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S1. Proofs of the theoretical results

Proof of Lemma 1. P, is an s x s column-orthogonal matrix with the first
column being 1, and B, = (15, (05_1, Is,l)T) . Then, the matrices P,, B; !,

and B; P, can be written as follows:

1 af 1 o~ , 1 af

1, Ay -1, I 0,1 Ay
where both a; and ay are (s — 1) x 1 column vectors, and both A; and A,
are (s — 1) x (s — 1) matrices. Let B;'P, = (uf, ..., ul)T, where each u;
is a 1 x s row vector for 7 = 1,...,s. The first element of u; is 1, while the
first elements of us, . . ., u, are 0. According to § = (B;'P,®---®@ B;'P,),
the elements of § can be expressed as a linear combination of the elements

in E . Thus,

Oireiy = (g, ® - @1, )B = (ujy @+ @ 5,)(Boos -5 Bs1s—1)

where {iy,...,i,} € {0,...,s =1}, and {j1,...,7.} C {1,...,s}. 3 is an
s"™ x 1 vector with components (y..q,...,s_1..s—1 in Yates order. When
more than one element from {ji,...,j,} is in {2,...,s — 1, s}, we have
[11...9,] > 1, where [ij...7,] is the number of non-zero elements in
{i1,....in}. It can be verified that any 6;, ;. in 8, where [i1,...,i,] > 1,

can be expressed as a linear combination of elements from E with the co-
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efficients of the main effects in B equal to 0. Thus, if only the main effects
are active under OP (i.e. §;, ;, = 0 for any [iy...4,] > 1), then 6;, ; =0
for any [iy...7,] > 1. Therefore, if only the main effects are active under
OP, then only the main effects are active under BP.

By a similar argument, we can obtain that if only the main effects are

active under BP, then only the main effects are active under OP. [
To prove Theorem 1, we first introduce the following lemmas.

Lemma S1. Let A be an n X n positive definite matriz, B be an m X m
positive definite matriz, and u be an n x m matriz. Then A > A —u' Bu,

where Cy > Cy if Cy — Cy is a non-negative definite matrix.

Proof. Note that A—(A—u” Bu) = u’ Bu, and for all z € R™, 27 (u" Bu)z =
(uz)" B(uz) > 0. By the definition of the non-negative definite matrix, we

know that v/ Bu > 0. Thus A > A — u” Bu. O

Lemma S2. Let A and B be n x n symmetric matrices such that A > B,

then tr(A~1) < tr(B71).

Proof. Let \(A) > -+ > X\, (A) and A\ (B) > --- > A\, (B) be the eigenval-
ues of A and B, respectively. Since A > B, we have \;(A4) > \;(B), and

thus A\;(A™1) < \;(B71) for j = 1,...,n. Therefore tr(A™") < tr(B~1). O



Proof of Theorem 1. First, we prove that orthogonal arrays are Dg-optimal
among all designs. From Lemma 1, we have W = XP~! where X =
(1y,X1),and P = ((1, 0%;71)71)7“, (p, P)T). Here p is an (s —1)n x 1 vector,
O(s—1)n is an (s — 1)n x 1 all zero vector, and P, = diag(L,...,L) with

L=A; —1, a7, where A; and a; are as defined in Lemma 1. Then

(WTW)fl — [<P71)TXTXP71]71
= P(X"X)"'PT

1 p’ + 1{;_1)nX1 1 og;_m

O(S—I)n Pl XlTl(s—l)n (XlTXI)_l p PlT

* *

* Pl(XiTXl)_IPiT

where * denotes terms that do not impact the proof. Thus, we have
(WIW) 2y _yy = P(XTX0) 7' P, and

1 IXTXy|  |XTX
|(WIW) (1,-p] = - = = ,
T w2 L IPTRL LT

where
LTL = (Al — 13_1a,{)T(A1 — 15_1(1{)
= A,{Al — AlTls,laiF — G115T_1A1 + Gllz_l]_s,la?

= s(I 4 ayal).



It is worth noting that the determinant of LTL is a constant for a given
P,. Thus, [(WTW)1-1)] = ¢|X{X1|, where ¢ is a constant. That is,
a design that maximizes | X7 X;| will certainly maximize (W W )1 _1)|.
From Cheng, C. S) (11980), we obtain that orthogonal arrays are Ds-optimal.

In what follows, we demonstrate that orthogonal arrays also achieve
G-optimality among all designs. Let Z4 be the set of all possible level
combinations of n s-level factors, and let YW, be the model matrix corre-
sponding to Z,4 under main-effect model under BP. For any row w of matrix

Wi, let Y,, be the response for this design point. Then
E[(Y,, — wh)?|Z] = E[(Y,, — wh + wh — wb)?| Z]
= E[(Yy — wh)?] + E[(wd — wh)?| Z]
= o + wvar(f)w”
= (1 +wWW) tw™).
According to Lemma 1, we have W4 = X4P~! and W = X P!, where
X, and X are the orthogonal contrast matrices corresponding to the full

factorial design and the fractional factorial design Z under the main effect

model, respectively.

