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S1 Proofs

S1.1 Proof of Theorem 1

In order to prove Theorem 1, two lemmas are needed. We first give the

representations of ∆k(x) needed to prove the lemma. For convenience, we

will denote gt(x),∆J(x) as gt,∆J and omit x from all notations.

For ∆k, denote A =
∏k−2

t=1 (1 − gt) + ∆k−2gk−2gk−1 and B =
∏k−1

t=1 (1 −

gt) +
∏k−3

t=1 (1 − gt)gk−1 +
[
∆k−2 −

∏k−3
t=1 (1− gt)

]
gk−2gk−1. When l > k,∏k

t=l(1− gt) = 1 and
∏k

t=l gt = 1. Then

A =
k−2∏
t=1

(1− gt) + ∆k−2gk−2gk−1
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=

⌈ k
2
⌉∑

l=1

k−2l∏
t=1

(1− gt)
k−1∏

t=k−2(l−1)

gt



=


∏k−2

t=1 (1− gt) +
∏k−4

t=1 (1− gt)
∏k−1

t=k−2 gt + · · ·+
∏k−1

t=1 gt k is odd,

∏k−2
t=1 (1− gt) +

∏k−4
t=1 (1− gt)

∏k−1
t=k−2 gt + · · ·+

∏k−1
t=2 gt k is even.

B =
k−1∏
t=1

(1− gt) +
k−3∏
t=1

(1− gt)gk−1 +

[
∆k−2 −

k−3∏
t=1

(1− gt)

]
gk−2gk−1

=

⌈ k+1
2

⌉∑
l=1

k+1−2l∏
t=1

(1− gt)
k−1∏

t=k+1−2(l−1)

gt



=


∏k−1

t=1 (1− gt) +
∏k−3

t=1 (1− gt)gk−1 + · · ·+
∏k−1

t=2 gt k is odd,

∏k−1
t=1 (1− gt) +

∏k−3
t=1 (1− gt)gk−1 + · · ·+

∏k−1
t=1 gt k is even.

Let γ ∈ Rp denote the parameter vector, i.e., γ = (γ1, . . . , γp)
⊤ =

(θ1, . . . , θJ−1,β
⊤)⊤.

For an exact design

ξexact =

 x1 · · · xm

n1 · · · nm

 ,

the corresponding information matrix is given in the following lemma.

Lemma S1. Suppose Assumptions 1 and 2 hold, the Fisher information

matrix for Model (2.2) under the exact design ξexact can be written as

M (ξexact ) =
m∑
i=1

niM(xi),
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where M(xi) = (mist)1≤s,t≤p is a p× p matrix with

mist =
J∑

j=1

1

πj(xi)

∂πj(xi)

∂γs

∂πj(xi)

∂γt
.

Lemma S1 comes from supplementary material of Ai et al. (2023).

Remark S1. From Lemma S1, the Fisher information matrix for Model

(2.2) under an approximate design

ξ =

 x1 · · · xm

ω1 · · · ωm


can be written as

M(ξ) =
m∑
i=1

ωiM(xi).

Let ∂π(x)/∂γ⊤ denote a J×pmatrix, whose (l, j)th entry is ∂πl(x)/∂γj,

where x ∈ X is a design point. We have the following lemma.

Lemma S2. For Model (2.2),

∂π(x)

∂γ⊤ = U(x)H(x), (S1)

where U(x) and H(x) are defined in Section (2.2).

Proof of Lemma S2. Introduce the following two functions needed for the

proof.

ft−c =


− 1

1−gt
t− c < 0,

1
gt

t− c ≥ 0,

c is a constant.
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yt−c =



− 1
1−gt

t− c < 0,

0 t− c = 0, c is a constant.

1
gt

t− c > 0,

And denote I(j < J−2(l−1)), I(j ≥ J−2(l−1)) as Ij<J−2(l−1), Ij≥J−2(l−1).

The rest is similar.

We first prove that the following equation

∂π1

∂θj
= u1j, (S2)

holds for j = 1, . . . , J − 1.

From Section 2.2, we have

∆J =

⌈J
2
⌉∑

l=1

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 , π1 =

∏J−1
t=1 gt
∆J

.

Then

∂π1

∂θj
=

[(
∂

∂θj

J−1∏
t=1

gt

)
∆J − ∂∆J

∂θj

J−1∏
t=1

gt

]
∆−2

J

=

(∂gj
∂θj

fj−1

J−1∏
t=1

gt

) ⌈J
2
⌉∑

l=1

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt


−∂gj
∂θj

⌈J
2
⌉∑

l=1

yj−(J−2l+1)

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 J−1∏
t=1

gt

∆−2
J

=

g′j ⌈J
2
⌉∑

l=1

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 fj−1

J−1∏
t=1

gt
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−g′j

⌈J
2
⌉∑

l=1

yj−(J−2l+1)

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 gjfj−1

J−1∏
t=1

gt

∆−2
J

=

g′j ⌈J
2
⌉∑

l=1

Ij<J−2(l−1)

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 fj−1

J−1∏
t=1

gt

+ g′j

⌈J
2
⌉∑

l=1

Ij≥J−2(l−1)

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 fj−1

J−1∏
t=1

gt

− g′j

⌈J
2
⌉∑

l=1

Ij<J−2(l−1)yj−(J−2l+1)

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 gjfj−1

J−1∏
t=1

gt

−g′j

⌈J
2
⌉∑

l=1

Ij≥J−2(l−1)yj−(J−2l+1)

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 gjfj−1

J−1∏
t=1

gt

∆−2
J

=

g′j ⌈J
2
⌉∑

l=1

Ij<J−2(l−1)

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 fj−1

J−1∏
t=1

gt

−g′j

⌈J
2
⌉∑

l=1

Ij<J−2(l−1)yj−(J−2l+1)

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 gjfj−1

J−1∏
t=1

gt

∆−2
J

=

g′j ⌈J
2
⌉∑

l=1

Ij≤J−2l

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt + Ij=J−2l+1

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt


× fj−1

J−1∏
t=1

gt −g′j

⌈J
2
⌉∑

l=1

Ij≤J−2lyj−(J−2l+1)gj

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 fj−1

J−1∏
t=1

gt

∆−2
J

=

g′j ⌈J
2
⌉∑

l=1

−Ij≤J−2lyj−(J−2l+1)(1− gj)
J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

+ Ij=J−2l+1

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 fj−1

J−1∏
t=1

gt

−g′j

⌈J
2
⌉∑

l=1

Ij≤J−2lyj−(J−2l+1)gj

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 fj−1

J−1∏
t=1

gt

∆−2
J

5



D-Optimal Designs for Ordinal Response Experiments

=

g′j ⌈J
2
⌉∑

l=1

−Ij≤J−2lyj−(J−2l+1)

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

+ Ij=J−2l+1

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 fj−1

J−1∏
t=1

gt

∆−2
J

=

g′j ⌈J
2
⌉∑

l=1

Ij<J−2(l−1)

J−2l∏
t=1,t̸=j

(1− gt)
J−1∏

t=J−2(l−1)

gt

 J−1∏
t=1,t̸=j

gt

∆−2
J

=

⌈J
2
⌉∑

l=1

Ij<J−2(l−1)

J−2l∏
t=1,t̸=j

(1− gt)
J−1∏

t=J−2(l−1)

gt

 g′j

J−1∏
t=1,t̸=j

gt∆
−2
J

=u1j,

which implies Equation (S2) holds for j = 1, . . . , J − 1.

Secondly, we prove that the following equation

∂πj+1

∂θj
= uj+1,j, (S3)

holds for j = 1, . . . , J − 1.

From Section 2.2, we have

πj+1 =

∏j
t=1(1− gt)

∏J−1
t=j+1 gt

∆J

.

