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This supplementary material gives proofs of Proposition 1 in Section S1, theorems for low-

dimensional CQR estimation in Sections S2 and those for high-dimensional regularized

estimation in Section S3. The technical proofs for four auxiliary lemmas are proved in

Section S4. It also includes additional results for the simulation and empirical analysis in

Sections S5 and S6, respectively.

S1 Proof of Proposition 1

Proof of Proposition 1. We first consider the Tukey lambda distribution which has the form

of

Q(τ, θ) = θ1 + θ2

{
τ θ3 − (1− τ)θ3

θ3

}
,
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where θ1 ∈ R, θ2 > 0, θ3 < 0. Consider four arbitrary quantile levels 0 < τ1 < τ2 < τ3 <

τ4 < 1, and two arbitrary index vectors θ̃ = (θ̃1, θ̃2, θ̃3)
′ and θ = (θ1, θ2, θ3)

′ such that

Q(τj, θ̃) = Q(τj, θ) for all 1 ≤ j ≤ 4. (S1.1)

We show that θ̃ = θ in the following.

The first step is to prove θ̃3 = θ3 using the proof by contradiction. Suppose that

θ̃3 ̸= θ3 and, without loss of generality, we assume that θ3 < θ̃3 < 0. Denote fj(θ3) =

τ θ3j − (1− τj)
θ3 for 1 ≤ j ≤ 4. From (S1.1), we have

f1(θ̃3)− f2(θ̃3)

f3(θ̃3)− f2(θ̃3)
− f1(θ3)− f2(θ3)

f3(θ3)− f2(θ3)
= 0, (S1.2)

and

f4(θ̃3)− f2(θ̃3)

f3(θ̃3)− f2(θ̃3)
− f4(θ3)− f2(θ3)

f3(θ3)− f2(θ3)
= 0. (S1.3)

Let us fix θ3, θ̃3, τ2 and τ3. As a result, κ1 = f2(θ̃3), κ2 = f2(θ3), κ3 = f3(θ3)− f2(θ3) and

κ4 = f3(θ̃3)− f2(θ̃3) are all fixed values. Denote

F (τ) = κ3

{
τ θ̃3 − (1− τ)θ̃3 − κ1

}
− κ4

{
τ θ3 − (1− τ)θ3 − κ2

}
, (S1.4)

Ḟ (τ) = κ3θ̃3{τ θ̃3−1 + (1− τ)θ̃3−1}+ κ4θ3{τ θ3−1 + (1− τ)θ3−1},

and

G(τ) =
τ θ̃3−1 + (1− τ)θ̃3−1

τ θ3−1 + (1− τ)θ3−1
,

where Ḟ (·) is the derivative function of F (·), and Ḟ (τ) = 0 if and only if G(τ) =

κ4θ3/(κ3θ̃3). Note that equations (S1.2) and (S1.3) correspond to F (τ1) = 0 and F (τ4) =
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0, respectively. Moreover, it can be verified that F (τ2) = 0 and F (τ3) = 0, i.e. the equa-

tion F (τ) = 0 has at least four different solutions. As a result, the equation Ḟ (τ) = 0 or

G(τ) = κ4θ3/(κ3θ̃3) has at least three different solutions. While it is implied by Lemma S1

that the equation G(τ) = κ4θ3/(κ3θ̃3) has at most two different solutions. Due to the con-

tradiction, we prove that θ̃3 = θ3, and it is readily to further verify that (θ̃1, θ̃2) = (θ1, θ2).

We next consider the generalized extreme value distribution (GEVD) with quantile

function as follows

Q(τ, θ) = θ1 + θ2
1− (− log τ)θ3

θ3
,

where θ = (θ1, θ2, θ3)
′ , and θ1 ∈ R, θ2 > 0 and θ3 < 0. Consider three arbitrary quantile

levels 0 < τ1 < τ2 < τ3 < 1, and two arbitrary index vectors θ̃ = (θ̃1, θ̃2, θ̃3)
′ and

θ = (θ1, θ2, θ3)
′ such that

Q(τj, θ̃) = Q(τj, θ) for all 1 ≤ j ≤ 3. (S1.5)

We show that θ̃ = θ in the following. We first prove θ̃3 = θ3 using the proof by contra-

diction. Denote fj(θ3) = {1 − (− log τj)
θ3}/θ3 for 1 ≤ j ≤ 3. It holds that Q(τj, θ̃) =

θ1 + θ2fj(θ3). From (S1.5), we have

f2(θ̃3)− f1(θ̃3)

f3(θ̃3)− f2(θ̃3)
=
f2(θ3)− f1(θ3)

f3(θ3)− f2(θ3)
, (S1.6)

Let us fix θ3, θ̃3, τ1 and τ2. Then κ1 = f2(θ̃3), κ2 = f2(θ3), κ3 = f2(θ3) − f1(θ3) and

κ4 = f2(θ̃3)− f1(θ̃3) are all fixed values. Denote

F (τ) = κ3

{
1− (− log τ)θ̃3

θ̃3
− κ1

}
− κ4

{
1− (− log τ)θ3

θ3
− κ2

}
, (S1.7)
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Ḟ (τ) =
κ3(− log τ)θ̃3−1

τ
− κ4(− log τ)θ3−1

τ
,

and G(τ) = (− log τ)θ̃3−θ3 , where Ḟ (·) is the derivative function of F (·), and Ḟ (τ) = 0

if and only if G(τ) = κ4/κ3. Since the derivative function of G(·) is Ġ(τ) = −(θ̃3 −

θ3)(− log τ)θ̃3−θ3−1/τ , it holds that Ġ(τ) > 0 if θ3 > θ̃3 and Ġ(τ) < 0 if θ3 < θ̃3. This

implies that Ḟ (τ) = 0 or G(τ) = κ4/κ3 has at most one root. Thus F (τ) = 0 has at

most two different roots. However, we have F (τ1) = F (τ2) = 0 by (S1.5) and F (τ3) = 0

by (S1.6). This indicates that F (τ) = 0 has at least three different roots. Due to the

contradiction, we prove that θ̃3 = θ3, and it is easy to verify that (θ̃1, θ̃2) = (θ1, θ2).

Finally, we consider the generalized Pareto distribution (GPD) with quantile function

as follows

Q(τ, θ) = θ1 + θ2
1− (1− τ)θ3

θ3
,

where θ = (θ1, θ2, θ3)
′ , and θ1 ∈ R, θ2 > 0 and θ3 < 0. The proof follows the same line as

for the GEVD, with fj(θ3) = [1− (1− τ)θ3 ]/θ3 for 1 ≤ j ≤ 3,

F (τ) = κ3

{
1− (1− τ)θ̃3

θ̃3
− κ1

}
− κ4

{
1− (1− τ)θ3

θ3
− κ2

}
, (S1.8)

Ḟ (τ) = κ3(1− τ)θ̃3−1 − κ4(1− τ)θ3−1,

G(τ) = (1− τ)θ̃3−θ3 and Ġ(τ) = −(θ̃3 − θ3)(1− τ)θ̃3−θ3−1.

As a result, the proof of this proposition is complete.
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S2 Proofs for low-dimensional CQR Estimation

This section gives technical proofs of Theorems 1-3 in Section 2.2. Two auxiliary lemmas

are also presented at the end of this subsection: Lemma S1 is used for the proof of Propo-

sition 1, and Lemma S2 is for that of Theorem 3. The proofs of these two auxiliary lemmas

are given in Section S4.

Proof of Theorem 1. We first prove the uniqueness of β0. Denote L̄k(β) = E[ρτk{Y −

Q(τk,θ(X,β))}]. From model (2.2), β0 is the minimizer not only of L̄(β) =
∑K

k=1 L̄k(β),

but also of L̄k(β) for all 1 ≤ k ≤ K. Suppose that β∗
0 is another minimizer of L̄(β), and

then it is also the minimizer of L̄k(β) for all 1 ≤ k ≤ K.

Note that, for u ̸= 0,

ρτ (u− v)− ρτ (u) = −vψτ (u) + (u− v)[I(0 > u > v)− I(0 < u < v)]

= −vψτ (u) +

∫ v

0

[I(u ≤ s)− I(u ≤ 0)]ds,

(S2.1)

where ψτ (u) = τ − I(u < 0); see Knight (1998). Let U (k) = Y − Q(τk,θ(X,β0)) and

V (k) = Q(τk,θ(X,β
∗
0))−Q(τk,θ(X,β0)). It holds that, for each 1 ≤ k ≤ K,

0 = L̄k(β
∗
0)− L̄k(β0) = E{(U (k) − V (k))[I(0 > U (k) > V (k))− I(0 < U (k) < V (k))]},

which implies that V (k) = Q(τk,θ(X,β
∗
0)) − Q(τk,θ(X,β0)) = 0 with probability one.

