Statistica Sinica: Supplement

QUANTILE INDEX REGRESSION

Yingying Zhang', Qiangian Zhu?, Yuefeng Si® and Guodong Li?

East China Normal University'
Shanghai University of Finance and Economics®

The University of Hong Kong®

Supplementary Material

This supplementary material gives proofs of Proposition[I]in Section[ST] theorems for low-
dimensional CQR estimation in Sections [S2] and those for high-dimensional regularized
estimation in Section [S3] The technical proofs for four auxiliary lemmas are proved in

Section [S4] It also includes additional results for the simulation and empirical analysis in

Sections [S5|and [S6] respectively.

S1 Proof of Proposition 1

Proof of Proposition|l| We first consider the Tukey lambda distribution which has the form

of
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where 0, € R, 05 > 0, 03 < 0. Consider four arbitrary quantile levels 0 < 71 < 75 < 73 <

74 < 1, and two arbitrary index vectors - (51, 52, 53)/ and 0 = (6,05, 03)" such that

Q(75,0) = Q(7;,0) forall 1 < j < 4. (S1.1)

We show that 6 = 6 in the following.
The first step is to prove 53 = 03 using the proof by contradiction. Suppose that
53 # #3 and, without loss of generality, we assume that 5 < 53 < 0. Denote f;(03) =

7% — (1 —7;)% for 1 < j < 4. From (SI.I), we have

J

Z 7 —0, (S1.2)

and

f105) = F2(05)  fa(8s) — fa(6s)
F3(0s) — fo(B;)  f2(0s) — f2(03)

Let us fix 93, 53, D) and 73. As aresult, R1 = fg(gg), Ro = fg(eg), R3 = f3(93) — f2(93) and

= 0. (S1.3)

Kq = fg(gg) — fg(gg) are all fixed values. Denote

F(1) = K3 {7’93 —(1- 7')53 — /{1} — Ky {7’93 —(1—1)% — mg} , (S1.4)
F(7) = gy % 4 (1= 1)% 1) 4 gl {4 (1= 7)),

and
7_53—1 + (1 _ 7_)53—1

G(T) = 05—1 4 (1 _ 7_)03—1’

where F(-) is the derivative function of F(-), and F(r) = 0 if and only if G(1) =

K403/ (/1353). Note that equations (S1.2) and (S1.3)) correspond to F'(77) = 0 and F'(74) =
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0, respectively. Moreover, it can be verified that F'(72) = 0 and F(73) = 0, i.e. the equa-
tion F'(7) = 0 has at least four different solutions. As a result, the equation (1) = 0 or
G(T) = K403/ (/1353) has at least three different solutions. While it is implied by Lemma
that the equation G(7) = K403/ (k305) has at most two different solutions. Due to the con-
tradiction, we prove that 83 = 65, and it is readily to further verify that (6;,65) = (6;, 65).
We next consider the generalized extreme value distribution (GEVD) with quantile

function as follows

— (—log )%

1
Q(T,0) =6, + 05 :
03

where 0 = (61,05, 63),and §; € R, 6, > 0 and 5 < 0. Consider three arbitrary quantile

levels 0 < 71 < 7, < 73 < 1, and two arbitrary index vectors 6 = (51,52,53)' and

0 = (61,0,05)" such that
Q(7;,8) = Q(7;,0) forall 1 < j < 3. (S1.5)

We show that § = 6 in the following. We first prove 05 = 0, using the proof by contra-

diction. Denote f;(63) = {1 — (—log;)%} /05 for 1 < j < 3. It holds that Q(7;,0) =
61 + 02 f;(05). From (S1.5), we have

f2(05) — f1(65) _ f2(03) — f1(03)
f3(03) — fo(03)  f3(0s) — f2(05)

Let us fix 93, 53, 1 and T2. Then R1 = fg(gg), Ro = f2(93), R3 = f2(93) — f1(93) and

, (S1.6)

Kq = fg(gg) — fl(gg) are all fixed values. Denote

_(— 05 _(— 03
F(T)Z/—cg{l ( ;Ogﬂ —/<;1} —/-64{1 ( eiOgT) —/12}, (S1.7)
3
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F(T) _ Hg(—logT)grl B /i4(—10g7')93*1’

T T

and G(7) = (—log 7')53*93, where F(-) is the derivative function of F(-), and F(7) = 0
if and only if G(7) = k4/ks. Since the derivative function of G(-) is G(7) = —(6; —
03)(—log 7)%~%=1 /7 it holds that G(7) > 0if 63 > 65 and G(7) < 0if 65 < 05. This
implies that F'(7) = 0 or G(7) = k4/ks3 has at most one root. Thus F(7) = 0 has at
most two different roots. However, we have F'(1;) = F(72) = 0 by and F'(m3) =0
by (SL.6). This indicates that F'(7) = 0 has at least three different roots. Due to the
contradiction, we prove that 53 = 03, and it is easy to verify that (51, 52) = (01, 05).
Finally, we consider the generalized Pareto distribution (GPD) with quantile function

as follows

1—(1—7)0
Q(r,0) = 0, + 92%,
3

where § = (1, 65,05)", and §; € R, ;> 0 and f5 < 0. The proof follows the same line as

for the GEVD, with f;(63) = [1 — (1 — 7)%] /605 for 1 < j < 3,

_ _\63 _ _ \03
F(T)Iﬁs{%—m}—m{l(le—gﬂ—@}, (S1.8)
3

F(T) = ky(1 — 7_)(33—1 ~ (1 — 7_)93—17

As a result, the proof of this proposition is complete. [



S2. PROOFS FOR LOW-DIMENSIONAL CQR ESTIMATION

S2 Proofs for low-dimensional CQR Estimation

This section gives technical proofs of Theorems [I}3]in Section 2.2. Two auxiliary lemmas
are also presented at the end of this subsection: Lemma [ST|is used for the proof of Propo-
sition[I} and Lemma|[S2]is for that of Theorem 3] The proofs of these two auxiliary lemmas

are given in Section

Proof of Theorem[I} We first prove the uniqueness of 3y. Denote L.(3) = E[p, {Y —
Q(7k, (X, 3))}]. From model , B, is the minimizer not only of L(8) = Sr_, Li(8),
but also of Ly (3) for all 1 < k < K. Suppose that 3; is another minimizer of L((3), and
then it is also the minimizer of Ek(ﬁ) foralll1 < k< K.

Note that, for u # 0,

pr(u—v) = pr(u) = —vb-(u) + (u—v)[I(0>u>v)—I1(0 <u<v)
(S2.1)

= —vb(u) + /U[I(u < s)—I(u <0)]ds,
0
where v, (u) = 7 — I(u < 0); see Knight (1998). Let U® =Y — Q(r, 0(X, B,)) and

VE = Q(ri, 0(X, By)) — Q(7,0(X, By)). It holds that, foreach 1 < k < K,
0= Li(Bg) — Li(By) = B{UY = V)10 > U > VW) —1(0 < UW < V)3,

which implies that V®) = Q(7,, 0(X, B;)) — Q(m, 0(X, 3,)) = 0 with probability one.
This, together with the conditions in Proposition (I} and the monotonic link functions, leads
to the fact that X'}, = X'3,, forall 1 < j < d. We then have 3; = B, since E(X X')

is positive definite. This accomplishes the proof of the uniqueness of 3. [
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Proof of Theorem[2} Note that L, (8) = n~' S0 S"  p, {Y: — Q(7:,0(X;,8))} and
L(B) = E[ =, pn{Y — Q(n, 6(X, B8))}]. Denote ®(X;, ) = Y21, én(Xi, B), where

ok X, B) = pr {Yi — Q(11, 0(Xi, 8)) } — pr, {Yi — Q(71, 0(X;, By)) }- It follows that
L(B) = L(By) = B{B(X: B} and La(B) — La(By) = 5 38X, B)

By Knight’s identity at (S2.1) and Taylor expansion, together with the condition of

Emaxi<r<x Supgee [|0Q(1r, 0(X, B))/0B|| < oo, we can verify that

K
EZEI@) ’(I) Xzy/B Z Sup |Q Tk, (Xaﬁ)) - Q(lee(XaﬁO))’
K
a 7 )
<3 By | ST aup 1 By < .