Then

∂πj+1

∂θj
=

[
∂

∂θj

(
j∏

t=1

(1− gt)
J−1∏

t=j+1

gt

)
∆J − ∂∆J

∂θj

j∏
t=1

(1− gt)
J−1∏

t=j+1

gt

]
∆−2

J

=

−∂gj
∂θj

j−1∏
t=1

(1− gt)
J−1∏

t=j+1

gt

⌈J
2
⌉∑

l=1

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt


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−∂gj
∂θj

⌈J
2
⌉∑

l=1

yj−(J−2l+1)

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 (1− gj)

j−1∏
t=1

(1− gt)
J−1∏

t=j+1

gt

∆−2
J

=−

g′j ⌈J
2
⌉∑

l=1

Ij≤J−2l

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 j−1∏
t=1

(1− gt)
J−1∏

t=j+1

gt

+ g′j

⌈J
2
⌉∑

l=1

Ij>J−2l

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 j−1∏
t=1

(1− gt)
J−1∏

t=j+1

gt

+ g′j

⌈J
2
⌉∑

l=1

yj−(J−2l+1)Ij≤J−2l

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 (1− gj)

j−1∏
t=1

(1− gt)
J−1∏

t=j+1

gt

+g′j

⌈J
2
⌉∑

l=1

yj−(J−2l+1)Ij>J−2l

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 (1− gj)

j−1∏
t=1

(1− gt)
J−1∏

t=j+1

gt

∆−2
J

=−

g′j ⌈J
2
⌉∑

l=1

Ij>J−2l

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 j−1∏
t=1

(1− gt)
J−1∏

t=j+1

gt

+g′j

⌈J
2
⌉∑

l=1

yj−(J−2l+1)Ij>J−2l

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 (1− gj)

j−1∏
t=1

(1− gt)
J−1∏

t=j+1

gt

∆−2
J

=−

g′j ⌈J
2
⌉∑

l=1

Ij=J−2l+1

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 j−1∏
t=1

(1− gt)
J−1∏

t=j+1

gt

+ g′j

⌈J
2
⌉∑

l=1

Ij≥J−2(l−1)

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 j−1∏
t=1

(1− gt)
J−1∏

t=j+1

gt

+ g′j

⌈J
2
⌉∑

l=1

yj−(J−2l+1)Ij≥J−2(l−1)

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt


×(1− gj)

j−1∏
t=1

(1− gt)
J−1∏

t=j+1

gt

]
∆−2

J

=−

g′j ⌈J
2
⌉∑

l=1

Ij=J−2l+1

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 j−1∏
t=1

(1− gt)
J−1∏

t=j+1

gt
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+g′j

⌈J
2
⌉∑

l=1

yj−(J−2l+1)Ij≥J−2(l−1)

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 j−1∏
t=1

(1− gt)
J−1∏

t=j+1

gt

∆−2
J

=−



[
g′j
∏j−1

t=1(1− gt)
∏J−1

t=j+1 gt
∑⌈J

2
⌉

l=J−j+1
2

(∏J−2l
t=1 (1− gt)

∏J−1
t=J−2(l−1),t̸=j gt

)]
∆−2

J ,

J − j is odd[
g′j
∏j−1

t=1(1− gt)
∏J−1

t=j+1 gt
∑⌈J

2
⌉

l=J−j+2
2

(∏J−2l
t=1 (1− gt)

∏J−1
t=J−2(l−1),t̸=j gt

)]
∆−2

J ,

J − j is even

=−



[
g′j
∏j−1

t=1(1− gt)
∏J−1

t=j+1 gt
∑⌈J

2
⌉

l=J−j+1
2

(∏J−2l
t=1 (1− gt)

∏j−1
t=J−2(l−1) gt

)]
×
∏J−1

t=j+1 gt∆
−2
J , J − j is odd[

g′j
∏j−1

t=1(1− gt)
∏J−1

t=j+1 gt
∑⌈J

2
⌉

l=J−j+2
2

(∏J−2l
t=1 (1− gt)

∏j−1
t=J−2(l−1) gt

)]
×
∏J−1

t=j+1 gt∆
−2
J , J − j is even

=−



[
g′j
∏j−1

t=1(1− gt)
∏J−1

t=j+1 gt
∑⌈ j+1

2
⌉

l=1

(∏j+1−2l
t=1 (1− gt)

∏j−1
t=j+1−2(l−1) gt

)]
×
∏J−1

t=j+1 gt∆
−2
J[

g′j
∏j−1

t=1(1− gt)
∏J−1

t=j+1 gt
∑⌈ j

2
⌉

l=1

(∏j−2l
t=1 (1− gt)

∏j−1
t=j−2(l−1) gt

)]
×
∏J−1

t=j+1 gt∆
−2
J

=−
j−1∏
t=1

(1− gt)
J−1∏

t=j+1

gt∆jg
′
j

J−1∏
t=j+1

gt∆
−2
J

=uj+1,j,
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which implies Equation (S3) holds for j = 1, . . . , J − 1.

Thirdly, we prove that the following equation

∂πl

∂θj
= ulj = ul−1,j

1− gl−1

gl−1

, (S4)

holds for l = 2, . . . , J , j = 1, . . . , J − 1, j ̸= l − 1. For each j, we prove

Equation (S4) holds for l = 2, . . . , J by induction.

(1) When l = 2, j ̸= 1, from Section 2.2,

π2 =
(1− g1)

∏J−1
t=2 gt

∆J

.

Based on the previously proven facts, we have

∂π2

∂θj
=

[(
∂

∂θj
(1− g1)

J−1∏
t=2

gt

)
∆J − ∂∆J

∂θj
(1− g1)

J−1∏
t=2

gt

]
∆−2

J

=

[(
∂

∂θj

J−1∏
t=1

gt

)
∆J − ∂∆J

∂θj

J−1∏
t=1

gt

]
∆−2

J

1− g1
g1

= u1,j
1− g1
g1

= u2,j,

which implies Equation (S4) holds for l = 2.

(2) Suppose Equation (S4) holds for 3, . . . , l − 1 (l < J). By

πl =

∏l−1
t=1(1− gt)

∏J−1
t=l gt

∆J

,

when j < l − 1, we have

9
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∂πl

∂θj
=

[
∂

∂θj

(
l−1∏
t=1

(1− gt)
J−1∏
t=l

gt

)
∆J − ∂∆J

∂θj

l−1∏
t=1

(1− gt)
J−1∏
t=l

gt

]
∆−2

J

=

[
−∂gj
∂θj

l−1∏
t=1,t̸=j

(1− gt)
J−1∏
t=l

gt∆J − ∂∆J

∂θj

l−1∏
t=1

(1− gt)
J−1∏
t=l

gt

]
∆−2

J

=

[
−∂gj
∂θj

l−2∏
t=1,t̸=j

(1− gt)
J−1∏
t=l−1

gt
1− gl−1

gl−1

∆J − ∂∆J

∂θj

l−2∏
t=1

(1− gt)
J−1∏
t=l−1

gt
1− gl−1

gl−1

]
∆−2

J

=

[
∂

∂θj

(
l−2∏
t=1

(1− gt)
J−1∏
t=l−1

gt

)
∆J − ∂∆J

∂θj

l−2∏
t=1

(1− gt)
J−1∏
t=l−1

gt

]
∆−2

J

1− gl−1

gl−1

=
∂πl−1

∂θj

1− gl−1

gl−1

= ul−1,j
1− gl−1

gl−1

= ul,j.