This, together with the conditions in Proposition 1 and the monotonic link functions, leads

to the fact that X′β∗
j0 = X′βj0 for all 1 ≤ j ≤ d. We then have β∗

0 = β0 since E(XX ′)

is positive definite. This accomplishes the proof of the uniqueness of β0.
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Proof of Theorem 2. Note that Ln(β) = n−1
∑K

k=1

∑n
i=1 ρτk {Yi −Q(τk,θ(Xi,β))} and

L̄(β) = E[
∑K

k=1 ρτk{Y −Q(τk,θ(X,β))}]. Denote Φ(Xi, β) =
∑K

k=1 ϕk(Xi,β), where

ϕk(Xi,β) = ρτk {Yi −Q(τk,θ(Xi,β))} − ρτk {Yi −Q(τk,θ(Xi,β0))}. It follows that

L̄(β)− L̄(β0) = E{Φ(Xi,β)} and Ln(β)− Ln(β0) =
1

n

n∑
i=1

Φ(Xi,β).

By Knight’s identity at (S2.1) and Taylor expansion, together with the condition of

Emax1≤k≤K supβ∈Θ ∥∂Q(τk,θ(X,β))/∂β∥ <∞, we can verify that

E sup
β∈Θ

|Φ(Xi,β)| ≤
K∑
k=1

E sup
β∈Θ

|Q(τk,θ(X,β))−Q(τk,θ(X,β0))|

≤
K∑
k=1

E sup
β∈Θ

∥∥∥∥∂Q(τk,θ(X,β))∂β

∥∥∥∥ sup
β∈Θ

∥β − β0∥ <∞.

Here {(Yi,X
′
i)

′
, i = 1, . . . , n} are independent and identically distributed samples, and Θ

is a compact metric space. Moreover, Φ(Xi,β) is a measurable function of Xi in Euclidean

space for each β ∈ Θ, and a continuous function of β ∈ Θ for each Xi. Then by the

uniform law of large numbers in Lemma 2.4 of Newey and McFadden (1994), we have

supβ∈Θ |n−1
∑n

i=1Φ(Xi,β)− E{Φ(Xi,β)}| = op(1), that is

sup
β∈Θ

|Ln(β)− Ln(β0)− [L̄(β)− L̄(β0)]| = op(1). (S2.2)

Note that L̄(β) is a continuous function with respect to β and, from Theorem 1, β0 is

the unique minimizer of L̄(β). As a result, for each δ > 0,

ϵ = inf
β∈Bc

δ(β0)
L̄(β)− L̄(β0) > 0,
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where Bδ(β0) = {β : ∥β − β0∥ ≤ δ} and Bc
δ(β0) is its complement set, and hence{

inf
β∈Bc

δ(β0)
Ln(β) ≤ Ln(β0)

}
⊆

{
sup

β∈Bc
δ(β0)

|Ln(β)− Ln(β0)− [L̄(β)− L̄(β0)]}| ≥ ϵ

}
.

(S2.3)

Note that

1 = P
{
Ln(β̂n) ≤ Ln(β0)

}
≤ P

{
β̂n ∈ Bδ(β0)

}
+ P

{
inf

β∈Bc
δ(β0)

Ln(β) ≤ Ln(β0)

}
which together with (S2.2) and (S2.3), implies that

P {∥β − β0∥ ≤ δ} ≥ 1− P

{
inf

β∈Bc
δ(β0)

Ln(β) ≤ Ln(β0)

}
→ 1,

as n→ ∞. This accomplishes the proof of consistency.

Proof of Theorem 3. For simplicity, we denote Q(τk,θ(Xi,β)) by Qik(β) in the whole

proof of this theorem. Let Sn(β) = Ln(β)−Ln(β0) and, from Knight’s identity at (S2.1),

we have

Sn(β) =
K∑
k=1

n∑
i=1

[ρτk {Yi −Qik(β)} − ρτk {Yi −Qik(β0)}]

=
K∑
k=1

n∑
i=1

[
{Qik(β)−Qik(β0)} {I(eik < 0)− τk}

+

∫ Qik(β)−Qik(β0)

0

{I(eik ≤ s)− I(eik ≤ 0)}ds
]
.

Note that, by Taylor expansion, Qik(β) − Qik(β0) = (β − β0)
′∂Qik(β0)/∂β + 0.5(β −

β0)
′(∂2Qik(β

∗)/∂β∂β′)(β − β0), where β∗ is a vector between β0 and β, defined by

β∗ = (1− t)β0 + tβ with some 0 < t < 1. Let u = β − β0,

q1ik(u) = u′
∂Qik(β0)

∂β
and q2ik(u) = 0.5u′

∂2Qik(β
∗)

∂β∂β′ u.
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We then decompose Sn(β) into

Sn(β) =
K∑
k=1

n∑
i=1

[
{q1ik(u) + q2ik(u)} {I(eik < 0)− τk}

+

∫ q1ik(u)+q2ik(u)

0

{I(eik ≤ s)− I(eik ≤ 0)}ds
]

= −u′Tn +Π1n(u) + Π2n(u) + Π3n(u),

where

Tn =
K∑
k=1

n∑
i=1

∂Qik(β0)

∂β
{τk − I(eik ≤ 0)},

ξik(u) =

∫ q1ik(u)

0

{I(eik ≤ s)− I(eik ≤ 0)}ds,

Π1n(u) =
K∑
k=1

n∑
i=1

[ξik(u)− E {ξik(u)|Xi}] ,

Π2n(u) =
K∑
k=1

n∑
i=1

E {ξik(u)|Xi} ,

and

Π3n(u) =
K∑
k=1

n∑
i=1

[
q2ik(u) {I(eik < 0)− τk}+

∫ q1ik(u)+q2ik(u)

q1ik(u)

{I(eik ≤ s)− I(eik ≤ 0)} ds
]
.

First, by the central limit theorem, we can show that

1√
n
Tn =

1√
n

K∑
k=1

n∑
i=1

∂Qik(β0)

∂β
{τk − I(eik ≤ 0)} → N(0,Ω0) (S2.4)

in distribution as n → ∞. Note that, from Theorem 2, ûn = β̂n − β0 = op(1) and then,
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by applying Lemma S2,

Sn(β̂n) = −û′nTn +Π1n(ûn) + Π2n(ûn) + Π3n(ûn)

= −û′nTn +
1

2
(
√
nûn)

′Ω1(
√
nûn) + op(

√
n∥ûn∥+ n∥ûn∥2)

≥ −∥
√
nûn∥

{
∥ 1√

n
Tn∥+ op(1)

}
+ n∥ûn∥2

{
λmin(Ω1)

2
+ op(1)

}
,

(S2.5)

where λmin(Ω1) is the minimum eigenvalue of Ω1. This, together with the fact that Sn(β̂n) =

Ln(β̂n)− Ln(β0) ≤ 0, implies that

√
n∥ûn∥ ≤

{
λmin(Ω1)

2
+ op(1)

}−1{∥∥∥∥ 1√
n
Tn

∥∥∥∥+ op(1)

}
= Op(1). (S2.6)

Denote u⋆n = n−1Ω−1
1 Tn and, from (S2.5) and (S2.6),

Sn(β̂n) =
1

2
(
√
nûn)

′Ω1(
√
nûn)− (

√
nûn)

′Ω1(
√
nu⋆n) + op(1).

Moreover, since
√
nu⋆n = Op(1), equation (S2.5) still holds when ûn is replaced by u⋆n, and

then

S(β0 + u⋆n) = −1

2
(
√
nu⋆n)

′Ω1(
√
nu⋆n) + op(1),

which leads to

0 ≥ S(β̂n)− S(β0 + u⋆n) =
1

2
(
√
nûn −

√
nu⋆n)

′Ω1(
√
nûn −

√
nu⋆n) + op(1)

≥ λmin(Ω1)

2
∥
√
nûn −

√
nu⋆n∥2 + op(1).

As a result, from (S2.4),

√
nûn =

√
nu⋆n + op(1) = Ω−1

1 n−1/2Tn + op(1) → N(0,Ω−1
1 Ω0Ω

−1
1 )

in distribution as n→ ∞. The proof of this theorem is complete.
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Lemma S1. Consider the function of G(τ) defined in the proof of Proposition 1 with θ3 <

θ̃3 < 1. It holds that, (1) for τ > 0.5, G(τ) is strictly decreasing, (2) for τ < 0.5, G(τ) is

strictly increasing.

Lemma S2. Suppose that the conditions of Theorem 3 hold. For any sequence of random

variables {un} with un = op(1), it holds that

(a) Π1n(un) = op(
√
n∥un∥+ n∥un∥2),

(b) Π2n(un) = 0.5(
√
nun)

′Ω1(
√
nun) + op(n∥un∥2), and

(c) Π3n(un) = op(n∥un∥2),

where Π1n(u), Π2n(u) and Π3n(u) are defined in the proof of Theorem 3.

S3 Proofs for high-dimensional regularized estimation

This subsection first conducts deterministic analysis at Lemma S3, and then stochastic

analysis at Lemmas S4 and S5. The proof of Theorem 4 follows from the deterministic

analysis in Lemma S3 and stochastic analysis in Lemmas S4 and S5. The detailed proofs

for Lemmas S4 and S5 are given in Section S4.

We first treat the observed data, {(Yi,X ′
i)

′, i = 1, ..., n}, to be deterministic. Con-

sider the loss function Ln(β) =
∑n

i=1

∑K
k=1 ρτk{Yi −Q(τk,θ(Xi,β))}, and its first-order

Taylor-series error

En(∆) = n−1Ln(β0 +∆)− n−1Ln(β0)− ⟨n−1∇Ln(β0),∆⟩,
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where ∆ ∈ Rdp, ⟨·, ·⟩ is the inner product, eik = Yi−Q(τk,θ(Xi,β0)), ψτ (u) = τ−I(u <

0), and ∇Ln(β) =
∑n

i=1

∑K
k=1 ψτ (eik)∂Q(τk,θ(X,β))/∂β is a subgradient of Ln(β).