Here {(Y;,X;)",i = 1,...,n} are independent and identically distributed samples, and ©
is a compact metric space. Moreover, ®(X;, 3) is a measurable function of X; in Euclidean
space for each 3 € ©, and a continuous function of 3 € © for each X;. Then by the

uniform law of large numbers in Lemma 2.4 of Newey and McFadden| (1994), we have

suPgee [N 2oy @(Xy, 8) — E{®(X;, 8)}| = 0,(1), that is

sup [ L, (8) — Lu(By) — [L(B) — L(By)]| = 0,(1). (S2.2)

Beo
Note that L(/3) is a continuous function with respect to 3 and, from Theorem By 1s

the unique minimizer of L(3). As a result, for each § > 0,

e= inf L(B)—L > 0,
ety (8) — L(By)
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where B;(3,) = {8 : |3 — Byl < 0} and B§(3,) is its complement set, and hence

BeBS(By) BEB5(By)

{ inf L,(8) < Ln(ﬁo)} C { sup  |Ln(B) = Lu(B,) — [L(B) — L(By)]}| > 5} :
(52.3)

Note that

1= P{L.(B,) < Lu(By)} < P{B, € Bs(By) | + P{ inf  L,(8) < ano)}

BEB§(Bo)

which together with (52.2) and (52.3)), implies that

PUIB= Bl <8} 2 1= P{_ int L.(8) < LB} 1,

as n — o0. This accomplishes the proof of consistency. [

Proof of Theorem 3] For simplicity, we denote Q (7%, 0(X;,3)) by Qi (8) in the whole
proof of this theorem. Let S,,(3) = L,(8) — L.(3,) and, from Knight’s identity at (S2.1),

we have

Sn(B) = Z [, {Yi = Qin(B)} — pr {Yi — Qur(Bo) }]

=33 [1Qul®) - QulBo)} (e < 0) — 7}

Qik(B)—Qir(Bo)
+/ {I(eix < s) — (e <0)}ds|.
0
Note that, by Taylor expansion, Q;(3) — Qi(8y) = (B — By) 0Qi(8B,)/98 + 0.5(8 —
Bo) (0*°Qir(87) /08B0 ) (B — B,), where 3 is a vector between 3, and 3, defined by
B =(1—-1t)B,+tB withsome 0 <t < 1. Letu =3 — 3,,

27y (a*
Grir(u) = anéﬁO) and g9 () :0.5u’%§§)u.
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We then decompose S,,(3) into

B8) =3 [{ae(w) + @an(w)} {1 (ea < 0) = 7}

k=1 i=1

qrik (u)+q2ik (u)
+/ {I(eix <s)— (e < 0)}ds
0

= —u'T), 4+, (w) + 1oy (w) + I3, (u),

where
K n
Tn _ Z an’k(lgo) {Tk - I<€lk < O)},
k=1 i=1 8'6
quik (w)
ulw) = [ {lew <9~ Hew < 0))ds
0
K n
() =) Z [Sir(w) — EA{ & (u)[Xi}],
k[:(l z;l
H2n Z Z E {Szk |X }
k=1 i=1
and
K n quir () +q2ik (w)
s, (u) = Z [ka ) {I(eix <0)— Tk}—ir/ {I(eg < s)— I(eq <0)}ds].
k=1 i=1 quir (u)

First, by the central limit theorem, we can show that

% 3 \/—ZZ 0Qu :30) {7 — I(ey, < 0)} = N(0,€) (S2.4)

k=1 i=1

~

in distribution as n — oo. Note that, from Theorem un, = B, — By = 0,(1) and then,
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by applying Lemma|[S2]
Sn(BL) = =T + T (@) + Mo () + g ()

S () + 0yl + ) (52.5)

> I {l =Tl + o0+l { 222 1 o)

where Ay, (€21) is the minimum eigenvalue of €2;. This, together with the fact that .S, ( Bn) =

L.(8,) — L.(B,) < 0, implies that

il < {2 4o,k L,

Denote u* = n~'Q; T}, and, from (S2.3)) and (S2.6)),

+ op(1)} = 0,(1). (S2.6)

5(B,) = (VAT (Vi) — (VT 1 (Vi) + 0p(1).

Moreover, since y/nu;; = O,(1), equation (S2.3) still holds when ,, is replaced by w7, and

then
S(Bo +u3) = —5 (Vs (Vi) + o, (1),

which leads to

0>8(8,) —S(By+us) = =(V/ni, — V) (vt — Vi) + oy(1)

Ao ) i, — g2+ 0,1).

>/l\3|>—‘

v

As a result, from (S2.4)),
Vi, = vnu + 0,(1) = Q7 'V, 4 0,(1) — N(0,9Q7Q01)

in distribution as n — oo. The proof of this theorem is complete. [
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Lemma S1. Consider the function of G() defined in the proof of Proposition|I|with 63 <
53 < 1. It holds that, (1) for T > 0.5, G(7) is strictly decreasing, (2) for 7 < 0.5, G(1) is

strictly increasing.

Lemma S2. Suppose that the conditions of Theorem 3| hold. For any sequence of random

variables {u, } with u, = 0,(1), it holds that
(@) i (un) = 0p(v/nl|unll + nllun[),
(b) Tan(un) = 0.5(v/nun)' 0 (v/nun) + op(nlun*), and
(¢) M (un) = op(nllunll?),

where 11,,(u), Iy, (u) and 113, (u) are defined in the proof of Theorem 3|

S3 Proofs for high-dimensional regularized estimation

This subsection first conducts deterministic analysis at Lemma [S3] and then stochastic
analysis at Lemmas 54| and The proof of Theorem [ follows from the deterministic
analysis in Lemma [S3|and stochastic analysis in Lemmas |S4| and The detailed proofs
for Lemmas [S4] and [S5] are given in Section [S4]

We first treat the observed data, {(Y;, X!)',i = 1,...,n}, to be deterministic. Con-
sider the loss function L,,(8) = 3.7, % p,. {Vi — Q(7%, 0(X;, 8))}, and its first-order

Taylor-series error

5n<A) = nian(IBO + A) - nian(Bo) - <n71VLn(BO)> A),



S3. PROOFS FOR HIGH-DIMENSIONAL REGULARIZED ESTIMATION

where A € R%, (-, -} is the inner product, e;, = Y; —Q(7, 0(X;, By))s r(u) = 7—I(u <

0),and VL, (8) = S0, S5 s (ein)0Q(7h, 8(X, B)) /013 is a subgradient of L,,(3).

Definition 1. Loss function L, (-) satisfies the local restricted strong convexity (LRSC)
condition if

1
ngHAH1 for all A suchthat 0 <7 < [|Allz: < R,
n

En(A) = alAll; =7

where a,7 > 0, and || - ||; and || - ||2 are ¢; and /5 norms, respectively.