When j ≥ l, we have

∂πl

∂θj
=

[
∂

∂θj

(
l−1∏
t=1

(1− gt)
J−1∏
t=l

gt

)
∆J − ∂∆J

∂θj

l−1∏
t=1

(1− gt)
J−1∏
t=l

gt

]
∆−2

J

=

[
∂gj
∂θj

l−1∏
t=1

(1− gt)
J−1∏

t=l,t̸=j

gt∆J − ∂∆J

∂θj

l−1∏
t=1

(1− gt)
J−1∏
t=l

gt

]
∆−2

J

=

[
∂gj
∂θj

l−2∏
t=1

(1− gt)
J−1∏

t=l−1,t̸=j

gt
1− gl−1

gl−1

∆J − ∂∆J

∂θj

l−2∏
t=1

(1− gt)
J−1∏
t=l−1

gt
1− gl−1

gl−1

]
∆−2

J

=

[
∂

∂θj

(
l−2∏
t=1

(1− gt)
J−1∏
t=l−1

gt

)
∆J − ∂∆J

∂θj

l−2∏
t=1

(1− gt)
J−1∏
t=l−1

gt

]
∆−2

J

1− gl−1

gl−1

=
∂πl−1

∂θj

1− gl−1

gl−1

= ul−1,j
1− gl−1

gl−1

= ul,j,

which implies Equation (S4) holds for l = 2, . . . , J , j = 1, . . . , J−1, l ̸= j+1.

Furthermore, for the case l = J , using the fact π1 + · · · + πJ = 1 and

the facts already proved above, we have

∂πJ

∂θj
= −

J−1∑
l=1

(
∂πl

∂θj

)
= −

J−1∑
l=1

ul,j = −
J−1∑
l=1

ul,j = uJ,j.

10
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Finally, we need to prove that the following equation

∂πl

∂βs

= xs

J−1∑
k=1

ul,k, (S5)

holds for l = 1, . . . , J .

By

πl =

∏l−1
t=1(1− gt)

∏J−1
t=l gt

∆J

,

and the facts already proved above, we have

∂πl

∂βs

=

[
∂

∂βs

(
l−1∏
t=1

(1− gt)
J−1∏
t=l

gt

)
∆J

− ∂

∂βs

⌈J
2
⌉∑

l=1

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 l−1∏
t=1

(1− gt)
J−1∏
t=l

gt

∆−2
J

=

J−1∑
k=1

∂gk
∂βs

(
fk−l

l−1∏
t=1

(1− gt)
J−1∏
t=l

gt

) ⌈J
2
⌉∑

l=1

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt


−

⌈J
2
⌉∑

l=1

J−1∑
k=1

∂gk
∂βs

yk−(J−2l+1)

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 l−1∏
t=1

(1− gt)
J−1∏
t=l

gt

∆−2
J

=

[
J−1∑
k=1

g′kxs

(
fk−l

l−1∏
t=1

(1− gt)
J−1∏
t=l

gt

)
∆J

−
J−1∑
k=1

 ⌈J
2
⌉∑

l=1

g′kxsyk−(J−2l+1)

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 l−1∏
t=1

(1− gt)
J−1∏
t=l

gt

∆−2
J

=xs

J−1∑
k=1

[
g′k

(
fk−l

l−1∏
t=1

(1− gt)
J−1∏
t=l

gt

)
∆J

−

 ⌈J
2
⌉∑

l=1

g′kyk−(J−2l+1)

J−2l∏
t=1

(1− gt)
J−1∏

t=J−2(l−1)

gt

 l−1∏
t=1

(1− gt)
J−1∏
t=l

gt

∆−2
J

11
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=xs

J−1∑
k=1

ul,k,

which implies Equation (S5) holds for l = 1, . . . , J .

Combining Equations (S2), (S3),(S4) and (S5), Lemma S2 is proved.

Proof of Theorem 1. Combining the results of Lemmas S1 and S2, we have

M(ξ) =
m∑
i=1

ωiM (xi)

=
m∑
i=1

ωi

(
∂π (xi)

∂γ⊤

)⊤

D−1 (xi)

(
∂π (xi)

∂γ⊤

)
=

m∑
i=1

ωiH
⊤ (xi)U

⊤ (xi)D
−1 (xi)U (xi)H (xi) ,

which completes the proof.

S1.2 Proof of Corollary 1

Proof. The main task is to identify the complete class. Let c = βx(where

β ̸= 0), then there is a bijection between x and c, and x = c/β, denote the

mapping space as X ′. For a complete class Ξ∗, define two designs ξ /∈ Ξ∗

and ξ̃ ∈ Ξ∗ on X ′,

ξ =

{
(ci, ωi) , ci ∈ X ′,

m∑
i=1

ωi = 1

}
,

ξ̃ =

{
(c̃i, ω̃i) , c̃i ∈ X ′,

k∑
i=1

ω̃i = 1

}
.

(S6)

12



S1. PROOFS

For the case J = 3, Theorem 3.2 in Hao and Yang (2020) has proved that

at most 4 support points form a complete class.

For the case J = 4, Model (2.2) is essentially

log

(
πi,j

πi,j+1

)
= αj + βxi = αj + ci, j = 1, 2, 3.

For the support point c, let aj = eαj+c, j = 1, 2, 3. The information matrix

at c is

M(x) = Λ−2



a1a2a3(a2a3 + a3 + 1) a1a2a3(a3 + 1)

a1a2a3(a3 + 1) a1a2a3(a3 + 1) + a2a3(a3 + 1)

a1a2a3 a1a2a3 + a2a3

c
β
a1a2a3(a2a3 + 2a3 + 3) c

β
[a1a2a3(2a3 + 3) + a2a3(a3 + 2)]

a1a2a3
c
β
a1a2a3(a2a3 + 2a3 + 3)

a1a2a3 + a2a3
c
β
[a1a2a3(2a3 + 3) + a2a3(a3 + 2)]

a1a2a3 + a2a3 + a3
c
β
(3a1a2a3 + 2a2a3 + a3)

c
β
(3a1a2a3 + 2a2a3 + a3) ( c

β
)2[a1a2a3(a2a3 + 4a3 + 9) + a2a3(a3 + 4) + a3]


,

where Λ = a1a2a3 + a2a3 + a3 + 1.

To prove the complete class result,

Step 1: (Selection) Among the first three columns, select the follow-

13
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ing set as maximal linear independent nonconstant functions:

Ψ1(c) = a1a2a3(a2a3 + a3 + 1)Λ−2 =
eα1+α2+α3+3c (eα2+α3+2c + eα3+c + 1)

(eα1+α2+α3+3c + eα2+α3+2c + eα3+c + 1)2
,

Ψ2(c) = a1a2a3(a3 + 1)Λ−2 =
eα1+α2+α3+3c (eα3+c + 1)

(eα1+α2+α3+3c + eα2+α3+2c + eα3+c + 1)2
,

Ψ3(c) = [a1a2a3(a3 + 1) + a2a3(a3 + 1)] Λ−2

=
eα1+α2+α3+3c (eα3+c + 1) + eα2+α3+2c (eα3+c + 1)

(eα1+α2+α3+3c + eα2+α3+2c + eα3+c + 1)2
,

Ψ4(c) = a1a2a3Λ
−2 =

eα1+α2+α3+3c

(eα1+α2+α3+3c + eα2+α3+2c + eα3+c + 1)2
,

Ψ5(c) = (a1a2a3 + a2a3)Λ
−2 =

eα1+α2+α3+3c + eα2+α3+2c

(eα1+α2+α3+3c + eα2+α3+2c + eα3+c + 1)2
,

Ψ6(c) = (a1a2a3 + a2a3 + a3)Λ
−2 =

eα1+α2+α3+3c + eα2+α3+2c + eα3+c

(eα1+α2+α3+3c + eα2+α3+2c + eα3+c + 1)2
,

Ψ7(c) =
c

β
a1a2a3(a2a3 + 2a3 + 3)Λ−2 =

ceα1+α2+α3+3c (eα2+α3+2c + 2eα3+c + 3)

β (eα1+α2+α3+3c + eα2+α3+2c + eα3+c + 1)2
,

Ψ8(c) =
c

β
[a1a2a3(2a3 + 3) + a2a3(a3 + 2)] Λ−2

=
c [eα1+α2+α3+3c (2eα3+c + 3) + eα2+α3+2c(eα3+c + 2)]

β (eα1+α2+α3+3c + eα2+α3+2c + eα3+c + 1)2
,

Ψ9(c) =
c

β
(3a1a2a3 + 2a2a3 + a3)Λ

−2 =
c (3eα1+α2+α3+3c + 2eα2+α3+2c + eα3+c)

β (eα1+α2+α3+3c + eα2+α3+2c + eα3+c + 1)2
,

and let

Ψ10(c) =

(
c

β

)2

[a1a2a3(a2a3 + 4a3 + 9) + a2a3(a3 + 4) + a3]

=
c2 [eα1+α2+α3+3c (eα2+α3+2c + 4eα3+c + 9) + eα2+α3+2c(eα3+c + 4) + eα3+c]

β2 (eα1+α2+α3+3c + eα2+α3+2c + eα3+c + 1)2
.