Definition 1. Loss function Ln(·) satisfies the local restricted strong convexity (LRSC)

condition if

En(∆) ≥ α∥∆∥22 − η

√
log p

n
∥∆∥1 for all ∆ such that 0 < r ≤ ∥∆∥2 ≤ R,

where α, η > 0, and ∥ · ∥1 and ∥ · ∥2 are ℓ1 and ℓ2 norms, respectively.

The above LRSC condition has a larger tolerance term compared with that in Loh and

Wainwright (2015), which has a form of (log p/n)∥∆∥21. Similar tolerance term can also be

found in Fan et al. (2019) for high-dimensional generalized trace regression. It is ready to

establish an upper bound for estimation errors when the penalty λ is appropriately selected.

Lemma S3. Suppose that the regularizer pλ(·) satisfies Assumption 4, and loss function

Ln(·) satisfies the LRSC condition with α > µ/4 and r = 12η
√
s

(4α−µ)L

√
log p
n

. If the tuning

parameter λ satisfies that

λ ≥ 4

L
max

{
∥n−1∇L(β0)∥∞, η

√
log p

n

}
,

then the minimizer β̃n over the set of Θ = BR(β0) satisfies the error bounds

∥β̃n − β0∥2 ≤
6
√
sλL

4α− µ
and ∥β̃n − β0∥1 ≤

24sλL

4α− µ
.

Proof of Lemma S3. Denote ∆̃n = β̃n − β0, and it holds that ∥∆̃n∥2 ≤ R. Note that this

lemma naturally holds if ∥∆̃n∥2 ≤ (3
√
sλ)/(4α−µ). As a result, we only need to consider
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the case with (3
√
sλ)/(4α− µ) ≤ ∥∆̃n∥2 ≤ R, and it can be verified that

r =
12η

√
s

(4α− µ)L

√
log p

n
≤ ∥∆̃n∥2 ≤ R.

Note that n−1Ln(β̃n)+pλ(β̃n) ≤ n−1Ln(β0)+pλ(β0), and then En(∆̃n) ≤ pλ(β0)−

pλ(β̃n) − ⟨n−1∇Ln(β0),∆⟩. This, together with the LRSC condition and Holder’s in-

equality, implies that

α∥∆̃n∥22 ≤pλ(β0)− pλ(β̃n) +

(
η

√
log p

n
+ ∥n−1∇L(β0)∥∞

)
∥∆̃n∥1

≤pλ(β0)− pλ(β̃n) +
λL

2
∥∆̃n∥1

≤pλ(β0)− pλ(β̃n) +
1

2

{
pλ(β̃n − β0) +

µ

2
∥∆̃n∥22

}
≤pλ(β0)− pλ(β̃n) +

1

2

{
pλ(β̃n) + pλ(β0) +

µ

2
∥∆̃n∥22

}
,

where the last inequality follows from the subadditivity of pλ(·), while the penultimate

inequality is by Assumption 4; see also Lemma 4 in Loh and Wainwright (2015). As a

result,

0 <
(
α− µ

4

)
∥∆̃n∥22 ≤

3

2
pλ(β0)−

1

2
pλ(β̃n). (S3.1)

Moreover, from Lemma 5 in Loh and Wainwright (2015), it holds that

0 ≤ 3pλ(β0)− p(β̃n) ≤ λL(3∥(∆̃n)A∥1 − ∥(∆̃n)Ac∥1), (S3.2)

where A is the index set of the s largest elements of β̃n in magnitude. Combining (S3.1)

and (S3.2), we have(
α− µ

4

)
∥∆̃n∥22 ≤

3λL

2
∥(∆̃n)A∥1 ≤

3λL
√
s

2
∥∆̃n∥2.
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As a result,

∥∆̃n∥2 ≤
6
√
sλL

4α− µ
.

It is also implied by (S3.2) that ∥(∆̃n)Ac∥1 ≤ 3∥(∆̃n)A∥1, which leads to

∥∆̃n∥1 ≤ ∥(∆̃n)A∥1 + ∥(∆̃n)Ac∥1 ≤ 4∥(∆̃n)A∥1 ≤ 4
√
s∥∆̃n∥2.

This accomplishes the proof of this lemma.

We next conduct the stochastic analysis to verify that the “good” event and LRSC

condition hold with high probability in Lemmas S4 and S5, respectively. Their technical

proofs can be found in Section S4.

Lemma S4. If Assumption 5 holds, then

∥n−1∇L(β0)∥∞ ≤ CS

√
log p

n
(S3.3)

with probability at least 1− c1p
−c2 for some positive constants c1, c2 and CS .

Lemma S5. Suppose that Assumptions 4-6 hold. Given the sample size n ≥ c′ log p for

some c′ > 0, it holds that

En(∆) ≥ α∥∆∥22 − η

√
log p

n
∥∆∥1 for all r ≤ ∥∆∥2 ≤ R

with probability at least 1 − c1p
−c2 − K log(

√
dpr/rl)p

−c2 for any c > 1, where α =

0.5fminλ
0
min, η = KCEd2

d+1 + 2KLQCXc+ CS .

Proof of Theorem 4. The proof of this theorem follows from the deterministic analysis in

Lemma S3 and stochastic analysis in Lemmas S4, S5.
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S4 Proofs of four auxiliary lemmas

S4.1 Proofs of Lemmas S1 and S2

Proof of Lemma S1. Since G(τ) is symmetric about τ = 0.5, we only need to show (1).

Let ã = θ̃3 − 1, a = θ3 − 1. Function G(τ) can be rewritten into

G(τ) =
τ ã + (1− τ)ã

τa + (1− τ)a
,

and its derivative function has the form of Ġ(τ) = H(τ)/{τa + (1− τ)a}2, where

H(τ) = {ãτ ã−1− ã(1− τ)ã−1}{τa+(1− τ)a}−{aτa−1− a(1− τ)a−1}{τ ã+(1− τ)ã}.

Note that

H(τ) = (ã− a)τ ã+a−1 − (ã− a)(1− τ)ã+a−1︸ ︷︷ ︸
A

+

τ ã−1(1− τ)a−1(ã(1− τ) + aτ)− (1− τ)ã−1τa−1(a(1− τ) + ãτ)︸ ︷︷ ︸
B

.

Since 1− τ < τ , ã+ a− 1 < −1, ã− a > 0, we have A < 0. If we can show B < 0,

the proof is completed. Because ã, a < 0, B < 0 is equivalent to

ã(1− τ) + aτ

ãτ + a(1− τ)
>

(
1− τ

τ

)ã−a

. (S4.1)

Since τ > 0.5, ã > a, we have 0 < {(1− τ)/τ}ã−a < 1 and {ã(1− τ)+aτ}/{ãτ +a(1−

τ)} > 1. Then the equation (S4.1) holds.

Proof of Lemma S2. (a). Denote

fik(u) =
∂Qik(β0)

∂β

∫ 1

0

I(eik ≤ u′
∂Qik(β0)

∂β
s)− I(eik ≤ 0)ds,
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and Dn(u) = n−1/2
∑K

k=1

∑n
i=1 [fik(u)− E {fik(u)|Xi}]. It then holds that ξik(u) =

u′fik(u) and

Π1n(un) =
K∑
k=1

n∑
i=1

[ξik(un)− E {ξik(un)|Xi}] =
√
nu′nDn(un).

To prove (a), it is sufficient to show that, for any η > 0, sup∥u∥≤η ∥Dn(u)∥/(1 +
√
n∥u∥) =

op(1). Let D(jk)
n (u) = n−1/2

∑n
i=1

[
f
(j)
ik (u)− E

{
f
(j)
ik (u)|Xi

}]
, where f (j)

ik (u) is the jth

element of fik(u). We next use the bracketing method in Pollard (1985) to prove that

sup
∥u∥≤η

|D(jk)
n (u)|

1 +
√
n∥u∥

= op(1)

for each 1 ≤ k ≤ K and 1 ≤ j ≤ dp. Without confusion, we abbreviate fijk(un) and

D
(jk)
n (u) to fi(un) and Dn(u), respectively, in the following proof for simplicity.

Without loss of generality, we assume that ∂Qik(β0)/∂βj ≥ 0. Let F = {fi(u) :

∥u∥ ≤ η} be a collection of functions indexed by u. For any fixed ϵ > 0 and 0 < δ ≤ η,

there exists a sequence of small cubes {Bϵδ/C1(ul)}Lϵ
l=1 to cover Bδ(0), where Br(ζ) is

an open neighborhood of ζ with radius r, C1 is a constant defined later, Lϵ is an integer

less than c0ϵ−dp and c0 is a constant independent of ϵ and δ. Moreover, we assume that

Ul(δ) ⊆ Bϵδ/C1(ul), and {Ul(δ)}Lϵ
l=1 forms a partition of Bδ(0). For any u ∈ Ul(δ), we

define the bracketing functions as

f±
i (u) =

∂Qik(β0)

∂βj

∫ 1

0

𭟋ik

{
u′
∂Qik(β0)

∂β
s± ϵδ

C1

∥∥∥∥∂Qik(β0)

∂β

∥∥∥∥} ds,
where 𭟋ik(s) = I(eik ≤ s)− I(eik ≤ 0). It then holds that, for all u ∈ Ul(δ),

f−
i (ul) ≤ fi(u) ≤ f+

i (ul) (S4.2)
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and

E[f+
i (ul)− f−

i (ul)|Xi] ≤
2ϵδ

C1

sup
y,x

fY (y|x)
∥∥∥∥∂Qik(β0)

∂β

∥∥∥∥2 := ϵδ∆i

C1

, (S4.3)

where ∆i = 2supy,x fY (y|x)∥∂Qik(β0)/∂β∥2. Define the event

En =

{
1

nC1

n∑
i=1

∆i < 2

}
.

