z Yj—(J—20+1) H (1—gt) H g | (1 —g5) H 1—g:) H g | A
J =1 t=1 t=J—2(1—1) t=1 t=j-+1
Ea J—2 J-1 j—1 J—1
= 92 Z Ti<s—a H (1—g:) H 9t H(l - 9t) H 9t
=1 t=1 t=J—-2(1-1) t=1 t=j+1
41 J—2l J-1
+;> |\ Lsra [JO-9) JI @& H (1—g0) H 9t
=1 t=1 t=J—2(1—1) t=1 t=j+1
41 J—2l J—1 j-1
+4; Yi—(1—20+1)Lj<g—2 H (1—g¢) H gi | (1 =gy H (1—g) H gt
=1 t=1 t=J-2(1-1) t=1 t=j5+1
[41 J—2l J—1 j—1
+4; Yj—(1-2+1)Lj>1-21 H (1—9t) H g | (L —g;) H 1—g) H 9t
=1 t=1 t=J—2(1-1) t=1 t=j+1
Ea J—2l J—1 j—1 J—1
=— |9 Ly [J=g) ] o (1—g0) I] 9
=1 t=1 t=J—2(1-1) t=1 t=j+1
(41 J—2l J-1 j—1
+g; Yj—(r-2+1)Lj>a-21 H (1—g:) H g | (1 —gj H (1—gt) H gt
=1 t=1 t=J—2(1-1) t=1 t=j+1
41 J—2l J-1 j—1
= 9}' Z Liy—o11 H (1 - gt) gt 1 - gt H g
=1 t=1 t=J—2(1—1) t=1 t=j+1
41 J—2l J—1 j—1
+ 9 Ij>y20-1) H (1—9t) H gt H 1—g) H gt
=1 =1 t=J—2(1—1) t=1 t=j+1
Ea J—2l J—1
+ g; Yj—(T—2+0)Lj>1-20-1) H (1—g:) H gt
=1 t=1 t=J—-2(1-1)
J—1
x(1 - g;) Hl_gt Hgt
t=1 t=j5+1
41 J—2l J-1 j—1
= 9} Liz gy H (1—g:) H gt H (1—g:) H Gt
=1 t=1 t=J—-2(1-1) t=1 t=j+1
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J

(5] J—21 J—1 i1
+9; Z Yi—(r-2+1)dj>1-20-1) H (1—g) H 9t H (1—g) H g| A
=1 t=1 t=J—20-1) ] t=1 t=j+1

(

i—1 J-1 M1 J—21 J-1 _
[95' I (1= g0 IT 0 o >0 I+l < o1 (L= 90) ITimago1) gt)] AT
J — 7 is odd
/ J—=2l —92
[gj ( = 9t) Ht =j+1 9t ZZ_J it2 < 1 (1= 9 Ht J—2(1—1) t#j gt)] AG7,

J — j is even
\

;

i—1 J—1 41 J—2l
o T2 0 = ) TES 0 (THE (= 00 T oy o)
X Ht it A2 J —jis odd

i—1 J—1 41 J—21
9 T2 0 = ) TES 0 (THE (= 00 T oy )|

) ..
th ]+1gtAJ ,J — j is even

(

1 J-1 [ j+1—21 j—1
[T 0 - a0 T1S s o S (T 20— 00 TH L oy )]
XHt =j+1 giA

[g] HJ (1= g0) ;t]_j1+1 gt (H] 21(1— )Hz;;_z(z—1) 9t>]

X Ht =j+1 giA
7—1
(1—gt) H gtA]g] H giA
t=1 t=j5+1 t=75+1
=Uj+1,5,
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which implies Equation holds for j =1,...,J — 1.

Thirdly, we prove that the following equation

67rl 1-— gi—1
— W = U1 S4
agj ul] g 1,5 Gi_1 ’ ( )

holds for l = 2,...,J,j=1,...,J —1, j #1— 1. For each j, we prove
Equation holds for [ = 2, ..., J by induction.

(1) When [ = 2, j # 1, from Section 2.2,

(1 - 91) H;:];; gt
Ay ’

o =

Based on the previously proven facts, we have

ory [ 0 = oA,
0, (a_ej<1_gl)ggt>AJ__l_gl Hgt

= Uz,
which implies Equation holds for [ = 2.

(2) Suppose Equation holds for 3,...,1—1 (I < J). B

. 1( gt)Ht 1 9t
Ay ’

when 5 <[ — 1, we have
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om r P -1 J—1 oA, -1 J—1
— = | = 1-— Ay — 1 — A
80j _%j (g( gt) I[l gt J 00, gt) H gt J

Jtl

dg -1 J—1 oA J-1
j J
- _87?]- H (1_gt)HgtAJ_W (1_9t)Hgt A
L I t=1,t£j = t=1 t=l
B N J—1 1—g
= _£ H (1—9:) Hgt — 9 lA _39!-] — 1) Hgt =
I ot=1,t£j t=l—1 J o= t=l—1
[0 = = Ll—g
|, (I - Hgt)AJ——J o T o] a0
t=1 t=1-1 05 t=1-1 gi-1
87T111—91—1:u ~1_gl_1:u~
90; g Y b
When j > [, we have
o, [ 9 (ﬁ J—1 I, -1 J—1 ,
. - | a0 (1_91:)Hgt Ay — l_gt>Hgt A
99 _Gﬁj t=1 t=1 (%)9 t=1 t=1
_89- -1 J—1 8AJ J-1 .
= (%j [Ta—9) I @2,- 0. 1 —g) [[a| A7
J =1 t=l,t#j I =1 t=l
r - 1-2 J-1
Jg; ﬁ g L —gi 0A; =g
= (1—g) H gt Ay — (1=g) H gt
_86’]- =1 mi-tzy  IL e =i dit
= J-1 aAJl J-1 -
= |77 H(l—gt)Hgt Ay— (1— ) Hgt A2
_693 (t:l t=l—1 803 t=1 t=l—-1 gi-1
_ Om_11— g1 — '1—91—1 .
90; g g 7
which implies Equation holdsforl =2,...,J,5=1,...,J=1,1 # j+1.
Furthermore, for the case [ = J, using the fact m +--- 4+ 7; = 1 and