Step 2: (Simplification) The task is to show the following system for

14
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any two designs ξ and ξ̃ in (S6),

m∑
i=1

ωiΨj (ci) =
k∑

i=1

ω̃iΨj (c̃i) , j = 1, . . . , 9,

m∑
i=1

ωiΨ10 (ci) ≤
k∑

i=1

ω̃iΨ10 (c̃i) ,

(S7)

and it is sufficient to show either

{1,Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6,Ψ7,Ψ8,Ψ9} and {1,Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6,Ψ7,

Ψ8,Ψ9,Ψ10} are Chebyshev Systems, or

{1,Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6,Ψ7,Ψ8,Ψ9} and {1,Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6,Ψ7,

Ψ8,Ψ9,−Ψ10} are Chebyshev Systems.

(S8)

Because the denominators present in Ψ(c), the recursive construction

of F (c) as detailed in Theorem 2 of Yang and Stufken (2012) is likely to

be complex and cumbersome. As a result, the resulting function F (c) can

become quite complicated. To address this, we simplify the process through

a series of steps that retain either the equality in (S7) or the Chebyshev

System in (S8), but involve simpler functions.

First, we omit β in Ψ7, Ψ8 and Ψ9 which does not change the equality

in (S7). Then multiply all Ψ functions including the constant Ψ0 = 1 by

the denominator and conduct row or column operations that do not change

the sign of matrix determinant. At last we get rid of positive constants like

15
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eα1 , eα2 , eα3 and β2 which preserve the Chebyshev System. Eventually, a

set of functions Ψ is simplified to{
1, ec, cec, e2c, ce2c, e3c, ce3c, e4c, ce4c, e5c, ce5c, e6c,

c2ec
(
eα1+2α2+α3+4c + 4eα1+α2+α3+3c + 9eα1+α2+2c + eα2+α3+2c + 4eα2+c + 1

)}
.

To show (S8) is equivalent to verifying either those following claims hold{
1, ec, cec, e2c, ce2c, e3c, ce3c, e4c, ce4c, e5c, ce5c, e6c

}
and

{
1, ec, cec, e2c, ce2c,

e3c, ce3c, e4c, ce4c, e5c, ce5c, e6c, c2ec
(
eα1+2α2+α3+4c + 4eα1+α2+α3+3c

+9eα1+α2+2c + eα2+α3+2c + 4eα2+c + 1
)}

are Chebyshev Systems,{
1, ec, cec, e2c, ce2c, e3c, ce3c, e4c, ce4c, e5c, ce5c, e6c

}
and

{
1, ec, cec, e2c, ce2c,

e3c, ce3c, e4c, ce4c, e5c, ce5c, e6c,−c2ec
(
eα1+2α2+α3+4c + 4eα1+α2+α3+3c

+9eα1+α2+2c + eα2+α3+2c + 4eα2+c + 1
)}

are Chebyshev Systems.

Step 3: (Calculation) The sequence of fii functions can be easily

calculated according to Theorem 2 of Yang and Stufken (2012). Here f11 =

ec, f22 = 1, f33 = 2ec, f44 = 1, f55 = 6ec, f66 = 1, f77 = 12ec, f88 = 1, f99 =

20ec, f10,10 = 1, f11,11 = 30ec, f12,12 = −( 1
15
eα1+2α2+α3−c + 2

75
eα1+α2+α3−2c +

3
100

eα1+α2−3c + 1
300

eα2+α3−3c + 2
75
eα2−4c+ 1

15
e−5c), and F (c) =

∏12
i=1 fii(c) =

−288ec(20eα1+2α2+α3+4c +8eα1+α2+α3+3c +9eα1+α2+2c + eα2+α3+2c +8eα2+c +

20) < 0. Then designs with at most 6 = 2(4 − 1) support points form a

complete class is a direct consequence of the case (d) of Theorem 2 in Yang

and Stufken (2012).
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For J = 3, we need to verify either of those following claims hold

{
1, ec, cec, e2c, ce2c, e3c, ce3c, e4c

}
and

{
1, ec, cec, e2c, ce2c, e3c, ce3c, e4c,

c2ec
(
eα1+α2+2c + 4eα1+c + 1

)}
are Chebyshev Systems,{

1, ec, cec, e2c, ce2c, e3c, ce3c, e4c
}
and

{
1, ec, cec, e2c, ce2c, e3c, ce3c, e4c,

−c2ec
(
eα1+α2+2c + 4eα1+c + 1

)}
are Chebyshev Systems.

Direct calculation shows F (c) =
∏8

i=1 fii(c) = −8ec(3eα1+α2+2c+4eα1+c+

3) < 0. Then according to case (d) of Theorem 2 in Yang and Stufken

(2012), designs with at most 4 = 2(3− 1) points form a complete class.

Similarly, for J = 5, we need to verify either of two following claims

hold

{1, ec, cec, e2c, ce2c, e3c, ce3c, e4c, ce4c, e5c, ce5c, e6c, ce6c, e7c, ce7c, e8c} and

{1, ec, cec, e2c, ce2c, e3c, ce3c, e4c, ce4c, e5c, ce5c, e6c, ce6c, e7c, ce7c, e8c, c2ec(△)}

are Chebyshev Systems,

{1, ec, cec, e2c, ce2c, e3c, ce3c, e4c, ce4c, e5c, ce5c, e6c, ce6c, e7c, ce7c, e8c} and

{1, ec, cec, e2c, ce2c, e3c, ce3c, e4c, ce4c, e5c, ce5c, e6c, ce6c, e7c, ce7c, e8c,−c2ec(△)}

are Chebyshev Systems,

where △ is the sum of some functions. And F (c) =
∏16

i=1 fii(c) < 0, then

according to case (d) of Theorem 2 in Yang and Stufken (2012), designs

with at most 8 = 2(5− 1) points form a complete class.
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The rest is similar and omitted here.

S1.3 Proof of Theorem 2

Proof. Note that the transformation of design point does not change the

complete class result, because of the following factorization of the informa-

tion matrix. Known A(c) = U⊤(c)D−1(c)U(c) = U⊤(x)D−1(x)U(x), then

for a design point x and its transformed design point s,

M(x) = H⊤(x)A(c)H(x) = Q⊤H⊤(s)A(c)H(s)Q, (S9)

where H(x) is the design matrix corresponding to x = (x1, . . . , xq)
⊤, H(s)

is the design matrix for s = (x1, . . . , xq−1, c)
⊤, and H(s)Q = H(x),

H(s) =


1 · · · 0 x1 · · · c

...
. . .

...
...

. . .
...