The above LRSC condition has a larger tolerance term compared with that in|Loh and
Wainwright (2015), which has a form of (log p/n)||A||?. Similar tolerance term can also be
found in Fan et al.|(2019) for high-dimensional generalized trace regression. It is ready to

establish an upper bound for estimation errors when the penalty A is appropriately selected.

Lemma S3. Suppose that the regularizer py(-) satisfies Assumption 4| and loss function
L, (+) satisfies the LRSC condition with o > j1/4 and r = % k’%. If the tuning

parameter \ satisfies that

4 _ /log p
A > 7 maX{Hn "WL(Bo) oo, n " } ;

then the minimizer Bn over the set of © = Br(B,) satisfies the error bounds

24s\L

T
1B, Bl < 1,2

AL
6V and

3 — <
18, ﬁoH2_4a_

Proof of Lemma|[S3] Denote A, = Bn — By, and it holds that ||En||2 < R. Note that this

lemma naturally holds if | A, |2 < (3v/sA)/(4a— ). As aresult, we only need to consider
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the case with (3y/5\)/(4a — p1) < || A, |l2 < R, and it can be verified that

12n4/s log p ~
— < ||A,ll2 < R.
" (4o — p) L n 12n]12 <

Note that n’an(,Bn) +p,\(,3n) < nian(,Bo) —i—p)\(ﬁo), and then gn(An) < pA(ﬁo) -

a(B,) — (n"'VL,(B,),A). This, together with the LRSC condition and Holder’s in-

equality, implies that

~ ~ 1 ~
al| A8 <pr(By) — pa(B,) + (77\/ =P |rn1VL<ﬁo>uoo> 1240

~ N, ~
<pr(Bo) — pr(B,) + 7||An||1

1 ~ ~
<pA(Bo) = pa(B,) + 5 {pa(B. - B) + L 11A. I3}

<r(Bo) ~2r(Bo) + 5 {Pa(B) + ma(Bo) + EIRLB)

where the last inequality follows from the subadditivity of p,(-), while the penultimate
inequality is by Assumption [}, see also Lemma 4 in [Loh and Wainwright (2015). As a
result,

_ﬁ> A 2<§ L
0< (a=2)IBE <3

PA(Bo) — §px(5n)- (S3.1)

Moreover, from Lemma 5 in Loh and Wainwright (2015), it holds that

0 < 3px(Bo) — p(B,) < ALGB[I(An)all = |(An) ac

1) (S3.2)

where A is the index set of the s largest elements of En in magnitude. Combining (S3.1)

and (S3.2), we have

3AL

3AL\/5 ~
TH 1A |2

(Bl < 2=

/1/ ~
(= 5) IR <
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As a result,

- 61/SAL
1A, < 85
da — 1

It is also implied by (53.2) that ||(A,) 4c |1 < 3||(An)a

1, which leads to

1Aalh < 1B all + 1(An)acll < 41(An)ally < 4v/5]1 B0l

This accomplishes the proof of this lemma. 0

We next conduct the stochastic analysis to verify that the “good” event and LRSC
condition hold with high probability in Lemmas [S4] and [S5] respectively. Their technical

proofs can be found in Section [S4]

Lemma S4. If Assumption 5| holds, then

1
I~ VLB e < sy = (83.3)

with probability at least 1 — c1p~ 2 for some positive constants ¢y, ¢ and Cl.

Lemma SS. Suppose that Assumptions hold. Given the sample size n > c logp for

some ¢ > 0, it holds that

lo
E(A) > al| A2 =y ~2L| Al forallr < Al < R

n
with probability at least 1 — c1p~ — Klog(\/djm‘/n)]zfc2 for any ¢ > 1, where o =

0.5 frnin Ay 1 = K Cpd2™! + 2K LoCxc + Cs.

Proof of Theoremd} The proof of this theorem follows from the deterministic analysis in

Lemma [S3]and stochastic analysis in Lemmas [S4] [S3] O
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S4 Proofs of four auxiliary lemmas

S4.1 Proofs of Lemmas (ST and

Proof of Lemma|[S1} Since G(7) is symmetric about 7 = 0.5, we only need to show (1).

Let@ =63 — 1, a = 65 — 1. Function G(7) can be rewritten into

B T4 (1— T)E
=i

and its derivative function has the form of G(7) = H(7)/{r* + (1 — 7)*}?, where

H(r)={ar" ' —a(1 - Hr+ (1 -1} —{ar®  —a(1 — 1)} {7+ (1 — 7)%}.

Note that

N1 =) N a(l - 1) + ar) . (1 -7 Y a(l —7) + 572.

B
Sincel—-7<71,a+a—1< —1,a—a >0, wehave A < 0. If we can show B < 0,

the proof is completed. Because a,a < 0, B < 0 is equivalent to

5(1—7)+a7‘>(1—7>a_a‘ S4.1)

ar+a(l—17) T

Since 7 > 0.5, @ > a, we have 0 < {(1—7)/7}%% < land {a(1 —7) +ar}/{ar +a(l —

7)} > 1. Then the equation (S4.1)) holds. O

Proof of Lemma (a). Denote

fir(u) = miak—éﬁ()) /1 I(eq, < Ulaé)g—éﬁo)s) — I(eix < 0)ds,
0
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and D, (u) = n V235 S [fin(u) — B {fi(w)|X;}]. It then holds that &;(u) =

o' firx(u) and

K n

k=1 i=1
To prove (a), it is sufficient to show that, for any 7 > 0, sup <, | Dn(w)[|/(1 + /n[[ul]) =
0p(1). Let DYV (u) = n-V2 3" [ ) - B { f},?(u)\xi}}, where £ (u) is the jth
element of f;;(u). We next use the bracketing method in |Pollard (1985) to prove that

DY (w)]
SUp ————— =
lull<n 1+ v/71lul|

foreach1 < k < K and 1 < j < dp. Without confusion, we abbreviate f;;;(u,) and

op(1)

DY (u) to fi(u,) and D, (u), respectively, in the following proof for simplicity.

Without loss of generality, we assume that 0Q;x(8,)/08; > 0. Let F = {fi(u) :
|lu|]| < n} be a collection of functions indexed by u. For any fixed e > 0 and 0 < ¢ < 7,
there exists a sequence of small cubes {Bes/c, (w)}1<, to cover B;(0), where B,(¢) is
an open neighborhood of ¢ with radius r, C; is a constant defined later, L. is an integer

less than cye~% and ¢, is a constant independent of ¢ and §. Moreover, we assume that
Ui(8) C Besjc, (), and {U;(8)}), forms a partition of Bs(0). For any u € Uj(6), we
define the bracketing functions as
0Qir(By) /1 { Qi (By) €0 ‘}
+ 0 / 0
u) = ———— FZ U —F——7-S5 + — d87
A S T I Y -
where F ;.(s) = I(e; < s) — I(es < 0). It then holds that, for all u € U;(9),

9Qik(Bo)

fi () < filu) < fi¥ (w) (54.2)
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and

. EdAl

2
‘8Qik(ﬁo) o (S4.3)

L () = f () X0 < 5 s frlule) | 22

1 yx

where A; = 2sup, , fy (y|2)||0Qix(8,)/03|*. Define the event

1 n
E,=<— A <25,
{nC’l ; < }

By taking C} = EA; and applying the law of large numbers, we have P(FE,) — 1 as
n — oo.