> wWW) " = V(W) W]

wWEW

=tr[(P YT X TP P(XTX) 1P



= tr[XTX(XTX)™Y

= s"tr[(XTX)™!
s"(1+n(s—1))2
tr(XTX)
(14 n(s — 1)
N :

Then max,ew, E[(Yy—w0)?| Z] = 02(1+maxy,ep, w(WTW)1w?) > o2(1+
{1+n(s—1)}/N).

When Z is an orthogonal array of strength 2, the equality holds. Since
W = XP~! wP is a row vector of X. The sum of squares of each row of

X is 1 +n(s—1), and we have

_ [|wP]|? _ 1+n(s— 1).

T -1 T: P—l TXTXP—I -1, .T
wW W) " w w((P™) ) w N N

Therefore, when Z is an orthogonal array of strength 2, we have E[(Y,, —
wh)?|Z] = 02(1+ {14 n(s — 1)}/N). This indicates that orthogonal arrays
attain G-optimality among all designs.

Furthermore, we now establish that orthogonal arrays are also A,-

optimal within the class of balanced designs. According to main-effect

model under BP, var(f) = (WTW) 102, where W = (1y, Z;), then

. N 1%z T * ok
WIWw = and (W' W)™ = ,

7Ty 277, « M1
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where M = Z7Z, —1/N(ZT15)(1%5Z,) = {var(f;)} " is a positive definite
matrix. When Z is a balanced design, 137, = N/s1{, ), and Z{ Z; —

1/N(Z{1n)(A52Z,) = ZTZ) — N/s* J(s—1)n. Here Jis_1), is a matrix of all

ones, and
R
*
R
N Uy
Z1 7 = = , with R = sl,_4
S
*
R
uf R
Then,
E
*
E
N N U N T U9
M=2{Zy — 5 Je1yn = = == :
S S S T
* uy, FE
E
ul E

where ' = sl,_1 — Js_1. Since M is a positive definite matrix, then 7" and
T~ are also positive definite matrices.
Let 6% denote the parameter vector corresponding to the main effect of

the ith factor and define M; = {var(6")}~! for i = 1,...,n. Then, we have

A

tr(var(fy)) = tr(M; 1) + - + tr(M ). (S1.1)
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Let M4 be {var(f")}~' when Z is an orthogonal array, and let MPe
be {var(#")}~! when Z is a balanced design. Then, according to Lemma
@, we only need to show that M4 > MP® for i = 1,...,n. When i = n,

we have MB* = N/s*(E — ul T tuy). If Z is an OA(N,n, s,2), we have

N N .
717, — S J1n = Edlag(E, LB

Then, from Lemma @, we have MY = (N/s?)E > MPe. For i =
1,...,n — 1, by swapping the ith column and the nth column of design
7, we obtain MP4 = (N/s?)E > MP® Therefore, based on Lemma @
and (), the trace of var(f;) is minimized when Z is an orthogonal array
within the class of balanced designs, implying that orthogonal arrays are

As-optimal among all balanced designs. [

Proof of lemma 2. To enhance the clarity of the proof, let ¢, = g, ... g,

Then, according to the definition of £(¢y), we have

E(p)"E(p)

52

:m [(AC¢(90b) - 1(sfl)na(90b>)T(Ac¢(90b) - 1(5—1)n04(90b))]

82

:ﬁ [Qb(%)TAcTAc@b((Pb) - ¢(¢b)TAch(s—1)nOé(§0b)

—a(0p)Ls_1ynAch (1) + (06) 1o 1) Ls—1)n]

where A. is an (s —1)n x (s—1)n block diagonal matrix with diagonal block



H = I, 1+ Js_1. Utilizing the definition of ¢(ipy), we have

&(n) € ()

2
=2 [bﬁ(%) H"HB(py) + Y _ Blign) H HB(jor) — bB(0y) H Loa(ipy)

Jjev

=Y Bl H 1 1alpy) — balpn) 1 HB(gs) = > alp) 1 HB(js)

JjeV JjeVv
+oa(pp) 15 1 1alpy) + (s — 1) Z a(ps)’”
jev

2

=Nz <b||5 op)T H — alpp)1 1HF + Z 18Gen)"H = algr, -- .gk,,)lff_lHi> ,

a4

where 5(¢p) is an (s — 1) x 1 vector consisting of a single element valued at
a(pp) and the remaining elements set to be 0, and V- = {1,... ,n}\{k, ..., kp}.