0 · · · 1 x1 · · · c

 ,

Q =


IJ−1 0(J−1)×(q−1) 0(J−1)×1

0(q−1)×(J−1) Iq−1 T (β)

01×(J−1) 01×(q−1) 1/βq

 ,

where T (β) = (−β1/βq, . . . ,−βq−1/βq)
⊤. Let M(s) stand for the infor-

mation matrix at s = (x1, . . . , xq−1, c)
⊤, one can easily obtain M(s) from

M(x) by (S9). The structures of them are identical. For convenience,
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H(si) and A(ci) are abbreviated as Hi and Ai. Then for a given design ξ,

the information matrix of ξs is

M(ξs) =
m∑
i=1

ωiH
⊤
i AiHi.

First of all, define following weights rj = (1− xij)/2 such that

rj(−1) + (1− rj) (1) = xij,

rj(−1)2 + (1− rj) (1)
2 ≥ x2

ij, j = 1, . . . , q − 1.

(S10)

The first equality is easy to verify, and the second inequality is due to the

fact that the function f(x) = x2 is convex. For an arbitrary design point,

say si = (xi1, . . . , xi,q−1, ci)
⊤, consider the following two design points, si1 =

(−1, xi2, . . . , xi,q−1, ci)
⊤ and si2 = (1, xi2, . . . , xi,q−1, ci)

⊤, and their design

matrices are Hi1 and Hi2. Let ωi1 = r1ωi and ωi2 = ωi−ωi1, then ωiH
⊤
i AiHi

and
∑2

l=1 ωilH
⊤
il AiHil are exactly the same except the Jth diagonal element.

This is true due to two facts. First the (S10) holds. Second, entries in

M(ξs) are linear in xi1 except the Jth diagonal components are quadratic

in xi1. As a result,

ωiH
⊤
i AiHi ≤

2∑
l=1

ωilH
⊤
il AiHil.
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Repeat the procedures until xi,q−1, and we have the following

ωiH
⊤
i AiHi ≤

2q−1∑
l=1

ω̃ilH̃
⊤
il AiH̃il,

m∑
i=1

ωiH
⊤
i AiHi ≤

m∑
i=1

2q−1∑
l=1

ω̃ilH̃
⊤
il AiH̃il. (S11)

H̃il is the design matrix for s̃il = (bl1, . . . , bl,q−1, ci), blj = −1 or 1, and

(bl1, . . . , bl,q−1) are all combinations of them for l = 1, . . . , 2q−1. Thus

(bl1, . . . , bl,q−1), l = 1, . . . , 2q−1 form an OA(2q−1, q − 1, 2, q − 1). Note that

the right hand side of (S11) only depends on ci, and they have the same

set of linear independent non-constant functions. Then following Lemma

1, there exist at most (K + 2)/2 points c̃i such that

m∑
i=1

2q−1∑
l=1

ω̃ilH̃
⊤
il AiH̃il ≤

(K+2)/2∑
i=1

2q−1∑
l=1

ω̃ilH̃
⊤
il AiH̃il.

These points c̃i form a single-factor design ξc = {(c̃i, ω̃i), i = 1, . . . , (K +

2)/2,
∑(K+2)/2

i=1 ω̃i = 1} and ω̃i =
∑2q−1

l=1 ω̃il and ξ̃s is only relevant to ξc and

ω̃il.

S1.4 Proof of Theorem 3

Proof. Let H̃ =
(
H⊤ (x1) , . . . , H

⊤ (xm)
)
, and

W̃ = diag
(
ω1U

⊤ (x1)D
−1 (x1)U (x1) , . . . , ωmU

⊤ (xm)D
−1 (xm)U (xm)

)
.

According to Theorem 1, the Fisher information matrix can be written

as M(ξ) = H̃W̃ H̃⊤. Because 0 < πj(xi) < 1, j = 1, . . . , J , D (xi) is
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positive definite. After performing an elementary row transformation on

U(x), the first J − 1 rows can be changed into a diagonal matrix with

v11 = g′1
∏J−1

t=2 gt∆
−1
J (1 − g1)

−1, . . . , vll =
∏l−1

t=1(1 − gt)g
′
l

∏J−1
t=l+1 gt∆

−1
J (1 −

gl)
−1, . . . , vJ−1,J−1 =

∏J−2
t=1 (1−gt)g

′
J−1∆

−1
J (1−gJ−1)

−1 as diagonal elements,

denoted as V (x). Evidently, 0 < gl < 1, 0 < 1 − gl < 1, l = 1, . . . , J − 1.

By Assumption 2, since g′l > 0 for l = 1, . . . , J − 1, it follows that vll > 0

for l = 1, . . . , J − 1. Therefore, V (x) has full column rank, which implies

that U(x) has full column rank. Therefore, M(ξ) is positive definite if and

only if H̃ has full row rank.

Let X = (x1, . . . ,xm). After some elementary column transformations

for the matrix
(
H⊤ (x1) , . . . , H

⊤ (xm)
)
, we obtain a new matrix

Hnew =



1⊤m 0 · · · 0

0 1⊤m · · · 0

...
...

...

X X · · · X


,

where 1m is an m-dimensional vector all of 1. In order to keep Hnew full

row rank, X is full row rank and C (1m) ∩C
(
X⊤) = {0}, C

(
X⊤) denotes

the column space of X⊤. Thus m ≥ q and the rank of the matrix
(
1m, X

⊤)
is at least q + 1. In summary, M(ξ) is positive definite only if m ≥ q + 1.

As a direct conclusion of Theorem 2.2 of Fedorov and Leonov (2014),
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under regularity conditions, there exists a D-optimal design that contains

no more than p(p + 1)/2 support points, which are the design points with

positive weights.

S1.5 Proof of Theorem 4

Proof. Following the proof of Theorem 2 in Yang et al. (2017), we have the

following result for the determinant of the Fisher information matrix M(ξ).

The Fisher information matrix under the design ξ is

M(ξ) =
m∑
i=1

ωiM(xi).

To facilitate the subsequent derivation, we denote the (t, l)th entry ofM(xi)

by mi
tl.

According to the Leibniz formula for the determinant,

|M(ξ)| =

∣∣∣∣∣
m∑
i=1

ωiM(xi)

∣∣∣∣∣ = ∑
σ∈Sp

(−1)sgn(σ)
p∏

t=1

m∑
i=1

ωim
i
t,σ(t),

where σ is a permutation of {1, 2, . . . , p}, Sp is the set of all p! permutations

and sgn(σ) is the sign or signature of σ. Therefore,

|M(ξ)| =
∑

α1≥0,...,αm≥0
α1+···+αm=p

∑
σ∈Sp

(−1)sgn(σ)
∑

τ∈Φ(α1,...,αm)

p∏
t=1

ωτ(t)m
τ(t)
t,σ(t)
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=
∑

α1≥0,...,αm≥0
α1+···+αm=p

 ∑
τ∈Φ(α1,...,αm)

∑
σ∈Sp

(−1)sgn(σ)
p∏

t=1

m
τ(t)
t,σ(t)

ωα1
1 · · ·ωαm

m

=
∑

α1≥0,...,αm≥0
α1+···+αm=p

 ∑
τ∈Φ(α1,...,αm)

|Mτ |

ωα1
1 · · ·ωαm

m .

Denote
∑

τ∈Φ(α1,...,αm) |Mτ | as cα1,...,αm . This proves Equations (3.5) and

(3.6) and shows that |M(ξ)| is an order-p homogeneous polynomial of

ω1, . . . , ωm.

Next, we need to show that the coefficients calculated in Equation (3.6)

in conditions (1) or (2) are zero.