Put d,, = 27™n. Denote B(m) = B;, (0) for simplicity, and let A(m) = B(m)/B(m+
1) be the annulus. Fix ¢ > 0, and assume that {U;(d,,)}1, is a partition of B(m). We first

consider the upper tail. For any u € U,(6,,), if event E,, holds, then

| /\

Zf*uz — E{f (w)X:}] = D+ul+—ZE{f+ul £ ()X}

<~ D:(ul) + \/ﬁ€5m { ZA } < D+ ul) + 2\/_6577”

where

n

! Jn o [f ) — B (X)),

2:1

3
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Note that

B (D) < 3B (1) - %ZE[E{@NW»%XM
e[ e flix]

N |Fy<czik<ﬁo>+y|xi>—Fy<czik<ﬂo>|xi>|]

dp; Y| <Corm HaQikmo)/aﬂn
H ank BO

ank /60
oB

B 01

<05msup fr(ylo)E =7 (0m),

where 7(0,,,) goes to 0 as d,, goes to 0. Moreover, for any u € A(m), 1 + /n|jul| >

VN1 = /ndy /2. As aresult,

_ Dp(u)
P Sup > 6e, E,
{ Tl }

< P{ sup D, (u) > 3\/ﬁe5m,En} < P{ max sup D, (u) > 3\/ﬁec5m,En}

u€A(m) 1<ISLe 4t (5m)NA(m)
E{D} (w)}” 7 (Om)
< < — 7 < .
<P {1%%%6 D (ug) > \/ned, En} < L, max oz S Le nes?,

Similarly, we can obtain the same bound for the lower tail, and hence

D
P< sup M > 6e, B, p < 2L, (g 2).

We split the set of {u : ||u|| < n} into B(m,, + 1) and B(m,, + 1)¢ = U A(m),
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where m,, satisfies n=1/2 < 27™» < 2n~1/2_ It can be verified that

D,
P sup | (w] > Ge
u€B(mn+1)° 1 + \/_HUH

g}jp{sw JgﬁﬂL>6q@}+P@@§§:%ﬂg@?m+Pw9

u€A(m) 1+ \/HHUH nGQT]

me—1 m

1<~ CL € 1
< = com 4 2?m L P(EC) < O(=) + 4¢ + P(E¢
<->Y +— Y 2"+ P(E;) < O(-) +4e + P(E),

m=0 m=me

m=0

(S4.4)

where m, at the last line is chosen such that 2L.7,,(5,,)/(e*n?) < € for all m > m,, since
7(0mm) — 0 as k — oo. Consider the set of B(m,, + 1). For any v € U;(6,,, +1), by using
a similar argument, we can show that D,,(u) < D, (u;) + 2v/n€dp,, 11 < D;f(u;) + 2¢. As

a result, due to the fact that 1 + v/n|ul| > 1,

D L (0,
P sup _ Dnlw) > 3¢, B, p < P{ max D (u) > ¢, E, } M,
weB(mn+1) 1+ 1+ vnu| 1<I<L. c

and the bound for the lower tail can be obtained similarly. Thus,

D, 2L (O,
P sup _Dn)l > 3e» < M + P(EY), (54.5)
weBm,+1) L+ v/oul €

which, together with (S4.4)) and the fact that 7(6,,,+1) — 0 and P(ES) — 0 as n — oo,

accomplished the proof of (a).
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(b). Note that

Iy, (u) = Z Z E{&ik(u)| X}
k=1 i=1
K n qik(u)
= [T B 5+ QulBIX) — B (QulB0)X) s
K n quik(w)
- Z Z {/0 fy (Qir(Bo)|Xi) sds
o qrik(u)
+/0 Lfy (GiIXs) = fy (Qie(Bo)1X4)] Sds}
= (Vnu)' Ky, (vVinu) + (vVnu)' Ko (u) (Viw), (54.6)

where ;' is between Q;1(3,) and s + Qi (80),

LR 9Qik(Bo) 9Qir(By)
Kln - %;;fy (Q’Lk<180)|XZ) (9,3 . 8,8/ ° )
and
Ko HWZ; [ 6% — e (@uBX s,
Note that
K lqrin (w)| X, X d
sup [l _Huuw,u,‘g;” [ UG v (QuiBIXa) s

%ZZ{ oy QB — fr (QulBIX)

=1 i—1 \VISCnlI0Qik(Bo) /98l

} Ha@k B,)

which, together with Assumption 3, implies that sup, <, [K2.(u)| = 0,(1), and hence
Ky, (u,) = 0,(1). Moreover, by the law of large numbers, Ky, = 0.5 + 0,(1). Thus,

the proof of (b) is accomplished.

)
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(c). Note that

qrir (u)+q2ik (u)

I3, (u Z [qm H{I(ex <0) — 74} +/ {I(ex < s)—I(eix <0)}ds

k=1 =1 qrik(u)

{ZK:M } \/_U)+K4n( )

where q1;,(u) = ©'0Qik(By) /0B, qair(u) = 0.5¢'0*Q(By,) /(08B )u,

K 282@’“ {I(esx < 0) — 7}
3n 8,38,6 ik k
and
K n qrik (u)+g2ik (u)
Kin(u) =Y / Fi(s)ds.
k=1 i=1 Y41 k(

For K3,(8"), it holds that E[supg: ¢ [|0°Q(87)/(9898") |1 (exr < 0) — m|] < o0
and F[0°Q.(8")/(0808"){I(es, < 0) — 7}] = 0. Then, by applying Theorem 4.2.1 in

Amemiyal (1985)), we have

B*€e
On the other hand,
K n ) .
Ky (u 1 ik (uw)/[|ull 1
n||u||2 =20 / Faluls + que(u))ds == = 375 Ju(u).
k=1 i=1 70 L
For any n > 0,
A
0Q); 00
RERCIE RO e LTIl | B R LR }] .
l[ull<n “A
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and
E{ sup |Jlk(u)|}
[lull<n
<2F [A{F ( A+ HaQ”“ Bo)

< dsup fy (y|z)n*E (AQ) + 4sup fy (y|x)nE
Y,z Y,

rxi) R (_m ) H%éﬁ(’)

(P

as ) — 0, where A = 0.5s5upgeq 102Qir(8)/0B98'||. Thus, Ky, (u,) = o,(nllu,|?).

)

This completes the proof of (c). [

S4.2 Proofs for Lemmas[S4 and

Proof of Lemma Note that

n K

1 0(X,,
nLBY) = 230t (ea) P a(,y b)) ¢ x,
=1 k=1

where e;, = Y — Q(7, 0(X, By)), ¥r(u) =7 — I(u < 0), and X; = (X4, ..., X};;)'. For
1 < j < d, denote §;(X;) = 9Q(m, 0(X;,By))/07; and, from Assumption [3] it holds
that |&;(X,)| < L.

It can be verified that, conditional on X, 1, (e;) is sub-Gaussian with the parameter

of 0.5, and hence, for any § > 0,

Eexp[én’lwm(eik)ﬁj(Xi)XH] < Eexp{[én’lfj(Xi)Xh]z/S} < exp{[én’lLQCX]Q/S}.



Yingying Zhang, Qianqgian Zhu, Yuefeng Si and Guodong Li

As aresult, foreacht > 0,1 <j<dand1 <[ <p,

K
( Zzl/)’rk €ik 5] Xlz > t)

=1 k=1
n K

< (15nf exp(— H H E exp[én™ ., ()& (Xi) Xii)

i=1 k=1

n 'K (LgCx)? —2nt?
< _5t) < __ent
infexp ( 8 d &) =P (K(LQC’X)2> ’

which implies that

—2nt?

P VLB 2 1) < o0 (e

+ 1og(2dp)) .