By taking C1 = E∆i and applying the law of large numbers, we have P (En) → 1 as

n→ ∞.

Put δm = 2−mη. DenoteB(m) = Bδm(0) for simplicity, and letA(m) = B(m)/B(m+

1) be the annulus. Fix ϵ > 0, and assume that {Ul(δm)}Lϵ
l=1 is a partition of B(m). We first

consider the upper tail. For any u ∈ Ul(δm), if event En holds, then

Dn(u) ≤
1√
n

n∑
i=1

[
f+
i (ul)− E

{
f−
i (ul)|Xi

}]
= D+

n (ul) +
1√
n

n∑
i=1

E
{
f+
i (ul)− f−

i (ul)|Xi

}
≤ D+

n (ul) +
√
nϵδm

{
1

nC1

n∑
i=1

∆i

}
≤ D+

n (ul) + 2
√
nϵδm,

where

D+
n (ul) =

1√
n

n∑
i=1

[
f+
i (ul)− E

{
f+
i (ul)|Xi

}]
.
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Note that

E
{
D+

n (ul)
}2 ≤ 1

n

n∑
i=1

E
{
f+
i (ul)

}2
=

1

n

n∑
i=1

E[E{(f+
i (ul))

2|Xi}]

≤ 1

n

n∑
i=1

E

[{
∂Qik(β0)

∂βj

}2 ∫ 1

0

E

[∣∣∣∣𭟋ik

{
u′l
∂Qik(β0)

∂β
s+

ϵδm
C1

∥∥∥∥∂Qik(β0)

∂β

∥∥∥∥}∣∣∣∣ ∣∣Xi

]
ds

]

≤ 1

n

n∑
i=1

E

[{
∂Qik(β0)

∂βj

}2

sup
|y|≤Cδm∥∂Qik(β0)/∂β∥

|FY (Qik(β0) + y|Xi)− FY (Qik(β0)|Xi)|

]

≤Cδmsup
y,x

fY (y|x)E
∥∥∥∥∂Qik(β0)

∂β

∥∥∥∥3 := π(δm),

where π(δm) goes to 0 as δm goes to 0. Moreover, for any u ∈ A(m), 1 +
√
n∥u∥ >

√
nδm+1 =

√
nδm/2. As a result,

P

{
sup

u∈A(m)

Dn(u)

1 +
√
n∥u∥

> 6ϵ, En

}

≤ P

{
sup

u∈A(m)

Dn(u) > 3
√
nϵδm, En

}
≤ P

{
max
1≤l≤Lϵ

sup
u∈Ul(δm)∩A(m)

Dn(u) > 3
√
nϵδm, En

}

≤ P

{
max
1≤l≤Lϵ

D+
n (ul) >

√
nϵδm, En

}
≤ Lϵ max

1≤l≤Lϵ

E {D+
n (ul)}

2

nϵ2δ2m
≤ Lϵ

π(δm)

nϵ2δ2m
.

Similarly, we can obtain the same bound for the lower tail, and hence

P

{
sup

u∈A(m)

|Dn(u)|
1 +

√
n∥u∥

> 6ϵ, En

}
≤ 2Lϵ

π(δm)

nϵ2δ2m
.

We split the set of {u : ∥u∥ ≤ η} into B(mn + 1) and B(mn + 1)c = ∪mn
m=0A(m),
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where mn satisfies n−1/2 ≤ 2−mn < 2n−1/2. It can be verified that

P

{
sup

u∈B(mn+1)c

|Dn(u)|
1 +

√
n∥u∥

> 6ϵ

}

≤
mn∑
m=0

P

{
sup

u∈A(m)

|Dn(u)|
1 +

√
n∥u∥

> 6ϵ, En

}
+ P (Ec

n) ≤
mn∑
m=0

2Lϵπ(δm)

nϵ2η2
22m + P (Ec

n)

≤ 1

n

mϵ−1∑
m=0

CLϵ

ϵ2η2
22m +

ϵ

n

mn∑
m=mϵ

22m + P (Ec
n) ≤ O(

1

n
) + 4ϵ+ P (Ec

n),

(S4.4)

where mϵ at the last line is chosen such that 2Lϵπn(δm)/(ϵ
2η2) < ϵ for all m > mϵ, since

π(δm) → 0 as k → ∞. Consider the set of B(mn + 1). For any u ∈ Ul(δmn+1), by using

a similar argument, we can show that Dn(u) ≤ D+
n (ul) + 2

√
nϵδmn+1 ≤ D+

n (ul) + 2ϵ. As

a result, due to the fact that 1 +
√
n∥u∥ > 1,

P

{
sup

u∈B(mn+1)

Dn(u)

1 +
√
n∥u∥

> 3ϵ, En

}
≤ P

{
max
1≤l≤Lϵ

D+
n (ul) > ϵ,En

}
≤ Lϵπ(δmn+1)

ϵ2
,

and the bound for the lower tail can be obtained similarly. Thus,

P

{
sup

u∈B(mn+1)

|Dn(u)|
1 +

√
n∥u∥

> 3ϵ

}
≤ 2Lϵπ(δmn+1)

ϵ2
+ P (Ec

n), (S4.5)

which, together with (S4.4) and the fact that π(δmn+1) → 0 and P (Ec
n) → 0 as n → ∞,

accomplished the proof of (a).
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(b). Note that

Π2n(u) =
K∑
k=1

n∑
i=1

E {ξik(u)|Xi}

=
K∑
k=1

n∑
i=1

∫ q1ik(u)

0

[FY (s+Qik(β0)|Xi)− FY (Qik(β0)|Xi)] ds

=
K∑
k=1

n∑
i=1

{∫ q1ik(u)

0

fY (Qik(β0)|Xi) sds

+

∫ q1ik(u)

0

[fY (ζ
∗
k |Xi)− fY (Qik(β0)|Xi)] sds

}

= (
√
nu)′K1n(

√
nu) + (

√
nu)′K2n(u)(

√
nu), (S4.6)

where ζ∗k is between Qik(β0) and s+Qik(β0),

K1n =
1

2n

K∑
k=1

n∑
i=1

fY (Qik(β0)|Xi)
∂Qik(β0)

∂β

∂Qik(β0)

∂β′ ,

and

K2n(u) =
1

n∥u∥2
K∑
k=1

n∑
i=1

∫ q1ik(u)

0

{fY (ζ∗k |Xi)− fY (Qik(β0)|Xi)}sds.

Note that

sup
∥u∥≤η

|K2n(u)| ≤ sup
∥u∥≤η

1

n∥u∥2
K∑
k=1

n∑
i=1

∫ |q1ik(u)|

−|q1ik(u)|
{|fY (ζ∗k |Xi)− fY (Qik(β0)|Xi) |}sds

≤ 1

2n

K∑
k=1

n∑
i=1

{
sup

|y|≤Cη∥∂Qik(β0)/∂β∥
|fY (y +Qik(β0)|Xi)− fY (Qik(β0)|Xi) |

}∥∥∥∥∂Qik(β0)

∂β

∥∥∥∥2 ,
which, together with Assumption 3, implies that sup∥u∥≤η |K2n(u)| = op(1), and hence

K2n(un) = op(1). Moreover, by the law of large numbers, K1n = 0.5Ω1 + op(1). Thus,

the proof of (b) is accomplished.
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(c). Note that

Π3n(u) =
K∑
k=1

n∑
i=1

[
q2ik(u){I(eik < 0)− τk}+

∫ q1ik(u)+q2ik(u)

q1ik(u)

{I(eik ≤ s)− I(eik ≤ 0)}ds

]

= (
√
nu)′

{
K∑
k=1

K3n(β
∗)

}
(
√
nu) +K4n(u),

where q1ik(u) = u′∂Qik(β0)/∂β, q2ik(u) = 0.5u′∂2Qik(β
∗
k)/(∂β∂β

′)u,

K3n(β
∗) =

1

n

n∑
i=1

∂2Qik(β
∗)

∂β∂β′ {I(eik < 0)− τk}

and

K4n(u) =
K∑
k=1

n∑
i=1

∫ q1ik(u)+q2ik(u)

q1ik(u)

𭟋ik(s)ds.

For K3n(β
∗), it holds that E[supβ∗∈Θ ∥∂2Qik(β

∗)/(∂β∂β′)∥|I(eik < 0)− τk|] < ∞,

and E[∂2Qik(β
∗)/(∂β∂β′){I(eik < 0) − τk}] = 0. Then, by applying Theorem 4.2.1 in

Amemiya (1985), we have

sup
β∗∈Θ

|K3n(β
∗)| = op(1).