(1) We have known M(xi) = H⊤ (xi)U
⊤ (xi)D

−1 (xi)U (xi)H (xi)

and U⊤ (xi) has full column rank, i.e., has rank J − 1, thus rank(M(xi)) ≤

J − 1, i = 1, . . . ,m. Since max1≤i≤m αi ≥ J , without loss of generality, we

assume α1 ≥ J . Then for any τ ∈ Φ (α1, . . . , αm), Mτ has at least J rows

that are the same as the corresponding rows of M(x1), these rows must be

linearly correlated. Thus |Mτ | = 0, which implies cα1,...,αm = 0.

(2) Let H̄ = (H⊤ (x1)U
⊤ (x1) , . . . , H

⊤ (xm)U
⊤ (xm)) and

W̄ = diag(ω1D
−1 (x1) , . . . , ωmD

−1 (xm)), thenM(ξ) = H̄W̄ H̄⊤. By Cauchy-

Binet formula in Section 0.8.7 of Horn and Johnson (2012), it follows

cα1,...,αm =
∑

(v1,...,vp)∈Λ(α1,...,αm)

|H̄[v1, . . . , vp]|2
∏

i:αi>0

∏
l:(i−1)J<vl≤iJ

π−1
i,vl−(i−1)J ≥ 0,

where Λ (α1, . . . , αm) = {(v1, . . . , vp) | 1 ≤ v1 < · · · < vp ≤ mJ ;
∑p

l=1 I{(i−

23



D-Optimal Designs for Ordinal Response Experiments

1)J < vl ≤ iJ} = αi, i = 1, . . . ,m}, I{(i − 1)J < vl ≤ iJ} is 1 if (i −

1)J < vl ≤ iJ is true, and 0 otherwise, and H̄[v1, . . . , vp] is the submatrix

consisting of the v1th, . . . , vpth columns of H̄. Without loss of generality,

we assume α1 ≥ · · · ≥ αn > 0 = αn+1 = · · · = αm, where n ≤ q. Suppose

there exist some (α1, . . . , αm) such that cα1,...,αm > 0. This implies that

there exist (v1, . . . , vp) ∈ Λ (α1, . . . , αm) such that rank(H̄[v1, . . . , vp]) = p

and 1 ≤ v1 < · · · < vp ≤ nJ . Let ¯̄H = H̄[1, . . . , nJ ] be a p × nJ matrix,

then ¯̄H is full row rank. Let ¯̄W = n−1 diag(D−1 (x1) , . . . , D
−1 (xn)), then

¯̄H ¯̄W ¯̄H⊤ is a positive definite matrix. We can regard ¯̄H ¯̄W ¯̄H⊤ as the Fisher

information matrix under uniform weighted design at n design points, thus

n ≥ q + 1 is obtained from Theorem 3. This creates a contradiction, so

when n =
∑m

i=1 I{αi > 0} ≤ q, cα1,...,αm = 0.

S1.6 Proof of Example 1

Proof. For convenience, denote πj(xi) as πij. For model (3.7),

H(xi) =

 1 0 xi

0 1 xi

 , U(xi) =


πi1πi2 + πi1πi3 πi1πi3

−πi1πi2 πi2πi3

−πi1πi3 −πi1πi3 − πi2πi3


and D(xi) = diag(πi1, πi2, πi3). Then

M(xi) = H⊤(xi)U
⊤(xi)D

−1(xi)U(xi)H(xi)
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=


πi1πi2 + πi1πi3 πi1πi3 (πi1πi2 + 2πi1πi3)xi

πi1πi3 πi1πi3 + πi2πi3 (2πi1πi3 + πi2πi3)xi

(πi1πi2 + 2πi1πi3)xi (2πi1πi3 + πi2πi3)xi (πi1πi2 + 4πi1πi3 + πi2πi3)x
2
i

 .

Assume that the weights of design ξ at points x1 and x2 are ω1 and ω2,

respectively. Then the determinant of the Fisher information matrix corre-

sponding to design ξ is

|M(ξ)| = (b1ω1 + b2ω2)ω1ω2,

where b1 = (π21π22 + 4π21π23 + π22π23)π11π12π13(x1 − x2)
2, b2 = (π11π12 +

4π11π13+π12π13) π21π22π23(x1−x2)
2. By Corollary 2 of Yang et al. (2017), it

follows that ω1 =
b1−b2+

√
b21−b1b2+b22

2b1−b2+
√

b21−b1b2+b22
, ω2 =

b1

2b1−b2+
√

b21−b1b2+b22
for maximizing

|M(ξ)|.

S1.7 Proof of Theorem 5

Proof. According to the proof of Theorem 2,M(ξ̃s) =
∑(K+2)/2

i=1

∑2q−1

l=1 ω̃ilH̃
⊤
il

×AiH̃il and for a given γ, Ai is only relevant to c̃i. For J response cate-

gories, Ai is a (J − 1) × (J − 1) matrix. Let the (j, t)th element of Ai be

denoted as Aj,t
i , the sum of the jth row as Aj

i , and the sum of all elements
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as Asum
i . Then the (j, t)th (j ≤ t) elements of M(ξ̃s) is

∑(K+2)/2
i=1 ω̃iA

j,t
i , 1 ≤ j ≤ t ≤ J − 1;

∑(K+2)/2
i=1 ω̃iA

sum
i , j = t, j = J, . . . , J + q − 2;

∑(K+2)/2
i=1 ω̃iA

sum
i c̃2i , j = t = J + q − 1;

∑(K+2)/2
i=1

∑2q−1

l=1 ω̃ilA
j
i bl,t−J+1, 1 ≤ j ≤ J − 1, J ≤ t ≤ J + q − 2;

∑(K+2)/2
i=1 ω̃iA

j
i c̃i, 1 ≤ j ≤ J − 1, t = J + q − 1;

∑(K+2)/2
i=1

∑2q−1

l=1 ω̃ilA
sum
i bl,j−J+1bl,t−J+1, J ≤ j < t ≤ J + q − 2;

∑(K+2)/2
i=1

∑2q−1

l=1 ω̃ilA
sum
i bl,j−J+1c̃i, J ≤ j ≤ J + q − 2, t = J + q − 1.

Divide M(ξ̃s) into
(

A B
B⊤ D

)
, where A is a (J−1)×(J−1) matrix related only

to ξc = {(c̃i, ω̃i), i = 1, . . . , (K + 2)/2,
∑(K+2)/2

i=1 ω̃i = 1}, B is a (J − 1)× q

matrix, andD is a q×q matrix. Then |M(ξ̃s)| = |D||A−BD−1B⊤|. Assume

that the eigenvalues of D are λt, t = 1, . . . , q and the diagonal elements of

D are Dtt, t = 1, . . . , q. It is known that

q∏
t=1

λt ≤
q∏

t=1

Dtt.

The equality holds if D is a diagonal matrix, then
∑(K+2)/2

i=1

∑2q−1

l=1 ω̃ilA
sum
i

×bl,j−J+1bl,t−J+1 = 0, J ≤ j < t ≤ J + q − 2 and
∑(K+2)/2

i=1

∑2q−1

l=1 ω̃ilA
sum
i

×bl,j−J+1c̃i = 0, J ≤ j ≤ J + q − 2, t = J + q − 1. Therefore, ω̃il =

ω̃i/2
q−1, i = 1, . . . , (K + 2)/2, l = 1, . . . , q − 1 can be derived. In addition,
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i=1

∑2q−1

l=1 ω̃ilA
j
i bl,t−J+1 = 0, 1 ≤ j ≤ J − 1, J ≤ t ≤ J + q − 2. Thus,

the elements of the first J−1 columns of B are all 0, and the last column is

related to ξc only. D is a diagonal matrix related only to ξc. Then the infor-

mation matrix of this design is only relevant to ξc and is D-optimal under ξc.

Denote this design as ξ̃′s = {(s̃il, ω̃i/2
q−1) , i = 1, . . . , (K + 2)/2, l = 1, . . . ,

2q−1}, s̃il = (bl1, . . . , bl,q−1, c̃i) and blj = −1 or 1.