By letting t = Cg+/logp/n with Cs > V0.5KLyCx, we accomplish the proof with

c1 = 2d and Co = 20%/[K(LQCX)2] —1>0. ]

Proof of Lemmal[S3] We first show the strong convexity of L(3) = E[n~'L,(8)] = E[> sz1 pr Y —

Q(m,0(X,3))}. Let Q*(B) = (Q(11,0(X,3)),...,Q(1x,0(X,03))) and, by Taylor

expansion,

B0 () - @' B0l - £ | 240

= A(B87)A,

where A = 3 — 3,, and 3" is between 3, and 3. Note that IL(3,)/03 = 0 and hence,
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by Knight’s identity at (S2.1)) and Assumption[6] it can be verified that
E(A) = L(B) — L(Bo) — (A, OL(By)/0B) = L(B) — L(By)

K Q(7,0(X,8))—Q(7,0(X,B0))
~E (Z / (R (@, 00X By)) + ) — Frix QU e<x,ﬂo>>>}ds>
k=10

>0.5fuin E1Q(8) = Q*(Bo)|I3 > 0.5 farin\ | A1
(S4.7)
uniformly for {A € R% : ||A|l, < R}.

For 1 < k < K, denote i (8) = 31, pr (Vi — Q(7., 0(X:, 8))} and Ly(8) =
En~'LY(B)] = Elp-{Y — Q(n,0(X,8))}]. Note that L,(8) = Y1, Ly (8) and
L(B) = Yuey Lu(B). Let £(A) = [n 'L (8) — n 'L (8,) — {La(B) — Lr(Bo)},
and we next prove that, uniformly for r < ||A|l, < R,

1
P)A], (54.8)

n

En(A) < Ce

with probability at least 1 — log(v/dpr/r)p~° for any ¢ > 1, where Cg = Cpd2*! +
2LoCxc. As in Theorem 9.34 in Wainwright| (2019), we use the peeling argument, which
1S a common strategy in empirical process theory.

Tail bound for fixed radii: Define a set C(r1) := {A € R : ||A|l; <7y} for a fixed radii

r1 > 0, and a random variable A, (r;) = ]! SUPgec(r1) Er(A). We next show that, for any

/1 t
Ap(ry) < Crd2? in 4 LQCX\/;, (54.9)

with probability at least 1 — e™*.

t>0,
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For 1 < i < n, denote W; = (Y;, X/)". Note that random variable A(r;) has a form

of f(W1,...,W,), and it is guaranteed by Assumption [3] that
fWh, . W W) — fF(W, . W, W) < n T C,

i.e., if we replace W, by W,,, while keep other W, fixed, then A(r;) changes by at most

n~'LoCx. As aresult, by the bounded differences inequality and for any ¢ > 0,

t

An(r1) < E[An(r1)] + LQCX\/; (S4.10)

with probability at least 1 — e~ .

In addition, it is implied by Assumption |5|that, for all 3, B € R,

d
1or {Yi — Q72 0(X,, B))} — pr{Yi — Q(71, 0(X:, B))}H < Lo > |X[(B— Byl
=1
which leads to

n

Bl (r)] < ( sup |Y € [ {Yi — Q(11, 0(X:, 8))} = pr{Yi — Q7 O(Xh/@o))}]‘)

nrl ﬁEC(”"l) i=1
CQd CQd d n
<——F| sup ZZVQz —Bu)| | = —F Z > VaX,
nri BeC(r1) =1 i=1 =1 = %)
; . (S4.11)
O ( Z VX, ) < Cpd2t [ 128
n

where {¢;} and {V};} are i.i.d. Rademacher and standard Gaussian random variables, re-
spectively, the first inequality is due to the symmetrization theorem (Loh and Wainwright,
2015, Lemma 12), the second one is by the multivariate contraction theorem (van de Geer,

2016, Theorem 16.3), the third one is due to the fact | X'3| < || X||~||3]1, and the last
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one is by Lemma 16 of Loh and Wainwright| (2015) given the sample size of n > ¢’ logp

for some ¢’ > 0. The upper bound at (S4.9) holds by combining (S4.10) and (S4.TT)).

Extension to uniform radii via peeling: Define a sequence of sets ©; := {A € R% :
251y < A € 20r} with 1 <1 < N = log(y/dpR/r). It can be verified that {A € R% :
r<||Alls < R} C{A e R?:r < ||All; < VdpR} C UY,0,. As aresult,

1og

P (&?(A) Cey| =22 )|Al, A e UY 1@z)

P (5 (A) > 21y /98P A ¢ @l>
n
2
(5 (A) > (Cpd2?)(2Fr ),/log + LoCx (281)4/ logp,Ae@l)
l d chogp
A 2'r >C d2 LQCX

where Cg = Cpd2¢™ + 2LoCxc. By applying (54.9), it holds that

IN

T Mz INNERNNGE
s

k=1

|
P (5,:(A) > Cpy | 222 Sl )l < 142 < R) < Z ~logp _ \og(\/dpR/r)p~<,

i.e. (S4.8) holds.
Finally, from (S4.7), (S4.8) and Lemma [S4]

Eu(D) 2 E(A) =) E(A) — "' VL(By)lloc | Al

k=1

lo
> 0.5 fun o[ — (K Ce + Co)y [ 222 A,

uniformly for < ||All, < R with probability at least 1 — ¢;p~ — K log(v/dpr/r)p~¢

for any ¢ > 1. This accomplishes the proof. [
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S5 Additional simulation studies

S5.1 QIR using GEVD and GPD as quantile functions

This subsection provides additional results for the DGPs of generalized extreme value
distribution (GEVD) and generalized Pareto distribution (GPD) as follows

— log(7)}» (49

0(Xi, B) ’

1— (1 —7)%Xh)
03(Xi, B) ’

where {U;} are independent and follow Uniform(0, 1), X; = (1, X;1, Xi2)', {(Xi1, Xi2)'}

GEVD : Y; = Q(U;,0(X;, 3)) = 6:1(X;, B) + 92(Xz»@)1 1

is an 7.2.d. sequence with 2-dimensional standard normality. The true parameter vector is
Bo = (Bo1, Boas Byz)'» and we set the location parameters 3,, = (1,0.5, —1)’, the scale
parameters 3,, = (1,0.5,—1)" and the tail parameters 3,; = (1,—1,1)". For the tail
index 03(X;, 3), before generating the data, we first scale each covariate into the range of
[—0.5,0.5] such that a relatively stable sample can be generated. In addition, g;, g» and g3
are the inverse of link functions. As in Section of the main file, we choose ¢;(x) =
x, ga2(x) = softplus(z) and g3(x) = 1 — softplus(x), where softplus(x) = log(1 + exp(z))
is a smoothed version of =, = max{0, z} and hence the name. We consider three sample
sizes of n = 500, 1000 and 2000, and there are 500 replications for each sample size.

For the data generated by the DGP of GEVD or GPD, we fit them using the quan-
tile index regression (QIR) with the same quantile function and the same link functions.

The algorithm for CQR estimation in Section [3|is applied with X = 10 and 7;’s being
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equally spaced over [77, 77]. We consider three quantile ranges of (7, 7y) = (0.5,0.99),
(0.7,0.99) and (0.9,0.99) to evaluate the estimation efficiency. Figure gives the box-
plots of three fitted location parameters Bln = (3171, 5172, B\Lg)/ for the DGP of GEVD
and GPD. It can be seen that both bias and standard deviation decrease as the sample size
increase. Moreover, when 7;, decreases, the quantile levels with richer observations will
be used for the estimation and, as expected, both bias and standard deviation will decrease.
Boxplots for fitted scale and tail parameters show a similar pattern and hence are omitted
to save the space. These findings are the same as for the Tukey lambda distribution.