On the other hand,

K4n(u)

n∥u∥2
=

1

n

K∑
k=1

n∑
i=1

∫ q2ik(u)/∥u∥2

0

𭟋ik(∥u∥2s+ q1ik(u))ds :=
1

n

K∑
k=1

n∑
i=1

Jik(u).

For any η > 0,

sup
∥u∥≤η

|Jik(u)| ≤
∫ Λ

−Λ

[
𭟋ik

{
η2Λ + η

∥∥∥∥∂Qik(β0)

∂β

∥∥∥∥}−𭟋ik

{
−η2Λ− η

∥∥∥∥∂Qik(β0)

∂β

∥∥∥∥}
]
ds,
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and

E

{
sup
∥u∥≤η

|Jik(u)|

}

≤ 2E

[
Λ

{
FY

(
η2Λ + η

∥∥∥∥∂Qik(β0)

∂β

∥∥∥∥ |Xi

)
− FY

(
−η2Λ− η

∥∥∥∥∂Qik(β0)

∂β

∥∥∥∥ |Xi

)}]
≤ 4sup

y,x
fY (y|x)η2E

(
Λ2
)
+ 4sup

y,x
fY (y|x)ηE

(
Λ

∥∥∥∥∂Qik(β0)

∂β

∥∥∥∥)→ 0,

as η → 0, where Λ = 0.5 supβ∈Θ ∥∂2Qik(β)/∂β∂β
′∥. Thus, K4n(un) = op(n∥un∥2).

This completes the proof of (c).

S4.2 Proofs for Lemmas S4 and S5

Proof of Lemma S4. Note that

n−1∇L(β0) =
1

n

n∑
i=1

K∑
k=1

ψτk(eik)
∂Q(τk,θ(Xi,β0))

∂γ
⊗Xi.

where eik = Yi −Q(τk,θ(Xi,β0)), ψτ (u) = τ − I(u < 0), and Xi = (X1i, ..., Xpi)
′. For

1 ≤ j ≤ d, denote ξj(Xi) = ∂Q(τk,θ(Xi,β0))/∂γj and, from Assumption 5, it holds

that |ξj(Xi)| ≤ LQ.

It can be verified that, conditional on Xi, ψτk(eik) is sub-Gaussian with the parameter

of 0.5, and hence, for any δ > 0,

E exp[δn−1ψτk(eik)ξj(Xi)Xli] ≤ E exp{[δn−1ξj(Xi)Xli]
2/8} ≤ exp{[δn−1LQCX ]

2/8}.
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As a result, for each t > 0, 1 ≤ j ≤ d and 1 ≤ l ≤ p,

P

(
1

n

n∑
i=1

K∑
k=1

ψτk(eik)ξj(Xi)Xli > t

)

≤ inf
δ>0

exp(−δt)
n∏

i=1

K∏
k=1

E exp[δn−1ψτk(eik)ξj(Xi)Xli]

≤ inf
δ>0

exp

(
n−1K(LQCX)

2

8
δ2 − δt

)
≤ exp

(
−2nt2

K(LQCX)2

)
,

which implies that

P
(
∥n−1∇L(β0)∥∞ ≥ t

)
≤ exp

(
−2nt2

K(LQCX)2
+ log(2dp)

)
.

By letting t = CS

√
log p/n with CS >

√
0.5KLQCX , we accomplish the proof with

c1 = 2d and c2 = 2C2
S/[K(LQCX)

2]− 1 > 0.

Proof of Lemma S5. We first show the strong convexity of L̄(β) = E[n−1Ln(β)] = E[
∑K

k=1 ρτk{Y−

Q(τk,θ(X,β))}]. Let Q∗(β) = (Q(τ1,θ(X,β)), . . . , Q(τK ,θ(X,β)))′ and, by Taylor

expansion,

E∥Q∗(β)−Q∗(β0)∥22 = E

∥∥∥∥∂Q∗(β∗)

∂β
∆

∥∥∥∥2
2

= ∆′Ω2(β
∗)∆,

where ∆ = β − β0, and β∗ is between β0 and β. Note that ∂L̄(β0)/∂β = 0 and hence,
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by Knight’s identity at (S2.1) and Assumption 6, it can be verified that

Ē(∆) := L̄(β)− L̄(β0)− ⟨∆, ∂L̄(β0)/∂β⟩ = L̄(β)− L̄(β0)

=E

(
K∑
k=1

∫ Q(τk,θ(X,β))−Q(τk,θ(X,β0))

0

{FY |X(Q(τk,θ(X,β0)) + s)− FY |X(Q(τk,θ(X,β0)))}ds

)

≥0.5fminE∥Q∗(β)−Q∗(β0)∥22 ≥ 0.5fminλ
0
min∥∆∥22

(S4.7)

uniformly for {∆ ∈ Rdp : ∥∆∥2 ≤ R}.

For 1 ≤ k ≤ K, denote L(k)
n (β) =

∑n
i=1 ρτk{Yi − Q(τk,θ(Xi,β))} and L̄k(β) =

E[n−1L
(k)
n (β)] = E[ρτk{Y − Q(τk,θ(X,β))}]. Note that Ln(β) =

∑K
k=1 L

(k)
n (β) and

L̄(β) =
∑K

k=1 L̄k(β). Let E∗
k (∆) = |n−1L

(k)
n (β) − n−1L

(k)
n (β0) − {L̄k(β) − L̄k(β0)}|,

and we next prove that, uniformly for r ≤ ∥∆∥2 ≤ R,

E∗
k (∆) ≤ CE

√
log p

n
∥∆∥1, (S4.8)

with probability at least 1 − log(
√
dpr/rl)p

−c2 for any c > 1, where CE = CEd2
d+1 +

2LQCXc. As in Theorem 9.34 in Wainwright (2019), we use the peeling argument, which

is a common strategy in empirical process theory.

Tail bound for fixed radii: Define a set C(r1) :=
{
∆ ∈ Rdp : ∥∆∥1 ≤ r1

}
for a fixed radii

r1 > 0, and a random variable An(r1) = r−1
1 supβ∈C(r1) Ek(∆). We next show that, for any

t > 0,

An(r1) ≤ CEd2
d

√
log p

n
+ LQCX

√
t

n
. (S4.9)

with probability at least 1− e−t.
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For 1 ≤ i ≤ n, denote Wi = (Yi,X
′
i)

′. Note that random variable A(r1) has a form

of f(W1, . . . ,Wn), and it is guaranteed by Assumption 5 that

|f(W1, . . . ,Wi, . . . ,Wn)− f(W1, . . . ,Wi′, . . . ,Wn)| ≤ n−1LQCX ,

i.e., if we replace Wi by Wi′ , while keep other Wj fixed, then A(r1) changes by at most

n−1LQCX . As a result, by the bounded differences inequality and for any t > 0,

An(r1) ≤ E[An(r1)] + LQCX

√
t

n
(S4.10)

with probability at least 1− e−t.

In addition, it is implied by Assumption 5 that, for all β, β̃ ∈ Rdp,

|ρτk {Yi −Q(τk,θ(Xi,β))} − ρτk{Yi −Q(τk,θ(Xi, β̃))}| ≤ LQ

d∑
l=1

|X ′
i(βl − β̃l)|,

which leads to

E[An(r1)] ≤
2

nr1
E

(
sup

β∈C(r1)

∣∣∣∣∣
n∑

i=1

ϵi [ρτk{Yi −Q(τk,θ(Xi,β))} − ρτk{Yi −Q(τk,θ(Xi,β0))}]

∣∣∣∣∣
)

≤C2
d

nr1
E

(
sup

β∈C(r1)

∣∣∣∣∣
d∑

l=1

n∑
i=1

Vil(X
′
i(βl − β0l))

∣∣∣∣∣
)

≤ C2d

n
E

(
d∑

l=1

∥∥∥∥∥
n∑

i=1

VilXi

∥∥∥∥∥
∞

)

≤Cd2
d

n
E

(∥∥∥∥∥
n∑

i=1

Vi1Xi

∥∥∥∥∥
∞

)
≤ CEd2

d

√
log p

n
,

(S4.11)

where {ϵi} and {Vil} are i.i.d. Rademacher and standard Gaussian random variables, re-

spectively, the first inequality is due to the symmetrization theorem (Loh and Wainwright,

2015, Lemma 12), the second one is by the multivariate contraction theorem (van de Geer,

2016, Theorem 16.3), the third one is due to the fact |X ′β| ≤ ∥X∥∞∥β∥1, and the last
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one is by Lemma 16 of Loh and Wainwright (2015) given the sample size of n ≥ c′ log p

for some c′ > 0. The upper bound at (S4.9) holds by combining (S4.10) and (S4.11).