B(jes) = (04(<J'1<Pb>),---ﬂ(@s&%)))T and j; = (s —1)(j — 1) + 1 for

l=1,...,s—1. Il

Proof of Theorem 4. We consider (1) first. If Z is an s-level orthogonal
array of strength ¢, then all level combinations of any v + 1 columns of Z
occur N/s™! times for 2 < v <t — 1. Then a(gx, .- gr,) = N/s”, while
B(gry - --gr,) is an (s — 1) x 1 vector with one element equal to N/s” and
the remaining elements being 0. Moreover, 3(jgx, ... gr,) = N/s" 11,4,
and B(jgr, - .- gr, )  H = N/s1L_|. Thus,

s = Z 18Gige, - - gr,)"H — agr, - .-gkv)lqu; =0,

JjeV
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N2

TISOU = Hﬁ(g’ﬂ .. 'gkv)TH - a(gkl - gku)lz—lHi‘ = Sﬂ

Hence,

s v(is—1)"[n
Kv:m Z (Uva+va):W(v)

Puv ECDU

We next consider (2). When v = ¢, TY* = N?/s* then

t(s—1) (n s . ts=1"(n )
Ktzw(v)‘f—mzjgp :W " + s Jt,

son

where Jy = 52 20 e, T3 O
To prove Theorem 5, we need the following lemma.

Lemma S3. Ifxq,...,xp,¢1,...,¢ € Z\{0}, then the number of solutions
for the equation ciyxy + -+ + vy = 0 (mod s) is 7%, = (=1)(s — 1) /s +

(s —1)%/s, where s is a prime number or a prime power.

Proof. When s is a prime number, let f(b) represent the number of solutions
for the equation c;x1+- - -+cpzp = 0 (mod s). Clearly, f(1) =0, f(2) = s—1.
When b > 2, let up_o = 127 + -+ + cp_2xp—2 (mod s). If up_o = 0,
11+ -+ pxy = 0 (mod s) is reduced to 121 +cpzp = 0 (mod s), then
(xp—1,xp) has f(2) values. If uy_o € Z\{0}, c1x1 + -+ + oy = 0 (mod s)
is reduced to uy_o + 17,1 + cpxy = 0 (mod s), then z, 1 has s — 2
possible values. For each value of x,_1, there exists a unique value of z,

that satisfies the equation uy_o + cp_17-1 + cpp = 0 (mod s). Note that
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the tuple (x1,...,2,_2) has (s — 1)*~2 possible values. Thus, f(b) = f(b—
2)f(2)+ ((s—1)" 2= f(b—2))(s—2) = (s—1)""t = (s—1)"2+ f(b—2). After
simplifying the expression, we obtain f(b) = (—=1)’(s —1)/s + (s — 1)%/s,
ie. v% = (=1)°%s—1)/s+ (s —1)’/s. When s is a prime power, the proof

proceeds in a similar manner and is therefore omitted here for brevity. [J

Proof of Theorem 5. For an s" P design of resolution ¢ + 1, a(gk, - - - gx,) =

N/st. Then J; = 1/N? > pea, L5y where T3 =5 0. 18, - - ge)TH—

N/StlsTle%w and ﬁ(]gkl SR gkt) = (a(<jlgk1 s gkt))? <. 7a(<jsflgk1 ce gkt>))T

Let Gy, ... Gy, be the factor combination involved in the effect correspond-
ing to gk, -..gk,. Moreover, Gy, ...Gy, corresponds to (s — 1)* factorial
effects. For example, when s = 3, we have four factors A, B,C and
D. Let gr,gr, = 1020, the effect corresponding to g, gi, is A1C5. Then
G, G, = AC, and A,Ch, A1Cy, AyCh and AxCy are factorial effects corre-
sponding to Gy, Gy,.

When any two words from A;,; do not share ¢ common factors, there
are the following two possible cases for 5(jgk, - - - gk, )-

Case I: Not all Gy, ... Gy, appear in the words of length ¢ + 1. In this
case, B(jgx, - .- gr,) = N/s'T11,_ for j € V, and T* = 0.

Case II: All Gy, ... Gy, appear in the words of length t+1. The number

of gi, - . . gr, that satisfy this case is (s—1)*(¢t+1)A;, 1, among these, the num-
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ber of g, . . . gy, corresponding to Ty = N?/s?" is v%,(t+1) A1, where %, =
(s—1)*—~%,. Note that for each of these gy, ... gx,, there exists a unique jo €

V' such that B(jogk, - gr) = (@({(J1gk: - Gr))s -+ @({Js1ky -~ Gr)))T
where there is only one element equal to N/s' and all other elements are 0.
For any j € V\{jo}, B9k - - - Gruya) = N/s"T111 | and thus T3 = N?/s*.
In addition, among these gy, ...gk,, the number of g, ...gg, correspond-
ing to Ty = (s — 1)N?/s* is 4%, (t + 1) A;11. Note that for each of these
Gk, - - - Gy, there exists a unique jo € V such that B(jogs, ---gx) = 0|,
while for any j € V\{jo}, B(igk - Gry) = N/s"T1T . Then T¥" =
(s — 1)N?/s*.