the facts already proved above, we have

871'] 8m S
a—ej:—Z( ) ZUU Zul,j:ulj.
=1 =1

10

72
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Finally, we need to prove that the following equation
o, J—1
— Y (55)
9fs p
holds for I =1,...,J.
By
-1 J—1
= i (1 —a9) [T= o
l AJ Y
and the facts already proved above, we have
-1 J—1
87Tl 0
= 1— A
93, [353 <U< ]l gt) ’
9 51 [J-2 J—1 -1 J—1
_85 H (1—g) 9t (1—gt) H 9t AEZ
=1 \ t=1 t=J—2(1—1) t=1 t=l
1 J-1 (51 (-2 J-1

J—-21

I=1 \ k=1 t=J—2(1—-1)
J
= [Z kl“s (fk: lH 1—9t H%) Ay
J-1 [ 4] J—21 J—1
- Z ngxsyk (J—2141) H (1-g) H gt
k=1 \ I=1 t=1 t=J-2(1—-1)
J—1 -1 J—1
=Ts [gk (fk:—l H(l — 9t) H gt) Ay
k=1 t=1 t=1
[41 J—2l J-1 -1

11

=1
Ig o -2
_Z Zaﬁyk J2[+1)H 1—gt) H 9t H(l—gt)Hgt A7
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J—1
=Ts E ULk
k=1

which implies Equation holds for [ =1,...,J.

Combining Equations , , and , Lemma is proved.
]

Proof of Theorem 1. Combining the results of Lemmas [S1| and we have
M(§) = Z%’M €
i=1
Y fom(x)\ | o (x;)
-3 () e (5

=Y wH (x) U (2;) D" (@) U (x;) H (),

i=1

which completes the proof. O]

S1.2 Proof of Corollary 1

Proof. The main task is to identify the complete class. Let ¢ = Sx(where
B #0), then there is a bijection between x and ¢, and x = ¢/f3, denote the
mapping space as X’. For a complete class =*, define two designs ¢ ¢ =*

and £ € ZF on A/,

§

{(Ci,wi),ci € X/,sz‘ = 1},

i=1

k
3 {(51',@@'),51 € XI’Z('D" = 1}.

i=1

12
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For the case J = 3, Theorem 3.2 in |Hao and Yang| (2020)) has proved that
at most 4 support points form a complete class.

For the case J = 4, Model (2.2) is essentially

log ( » ) =a;+ o =aj+ 6,5 =1,2,3.
7Ti’j+1

For the support point ¢, let a; = €%, j = 1,2,3. The information matrix

at cis
ajasaz(asag + az + 1) ajasaz(as + 1)
arasas(as + 1) arasaz(as + 1) + azasz(as + 1)
M(z) =A?
10203 10203 + Q203
%alaQag(agag + 2a3 + 3) %[a1&2a3(2&3 + 3) + asasz(as + 2)]
a1a903 %alagag(agag + 2a3 + 3)
arasaz + asas slarasas(2as + 3) + azaz(as + 2)]
ajasas + asas + as %(3@1@2&3 + 2asa3 + as)
5(3a1a2a3 + 2aza;3 + as) (%)2[CL1(LQCL3<CL2&3 +4as +9) + asaz(as + 4) + as)

where A = ayasa3 + agas + as + 1.
To prove the complete class result,

Step 1: (Selection) Among the first three columns, select the follow-

13
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ing set as maximal linear independent nonconstant functions:

€a1+a2+a3+3c (ea2+a3+20 + ea3+c + 1)

_ -2 _
\III(C) B a1a2a3(02a3 s 1)A B (601+a2+a3+3c + ed2t+az+2c + eastc + 1)2’

ea1+a2+a3+36 (ea3+c + 1)

_ -2 _
\IJQ(C) = a1a2a3(a3 + 1)/\ = <€a1+ag+a3+3c | gortast2e 1 gaste | 1)27

\:[13(6) = [alagag(ag —|— 1) —f- a2a3(ag —f- 1)] A_2

€a1+a2+a3+3c (€a3+c + 1) + ea2+a3+2c (6a3+c + 1)

Y

(ea1+a2+a3+3c + e@2taz+2c 4 paztc | 1)2

6041-1—&2 +az+3c

-2
\114(0) = CL1(Z2(L3A = 3
(ea1+a2+a3+30 + ea2+a3+20 + eastc + 1)

e +ag+asz+3c + 6a2+a3 +2c

_ -2 __
\115(6) = (a1a2a3 + a2a3)A = (ea1+a2+a3+3c | poatastZe 1 gaste 1 1)27

N ea1+az+a3+3c + €a2+a3+20 + edstc

\IJG(C) = (a1a2a3 + aqga3 + GS)A = (ea1+a2+a3+3c © caatast?e 4 gaste 1 1)27

C C€a1+a2+a3+3c €a2+a3+2c + 26a3+c +3
U7(c) = Balagag(agag +2a3 +3)A"2 = ( )