Extension to uniform radii via peeling: Define a sequence of sets Θl := {∆ ∈ Rdp :

2l−1r ≤ ∥∆∥1 ≤ 2lr} with 1 ≤ l ≤ N = log(
√
dpR/r). It can be verified that {∆ ∈ Rdp :

r ≤ ∥∆∥2 ≤ R} ⊆ {∆ ∈ Rdp : r ≤ ∥∆∥1 ≤
√
dpR} ⊆ ∪N

l=1Θl. As a result,

P

(
E∗
k (∆) ≥ CE

√
log p

n
∥∆∥1,∆ ∈ ∪N

l=1Θl

)

≤
N∑
l=1

P

(
E∗
k (∆) ≥ 2l−1rCE

√
log p

n
,∆ ∈ Θl

)

=
N∑
l=1

P

(
E∗
k (∆) ≥ (CEd2

d)(2kr)

√
log p

n
+ LQCX(2

kr)

√
c2 log p

n
,∆ ∈ Θl

)

≤
N∑
l=1

P

(
A(2lr) ≥ CEd2

d

√
log p

n
+ LQCX

√
c2 log p

n

)
,

where CE = CEd2
d+1 + 2LQCXc. By applying (S4.9), it holds that

P

(
E∗
k (∆) ≥ CE

√
log p

n
∥∆∥1, r ≤ ∥∆∥2 ≤ R

)
≤

N∑
k=1

e−c2 log p = log(
√
dpR/r)p−c2 ,

i.e. (S4.8) holds.

Finally, from (S4.7), (S4.8) and Lemma S4,

En(∆) ≥ Ē(∆)−
K∑
k=1

E∗
k (∆)− ∥n−1∇L(β0)∥∞∥∆∥1

≥ 0.5fminλ
0
min∥∆∥22 − (KCE + CS)

√
log p

n
∥∆∥1

uniformly for r ≤ ∥∆∥2 ≤ R with probability at least 1 − c1p
−c2 −K log(

√
dpr/rl)p

−c2

for any c > 1. This accomplishes the proof.
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S5 Additional simulation studies

S5.1 QIR using GEVD and GPD as quantile functions

This subsection provides additional results for the DGPs of generalized extreme value

distribution (GEVD) and generalized Pareto distribution (GPD) as follows

GEVD : Yi = Q(Ui, θ(Xi, β)) = θ1(Xi, β) + θ2(Xi, β)
1− {− log(τ)}θ3(Xi,β)

θ3(Xi, β)
,

GPD : Yi = Q(Ui, θ(Xi, β)) = θ1(Xi, β) + θ2(Xi, β)
1− (1− τ)θ3(Xi,β)

θ3(Xi, β)
, (S5.12)

where {Ui} are independent and follow Uniform(0, 1), Xi = (1, Xi1, Xi2)
′, {(Xi1, Xi2)

′}

is an i.i.d. sequence with 2-dimensional standard normality. The true parameter vector is

β0 = (β′
01,β

′
02,β

′
03)

′, and we set the location parameters β01 = (1, 0.5,−1)′, the scale

parameters β02 = (1, 0.5,−1)′ and the tail parameters β03 = (1,−1, 1)′. For the tail

index θ3(Xi,β), before generating the data, we first scale each covariate into the range of

[−0.5, 0.5] such that a relatively stable sample can be generated. In addition, g1, g2 and g3

are the inverse of link functions. As in Section 4.1 of the main file, we choose g1(x) =

x, g2(x) = softplus(x) and g3(x) = 1− softplus(x), where softplus(x) = log(1 + exp(x))

is a smoothed version of x+ = max{0, x} and hence the name. We consider three sample

sizes of n = 500, 1000 and 2000, and there are 500 replications for each sample size.

For the data generated by the DGP of GEVD or GPD, we fit them using the quan-

tile index regression (QIR) with the same quantile function and the same link functions.

The algorithm for CQR estimation in Section 3 is applied with K = 10 and τk’s being
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equally spaced over [τL, τU ]. We consider three quantile ranges of (τL, τU) = (0.5, 0.99),

(0.7, 0.99) and (0.9, 0.99) to evaluate the estimation efficiency. Figure S.1 gives the box-

plots of three fitted location parameters β̂1n = (β̂1,1, β̂1,2, β̂1,3)
′ for the DGP of GEVD

and GPD. It can be seen that both bias and standard deviation decrease as the sample size

increase. Moreover, when τL decreases, the quantile levels with richer observations will

be used for the estimation and, as expected, both bias and standard deviation will decrease.

Boxplots for fitted scale and tail parameters show a similar pattern and hence are omitted

to save the space. These findings are the same as for the Tukey lambda distribution.

We next evaluate the prediction performance of Q(τ ∗,θ(X, β̂n)) at two interesting

quantile levels of τ ∗ = 0.991 and 0.995. As in Section 4.1 of the main file, we consider

two values of covariates, X = (1, 0.1,−0.2)′ and (1, 0, 0)′. Table S.1 presents both the

sample mean and standard deviation of prediction errors in terms of squared loss (PESs)

across 500 replications for the DGP of GEVD and GPD. As for the DGP of Tukey Lambda

distribution in (4.5), the prediction is improved as the sample size becomes larger, and the

prediction is more accurate at the 99.1-th quantile level for almost all cases.

We also conduct simulation experiments to evaluate the finite-sample performance of

the high-dimensional regularized estimation at (2.4). For the DGPs in (S5.12), we consider

p = 50, and the true parameter vectors are preserved as in Section 4.2. The sample size

is chosen such that n = ⌊cs log p⌋ with c = 10, 30, and 50, where ⌊x⌋ refers to the

largest integer smaller than or equal to x. All other settings are the same as in the low-
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dimensional case. The algorithm for regularized estimation in Section 3 is used to search

for the estimators, and we generate an independent validation set of size 5n to select tuning

parameter λ by minimizing the composite quantile check loss; see also Wang et al. (2012).

To evaluate the prediction performance of the regularized estimation, Table S.2 lists

mean square errors of the predicted conditional quantiles Q(τ ∗,θ(X, β̃n)), as well as the

sample standard deviations of prediction errors in squared loss, with p = 50 for the DGP

of GEVD and GPD, respectively. As for the DGP of Tukey Lambda distribution in Section

4.2, larger sample size leads to much smaller mean square errors. Moreover, when τL

is larger, the prediction also becomes worse, and it may be due to the lower estimation

efficiency. Finally, the prediction at τ ∗ = 0.991 is more accurate for almost all cases.

To evaluate the performance of variable selection for regularized estimation, Table S.3

reports the selecting results with p = 50 and n = ⌊cs log p⌋ for c = 10, 30 and 50. When

τL is larger, PAI decreases, and it indicates the increasing of selection accuracy. In addition,

performance improves when sample size gets larger. These findings are the same as for the

Tukey lambda distribution.

Overall, it can be seen that the simulation findings are the same for three DGPs of

Tukey lambda distribution, GEVD and GPD in estimation, quantile prediction and variable

selection. Therefore, in the following we focus on the DGP of Tukey lambda distribution.
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S5.2 Sensitivity analysis to the selection of K

We conduct sensitivity analysis of the CQR estimation to the selection of K, using the

DGP of Tukey lambda distribution in (4.5) with the same settings. The algorithm for CQR

estimation in Section 3 is applied with K = 5, 10 and 15, and τk’s being equally spaced

over the quantile range [τL, τU ] = [0.5, 0.99].

Figure S.2 gives the boxplots of three fitted location parameters β̂1n = (β̂1,1, β̂1,2, β̂1,3)
′

for K = 5, 10 and 15. It can be seen that the results of CQR estimator β̂n for K = 5, 10

and 15 are similar, indicating that the performance of β̂n is insensitive to the choice of K

given a fixed interval [τL, τU ]. Boxplots for fitted scale and tail parameters show a similar

pattern and hence are omitted. Hence, for the selection of τks, it is sensitive for different

quantile ranges [τL, τU ], while there is not much difference among varying values of K.

We next evaluate the prediction performance of Q(τ ∗,θ(X, β̂n)) at two interesting

quantile levels of τ ∗ = 0.991 and 0.995. As in Section 4.1 of the main file, we consider

two values of covariates, X = (1, 0.1,−0.2)′ and (1, 0, 0)′. Table S.4 presents both the

sample mean and standard deviation of PESs across 500 replications for K = 5, 10 and

15. It is clear that, the prediction performance of CQR estimation is also insensitive to the

choice of K given a fixed interval [τL, τU ].
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S5.3 Sensitivity analysis to the choice of link functions

To assess the robustness of our model to misspecifications due to the link functions, we

generate data using alternative link functions that differ from those used in estimation.

Actually, different choices of link functions are related to model mis-specification. Note

that it is meaningless to evaluate the influence of model mis-specification on the estimator

directly, since the true values of parameters under mis-specification are probably unde-

fined. Alternatively, we evaluate the influence of mis-specification due to link functions on

conditional quantile prediction.

Specifically, the Tukey lambda distribution is chosen as the quantile function for both

the DGP and QIR estimation, and the settings for covariates and true parameter vector

are preserved as for DGP (4.5) in the main file. To assess the sensitivity of QIR under

different link functions, we examine three mis-specified scenarios for the location, scale

and tail indices θj’s in Cases (i)–(iii), respectively. In each case, data are generated from

a specified DGP, and the model is fitted using QIR. Each index θj is linked to covariates

through a link function g−1
j (x). The default functions used in QIR estimation are as follows

g1(x) = x, g2(x) = softplus(x), g3(x) = 1− softplus(x).