Therefore, J; = (t +1)/s*[(s — 1), + 7%) Aty 1 holds when any two of
Aii1’s words of length ¢t + 1 do not share ¢t common factors. By a similar

argument, we obtain that J; = (¢ +1)/s*[(s — 1)7%; + 7%, A1 also holds

if there exists two words of length ¢ 4 1 that share ¢ common factors. [

Proof of Theorem 6. For clarity the following proof, we now provide the
definition of an effect that satisfies a word. An effect is said to satisfy the
word if it meets the following two conditions: (1) the factors involved in
this effect are encompassed within the word, and (2) the subscript of this
effect satisfies the equation corresponding to the word. For example, for a

3371 design, there are three factors A, B, and C' with C = A+ B. Then,
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the effects A1 B1Cy and A;ByC satisfy the word. If either of these two
conditions is not satisfied, the effect is said to not satisfy the word.

From Lemma 2, we have

$*(t+1) v, 5 41
Kt+1:TZT1¢+ +WZT£D+

Dyqq Dy

(1) First, calculate > g T for an s"~7 design of resolution ¢ + 1, with
TP = 18k - - - Gropr )T H — el gi, - - .gkt+1)lsT_1Hi,, where B(gk, - - - Grir)
is an (s — 1) x 1 vector with one element being (g, ... gk,,) and the
remaining elements being (. There are the following three possible cases.

Case I: Not all Gy, ...Gy,,, appear in the degenerate words of length
t+ 1. Then a(gg, - .- gr,.,) = N/s'Tt and Y = N2 /s21+2,

Case II: All Gy, ... Gy,,, appear in the degenerate words of length ¢ +1,
and the effect corresponding to g, .. . gk, , satisfies the words of length #+-1.
Then a(gy, - - - Gryy) = N/st and T7 = N2 /s

Case III: All Gy, ...Gy,,, appear in the degenerate words of length
t+1, and the effect corresponding to gy, . .. gr,,, does not satisfy the words
of length ¢ + 1. Then a(gs, - .. gk,,,) = 0 and 77" = 0.

It is clear that the number of gy, ... gi, ., satisfying Cases I, II, and III

are &, vy A 1, and ((s — 1) — 4L) Ay, respectively, where £ = (s —
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D nl/{(t+ 1)!(n — ¢ — 1)1} — Ayiq]. Therefore, we have

S2(t+1) S+ N* N2
PR S — Z T{p - _ L 7 |:7;2At+1§ + fm}

N2 £ N2
t+1
t+1 n
— i {(52722 —(s— 1)t+1)At+1 + (s — 1)t+1 <t n 1)} .

(2) Second, calculate > 4 Ty for an s"P design of resolution ¢ +

. . 2
1 with TZ(thrl = EjEV Hﬁ(.]gkl ce gkt+1)TH o a<gk1 e 'gkt+1)1z71HF7 where

/B(jgkl e ’gkt+1) = (a(<jlgk1 e 'gkt+1>>7 s 7a(<j8—lgk1 . 'gkt+1>))T7 jl = (8_

)(j—1)+1lforl=1,...,s — 1. There are following two possible cases.
Case I All Gy, ... Gy,,, appear in the degenerate words of length ¢ + 1.
Case II: Not all Gy, ... Gy,,, appear in the degenerate words of length

t+ 1.

Case I can be further subdivided into the following four scenarios:

(i) The effect corresponding to g, ... gk, satisfies both the word of
length ¢ + 1 and ¢ 4+ 2. Thus, a(g, - .. gr,,,) = N/s'. For some j, € V,
B(JoGk, - - - Gk,,,) is an s-dimensional vector consisting of a N/s* and s — 1
zeros; while for any j € V\{jo}, BUgk, ---Gr.,) = N/s"T11T . Hence,
TS = N2 /s™,

(ii) The effect corresponding to gg, ... gx,,, satisfies the word of length
t + 1, but does not satisfy the word of length ¢ + 2, and Gy, ... Gy,

have t 4+ 1 factors included in the degenerate words of length ¢ 4+ 2. Thus,

a(gk1 e ‘gkt+1) = N/St' For some jO S V7 5(]0%1 e 'gkz+1) = 0?—17 while
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for any j € V\{jo}, Bk, - Gkerr) = N/s't11I . Therefore, Ty =
(s —1)N?/s%.