B (60‘1+O‘2+0‘3+3C + e2taz+2e + eastc 1)27

Ug(c) = % [a1aza3(2as + 3) + asas(as + 2)] A2

c [ea1+a2+a3+3c (2€a3+c + 3) + €a2+a3+20(60c3+c + 2)]

ﬂ (ea1+a2+a3+3c + e@2tazt2c 4 pgaztc 4 1)2 ’

C c 36a1+a2+a3+3c + 26a2+a3+20 + 6a3+c
\119(0) - E(3CL16L2(13 + 2(12&3 + a3)A_2 = ( )

B (€a1+az+a3+3c + e2taz+2e + eastc 1)2’
and let

2
C
\1110(0) = <E> [alagag(a2a3 —f- 4@3 —|— 9) + a2a3<a3 + 4) + (13]

CQ [€a1+a2+a3+30 (ea2+a3+26 + Jecste + 9) + ea2+a3+2c(ea3+c + 4) + 60‘3+C]

ﬁ2 (€a1+a2+a3+3c 4+ eq2tasz+2c | paztc | 1)2

Step 2: (Simplification) The task is to show the following system for

14
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any two designs £ and é in ,
m k
i=1 i=1

m k
Zwi‘l’lo (¢;) < Z@"I’m (G),
i=1 i=1
and it is sufficient to show either
{1, Uy, Wy, Uy, Uy, Uy, W, Uy, Ug, Wy} and {1, Uy, Uy, W3, Uy, Uy, U, Uy,
Wg, Wy, Wyp} are Chebyshev Systems, or
{1, W, Uy, Uy, Wy, Uy, W, Uy, Wg, Wt and {1, Wy, Uy, Wy, Wy, Uy, Wg, Uy,
Vg, Uy, =W} are Chebyshev Systems.
(S8)
Because the denominators present in W(c), the recursive construction
of F(c) as detailed in Theorem 2 of [Yang and Stufken| (2012) is likely to
be complex and cumbersome. As a result, the resulting function F'(c) can
become quite complicated. To address this, we simplify the process through
a series of steps that retain either the equality in (S7) or the Chebyshev
System in , but involve simpler functions.
First, we omit g in ¥;, Wg and ¥y which does not change the equality
in (S7). Then multiply all ¥ functions including the constant Wy, = 1 by
the denominator and conduct row or column operations that do not change

the sign of matrix determinant. At last we get rid of positive constants like

15
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e e e and 2 which preserve the Chebyshev System. Eventually, a

set of functions W is simplified to

{17 ec,C€C,620,C@2C,638,Cegc,646,0646,650,0656,6607

C2€C (€a1+2a2+a3+4c 4 4ea1+a2+o¢3+30 4 9€a1+a2+20 4 €a2+a3+20 + 4ea2+c T 1)} ]
To show ([S8) is equivalent to verifying either those following claims hold
c c 2c 2c¢ 3¢ 3¢ 4dc 4c bc 5¢ bc c c 2c 2c

{1,6 ,ce, e, ce™, e’ ce’, e, ce™, e’ ce’ e }and{l,e ,ce, e, ce™,

636, 66307 6467 0640, 6567 0656, 6607 0266 (ea1+2a2+a3+4c + 4€a1+a2+a3+3c

F9ettaztze g gartastae 4 ge02te 4 1)1 are Chebyshev Systems,

c c 2c 2c¢ _3c 3c 4c 4c b 5¢ _6¢ c c 2c 2c
{l,e,ce,e ,ce“t e’ ce’t e ce” e’ ce™ e }and{l,e,ce,e ,ce”’,

3c 3c _4c

e’ ce® e ,66467656,0656,666, _0260 (6a1+2a2+a3+4c + 46a1+a2+a3+3c

F9ettaztEe g gartastae 4 ge02te 4 1)1 are Chebyshev Systems.

Step 3: (Calculation) The sequence of f; functions can be easily
calculated according to Theorem 2 of |[Yang and Stufken| (2012)). Here f; =
€, fao =1, faz3 = 2¢% fag =1, f55 = 6e®, foo =1, frr = 12€°, fss =1, fog =
20e, fiogo = 1, fii,11 = 30€°, fia1p = —(gpe® T2oetas—c 4 Zeartortas—2c |

3 -3 1 — 2 — 1 - _ 12 o
meoq—i-ag c 4 %eaQ—i—ag 3c + %eag 4c_|_ Ee 5::)7 and F(C) — Hi:l fm(c> —

_28866(206a1+2a2+a3+40+86a1+a2+a3+30+96a1+a2+20+€a2+a3+2c+8€a2+c+

20) < 0. Then designs with at most 6 = 2(4 — 1) support points form a
complete class is a direct consequence of the case (d) of Theorem 2 in Yang

and Stutken (2012).

16
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For J = 3, we need to verify either of those following claims hold

2c 3c _4c

3c 3c _4c c c _2c 2c¢ _3c
,e ,ce e }and{l,e,ce,e ,cee,e,ce e

Y

{1, e, ce®, e, ce

e’ (ea1+0‘2+2° + 4e™te 1) } are Chebyshev Systems,

{1, €€, ce, e, ce*, e3¢, ce3°, 640} and {1, e, cet, €%, ce, e3¢ e3¢, e,

—c?ef (eaﬁm”c + 4e™ ¢ 4 1)} are Chebyshev Systems.