The three cases for DGP are detailed as follows:

• Case (i): Misspecified link for θ1. We use the DGP with

g1(x) = x+ dLeakyReLU(x, 0.8),
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while the g2 and g3 remain the same as in estimation. Here, d ≥ 0 is the departure

parameter with a larger value indicating greater deviation from the true link function,

and LeakyReLU(x, 0.8) = xI(x > 0)+0.8xI(x < 0). Hence, only g1 is misspecified

for d > 0 in this case.

• Case (ii): Misspecified link for θ2. We use the DGP with

g2(x) = softplus(x) + dReLU(x),

while g1 and g3 match the estimation model. Here, ReLU(x) = xI(x > 0). Hence,

only g2 is misspecified for d > 0 in this case.

• Case (iii): Misspecified link for θ3. We use the DGP with

g3(x) = 1− softplus(x) + d[1− ReLU(x)],

while the g1 and g2 align with the estimation model. Hence, only g3 is mis-specified

for d > 0 in this case.

The algorithm for CQR estimation in Section 3 is applied with K = 10 and τk’s be-

ing equally spaced over three quantile ranges of (τL, τU) = (0.5, 0.99), (0.7, 0.99) and

(0.9, 0.99). We consider three departure levels of d = 0, 0.5 or 1, and d = 0 corresponds

to the correctly specified case. Table S.5 reports both the mean absolute errors and mean

square errors across 500 replications for the predicted conditional quantiles at τ ∗ = 0.991

and X = (1, 0.1,−0.2)
′ . It can be seen that the misspecification due to link functions
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makes the prediction less accurate, especially when the departure level increases. More-

over, the errors due to the misspecification in location index θ1 are the smallest while are

the largest in the tail index θ3. This indicates that the prediction is not sensitive to the

departure of location index θ1, while it is most sensitive to the departure of tail index θ3.

In addition, the errors due to the departure of tail index θ3 decrease as the quantile range

decreases. As a result, when the model is misspecified in tail index, we may choose the

interval [τL, τU ] narrow and closer to the target quantile level τ ∗ such that a better result

can be achieved.

S5.4 Prediction comparison with other methods

In our simulation studies, we have compared the performance of linear quantile regres-

sion (LQR), extremal quantile regression (EQR), degenerated QIR (dQIR), and QIR across

three DGPs. In each case, the covariates are kept consistent with those used in DGP (4.5)

of the main paper, and the response variable follows a Tukey lambda distribution with

n = 2000. The three DGPs are described as follows:

• DGP1: Location index θ1 = X′β1, scale index θ2 = X′β2 and tail index θ3 = −0.3,

where β1 = (1, 0.5,−1)′ and β2 = (3, 0.3, 0.3)′. This setup corresponds to the EQR

and dQIR models.

• DGP2: Location index θ1 = X′β1, scale index θ2 = softplus(X′β2) and tail index

θ3 = −0.3, where β1 = β2 = (1, 0.5,−1)′. This represents a simplified version of
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the QIR model with a constant tail index and a nonlinear link function for the scale

index.

• DGP3: Location index θ1 = X′β1, scale index θ2 = softplus(X′β2) and tail index

θ3 = 1− softplus(X′β3), where β1 = β2 = (1, 0.5,−1)′ and β3 = (1,−1, 1)′. This

setting corresponds to our proposed QIR model in general situations.

We implement the CQR estimation algorithm in Section 3 for both QIR and dQIR

using K = 10 quantile levels, and τk’s being equally spaced over three quantile ranges of

(τL, τU) = (0.5, 0.99), (0.7, 0.99) and (0.9, 0.99). For the QIR, we set g1(x) = x, g2(x) =

softplus(x) and g3(x) = 1 − softplus(x) in the CQR estimation algorithm. For the dQIR,

we set g1(x) = g2(x) = x and θ3 to be an unknown parameter in the CQR estimation

algorithm. For the LQR, we use the rq function in R package quantreg developed by Roger

Koenker. For the EQR, we use the Twostage function in R package EXQR developed by

Wang et al. (2012).

Figure S.3 presents boxplots of the prediction bias for conditional quantiles at τ =

0.991, evaluated at X = (1, 0.1,−0.2)
′ and X = (1, 0, 0)

′ , based on 500 replications.

The results show that our proposed QIR method yields unbiased predictions across all

settings, as each DGP is a submodel of the general QIR framework. However, for DGP1

and DGP2, the QIR exhibits higher prediction variance due to the inclusion of redundant

parameters. More importantly, when the tail index varies with covariates, as in DGP3,

alternative methods LQR, EQR and dQIR tend to introduce substantial bias as they omit
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parameters.

S6 Additional details for the empirical analysis

In Section 5 of the main paper, we briefly introduce the three methods for comparison with

QIR: (i.) linear quantile regression (LQR) at the level of τ ∗ with ℓ1 penalty in Belloni

et al. (2019), (ii.) extremal quantile regression (EQR) in (Wang et al., 2012) adapted to

high-dimensional data, and (iii.) degenerated QIR (dQIR) with identity link functions for

location and scale indices and a constant tail index. Below we provide further details for

these three methods.

• LQR: For a given target quantile level such as τ ∗ = 0.991 or 0.995, we fit a high-

dimensional LQR with Lasso penalty to obtain the Lasso-penalized estimator

(α̌(τ ∗), β̌(τ ∗)) = argmin
α,β

[
1

n

n∑
i=1

ρτ∗(Yi − α−X′
iβ) + λ

d∑
j=1

|βj|

]
, (S6.13)

where α is the intercept, β = (β1, . . . , βd)
′ is the slope vector, and the tuning param-

eter λ > 0 is selected by minimizing the composite check loss in the testing set; see

further details in the last paragraph of Section 5. Then the τ ∗th conditional quantile

prediction is Q̌Y (τ
∗ | X) = α̌(τ ∗) +X′β̌(τ ∗).

• EQR: The EQR first estimates the intermediate conditional quantiles using LQR, and

then extrapolates these estimates to the high tails based on the estimated tail index.

Specifically, the prediction involves the following two steps:
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First, for K̃ = ⌊4.5n1/3
train⌋ = 38 equally spaced quantile levels τ1 < τ2 < · · · < τK̃ in

the range [0.96, 0.99], we fit Lasso-penalized LQR to calculate the Lasso-penalized

estimator at (S6.13). Then the τjth conditional quantile prediction is given by q̌j =

α̌(τj) +X ′β̌(τj), for j = 1, . . . , K̃.

Second, the tail index parameter γ̂ is estimated by γ̂ = 1

K̃−1

∑K̃
j=2 log

q̌j
q̌1

; see also

equation (2.12) in Wang et al. (2012). Then the extrapolated prediction at a more

extreme quantile level τ ∗ = 0.991 or 0.995 is given by

Q̆Y (τ
∗ | X) =

(
1− τ1
1− τ ∗

)γ̂

q̌1.

• dQIR: To further bridge the connection between EQR and our QIR, we consider a

simplified version of QIR, referred to the degenerated QIR (dQIR), which chooses

identity link functions for location and scale indices and a constant tail index. The

algorithm for CQR estimation in Section 3 is applied withK = 10, τk’s being equally

spaced over [τL, τU ], and g1(x) = g2(x) = x and θ3 set to be an unknown parameter.
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Figure S.1: Boxplots for fitted location parameters of β̂1,1 (left panel), β̂1,2 (middle panel), and β̂1,3 (right

panel) under the DGP of GEVD (upper panel) and GPD (lower panel). Sample size is n = 500, 1000 or

2000, and the lower bound of quantile range [τL, τU ] is τL = 0.5, 0.7 or 0.9.
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Figure S.2: Boxplots for fitted location parameters of β̂1,1 (left panel), β̂1,2 (middle panel), and β̂1,3 (right

panel). Sample size is n = 500, 1000 or 2000, and the quantile range [0.5, 0.99] and the number of levels

K = 5, 10 or 15 are considered for estimation.

Table S.1: Mean square errors of the predicted conditonal quantile Q(τ∗,θ(X, β̂n)) at the level of τ∗ =

0.991, 0.995 under the DGP of GEVD or GPD. The values in bracket refer to the corresponding sample

standard deviations of prediction errors in squared loss. We denote X = (1, 0.1,−0.2)
′

as X(1) and X =

(1, 0, 0)
′

as X(2).