We next evaluate the prediction performance of Q(7*,0(X, En)) at two interesting
quantile levels of 7* = 0.991 and 0.995. As in Section of the main file, we consider
two values of covariates, X = (1,0.1,—0.2)" and (1,0,0)". Table presents both the
sample mean and standard deviation of prediction errors in terms of squared loss (PESs)
across 500 replications for the DGP of GEVD and GPD. As for the DGP of Tukey Lambda
distribution in (4.5)), the prediction is improved as the sample size becomes larger, and the
prediction is more accurate at the 99.1-th quantile level for almost all cases.

We also conduct simulation experiments to evaluate the finite-sample performance of
the high-dimensional regularized estimation at (2.4]). For the DGPs in (S5.12)), we consider
p = 50, and the true parameter vectors are preserved as in Section 4.2. The sample size
is chosen such that n = [cslogp| with ¢ = 10, 30, and 50, where |z| refers to the

largest integer smaller than or equal to z. All other settings are the same as in the low-
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dimensional case. The algorithm for regularized estimation in Section [3is used to search
for the estimators, and we generate an independent validation set of size 5n to select tuning
parameter A by minimizing the composite quantile check loss; see also Wang et al.|(2012).

To evaluate the prediction performance of the regularized estimation, Table [S.2]lists
mean square errors of the predicted conditional quantiles Q(7*,0(X, 3,)), as well as the
sample standard deviations of prediction errors in squared loss, with p = 50 for the DGP
of GEVD and GPD, respectively. As for the DGP of Tukey Lambda distribution in Section
4.2] larger sample size leads to much smaller mean square errors. Moreover, when 7,
is larger, the prediction also becomes worse, and it may be due to the lower estimation
efficiency. Finally, the prediction at 7* = 0.991 is more accurate for almost all cases.

To evaluate the performance of variable selection for regularized estimation, Table [S.3
reports the selecting results with p = 50 and n = |cslogp| for ¢ = 10, 30 and 50. When
71, 1s larger, P5; decreases, and it indicates the increasing of selection accuracy. In addition,
performance improves when sample size gets larger. These findings are the same as for the
Tukey lambda distribution.

Overall, it can be seen that the simulation findings are the same for three DGPs of
Tukey lambda distribution, GEVD and GPD in estimation, quantile prediction and variable

selection. Therefore, in the following we focus on the DGP of Tukey lambda distribution.
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S5.2  Sensitivity analysis to the selection of /X

We conduct sensitivity analysis of the CQR estimation to the selection of K, using the
DGP of Tukey lambda distribution in (4.5)) with the same settings. The algorithm for CQR
estimation in Section [3|is applied with ' = 5,10 and 15, and 7;,’s being equally spaced
over the quantile range |7, 7] = [0.5,0.99].

Figure gives the boxplots of three fitted location parameters Bm = (B\Ll, 5172, 3173)’
for K = 5,10 and 15. It can be seen that the results of CQR estimator Bn for K = 5,10
and 15 are similar, indicating that the performance of Bn is insensitive to the choice of K
given a fixed interval [, 77]. Boxplots for fitted scale and tail parameters show a similar
pattern and hence are omitted. Hence, for the selection of s, it is sensitive for different
quantile ranges [77,, 77|, while there is not much difference among varying values of K.

We next evaluate the prediction performance of Q(7*,0(X,3,)) at two interesting
quantile levels of 7* = 0.991 and 0.995. As in Section of the main file, we consider
two values of covariates, X = (1,0.1,—0.2)" and (1,0,0)’". Table S.4| presents both the
sample mean and standard deviation of PESs across 500 replications for X = 5,10 and
15. It is clear that, the prediction performance of CQR estimation is also insensitive to the

choice of K given a fixed interval [7, 7y].
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S5.3 Sensitivity analysis to the choice of link functions

To assess the robustness of our model to misspecifications due to the link functions, we
generate data using alternative link functions that differ from those used in estimation.
Actually, different choices of link functions are related to model mis-specification. Note
that it is meaningless to evaluate the influence of model mis-specification on the estimator
directly, since the true values of parameters under mis-specification are probably unde-
fined. Alternatively, we evaluate the influence of mis-specification due to link functions on
conditional quantile prediction.

Specifically, the Tukey lambda distribution is chosen as the quantile function for both
the DGP and QIR estimation, and the settings for covariates and true parameter vector
are preserved as for DGP (4.5)) in the main file. To assess the sensitivity of QIR under
different link functions, we examine three mis-specified scenarios for the location, scale
and tail indices 0;’s in Cases (i)—(iii), respectively. In each case, data are generated from
a specified DGP, and the model is fitted using QIR. Each index 6, is linked to covariates

through a link function gj’1 (x). The default functions used in QIR estimation are as follows
gi(z) =z, go(x) = softplus(x), gs(x) = 1 — softplus(x).
The three cases for DGP are detailed as follows:
* Case (i): Misspecified link for ¢,. We use the DGP with

g1(z) = x + dLeakyReLU(z, 0.8),
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while the g, and g3 remain the same as in estimation. Here, d > 0 is the departure
parameter with a larger value indicating greater deviation from the true link function,
and LeakyReLU(z, 0.8) = zI(x > 0) 4+ 0.82I(x < 0). Hence, only g, is misspecified

for d > 0 in this case.
 Case (ii): Misspecified link for 6;. We use the DGP with
g2(z) = softplus(z) + dReLU(x),

while g; and g; match the estimation model. Here, ReLU(x) = zI(z > 0). Hence,

only g5 is misspecified for d > 0 in this case.
* Case (iii): Misspecified link for 6;. We use the DGP with
g3(z) = 1 — softplus(z) + d[1 — ReLU(z)],

while the ¢g; and g- align with the estimation model. Hence, only g3 is mis-specified

for d > 0 in this case.

The algorithm for CQR estimation in Section 3 is applied with K = 10 and 7;’s be-
ing equally spaced over three quantile ranges of (7, 7y) = (0.5,0.99), (0.7,0.99) and
(0.9,0.99). We consider three departure levels of d = 0,0.5 or 1, and d = 0 corresponds
to the correctly specified case. Table reports both the mean absolute errors and mean
square errors across 500 replications for the predicted conditional quantiles at 7* = 0.991

and X = (1,0.1,—0.2)". It can be seen that the misspecification due to link functions
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makes the prediction less accurate, especially when the departure level increases. More-
over, the errors due to the misspecification in location index 6; are the smallest while are
the largest in the tail index #5. This indicates that the prediction is not sensitive to the
departure of location index ¢;, while it is most sensitive to the departure of tail index 65.
In addition, the errors due to the departure of tail index 65 decrease as the quantile range
decreases. As a result, when the model is misspecified in tail index, we may choose the
interval |77, 77| narrow and closer to the target quantile level 7* such that a better result

can be achieved.

S5.4 Prediction comparison with other methods

In our simulation studies, we have compared the performance of linear quantile regres-
sion (LQR), extremal quantile regression (EQR), degenerated QIR (dQIR), and QIR across
three DGPs. In each case, the covariates are kept consistent with those used in DGP (4.5)
of the main paper, and the response variable follows a Tukey lambda distribution with

n = 2000. The three DGPs are described as follows:

* DGP1: Location index 6; = X’3,, scale index ¢, = X'(3, and tail index 63 = —0.3,
where 8, = (1,0.5,—1)" and B, = (3,0.3,0.3)". This setup corresponds to the EQR

and dQIR models.