Direct calculation shows F(c) = [[5_, fi(c) = —8ef(3ex1tazt2eqemtey
3) < 0. Then according to case (d) of Theorem 2 in |Yang and Stufken

(2012), designs with at most 4 = 2(3 — 1) points form a complete class.

Similarly, for J = 5, we need to verify either of two following claims
hold
{1’ €C, Cec’ 620, 6620, 6307 CeSc’ 646, C€4C, 656, C€5C, €6c7 C@GC, 670, C€7C, 680} and
{1,667660, 62070626, 630,6630, 64C,C€4C, 65670656,66070660,670, 06707680,02€C(A)}
are Chebyshev Systems,
{1’ €C, Cec’ 620, CBQC, 636, CGSC, 646, C€4C, 656, CGSC, 660, C@GC, 670, C€7C, 680} and
{1,66,660, 620,0626, 630,6636, 646,6646, 656,6656,66670666,670, 06707686, —CQGC(A)}
are Chebyshev Systems,
where A is the sum of some functions. And F(c) = H£1 fii(e) < 0, then

according to case (d) of Theorem 2 in Yang and Stufken| (2012), designs

with at most 8 = 2(5 — 1) points form a complete class.

17
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The rest is similar and omitted here. O

S1.3 Proof of Theorem 2

Proof. Note that the transformation of design point does not change the

complete class result, because of the following factorization of the informa-
tion matrix. Known A(c) = U'(¢)D~(c)U(c) = U (x) D~ (x)U(x), then

for a design point @ and its transformed design point s,
M(z) = H' (x)A(c)H(z) = Q" H ' (s)A(c)H(s)Q, (59)

where H(x) is the design matrix corresponding to & = (z1,...,2,) ", H(s)

is the design matrix for s = (xy,..., 2,1, )", and H(s)Q = H(x),

1 0 = c
H(S) = )
0 1 = c
I O—1x@-1) Ou-1)x1
@=| Og-nxu-n I T(B) )

O1x(1=1) O1x(g—1) 1/8,

where T(8) = (=p1/Byg---»—B¢-1/B,) . Let M(s) stand for the infor-
mation matrix at s = (z1,..., 2,1, ¢)", one can easily obtain M (s) from

M(z) by (S9). The structures of them are identical. For convenience,

18
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H(s;) and A(c;) are abbreviated as H; and A;. Then for a given design &,

the information matrix of &; is

i=1

First of all, define following weights r; = (1 — x;;)/2 such that

ri(=1) + (1 —=7;) (1) = 2y,
(S10)

r(=17+ (L —r) (1) =g, j=1,...,¢- 1

The first equality is easy to verify, and the second inequality is due to the
fact that the function f(z) = 2% is convex. For an arbitrary design point,
say 8; = (zi1, ..., Tig-1, cz-)T, consider the following two design points, s;; =
(=1, 20, ..., Tig-1, ci)T and s;2 = (1, z4,..., Zig1, c,-)T, and their design
matrices are H;; and H;s. Let w;; = rw; and w;s = w; —w;1, then wiHZ-TAiHi
and 212:1 wiyH J A;H;; are exactly the same except the Jth diagonal element.

This is true due to two facts. First the holds. Second, entries in
M (&) are linear in z;; except the Jth diagonal components are quadratic

in x;;1. As a result,

2

=1
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Repeat the procedures until z; ,_1, and we have the following

201
wH A;H; < Z@uﬁJAifIiz,
=1
m 241
ZMZHTA Hy <@g Hy AHy. (S11)
=1 [=1
H; is the design matrix for &; = (bs ..., big-1,¢), by = —1 or 1, and
(b1, ... big—1) are all combinations of them for [ = 1,...,29°'. Thus

(bigy ey big1), I=1,...,297" form an OA(2¢7!, ¢ —1,2,q — 1). Note that
the right hand side of (S11]) only depends on ¢;, and they have the same
set of linear independent non-constant functions. Then following Lemma

1, there exist at most (K + 2)/2 points ¢ such that

m 2971 (K+2)/2 2a—1
DY waHj AH < Y ZwZ,HdAHd
=1 [=1 =1 =1

These points ¢; form a single-factor design & = {(¢;,@;),i = 1,..., (K +
2)/2,> 7] (K225 =1} and @; = 212:1 @y and &, is only relevant to &, and

Wit O

S1.4 Proof of Theorem 3

Proof. Let H = (H" (z1),...,H" (=,,)), and

/W = dlag (C‘-)lUvT (wl) Dil (wl) U (wl) y oo 7meT (wm) Dil (wm) U (wm)) :

According to Theorem 1, the Fisher information matrix can be written

as M(§) = HWHT. Because 0 < mi(x;) < 1,5 = 1,...,J, D(x;) is
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positive definite. After performing an elementary row transformation on
U(x), the first J — 1 rows can be changed into a diagonal matrix with
v = g 115 A7 (M —g) N = [T (X — g0)g TT gAML —
g) vy = H;];f(l—gt)g’JflAjl(l—gJ_l)_l as diagonal elements,
denoted as V(x). Evidently, 0 < g, < 1,0<1—g < 1,l=1,...,J —1.
By Assumption 2, since g; > 0 for [ =1,...,J — 1, it follows that v; > 0
for { =1,...,J — 1. Therefore, V() has full column rank, which implies
that U(x) has full column rank. Therefore, M (&) is positive definite if and

only if H has full row rank.