(iii) The effect corresponding to g, ... gx,., satisfies the word of length
t+1, and Gy, ... Gy,,, have r <t factors included in the degenerate words
of length t + 2. Thus, a(gs, - .. gk,,,) = N/s'. At this point, for any j € V,
B(J Gkt - - - Ghurn) = N/s"T1T . Therefore, T5" = 0.

(iv) The effect corresponding to gy, ... gk, does not satisfy the word
of length ¢ + 1. Then a(gx, ---gk,.,) = 0 and B(jgk, - -- Gr,.,) = 0L, for
j € V. Therefore, Ty = 0.

Let A}, , be the number of degenerate words of length ¢ + 2, and A},
be the number of degenerate words of length ¢ 4 2 that share ¢t + 1 common

*

factors with some degenerate word of length ¢ + 1. Define A7,, = A}, —
Aj,,. For each of the A}, , degenerate words of length ¢+2, project them into
t+1 factors. Then we obtain [ = (t+2)A},, degenerate words of length ¢+ 1
(with repetition). Let Bff) represent the set of degenerate words of length
t + 2, and these degenerate words share t + 1 factors with degenerate word
of length ¢+ 1. For each the effect corresponding to Gy, ... Gy, € Bfi%, let
¢ denote the number of effects among the (s — 1)**! effects corresponding

to G, ...Gy,.,,, and these effects satisfy the words of length ¢ + 1 but do

not satisfy the words of length ¢ + 2, thus, we have ¢ = ~/,.
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In addition, the number of gy, ... gk,,, satistying (i) and (ii) are (7%, —c)
and lc, respectively. In (iii) and (iv), 75" = 0, and therefore, we omit
specifying the number of gy, ... gy, , here.

Case II can be subdivided into the following four scenarios:

(i) Gk, - .. Gy,,, have t factors included in the degenerate word of length
t + 1 and the degenerate word of length t 4+ 2 share ¢ + 1 common factors
with G, ... G, -

(i) G, - . . Gk, have t factors included in the degenerate word of length
t + 1 and the degenerate word of length ¢ + 2 share f (f < ¢+ 1) common
factors with Gy, ... Gy,

(ili) Gy, ... Gk, have r (r < t) factors included in the degenerate word
of length ¢ 4+ 1 and the degenerate word of length ¢ 4 2 share ¢ + 1 common
factors with Gy, ... Gy,

(iv) Gy, ... Gg,,, have r (r < t) factors included in the degenerate word
of length ¢ + 1 and the degenerate word of length ¢ + 2 share f (f <t+1)
common factors with Gy, ... Gy, .

Suppose that the number of Gy, ...Gy,,, satisfying (i) is a. For each
Gk, - .. Gy,,, satisfying (i), combine Gy, ... G},,, with one of the remaining
n —t — 1 factors to form Gy, ... Gy, ,G,,,. There are three possible cases

for le ce th+1th+2'
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(ir) If Gy, ...Gg,, G, contains degenerate words of length ¢ + 1.
Among Gy, ...Gy,,, corresponds to (s — 1) factorial effects, the number

H1land s—2

of gk, - - . gk,,, that makes 3(jgn, ... gr,,) consisting of one N/s
zeros is (s—1)7%,. And all these gy, . .. gk,,, satisfy a(gx, - .. gr,,,) = N/
Define B(gg, - - - Gresr) = 1809k - - - Gron ) H — (g, - - .ngl)lsTle;. Then,
B(gk, - - - Gruyr) = N?/s*2. Moreover, the number of gy, ... gx,,, satisfying
B(iGks - Grep) = 051 38 (s — 175, and a(gy, - gr,,,) = N/s'*, thus
B(gky - - - Gryr) = (s — 1)N? /g2,

(i) If Gk, ...Gg, Gk, ., equals to degenerate words of length ¢ + 2.
Among Gy, ... Gy,,, corresponds to (s—1)"*! factorial effects, the number of
Gk, - - - Gk,.s that makes B(jgx, ... gr,.,) consisting of one N/s'*! and s—2 ze-
ros is v'3 ', and a (g, - - . gx,,,) = N/s'*L. Then, B(gy, - - . gr,.,) = N?/s**2.
Further, the number of g, . .. gx,., satisfying S(jgx, - .. gr,,) = 01_; is S
and gk, - - Gryy,) = N/s' thus B(gi, - - gr,yy) = (s — 1) N? /12,

(i3) If Gk, ... G, Gk, ., does not exist in the degenerate word of length
t+1 and t+2, then B(gg, - . - gk,,,) = 0. Take all the three cases into account,
we obtain T = [(s— 1)y + 5 N2 522+ [(s— 1), 4115 — 1)N2/522.