* DGP2: Location index 6; = X’'(3,, scale index 0, = softplus(X’3,) and tail index

03 = —0.3, where 8, = 3, = (1,0.5, —1)". This represents a simplified version of
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the QIR model with a constant tail index and a nonlinear link function for the scale

index.

* DGP3: Location index 6; = X’'(3,, scale index 0, = softplus(X’3,) and tail index
5 = 1 — softplus(X'3;), where 8, = B, = (1,0.5, —1) and B, = (1, —1,1)". This

setting corresponds to our proposed QIR model in general situations.

We implement the CQR estimation algorithm in Section |3| for both QIR and dQIR
using K = 10 quantile levels, and 7;’s being equally spaced over three quantile ranges of
(12, 7v) = (0.5,0.99), (0.7,0.99) and (0.9, 0.99). For the QIR, we set g1(x) = x, g2(z) =
softplus(x) and g3(x) = 1 — softplus(x) in the CQR estimation algorithm. For the dQIR,
we set g1(z) = g2(x) = z and 03 to be an unknown parameter in the CQR estimation
algorithm. For the LQR, we use the rq function in R package quantreg developed by Roger
Koenker. For the EQR, we use the Twostage function in R package EXQR developed by
Wang et al. (2012).

Figure presents boxplots of the prediction bias for conditional quantiles at 7 =
0.991, evaluated at X = (1,0.1,—0.2)" and X = (1,0,0)’, based on 500 replications.
The results show that our proposed QIR method yields unbiased predictions across all
settings, as each DGP is a submodel of the general QIR framework. However, for DGP1
and DGP2, the QIR exhibits higher prediction variance due to the inclusion of redundant
parameters. More importantly, when the tail index varies with covariates, as in DGP3,

alternative methods LQR, EQR and dQIR tend to introduce substantial bias as they omit
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parameters.

S6 Additional details for the empirical analysis

In Section [5]of the main paper, we briefly introduce the three methods for comparison with
QIR: (i.) linear quantile regression (LQR) at the level of 7* with ¢; penalty in Belloni
et al. (2019), (i1.) extremal quantile regression (EQR) in (Wang et al., 2012) adapted to
high-dimensional data, and (iii.) degenerated QIR (dQIR) with identity link functions for
location and scale indices and a constant tail index. Below we provide further details for

these three methods.

* LQR: For a given target quantile level such as 7* = 0.991 or 0.995, we fit a high-

dimensional LQR with Lasso penalty to obtain the Lasso-penalized estimator
1 d
(a(7), B(r) = argmin | =3 " pre (Vi —a = XiB)+ A3 (Gl (56.13)

where « is the intercept, 3 = (1, ..., B4)’ is the slope vector, and the tuning param-
eter A > 0 is selected by minimizing the composite check loss in the testing set; see
further details in the last paragraph of Section 5. Then the 7*th conditional quantile

prediction is Qy (7* | X) = a&(7*) + X'B(*).

* EQR: The EQR first estimates the intermediate conditional quantiles using LQR, and
then extrapolates these estimates to the high tails based on the estimated tail index.

Specifically, the prediction involves the following two steps:
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First, for K = L4.5n1/ BJ = 38 equally spaced quantile levels 7y < 75 < -+ < Tz in

train
the range [0.96,0.99], we fit Lasso-penalized LQR to calculate the Lasso-penalized

estimator at (S6.13). Then the 7;th conditional quantile prediction is given by ¢; =

a(r;) + X'B(r;), forj=1,... K.

Second, the tail index parameter 7 is estimated by 5 = = >

K
K—1 j

i
=2 108 o see also

equation (2.12) in Wang et al. (2012). Then the extrapolated prediction at a more

extreme quantile level 7% = 0.991 or 0.995 is given by

©y<r*|x>:(1‘ﬁ) i

1—7*

* dQIR: To further bridge the connection between EQR and our QIR, we consider a
simplified version of QIR, referred to the degenerated QIR (dQIR), which chooses
identity link functions for location and scale indices and a constant tail index. The
algorithm for CQR estimation in Section 3]is applied with &' = 10, 7;’s being equally

spaced over [, 7], and g1 (z) = go(x) = x and 05 set to be an unknown parameter.
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Figure S.1: Boxplots for fitted location parameters of B1,1 (left panel), ,@1’2 (middle panel), and ,CA'IL:,, (right

panel) under the DGP of GEVD (upper panel) and GPD (lower panel). Sample size is n = 500, 1000 or

2000, and the lower bound of quantile range [rr,, 7] is 7, = 0.5, 0.7 or 0.9.
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Boxplots for fitted location parameters of Bl’l (left panel), 'Bl,? (middle panel), and B 1,3 (right

panel). Sample size is n = 500, 1000 or 2000, and the quantile range [0.5,0.99] and the number of levels

K =5, 10 or 15 are considered for estimation.

Table S.1: Mean square errors of the predicted conditonal quantile Q(7*, 0(X, ,@n)) at the level of 7% =

0.991,0.995 under the DGP of GEVD or GPD. The values in bracket refer to the corresponding sample

standard deviations of prediction errors in squared loss. We denote X = (1,0.1, —0.2)/ as XM and X =

(1,0,0)" as X2,

GEVD GPD

n [, 70] xm x® xW x©@
T 0.991 0.995 0.991 0.995 0.991 0.995 0.991 0.995
500 [0.5,0.99] 181(340) 333(690) 5.79(10.69) 13.28(27.15)  1.76(3.38) 3.25(6.80) 5.71(10.90) 13.21(28.37)
[0.7,0.99] 1.85(3.50)  3.40(6.93) 5.25(9.44) 12.11(25.09) 1.85(3.49) 3.42(6.96) 5.49(11.27) 12.90(31.04)
[0.9,0.99] 2.88(4.47) 532(876) 698(12.67) 16.15(3330)  2.85(4.53) 5319.04) 6.68(11.04) 1547(28.87)
1000 [0.5,0.99] 0.94(1.75) 1.73(3.38)  3.01(4.85)  6.92(12.01) 0.97(1.85) 1.80(3.64) 2.92(4.61) 6.77(11.52)
[0.7,0.99] 1.18(3.29) 2.15(6.10)  2.91(4.42)  6.69(10.94) 1.23(3.33) 2.26(6.24) 2.90(4.28)  6.68(10.44)
[0.9,0.99] 1.73(3.19)  3.13(5.66) 3.57(4.78) 8.17(11.66)  1.74(327) 3.16(581) 3.524.71)  8.10(11.54)
2000 [0.5,0.99] 0.80(1.77) 1493.45) 1.62247) 374605  083(1.80) 1553.52) 1.58(239)  3.69(5.92)
(0.7, 0.99] 1.002.18) 1.89(4.41) 1.61(285)  3.77(7.68) 101225 192455 1592.58)  3.68(6.64)
(0.9, 0.99] 148(3.02) 281(6.15) 1.97(298)  4.50(7.06)  1.48(3.04) 2.81(620) 196(2.96)  4.49(7.06)




REFERENCES

Table S.2: Mean square errors of the predicted conditonal quantile Q(7*, 8(X, Bn)) at the level of 7" =
0.991,0.995 under the DGP of GEVD or GPD with p = 50 and n = |cklogp|. The values in bracket
refer to the corresponding sample standard deviations of prediction errors in squared loss. We denote X =