Let X = (x1,...,®,). After some elementary column transformations
for the matrix (H' (@1),...,H' (®,,)), we obtain a new matrix
170 0
0 17 ... 0
Hyew = )
X X X

where 1,, is an m-dimensional vector all of 1. In order to keep H,e, full
row rank, X is full row rank and C'(1,,) NC (XT) = {0}, C (X ) denotes
the column space of X . Thus m > ¢ and the rank of the matrix (1m, XT)
is at least ¢ + 1. In summary, M () is positive definite only if m > ¢ + 1.

As a direct conclusion of Theorem 2.2 of Fedorov and Leonov]| (2014)),
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under regularity conditions, there exists a D-optimal design that contains
no more than p(p + 1)/2 support points, which are the design points with

positive weights. O

S1.5 Proof of Theorem 4

Proof. Following the proof of Theorem 2 in [Yang et al.| (2017)), we have the
following result for the determinant of the Fisher information matrix M (§).

The Fisher information matrix under the design ¢ is

To facilitate the subsequent derivation, we denote the (¢, [)th entry of M (x;)
by m¢,.

According to the Leibniz formula for the determinant,

m P m
(M) = D> wiM ()| =Y (1= ] D wimi ),
i=1 g€S) t=1 i=1
where o is a permutation of {1,2,...,p}, S, is the set of all p! permutations

and sgn(o) is the sign or signature of o. Therefore,

p
MEl= Y S e M )r{wm:ﬁfzt)
t=

a1>0,...,am>00€S), T€P(ay
a1+ +am=p

-------
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SP NN P S SIS e (X O
t=1

a120,....,am>0 \7€®(ai,...,am) oESp
artetam=p

_ Z Z |M| | Wl - w2,

a12>0,...,am>0 \7€®(a,...,am)
artetam=p

,,,,,,,,, am- This proves Equations (3.5) and

Denote > oy am) [Mr| as ca,
(3.6) and shows that |M(£)| is an order-p homogeneous polynomial of
Wiy ey Wi

Next, we need to show that the coefficients calculated in Equation (3.6)
in conditions (1) or (2) are zero.

(1) We have known M(z;) = H' (x;,)U" (x;) D7 (x;) U (x;) H (x;)
and U (z;) has full column rank, i.e., has rank J — 1, thus rank(M (z;)) <
J—1,1=1,...,m. Since max;<;<,, o; > J, without loss of generality, we
assume o1 > J. Then for any 7 € ® (aq,...,q,), M, has at least J rows
that are the same as the corresponding rows of M (), these rows must be
linearly correlated. Thus |M,| = 0, which implies c,, ., = 0.

(2)Let H=(H" ()U" (x1),...,H () U" (x,,)) and
W = diag(w; D' (z1), ..., wmD ™ (x,,)), then M (¢) = HWHT. By Cauchy-

Binet formula in Section 0.8.7 of Horn and Johnson| (2012)), it follows

_ Z 12 -1
Car,....om — ‘ Ul? s ‘ H H 7Ti,vlf(ifl)J 2 O’

(v1,...,0p)EA(QL,...;00m) 1:0;>01:(i—1) J<v; <iJ

where A (o, ... o) = {(v1, ... 0p) |1 <oy <o <, <mJ; >0 I{(i—
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NS <y <iJ}=api=1,....om}, {i —-1)J < vy <iJ}is 1if (i —
1)J < v <iJ is true, and 0 otherwise, and H|vy,...,v,] is the submatrix
consisting of the vth, ..., v,th columns of H. Without loss of generality,
we assume o > -+ >y > 0= ayu = - = Qu,, where n < q. Suppose

there exist some (aq,...,qn) such that ¢4, 4, > 0. This implies that

there exist (vy,...,v,) € A(ay,...,ay) such that rank(H|[vy,...,v,]) = p
and 1 < vy < --- < v, <nJ. Let H= H[1,...,nJ] be a p x nJ matrix,
then H is full row rank. Let W = n~'diag(D ™ (1) ,..., D™ (z,)), then
HWHT is a positive definite matrix. We can regard HWHT as the Fisher
information matrix under uniform weighted design at n design points, thus

n > ¢+ 1 is obtained from Theorem 3. This creates a contradiction, so

when n =" I{a; > 0} <gq, Cay,.an =0. O

S1.6 Proof of Example 1

Proof. For convenience, denote 7;(z;) as 7;;. For model (3.7),

i1 T2 + M1 T3 1753
H(x;) = U(ai) = — T T2 T2 i3
— 317053 —T1 T3 — T27053

and D(x;) = diag(m;1, m2, mi3). Then
M (z;) = H' (2;)U " (2;) D™ () U () H ()
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1T + T1743 17033 (minTio + 2w mis) T
= 1733 ;1753 + T3 (2mi1 i3 + Tiamis) T

2
(Mo + 2mams)x;  (2mams + memis)x; (T Mg + 4T T + Tiamis) X

Assume that the weights of design £ at points x; and x5 are w; and wo,
respectively. Then the determinant of the Fisher information matrix corre-

sponding to design & is

IM(&)] = (biwr + baws)wiws,

_ 2 _
where b; = (7T217T22 + 4o mo3 + 7T227T23)7T117T127T13($1 - 952) , by = (7T117T12 +