Let b be the number of Gy, ...G,,, that satisfy case (ii), for each of

Gy - Gryys To = (s—=1)N?9L, /s?12 4+ (s—1)2N?4t, /s* 2. Then, the num-

ber of Gy, ... Gl,., satisfying (iii) is (¢4+2) A7, —a, for each of Gy, ... Gy,,,,



18

Ty = N2y /s%F2 4 (s — 1) N2 /s%72. For each Gy, ... Gy,,, that sat-

isfies case (iv), 7o = 0. Then, we have

N2
DT = [[(S — Dyl 75+ (s = D>k + (s = )2l a

Qi1

+ (vl —¢)s* + (s — 1)s% + [(s — Dyly + (s — 1)*4%,]b

+ [yt 4 (s = D ((E+2)47,, - a)]

N2
82t+2

[l('yﬁz —c)s” +le(s —1)s* + [vi3' + (s — DY (E+2) A7,

+ (s = D7+ (s = 1)*v4 ] (a+b)

Define set V' as the collection of Gy, ... Gy,,, that satisfy the following
two conditions: (1) Gy, ...Gy,,, does not all appear in the degenerate word
of length t+1; (2) For a fixed word of length t+1, G, . .. Gy,,, has t common
factors to this word. By the definitions of a and b, it can be verified that
the cardinality of the V is a +b. Then, a+b= (n —t —1)(t + 1) Ap11.

It is worth noting that among the Gy, ... Gy,,, satisfying (1) and (2),
some possibilities in Case I are included. For any regular design, there
are t + 1 possible combinations of projecting a degenerate words of length
t+ 1 into t factors. For each of these possibilities, combining them with the
remaining n—t—1 factors generates n—t—1 factor combinations. Therefore,

for all words of length ¢+ 1, there are a total of (n —t —1)(t+ 1) Ay factor
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combinations. Let B, ; represent the set of these (n — ¢ — 1)(t + 1)A;1q
factor combinations (including repeated factor combinations). Let u be
the number of elements in set B;,; that share ¢t + 1 factors with both the
degenerate word of length ¢t + 2 and the degenerate word of length ¢ + 1.
Then, u = (t+1)(t+2) A}, represents the count of Gy, ... Gy,,, that satisfy

either (i) or (ii) specified in Case 1. Therefore, we have

s2(t+1 52
Kt+1 :—(N2 ) Z T{ptH + m Z T;tH

‘bt_,.l ¢)t+1

_trl (s*4L, — (s — )" A 4+ (s — D)l {t+ Dl (n—t — 1)!}]

82t

1

+ 5 [ = 08" +le(s = 1)’ + [ + (s = DT (L +2) A

+ (s =Dy + (s = %] [(n =t = Dt + 1) Apya — o]

1
= [Crt+ D Ars + Ooft +2)Ap, + Gyt + 2) AL, + Cul,

where Cy = 595, + [(s = Dl + (s = 1) [ (n—t — 1) — (s = 1), Co =
[ = (s=D)(E+1)] 75+ [s*(s=2) = (s=1*(t+ 1) 7%, Cs = 73" +(s— 1)

and Cy = (s = 1)t + D)n!/{(t+ 1)(n—t — 1)} O

Proof of Corollary 2. For an s"7P design, its runs are the solutions to the
system of equations ATx = 0, where A = [ay,...,q,], and ay,...,a, are
linearly independent n-dimensional column vectors. Let [al | represent the

number of non-zero elements in al. Extract the row vectors from a?, ..., az;
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that satisfy [al] = 3, assuming there are ¢ such vectors. Denote these ¢
row vectors as by, ..., b,. In this case, fori = 1,..., g, each equation b;z = 0
corresponds to a word of length 3. Since A} is the number of degenerate
words of length 4 that share 3 common factors with some degenerate word
of length 3. Each of these A} words is obtained from certain linear combi-
nations of words of length 3 that share two common factors. That is, they
are generated by linear combinations of u vectors from by,...,b,, where
the u vectors satisfy the following condition: when these u row vectors are
concatenated row-wise into a matrix, the resulting matrix can be written
as (U,cI,0) up to column permutation, where U is a u X 2 matrix in which
every element is non-zero, I is an uw X u identity matrix, ¢ is a constant,
and 0 is an u X (n — u — 2) zero matrix. For example, when u = 2, assume
that the two rows of the matrix are b; and b;, then there are s — 1 linear
combinations of b; and b;, i.e. b;+bj,b;4+2b;,...,b;+(s—1)b;. Among these
s—1 words, s —3 words have a length of 4, and these s — 3 words have same
degenerate words. Then, any one of these A} words corresponds to s — 3
words that have same degenerate word. Hence, A} + (s —4) A} = A4, which
implies A2 = A, — (s — 3)AL. Substituting t = 2 and A3 = A; — (s — 3) Al

into (5.7) in the paper, the expression for K3 is obtained. ]
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S2. Approximate BP-MA designs for 5-level

We present the K, and K3 values for 25, 50, 75, 100, and 125 runs at 5
levels in Tables El! and @

Table S.1: The Ks-value of the approximate BP-MA designs with n runs

and m factors

sy 5 6 7 8 9 10
n

25 | 6.84 19.68 4280 79.92 — - - -
50 | 4.98 12.24 242 4200 66.96 100.04 14247 195.42
75 | 435 971 19.08 33.03 5133 — . -
100 | 403 843 1531 2421 3975 5893 82.05 111.92
125 |384 7.68 12.80 1920 32.88 47.84 67.08 117.60

[13 2

— 7 represents that an n x m design cannot be obtained by selecting columns

from a saturated orthogonal array with n runs.