GEVD GPD

n [τL, τU ] X(1) X(2) X(1) X(2)

τ∗ 0.991 0.995 0.991 0.995 0.991 0.995 0.991 0.995

500 [0.5, 0.99] 1.81(3.40) 3.33(6.90) 5.79(10.69) 13.28(27.15) 1.76(3.38) 3.25(6.80) 5.71(10.90) 13.21(28.37)

[0.7, 0.99] 1.85(3.50) 3.40(6.93) 5.25(9.44) 12.11(25.09) 1.85(3.49) 3.42(6.96) 5.49(11.27) 12.90(31.04)

[0.9, 0.99] 2.88(4.47) 5.32(8.76) 6.98(12.67) 16.15(33.30) 2.85(4.53) 5.31(9.04) 6.68(11.04) 15.47(28.87)

1000 [0.5, 0.99] 0.94(1.75) 1.73(3.38) 3.01(4.85) 6.92(12.01) 0.97(1.85) 1.80(3.64) 2.92(4.61) 6.77(11.52)

[0.7, 0.99] 1.18(3.29) 2.15(6.10) 2.91(4.42) 6.69(10.94) 1.23(3.33) 2.26(6.24) 2.90(4.28) 6.68(10.44)

[0.9, 0.99] 1.73(3.19) 3.13(5.66) 3.57(4.78) 8.17(11.66) 1.74(3.27) 3.16(5.81) 3.52(4.71) 8.10(11.54)

2000 [0.5, 0.99] 0.80(1.77) 1.49(3.45) 1.62(2.47) 3.74(6.05) 0.83(1.80) 1.55(3.52) 1.58(2.39) 3.69(5.92)

[0.7, 0.99] 1.00(2.18) 1.89(4.41) 1.61(2.85) 3.77(7.68) 1.01(2.25) 1.92(4.55) 1.59(2.58) 3.68(6.64)

[0.9, 0.99] 1.48(3.02) 2.81(6.15) 1.97(2.98) 4.50(7.06) 1.48(3.04) 2.81(6.20) 1.96(2.96) 4.49(7.06)
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Table S.2: Mean square errors of the predicted conditonal quantile Q(τ∗,θ(X, β̂n)) at the level of τ∗ =

0.991, 0.995 under the DGP of GEVD or GPD with p = 50 and n = ⌊ck log p⌋. The values in bracket

refer to the corresponding sample standard deviations of prediction errors in squared loss. We denote X =

(1, 0.1,−0.2, 0, · · · , 0)′ as X(1) and X = (1, 0, 0, 0, · · · , 0)′ as X(2).

GEVD GPD

c [τL, τU ] X(1) X(2) X(1) X(2)

τ∗ 0.991 0.995 0.991 0.995 0.991 0.995 0.991 0.995

10 [0.5, 0.99] 1.65(2.98) 2.87(5.34) 5.92(15.68) 12.88(38.59) 1.81(3.07) 3.23(5.62) 6.33(11.08) 13.85(25.29)

[0.7, 0.99] 1.63(2.92) 2.81(5.18) 5.42(9.90) 11.52(22.06) 1.76(3.04) 3.17(5.60) 5.98(11.06) 13.20(25.92)

[0.9, 0.99] 2.40(6.51) 4.40(12.96) 6.33(12.00) 13.69(27.78) 2.23(5.10) 4.06(9.91) 5.87(10.71) 12.72(24.76)

30 [0.5, 0.99] 0.64(0.83) 1.12(1.45) 2.18(3.06) 4.73(6.77) 0.62(0.80) 1.10(1.42) 2.17(3.15) 4.74(7.20)

[0.7, 0.99] 0.66(0.87) 1.17(1.55) 2.14(2.84) 4.66(6.26) 0.66(0.90) 1.20(1.65) 2.19(3.08) 4.80(6.89)

[0.9, 0.99] 0.85(1.28) 1.55(2.39) 2.52(3.49) 5.62(8.02) 0.83(1.28) 1.53(2.44) 2.47(3.36) 5.52(7.73)

50 [0.5, 0.99] 0.37(0.60) 0.64(1.09) 1.22(1.80) 2.63(4.02) 0.35(0.51) 0.62(0.93) 1.19(1.72) 2.56(3.82)

[0.7, 0.99] 0.39(0.61) 0.70(1.12) 1.22(1.84) 2.66(4.13) 0.40(0.62) 0.72(1.16) 1.22(1.81) 2.66(4.10)

[0.9, 0.99] 0.55(1.10) 1.01(2.11) 1.48(2.45) 3.32(5.65) 0.58(1.53) 1.08(2.99) 1.42(2.30) 3.20(5.37)
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Table S.3: Selection results for regularized estimation under the DGP of GEVD or GPD with p = 50 and

n = ⌊ck log p⌋ for c = 10, 30 and 50. The values in brackets are the corresponding standard deviations.

GEVD GPD

[τL, τU ] c size PAI FP FN size PAI FP FN

[0.5, 0.99] 10 8.98(0.14) 98.0 0.00(0.00) 0.22(1.56) 9.00(0.16) 97.8 0.01(0.09) 0.13(1.21)

30 9.00(0.04) 99.8 0.00(0.00) 0.02(0.50) 9.01(0.08) 99.4 0.00(0.05) 0.00(0.00)

50 9.00(0.00) 100.0 0.00(0.00) 0.00(0.00) 9.00(0.00) 100.0 0.00(0.00) 0.00(0.00)

[0.7, 0.99] 10 8.89(0.31) 89.6 0.00(0.00) 1.18(3.50) 9.07(0.49) 85.2 0.09(0.31) 0.60(2.51)

30 9.00(0.06) 99.6 0.00(0.00) 0.04(0.70) 9.01(0.11) 99.4 0.01(0.08) 0.00(0.00)

50 9.00(0.00) 100.0 0.00(0.00) 0.00(0.00) 9.00(0.00) 100.0 0.00(0.00) 0.00(0.00)

[0.9, 0.99] 10 8.69(0.62) 71.8 0.02(0.14) 3.67(6.76) 8.70(0.59) 72.0 0.02(0.14) 3.56(6.42)

30 8.92(0.33) 90.4 0.01(0.11) 1.04(3.39) 8.91(0.36) 89.2 0.01(0.11) 1.20(3.73)

50 8.99(0.18) 96.6 0.01(0.08) 0.24(1.63) 8.99(0.20) 96.0 0.01(0.08) 0.29(1.77)
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Table S.4: Mean square errors of the predicted conditonal quantile Q(τ∗,θ(X, β̂n)) at the level of τ∗ =

0.991 or 0.995, where the quantile range [0.5, 0.99] and the number of levels K = 5, 10 or 15 are considered

for estimation. The values in bracket refer to the corresponding sample standard deviations of prediction

errors in squared loss.

X = (1, 0.1,−0.2)
′

X = (1, 0, 0)
′

n K 0.991 0.995 0.991 0.995

True 10.36 11.84 15.14 18.85

500 5 1.84(3.49) 3.36(6.82) 7.09(13.79) 16.07(33.84)

10 1.79(3.29) 3.32(6.65) 5.98(11.50) 14.00(30.47)

15 2.06(4.10) 3.85(8.27) 5.67(10.75) 13.42(29.11)

1000 5 0.87(1.45) 1.60(2.83) 3.56(7.05) 8.15(17.26)

10 0.90(1.47) 1.67(2.79) 3.09(5.02) 7.23(12.65)

15 1.10(1.97) 2.04(3.72) 2.92(4.17) 6.78(10.12)

2000 5 0.68(1.22) 1.26(2.37) 1.85(2.93) 4.29 (7.26)

10 0.86(2.06) 1.63(4.01) 1.66(2.44) 3.89(6.04)

15 0.98(2.15) 1.86(4.32) 1.65(2.56) 3.87(6.34)
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Table S.5: Mean absolute errors of the predicted conditonal quantile Q(τ∗,θ(X, β̂n)) at the level of τ∗ =

0.991 and X = (1, 0.1,−0.2)
′
, under the DGP of Tukey lambda distribution with link functions deviate

from the working model with departure levels of d = 0, 0.5 or 1. Baseline corresponds to d = 0, and the

values in bracket refer to the corresponding mean square errors of prediction errors.

n [τL, τU ] Baseline θ1(d=0.5) θ1(d=1) θ2(d=0.5) θ2(d=1) θ3(d=0.5) θ3(d=1)

500 [0.5, 0.99] 1.03(1.79) 1.03(1.78) 1.04(1.85) 1.81(5.64) 2.83(14.05) 1.82(4.64) 3.42(16.20)

[0.7, 0.99] 1.08(1.99) 1.15(2.23) 1.22(2.47) 1.89(5.98) 2.82(13.10) 1.58(3.62) 2.88(11.33)

[0.9, 0.99] 1.34(2.94) 1.41(3.22) 1.49(3.67) 2.13(7.66) 3.08(15.86) 1.29(2.61) 2.33(7.42)

1000 [0.5, 0.99] 0.74(0.90) 0.75(0.92) 0.78(0.98) 1.36(2.95) 2.11(7.11) 1.58(3.20) 2.84(10.08)

[0.7, 0.99] 0.85(1.22) 0.89(1.37) 0.97(1.55) 1.54(3.81) 2.16(7.35) 1.35(2.43) 2.48(7.54)

[0.9, 0.99] 1.04(1.79) 1.13(2.06) 1.18(2.23) 1.82(5.26) 2.52(9.94) 1.05(1.66) 2.05(5.36)

2000 [0.5, 0.99] 0.67(0.86) 0.68(0.83) 0.70(0.86) 1.21(2.51) 1.85(5.90) 1.33(2.38) 2.40(8.61)

[0.7, 0.99] 0.77(1.07) 0.81(1.17) 0.89(1.33) 1.33(2.89) 1.88(5.74) 1.23(2.05) 2.27(6.49)

[0.9, 0.99] 0.95(1.56) 1.01(1.76) 1.08(2.00) 1.61(4.26) 2.20(7.88) 0.95(1.39) 1.76(3.86)
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Figure S.3: Boxplots of prediction bias from QIR, dQIR, EQR, and LQR for τ∗ = 0.991 at two points, X =

(1, 0.1,−0.2) (first point) and X = (1, 0, 0) (second point). The first, second, and third rows correspond to

DGP1, DGP2, and DGP3, respectively.
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