For each i, i = 1, . . . , (K + 2)/2, select 2q
′−1 s̃il from ξ̃′s such that

(bl1, . . . , bl,q−1), l = 1, . . . , 2q
′−1 form an OA(2q

′−1, q − 1, 2, 2). Let ξ̃∗s =

{(s̃il, ω̃i/2
q′−1), i = 1, . . . , (K + 2)/2, l = 1, . . . , 2q

′−1}. It can be verified

that M(ξ̃∗s ) = M(ξ̃′s). Therefore, ξ̃
∗
s is D-optimal under ξc and only relevant

to ξc.

S1.8 Proof of Theorem 6

Proof. Define S0 := {w = (ω1, . . . , ωm)
⊤ ∈ Rm|ωi ≥ 0, i = 1, . . . , m;

∑m
i=1 ωi =

1}. Obviously S0 is a closed convex set. Since f(w) = |M(ξ)| =
∑

α1≥0,...,αm≥0
α1+···+αm=p

cα1,...,αmω
α1
1 · · · ωαm

m is an order-p homogeneous polynomial of ω1, . . . , ωm,

then it must be continuous on S0. According to the Weierstrass theorem

(see, for example, Theorem 3.1 in Sundaram (1996)), there must exist a

w∗ ∈ S0 such that f(w) attains its maximum at w∗.
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S1.9 Proof of Theorem 7

Proof. (1)⇒(2) ξ∗ is the D-optimal design, then ∀ ξ ∈ Ξ, |M(ξ∗)| ≥ |M(ξ)|

holds, and log |M(ξ∗)| ≥ log |M(ξ)| also holds. Thus ∀ ε(0 ≤ ε ≤ 1) and

x ∈ X , we have

log |M ((1− ε)ξ∗ + εx)| − log |M (ξ∗)|

= log |(1− ε)M(ξ∗) + εM(x)| − log |M (ξ∗)| ≤ 0.

Then

ϕ(x, ξ∗) = lim
ε→0

1

ε
(log |(1− ε)M(ξ∗) + εM(x)| − log |M (ξ∗)|) ≤ 0.

(2)⇒(1) Section 3.5.2 of Silvey (1980) gives many properties of the

Fréchet derivate, e.g., ϕ(ξ, ξ∗) = ϕ(
∑

x ω(x)x, ξ
∗) =

∑
x ω(x)ϕ(x, ξ

∗),

where ω(x) denotes the weight of design ξ at design point x and 0 ≤

ω(x) ≤ 1.

∀ x ∈ X , ϕ(x, ξ∗) ≤ 0. Then ∀ ξ ∈ Ξ, according to the above property,

we have ϕ(ξ, ξ∗) =
∑

x ω(x)ϕ(x, ξ
∗) ≤ 0. Concavity of log |M(ξ)| implies

that

1

ε
(log |(1− ε)M(ξ∗) + εM(ξ)| − log |M (ξ∗)|)

is a non-increasing function of ε in 0 < ε ≤ 1. By putting ε = 1, we have

the result that

0 ≥ ϕ(ξ, ξ∗) ≥ log |M(ξ)| − log |M(ξ∗)|.
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So ∀ ξ ∈ Ξ, log |M(ξ∗)| ≥ log |M(ξ)|, i.e. ξ∗ is the D-optimal design.

(1)⇒(3) ξ∗ is the D-optimal design, thus ∀ x ∈ X , ϕ(x, ξ∗) ≤ 0. It is

easy to derive

ϕ(ξ∗, ξ∗) = lim
ε→0

1

ε
(log |(1− ε)M(ξ∗) + εM(ξ∗)| − log |M (ξ∗)|) = 0,

and

ϕ(ξ∗, ξ∗) =
∑
x

ω(x)ϕ(x, ξ∗).

Suppose x be the design point of ξ∗, then ω(x) > 0. Thus it follows

that at each design point x of ξ∗, ϕ(x, ξ∗) attains its maximum value, i.e.

ϕ(x, ξ∗) = 0.

(3)⇒(1) At each design point x of ξ∗, ϕ(x, ξ∗) attains its maximum

value 0, we have ∀ x ∈ X , ϕ(x, ξ∗) ≤ 0. Therefore, ξ∗ is the D-optimal

design.

S2 Beyond Proportional Odds Assumption

This section is an extension of the AC po model.

Similarly, the general AC partial proportional odds (ppo) model is

g

(
πj(xi)

πj(xi) + πj+1(xi)

)
= ηij = x⊤

i0θj + x⊤
i1β, (S12)

for j = 1, . . . , J − 1, where xi = (x⊤
i0,x

⊤
i1)

⊤ ∈ Rq. θj ∈ Rq0 stands for the

unknown parameters belong to the jth category only, j = 1, . . . , J − 1, β ∈
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Rq1 stands for the unknown parameters that are common in all categories,

p = (J − 1)q0 + q1. AC models under po and nonproportional odds (npo)

assumptions are two special cases with xi0 = 1, j = 1, . . . , J−1, and xi1 = 0,

respectively.

Here ηi = H(xi)γ, where H(xi) is (J − 1)× p design matrix with

H(xi) =



x⊤
i0 0 · · · 0 x⊤

i1

0 x⊤
i0 · · · 0 x⊤

i1

...
...

. . .
...

...

0 0 · · · x⊤
i0 x⊤

i1


,

and γ = (θ⊤
1 , . . . ,θ

⊤
J−1,β

⊤)⊤.

The Fisher information matrix for Model (S12) under the design ξ is

the same as Equation (2.4).

The following are modifications of some related theorems. The proofs

are similar to those for the AC po model and are therefore omitted.

Theorem S1. The Fisher information matrix M(ξ) for Model (S12) cal-

culated in Equation (2.4) is positive definite only if m ≥ q. Furthermore,

there exists a D-optimal design with m ≤ p(p+ 1)/2.

Theorem S2. The determinant of the Fisher information matrix M(ξ) is

|M(ξ)| =
∑

α1≥0,...,αm≥0
α1+···+αm=p

cα1,...,αmω
α1
1 · · ·ωαm

m , (S13)
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where

cα1,...,αm =
∑

τ∈Φ(α1,...,αm)

|Mτ | . (S14)

Furthermore, let n =
∑m

i=1 I{αi > 0}, where I{αi > 0} is 1 if αi > 0 is true,

and 0 otherwise. Then the coefficients (S14) are zero if the (α1, . . . , αm)

satisfies one of the following conditions.

(1) max1≤i≤m αi ≥ J . (2) n ≤ q − 1.

For the AC ppo models with q continuous factors, we focus on the

support points si = (xi1, . . . , xi,q0 , xi,q0+1, . . . , xi,q−1, ci1, . . . , ci,J−1)
⊤, where

cij =
∑q0

t=1 θjtxit +
∑q

t=q0+1 βt−q0xit, j = 1, . . . , J − 1 and θjt ̸= 0, βt−q0 ̸= 0

for all possible t.

Theorem S3. In the transformed design space of AC ppo model with q

continuous factors, for an arbitrary design ξs = {(si, ωi) , i = 1, . . . ,m;∑m
i=1 ωi = 1}, there exists a design ξ̃s such that the following inequality for

information matrices hold: M(ξs) ≤ M(ξ̃s), where

ξ̃s =
{
(s̃il, ω̃il) , i = 1, . . . ,m, l = 1, . . . , 2q−1

}
,

and s̃il = (bl1, . . . , bl,q−1, c̃i1, . . . , c̃i,J−1). Here blj = −1 or 1, and (bl1, . . . , bl,q−1),

l = 1, . . . , 2q−1 are all combinations of them, and c̃i1, . . . , c̃i,J−1, i = 1, . . . ,m

are m(J − 1) numbers need to be solved.
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S3 Simulation studies

Example S1. This example is a supplement to Example 3. In this ex-

ample, we demonstrate the optimal design ξ∗ searched out by our method

in Table S1. For comparison, we also report the results for ξ2OA and the

corresponding ξ in Table S2 and the D-optimal design ξ∗For constructed in

Huang et al. (2024) in Table S3.