(1,0.1,—0.2,0,--- ,0) as X and X = (1,0,0,0,--- ,0) as X2,

GEVD GPD

c (L, 70] x@ x@ x@ x@
T 0.991 0.995 0.991 0.995 0.991 0.995 0.991 0.995
10 [0.5,0.99] 1.65(2.98)  2.87(5.34) 5.92(15.68) 12.88(38.59) 1.81(3.07) 3.23(5.62) 6.33(11.08) 13.85(25.29)
[0.7,0.99] 1.63(2.92)  2.81(5.18)  5.42(9.90) 11.52(22.06) 1.76(3.04)  3.17(5.60) 5.98(11.06) 13.20(25.92)
[0.9,0.99] 2.40(6.51) 4.40(12.96) 6.33(12.00) 13.69(27.78) 2.23(5.10) 4.06(9.91) 5.87(10.71) 12.72(24.76)
30 [0.5,0.99] 0.64(0.83)  1.12(1.45)  2.18(3.06) 4.73(6.77) 0.62(0.80) 1.10(1.42)  2.17(3.15) 4.74(7.20)
[0.7,0.99] 0.66(0.87)  1.17(1.55)  2.14(2.84) 4.66(6.26) 0.66(0.90) 1.20(1.65)  2.19(3.08) 4.80(6.89)
[0.9,0.99] 0.85(1.28)  1.55(2.39)  2.52(3.49) 5.62(8.02) 0.83(1.28) 1.53(2.44)  2.47(3.36) 5.52(7.73)
50 [0.5,0.99] 0.37(0.60)  0.64(1.09)  1.22(1.80) 2.63(4.02) 0.35(0.51)  0.62(0.93)  1.19(1.72) 2.56(3.82)
(0.7,0.99] 0.39(0.61)  0.70(1.12)  1.22(1.84) 2.66(4.13) 0.40(0.62) 0.72(1.16)  1.22(1.81) 2.66(4.10)
[0.9,0.99] 0.55(1.10)  1.01(2.11)  1.48(2.45) 3.32(5.65) 0.58(1.53) 1.08(2.99)  1.42(2.30) 3.20(5.37)
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Table S.3: Selection results for regularized estimation under the DGP of GEVD or GPD with p = 50 and

n = |cklogp] for ¢ = 10, 30 and 50. The values in brackets are the corresponding standard deviations.

GEVD GPD

[TL, U] c size Par FP FN size Par FP FN

[0.5,0.99] 10 8.98(0.14)  98.0 0.00(0.00) 0.22(1.56) 9.00(0.16)  97.8 0.01(0.09) 0.13(1.21)
30 9.0000.04) 99.8 0.000.00) 0.02(0.50) 9.01(0.08)  99.4 0.00(0.05) 0.00(0.00)

50 9.0000.00) 100.0 0.00(0.00) 0.00(0.00) 9.00(0.00) 100.0  0.00(0.00) 0.00(0.00)

[0.7,0.99] 10 8.89(0.31)  89.6 0.00(0.00) 1.18(3.50) 9.07(049) 852 0.09(0.31) 0.60(2.51)
30 9.0000.06) 99.6 0.00(0.00) 0.04(0.70) 9.01(0.11)  99.4 0.01(0.08) 0.00(0.00)

50 9.00(0.00) 100.0 0.00(0.00) 0.00(0.00) 9.00(0.00) 100.0 0.00(0.00) 0.00(0.00)

[0.9,0.99] 10 8.69(0.62)  71.8 0.02(0.14) 3.67(6.76) 8.70(0.59)  72.0 0.02(0.14) 3.56(6.42)
30 8.92(0.33) 90.4 0.01(0.11) 1.04(3.39) 8.91(0.36)  89.2 0.01(0.11) 1.20(3.73)

50 8.99(0.18) 96.6 0.01(0.08) 0.24(1.63) 8.99(0.20) 96.0 0.01(0.08) 0.29(1.77)
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Table S.4: Mean square errors of the predicted conditonal quantile Q(7*,0(X, Bn)) at the level of 7% =

0.991 or 0.995, where the quantile range [0.5,0.99] and the number of levels K = 5, 10 or 15 are considered

for estimation. The values in bracket refer to the corresponding sample standard deviations of prediction

errors in squared loss.

X =(1,0.1,-0.2)’ X =(1,0,0)
n K 0.991 0.995 0.991 0.995
True 10.36 11.84 15.14 18.85
500 5 1.84(3.49) 3.36(6.82) 7.09(13.79)  16.07(33.84)
10 1.79(3.29)  3.32(6.65) 5.98(11.50)  14.00(30.47)
15 2.06(4.10)  3.85(8.27) 5.67(10.75) 13.42(29.11)
1000 5 0.87(1.45)  1.60(2.83) 3.56(7.05)  8.15(17.26)
10 0.90(1.47) 1.67(2.79) 3.09(5.02)  7.23(12.65)
15 1.10(1.97)  2.04(3.72) 2.92(4.17)  6.78(10.12)
2000 5 0.68(1.22) 1.26(2.37) 1.85(2.93)  4.29(7.26)
10 0.86(2.06) 1.63(4.01) 1.66(2.44)  3.89(6.04)
15 0.98(2.15) 1.86(4.32) 1.65(2.56)  3.87(6.34)
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Table S.5: Mean absolute errors of the predicted conditonal quantile Q(7*, 8(X, Bn)) at the level of 7% =
0.991 and X = (1,0.1, —O.2)l, under the DGP of Tukey lambda distribution with link functions deviate
from the working model with departure levels of d = 0,0.5 or 1. Baseline corresponds to d = 0, and the

values in bracket refer to the corresponding mean square errors of prediction errors.

n [T1., TU] Baseline 01(d=0.5) 01(d=1) 02(d=0.5) f2(d=1) 03(d=0.5) 03(d=1)

500 [0.5,0.99] 1.03(1.79) 1.03(1.78) 1.04(1.85) 1.81(5.64) 2.83(14.05) 1.82(4.64) 3.42(16.20)
[0.7,0.99] 1.08(1.99) 1.15(2.23) 1.22(2.47) 1.89(5.98) 2.82(13.10) 1.58(3.62) 2.88(11.33)

[0.9,0.99] 1.34(2.94) 1.41(3.22) 1.49(3.67) 2.13(7.66)  3.08(15.86) 1.29(2.61)  2.33(7.42)

1000 [0.5,0.99] 0.74(0.90) 0.75(0.92)  0.78(0.98) 1.36(2.95)  2.11(7.11) 1.58(3.20) 2.84(10.08)
[0.7,0.99] 0.85(1.22) 0.89(1.37)  0.97(1.55) 1.54(3.81)  2.16(7.35) 1.35(2.43)  2.48(7.54)

[0.9,0.99] 1.04(1.79) 1.13(2.06) 1.18(2.23) 1.82(5.26)  2.52(9.94) 1.05(1.66)  2.05(5.36)

2000 [0.5,0.99] 0.67(0.86) 0.68(0.83)  0.70(0.86) 1.21(2.51)  1.85(5.90) 1.33(2.38)  2.40(8.61)

[0.7,0.99] 0.77(1.07) 0.81(1.17)  0.89(1.33) 1.33(2.89) 1.88(5.74) 1.23(2.05)  2.27(6.49)

[0.9,0.99] 0.95(1.56) 1.01(1.76)  1.08(2.00) 1.61(4.26)  2.20(7.88) 0.95(1.39)  1.76(3.86)
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Figure S.3: Boxplots of prediction bias from QIR, dQIR, EQR, and LQR for 7* = 0.991 at two points, X =

(1,0.1, —0.2) (first point) and X = (1,0, 0) (second point). The first, second, and third rows correspond to

DGP1, DGP2, and DGP3, respectively.
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