Table S.2: The Kjs-value of the approximate BP-MA designs with n runs

and m factors

m
3 4 ) 6 7 8 9 10
n

25 1.56 9.28 30.80 78.48 — — — —
50 0.78 4.64 1540 38.40 8224 154.52 266.37 430.34
75 0.51 3.13 11.00 27.35 57.02 — — —
100 |0.39 234 829 20.70 43.00 81.22 136.40 219.33
125 | 0.31 1.87 6.27 15.74 3461 6443 109.63 193.39
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The five level permutations of 5 levels are labeled as I,...,V according to

the rules of Table @

Table S.3: Level permutations

Label

Level permutations

I
IT
III
IV

{0,1,2,3,4} — {0,1,2,3,4}
{0,1,2,3,4} — {1,0,2,3,4}
{0,1,2,3,4} — {1,2,0,3,4}
{0,1,2,3,4} — {1,2,3,0,4}
{0,1,2,3,4} — {1,2,3,4,0}

0OA(25,6,5,2) and OA(125,31,5,2) are regular designs, we only present

their independent columns and the definition relationship of other columns.

0OA(50,10,5,2), OA(75,7,5,2) and OA(100,20,5,2) are derived from Theorem

9.15 in Hedayat, Sloane and Stufken| (1999). For the details of these designs,

please refer to Tables @ to @ In addition, we have provided the column

labels selected from OA(n,m,5,2) to create MA design, along with the level

permutation to obtain the MA design under BP. For specific details, please

refer to Tables @ to . It is worth noting that in Step 2 of Algorithm 1,

evaluating K, for r =t¢,...,n — 1 across all 5"p candidate designs becomes

computationally intractable for lagre s/n/p. For example, when n = 7 and

p = 1, the total number of candidate designs reaches 5" = 78125, making
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exhaustive evaluation infeasible. To address this combinatorial explosion,
we adopt a randomized subsampling strategy when n > 7: from the 5"p
candidate designs, we randomly select 10,000 designs. We then compute
K, over these 10,000 designs for r =t,...,n — 1 to approximately identify

minimum aberration designs.

Table S.4: OA(25,6,5,2)

Column label | 1 2 3 4 5 6

Column A B AB AB?> AB® AB*

where Column A = (0,1,2,3,4)7®15, Column B = 15%(0,1,2,3,4)T,
and AB" is a shortcut notation for A + uB for u € GF(5).

As only a subset of the columns from OA(125,31,5,2) be used. Thus,
Table @ presents only the required columns. Let A, B, and C' be three
independent columns with Column A = (0,1,2,3,4)7 ® 155, Column

B=15®(0,1,2,3,4)T ® 15, and Column C = 155 ® (0,1,2,3,4)T.

Table S.5: Some columns from OA(125,31,5,2)

Column label 1 2 3 4 5 6 7
Column A B C AB AB?> AB3 AC
Column label 8 9 10 11 12 13 14

Column BC? BC® ABC ABC? ABC* AB?*C AB?*C?
Column label 15 16 17 18 19 20
Column AB2C3 AB3C AB3C? AB3C* AB*C? ABC?
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Table S.6: OA(50,10,5,2)

10

COOMITO—TANANFHFAAFFO AN OANNOO—TANNIHFHF—NMN AN NFOOANFFANANNHFO AN O

CAN—ONFN —AFMN AN —MNOFTNOFTFANFONF—OMN—OMNOTFTMNMON TN —AF—O<F—0OANOMAN

CHHTOMNMMN I AN N O —FFTANOANMNMMNOAN—ANOON—MNFIFNONANN——FANFTOOTNFANANOMN O r—

CONN—"AIFTFON A" — N ANOCOFITANANANFTFTN —"A—OOMMMNOOFANAN—"—"FFHF—r—OMNMNMANNO

OCA<FfF—<FFONMAMN—ANONO—MNFNFANMN— N —IANFTOFONITFAFANNOO O —AFOMONFHF AN —N

NN —AMNOAN—"AF—MNOFANF NN ANOANF—AOMNOANFTN N ON—"F—MNOFANF—NOANONFH—OM

OC—ANffMOANANIH O —ANMNOFNFON NN HF O FHFO—AMWANMNMFON—TO—ANFMNOFO—NANA—ANMNO <A

CPO—ANFFN —FON—AFANMNOFANO—OANONIF—OMN—ANFN —AFON—AFTANMNOIFTANO—ANANOMN < —

MO AN —ONIF—IOFANMMOANA—AFON—ONFHFHFMOANO O AN—AFOOFTMN —ANFTOANOA—OHFANM

OO0 —rd A rd A AN ANANANANANANMMMMMMNMMO) <<~ <<~ <<+ <

Run
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123456789012345678901234567890123456 —ANMNFLOOD~00HO
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Table S.7: OA(75,7,5,2)