47T117T13+7T127T13) 7T217TQQ7T23<I1 —.TQ)Q. By COI’OH&I‘Y 2 of Yang et al. (2017), it

blfb2+\/b%7b1b2+b§ by

Wo =
21 —bot/D—brba 03 © 2bi—botr/b3—brba+b3

[M(E)]- 0

follows that w, = for maximizing

S1.7 Proof of Theorem 5

29—1 _

Proof. According to the proof of Theorem 2, M (£,) = ng;“ 2)/2 2 ogHy
XAi]:.lil and for a given -, A; is only relevant to ¢;. For J response cate-
gories, A; is a (J — 1) x (J — 1) matrix. Let the (j,¢)th element of A; be

denoted as Ag’t, the sum of the jth row as Ag , and the sum of all elements
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as A*™. Then the (j,t)th (j <t) elements of M(E,) is

(

SOKE2 G AT 1<j<t<J-—1;

SEAD/2 5 Asum j=tj=dJ...,J+q—2
SR G A2, j=t=J+q-1

Z (K42)/2 Z?qll O Al g1, 1<j<J-1,J<t<J+q—-2
SOKED/2 0, AT, 1<j<J—1t=J+q—1;
Z (K+2)/2 Z?qll Qi AS i gib—gr, J<j<t<J+q—2;

S S DA b g, J<j<J+q-2t=J+q-1.

\

Divide M(gs) into (BAT g), where Ais a (J—1) x (J—1) matrix related only
ffm N e (K+2)/2 ~ :

to & ={(¢,@),i=1,...,(K+2)/2,> "7 @& =1}, Bisa (J—1) xgq

matrix, and D is a ¢ x ¢ matrix. Then |M(&,)| = |D||A—BD~*BT|. Assume

that the eigenvalues of D are \;,t = 1,...,q and the diagonal elements of

D are Dy, t =1,...,q. It is known that

q q
IR 2
t=1 t=1
The equality holds if D is a diagonal matrix, then Z(K+2)/ 2 2q i Wi A
Xbl] J+1blt J+1 = =0, J < j <t< J+q — 2 and 2 (K+2)/2 ?i;l a}ZlAfum

xbj_gc =0, J <3< J+q—-2t=J+q—1 Therefore, w; =

;)29 i =1,... (K +2)/2,1=1,...,q — 1 can be derived. In addition,
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S22 ATy g =0, 1< <J—1,J <t<J+q—2 Thus,
the elements of the first J —1 columns of B are all 0, and the last column is
related to &. only. D is a diagonal matrix related only to &.. Then the infor-
mation matrix of this design is only relevant to &. and is D-optimal under &..
Denote this design as &, = {(84,@;/29 ") ,i=1,...,(K+2)/2,1=1,...,
2971 8y = (byy, ..., big-1,¢i) and b = —1 or 1.

For each i, i = 1,...,(K + 2)/2, select 29! &; from & such that
(bity - big1), I = 1,...,2¢" form an OA(29', ¢ — 1,2,2). Let & =
{(8i,@;/29 N),i = 1,..., (K +2)/2,1 = 1,...,277'}. Tt can be verified

that M ( ~§) =M (5;) Therefore, f;‘ is D-optimal under &. and only relevant

to &..

S1.8 Proof of Theorem 6

Proof. Define Sy := {w = (w1, ...,wm) € R™w; >0,i=1,...,m;> 1" w;=
1}. Obviously S is a closed convex set. Since f(w) = [M(&)| = Zalio,.lamzo
T Fam=p
ConamWi ! -+ wim is an order-p homogeneous polynomial of wy, ..., wy,
then it must be continuous on Sy. According to the Weierstrass theorem

(see, for example, Theorem 3.1 in |Sundaram (1996)), there must exist a

w* € Sp such that f(w) attains its maximum at w*. O
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S1.9 Proof of Theorem 7

Proof. (1)=(2) &* is the D-optimal design, then V £ € =, |[M(£*)] > |M(£)|
holds, and log | M (£*)| > log |M(€)| also holds. Thus V £(0 < e < 1) and

x € X, we have
log [M ((1 —¢)§" + ex)| — log |M (£7)]

—log|(1 — £)M(&") + eM ()| — log | M (£°)] < 0.

Then

6(w, ) = lim * (105 (1 — £)M(€") + <M ()| ~ log M (€")]) < 0.

(2)=-(1) Section 3.5.2 of Silvey| (1980) gives many properties of the
Fréchet derivate, e.g., ¢(£,&*) = o> w(x)z, &) = > w(@)o(x, &),
where w(x) denotes the weight of design ¢ at design point & and 0 <
w(x) < 1.

Ve e X, ¢(x, ") <0. Then V £ € =, according to the above property,
we have ¢(&, &) = > w(x)o(x, &) < 0. Concavity of log|M(§)| implies
that

" (log (1~ )M(E") + M(©)] ~ log | M (€°))
is a non-increasing function of € in 0 < ¢ < 1. By putting € = 1, we have

the result that
0> 9(6,€7) > log |M(€)| — log |M(E").
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SoV ¢ €=, log|M(£*)| > log|M(E)], i.e. £* is the D-optimal design.
(1)=(3) &* is the D-optimal design, thus V @ € X, ¢(x,&*) < 0. It is

easy to derive

B(€", %) = lim ~ (105 (1 — YM(E") + =M(E")] ~ log | M (€))) =0,
and

B(E, ) =) w(@)p(x, ).

xr

Suppose & be the design point of £*, then w(x) > 0. Thus it follows

that at each design point @ of £*, ¢(x, ") attains its maximum value, i.e.
P(w, &) =

(3)=(1) At each design point & of &*, ¢(x,&*) attains its maximum
value 0, we have V © € X, ¢(x,£*) < 0. Therefore, £* is the D-optimal

design. L]

S2 Beyond Proportional Odds Assumption

This section is an extension of the AC po model.