Table S1: D-optimal designs ξ∗c and ξ∗

ξ∗c ωi ξ∗ ωil

−1.56997 0.51688

1 1 1 1 1 0.47668 0.06461

1 1 1 −1 −1 −0.18999 0.06461

1 −1 −1 1 −1 −1.52332 0.06461

1 −1 −1 −1 1 0.47668 0.06461

−1 1 −1 1 −1 −3.52332 0.06461

−1 1 −1 −1 1 −1.52332 0.06461

−1 −1 1 1 1 1.14335 0.06461

−1 −1 1 −1 −1 0.47668 0.06461

−2.84867 0.33735

1 1 1 1 1 0.05044 0.04217

1 1 1 −1 −1 −0.61623 0.04217

1 −1 −1 1 −1 −1.94956 0.04217

1 −1 −1 −1 1 0.05044 0.04217

−1 1 −1 1 −1 −3.94956 0.04217

−1 1 −1 −1 1 −1.94956 0.04217

−1 −1 1 1 1 0.71711 0.04217

−1 −1 1 −1 −1 0.05044 0.04216

−3.90903 0.14577

1 1 1 1 1 −0.30301 0.01822

1 1 1 −1 −1 −0.96968 0.01822

1 −1 −1 1 −1 −2.30301 0.01822

1 −1 −1 −1 1 −0.30301 0.01822

−1 1 −1 1 −1 −4.30301 0.01822

−1 1 −1 −1 1 −2.30301 0.01822

−1 −1 1 1 1 0.36366 0.01822

−1 −1 1 −1 −1 −0.30301 0.01823
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Table S2: Designs ξ2OA and ξ

ξ2OA ωi ξ ωil

−1.61058 0.56690

1 1 1 1 1 0.46314 0.07086

1 1 1 −1 −1 −0.20353 0.07086

1 −1 −1 1 −1 −1.53686 0.07086

1 −1 −1 −1 1 0.46314 0.07086

−1 1 −1 1 −1 −3.53686 0.07086

−1 1 −1 −1 1 −1.53686 0.07086

−1 −1 1 1 1 1.12981 0.07087

−1 −1 1 −1 −1 0.46314 0.07087

−3.17952 0.43310

1 1 1 1 1 −0.05984 0.05414

1 1 1 −1 −1 −0.72651 0.05414

1 −1 −1 1 −1 −2.05984 0.05414

1 −1 −1 −1 1 −0.05984 0.05414

−1 1 −1 1 −1 −4.05984 0.05414

−1 1 −1 −1 1 −2.05984 0.05414

−1 −1 1 1 1 0.60683 0.05413

−1 −1 1 −1 −1 −0.05984 0.05413

Table S3: D-optimal design ξ∗For

ξ∗For ωi

1 −1 −1 1 −1 1 2.00000 0.08322

2 1 −1 −1 −1 −1 −0.90398 0.10898

3 1 −1 −1 1 1 −0.21869 0.10204

4 −1 1 1 1 −1 −1.63117 0.14459

5 −1 1 −1 −1 1 −1.90297 0.11757

6 −1 −1 −1 1 −1 −2.91807 0.10720

7 1 1 1 −1 1 0.33563 0.09275

8 −1 −1 1 1 1 0.77604 0.03485

9 1 −1 1 −1 −1 0.74782 0.06714

10 −1 −1 1 −1 1 1.45673 0.04920

11 1 −1 1 1 1 1.40546 0.04781

12 −1 −1 1 −1 −1 −0.25447 0.02166

13 1 −1 1 1 1 1.84637 0.02299
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Due to randomness, each run of the code may result in a different ξ∗For.

We list only one of them. As can be seen in Table S3, ξ∗For contains 13

design points. And from Tables S1 and S2, ξ∗ and ξ have 24 and 16 design

points respectively. It is calculated that the relative efficiencies of ξ∗ against

ξ and ξ∗For are 0.99022 and 0.94754, respectively. Thus, compared to ξ∗For,

using ξ can be significantly more efficient and does not add much cost to

change the experimental settings.

Note that for Tables S1 and S2, the weights of the eight design points

in each block should be equal; the slight differences shown are caused by

rounding.

Example S2. As an example, take model (5.8) and consider the situa-

tion where the initial guesses of the parameters are incorrect. Suppose the

pre-specified value of the parameter vector for the locally optimal design

fluctuates in a moderate range (10% the magnitude of the true value).

For visualization purposes, we report the results for only one of the

three parameters that is misspecified (we choose θ1 as an example) and two

parameters that are misspecified (we choose θ1 and θ2 as an example) in

Figure S1.

As can be seen in Figure S1(a), the relative D-efficiencies of the D-

optimal designs are all greater than 99.95% when θ1 is misspecified. Based
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(a) θ1 is misspecified (b) both θ1 and θ2 are misspecified

Figure S1: Relative D-efficiencies when the parameters are misspecified.

on the contour plot of Figure S1(b), it can be shown that when θ1 and θ2

are misspecified, the relative D-efficiencies are also greater than 99.4%.

To give a comprehensive result, we also consider the case that all the

three parameters are misspecified. The results are summarized in Table S4.

The minimum efficiency is 98.7%, which indicates the D-optimal designs

with moderately misspecified parameters are quite robust and still have

satisfactory performances.

Table S4: Summary of relative D-efficiencies when all the parameters are misspecified

Min 1st Quartile Median 3st Quartile Max

0.98714 0.99673 0.99793 0.99894 1.00000

Example S3. Consider the experiment of the dose-response relationship in

Chuang-Stein and Agresti (1997). The five ordered categories death, veg-

etative state, major disability, minor disability and good recovery describe

the clinical outcome of patients who experienced trauma. In the literature
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on critical care, these five categories are often called the Glasgow Outcome

Scale (GOS). The experiment includes four treatment groups, with placebo

serving as the control. The three intravenous doses for the investigational

medication are labelled as low, medium and high. Let x denote the dose of

medicine. Assume that the safe dose range of the medicine is 0-300mL and

placebo, low, medium and high correspond to x1 = 0, x2 = 100, x3 = 200

and x4 = 300, respectively. From the above there are m = 4 design points

and J = 5 categories. After simulation, it is found that probit link is the

best among the five commonly used link functions in terms of the BIC

criterion.

Then the AC po model under probit link function is given by

Φ−1

(
πi,j

πi,j + πi,j+1

)
= αj + βxi, i = 1, 2, 3, 4, j = 1, 2, 3, 4. (S15)

The parameter estimates are (α̂1, α̂2, α̂3, α̂4, β̂)
⊤ = (0.73748,−0.61707,

−0.00838, 0.36878,−0.00042)⊤.

Considering (α̂1, α̂2, α̂3, α̂4, β̂)
⊤ as the assumed values, the locally D-

optimal design of model (S15) is

ξ∗ =

 0 300

0.49775 0.50225

 .

The relative D-efficiency of the original allocation and the uniform allo-

cation with respect to the locally D-optimal design are 89.34% and 89.20%,
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respectively.

To evaluate the performance of ξ∗ obtained by Algorithm 1, we compare

it with the optimal design ξ∗For obtained by the ForLion algorithm proposed

by Huang et al. (2024). They show equivalent performance in relative D-

efficiency, with computational times for ξ∗ and ξ∗For presented in Figure S2.

Figure S2: Computational time of ξ∗ and ξ∗For

From Figure S2, it can be seen that ξ∗ is more advantageous in terms

of computational time.
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