Similarly, the general AC partial proportional odds (ppo) model is

mj(x:) o
! <7Tj(mz’) +7rj+1(:ci)> nij = @06 + 26, (S12)

for j=1,...,J — 1, where x; = (zj, )" € RI. 0; € R® stands for the

unknown parameters belong to the jth category only, 7 =1,....J -1, 3 €
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R% stands for the unknown parameters that are common in all categories,
p=(J—1)g + ¢1. AC models under po and nonproportional odds (npo)
assumptions are two special cases withx;o =1,7 =1,...,J—1,and x;; = 0,
respectively.

Here n; = H(x;)~y, where H(x;) is (J — 1) X p design matrix with

T T
z, 0 0 x;
T T
0 = 0 x;

H (CL'Z) = )
T .7
0 0 Tip Ty

andy=(0],...,0; ,,8")".

The Fisher information matrix for Model under the design ¢ is
the same as Equation (2.4).

The following are modifications of some related theorems. The proofs

are similar to those for the AC po model and are therefore omitted.

Theorem S1. The Fisher information matriz M (§) for Model cal-
culated in Equation (2.4) is positive definite only if m > q. Furthermore,

there exists a D-optimal design with m < p(p+ 1)/2.

Theorem S2. The determinant of the Fisher information matriz M () is

|M(€)| = Z Calw--yohnw?l e w’r‘;"{”’ (813)

a120,...,am 20
a1t +om=p
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where

Cai,....am — Z |MT‘ . (814)

TED(tyeesaim)
Furthermore, letn =" I{a; > 0}, where I{cy; > 0} is 1 if a; > 0 is true,
and 0 otherwise. Then the coefficients are zero if the (v, ..., Q)
satisfies one of the following conditions.

(1) maxj<icma; > J.  (2)n<q-—1.

For the AC ppo models with ¢ continuous factors, we focus on the
. - T h
support points 8; = (Ti1, - -, Tigys Tigotls - - -y Lig—1sCils - - Ciy—1) , Where

Cij = Zfil ‘9jt$z‘t + Zg:qo+1 5t—q0$z‘t; j=1,...,J—1and ‘9jt 7é 0, /Bt—qo 7’£ 0

for all possible t.

Theorem S3. In the transformed design space of AC ppo model with g
continuous factors, for an arbitrary design & = {(sj,w;), ¢ = 1,...,m;
o w; = 1}, there exists a design &, such that the following inequality for

information matrices hold: M (&) < M(fs), where
55 = {(gilaa}il)ai = 17---;m,l = 1,...,2q_1}’

and gil = (blb Ce 7bl,q—1a @1, ceey 6Z‘7J_1). Here blj =—1or 1, and (blh e 7bl,q—1>;
[ =1,...,27" are all combinations of them, and ¢;1,...,¢ 51,0 =1,...,m

are m(J — 1) numbers need to be solved.

31



D-Optimal Designs for Ordinal Response Experiments

S3 Simulation studies

Example S1. This example is a supplement to Example 3. In this ex-
ample, we demonstrate the optimal design £* searched out by our method
in Table [S1] For comparison, we also report the results for ;04 and the

corresponding ¢ in Table [52f and the D-optimal design &%, constructed in

Huang et al|(2024) in Table[S3]

Table S1: D-optimal designs &* and &*

& Wi f* Wil
1 1 1 1 1 047668 ] 0.06461
1 1 1 —1 —1 —0.18999 | 0.06461
1 -1 —1 1 —1 —1.52332 | 0.06461
1 —1 —1 —1 1  0.47668 | 0.06461
—1.56997 1 0.51688 | ;1 ;1 1 _352332 | 0.06461
1 1 -1 —1 1 —1.523320.06461
1 -1 1 1 1  1.14335 | 0.06461
1 -1 1 —1 —1  0.47668 | 0.06461
1 1 1 1 1 005044 | 0.04217
1 1 1 —1 —1 —061623|0.04217
1 —1 —1 1 —1 —1.94956 | 0.04217
1 -1 —1 —1 1 005044 | 0.04217
—2.84867 | 0.33735 | 4 1 1 _3.04956 | 0.04217
1 1 -1 —1 1 —1.94956 | 0.04217
1 -1 1 1 1 071711 | 0.04217
1 -1 1 —1 —1 005044 | 0.04216
1 1 1 1 1 —030301|0.01822
1 1 1 —1 —1 —0.96968 | 0.01822
1 -1 —1 1 —1 —230301 |0.01822
1 —1 —1 —1 1 —0.30301 |0.01822
—3.90903 | 0.14577 | 1 4 1 1 _4.30301 | 0.01822
1 1 -1 -1 1 -230301 |0.01822
1 -1 1 1 1 036366 | 0.01822
1 -1 ~1 —1 —0.30301 | 0.01823
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Table S2: Designs {204 and &

&204 w; I3 wil

1 1 1 1 1 0.46314 | 0.07086
1 1 1 -1 -1 —-0.20353 | 0.07086
1 -1 -1 1 -1 —1.53686 | 0.07086
1 -1 -1 -1 1 0.46314 | 0.07086
-1 1 -1 1 -1 —3.53686 | 0.07086
-1 1 -1 -1 1 —1.53686 | 0.07086
-1 -1 1 1 1 1.12981 | 0.07087
-1 -1 1 -1 -1 0.46314 | 0.07087

—1.61058 | 0.56690

H
—
—
—

1 —0.05984 | 0.05414
1 1 1 -1 -1 —-0.72651 | 0.05414
1 -1 -1 1 -1 —2.05984 | 0.05414
1 -1 -1 -1 1 —0.05984 | 0.05414
-1 1 -1 1 —1 —4.05984 | 0.05414
-1 1 -1 -1 1 —2.05984 | 0.05414
-1 -1 1 1 1 0.60683 | 0.05413
-1 -1 1 -1 -1 —-0.05984 | 0.05413

—3.17952 | 0.43310

Table S3: D-optimal design £},

EFor Wi
1 ]|-1 -1 1 -1 1 2.00000 | 0.08322
2 1 -1 -1 -1 -1 —0.90398 | 0.10898
3 1 -1 -1 1 1 —0.21869 | 0.10204
4 | -1 1 1 1 -1 —1.63117 | 0.14459
5 | —1 -1 -1 1 —1.90297 | 0.11757
6 | -1 -1 -1 1 —1 —2.91807 | 0.10720
7 1 1 1 -1 1 0.33563 | 0.09275
8 | -1 -1 1 1 1 0.77604 | 0.03485
9 1 -1 1 -1 -1 0.74782 | 0.06714
10| -1 -1 1 -1 1 1.45673 | 0.04920
11 1 -1 1 1 1 1.40546 | 0.04781
12| -1 -1 1 —1 —1 —0.25447 | 0.02166
13 1 -1 1 1 1 1.84637 | 0.02299
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Due to randomness, each run of the code may result in a different &5,
We list only one of them. As can be seen in Table [S3] £}, contains 13
design points. And from Tables [ST| and [S2], £* and £ have 24 and 16 design
points respectively. It is calculated that the relative efficiencies of £* against
¢ and &, are 0.99022 and 0.94754, respectively. Thus, compared to 7.,
using & can be significantly more efficient and does not add much cost to
change the experimental settings.

Note that for Tables [S1] and [S2], the weights of the eight design points
in each block should be equal; the slight differences shown are caused by

rounding.

Example S2. As an example, take model (5.8) and consider the situa-
tion where the initial guesses of the parameters are incorrect. Suppose the
pre-specified value of the parameter vector for the locally optimal design
fluctuates in a moderate range (10% the magnitude of the true value).

For visualization purposes, we report the results for only one of the
three parameters that is misspecified (we choose ¢, as an example) and two
parameters that are misspecified (we choose #; and #y as an example) in
Figure

As can be seen in Figure [SI(a), the relative D-efficiencies of the D-

optimal designs are all greater than 99.95% when 6, is misspecified. Based

34



S3. SIMULATION STUDIES

1.0000-
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(a) 01 is misspecified (b) both 01 and 02 are misspecified

Figure S1: Relative D-efficiencies when the parameters are misspecified.

on the contour plot of Figure [SI|(b), it can be shown that when 6; and 6,
are misspecified, the relative D-efficiencies are also greater than 99.4%.

To give a comprehensive result, we also consider the case that all the
three parameters are misspecified. The results are summarized in Table[S4]
The minimum efficiency is 98.7%, which indicates the D-optimal designs
with moderately misspecified parameters are quite robust and still have

satisfactory performances.

Table S4: Summary of relative D-efficiencies when all the parameters are misspecified

Min 1st Quartile Median  3st Quartile Max
0.98714 0.99673 0.99793 0.99894 1.00000

Example S3. Consider the experiment of the dose-response relationship in
Chuang-Stein and Agresti (1997)). The five ordered categories death, veg-
etative state, major disability, minor disability and good recovery describe

the clinical outcome of patients who experienced trauma. In the literature
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on critical care, these five categories are often called the Glasgow Outcome
Scale (GOS). The experiment includes four treatment groups, with placebo
serving as the control. The three intravenous doses for the investigational
medication are labelled as low, medium and high. Let x denote the dose of
medicine. Assume that the safe dose range of the medicine is 0-300mL and
placebo, low, medium and high correspond to x; = 0, o = 100, x3 = 200
and x4 = 300, respectively. From the above there are m = 4 design points
and J = 5 categories. After simulation, it is found that probit link is the
best among the five commonly used link functions in terms of the BIC
criterion.

Then the AC po model under probit link function is given by

o (L) =+ fr;,i=1,234,j=1,234  (S15)
i+ 11

The parameter estimates are (&1, da, &, du, B)T = (0.73748, —0.61707,

—0.00838,0.36878, —0.00042) "

N

Considering (A1, o, &3, 4y, 3) 7 as the assumed values, the locally D-

optimal design of model (S15) is

. 0 300
&=
0.49775 0.50225

The relative D-efficiency of the original allocation and the uniform allo-

cation with respect to the locally D-optimal design are 89.34% and 89.20%,
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respectively.

To evaluate the performance of £* obtained by Algorithm 1, we compare
it with the optimal design ¢}, obtained by the ForLion algorithm proposed
by Huang et al.| (2024). They show equivalent performance in relative D-

efficiency, with computational times for £* and 5, presented in Figure [S2]

Time (secs)
>

Design

Figure S2: Computational time of £&* and &5,

From Figure [S2] it can be seen that £* is more advantageous in terms

of computational time.
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