I/ AN HFFHF AN A OMOMNM HFFMOANNMOOMNM AN A FrAFOODHF MM <~ — <M AN
QIO —H AN FF AN 4T MO ANOOND FTFNHNOODAANNMOODONMNANFN A FOOF 4NN —~ —~ <F M
WIH O AN FFANMNMOANON FFMAATANNOODON F AN AFOOF M AN <H A A <H
AN A OO AN F O MO NOON I FMOMANANATANMNMODOFF AN A FOOFM AN <H A -
NIF AN AT OO AN FN FMNMOANON FTOM AN ANMODDFOOIHF AN A HFO A HFOOANM<H A
NFF AN A O NN HFHFMNMONOMNMOOM AN —AANMPFOO HFrAMm— <H - — <HMHAN N <H
IO FF AN A O 0N FHFTFHFT M OANOMOONMN AN AN FFHFOO FH N <+~ <A M
ESEEEEEEEEEEEERFREFEY EELREEEE-TF - SR
MO AN O O AN FFOANNODHFMN T M AN N A MNMOO =M M—AOFAN <F AN MMA <H —
QIO IF AN A 1O M IPFTOANNDDF AN T AN HMNM FTOODAMM AN A FANMMmMA <A
WO AN FT AN A 4O FMNM FTOANNOODAHMON 1T AN AT FHFO AN M A A <H —~ <FHFANMHMAN
OO AN FANOD A AT IFIFTMNM FTOANAN A —AMOM AN N —"ATDFHFOAMMOANF A HFANMHM
MNIOC IO AN FTANO A ANOFNMNFOAN TN M0 ON TN N 1O HOD A M ANMAN <FHA<FANNMN
NO A 4T O AN FTANODANANNDFNIFHFO AN —TMON —TMO N 1O FO A ANMMNH AN H —H < AN
OO T 4O AN FTANOANANOODFN F AN N1 MOMNM A 0NM—"O FOANANMMmAN < — <A
=
Eramsrneorno D Rl 2R RI085KR3S0RIBREE
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Table S.8: OA(100,20,5,2)

CITMOMANMNMAN—"FO—NMN O FANNIFO—A O TN FMNOANO—ANNTFTAN—AONFO—AANAN—OFOFHMN AN
CTFTMOAN—"FANN N OANTFTANO—AFr—MNO—OFMOANONTFANFT AN ON—ANOANFT AN OFN—AFONO
MO AFIT O ANANON NI O ON —AH—HOFTNOANFTOMN —AFANMNMON " —"<FANON O —NO < HAN
CITMOANNDFH—OAN OO —ANFHF O FN—OFOMNFONFONAN—"A—ANNOAN—OFTAN—AOFFO—AMNOH
CHO—"ITANFNO TN ANON O AN FANONOF—IANONTFN —AFANN—NONON <O
CO—FMOANOFHFANNFHF O FAN O —"AFANOFN —TOMNFON—AANMNFONMAN—TNOMN—OHN—<HO
CN—"ITFONMMOAN—"AFNOAN—TOANFO—A—"FANOO—NIFFOANOFTFNAN—AMNO—ANNON—H— N <HOO<H
CO—FONTFAF AN AN OANO—AFAN—AFNO—AFOMNOANFTNONANAF—N—ANONANON —ANO—<F— M
CANF—FNO—O N ANAFIN AN ANO—MNOANOFr—AN—AFTNOOFANNANFNO —AANFT N —OANMNANO
CANHF—AAFMNOFOMAMN—AANFTMOANOA—MNOANANOFAOO—<FMNFTAMNMOFMNO AN F—OMN—OAN— N

CAN<FMO—"FMNOANFOANFTMN OO AN /MO ANFIT—IANOFMNOAMOFAN—ANFMONF—AMNOANM—O <A
CANF OO ANFTON I ANFOANO AN —MNOAN—ANOFMNOAFANNOFTN —ANFANFT DN~ O <

NN O FANAFFN O NOTFNFOAN—A—ANNFAN—AONOFN N —OFOFMOANANNTFONAN AT —O
C—ANMIFTNO—A—AFOMMNITNON—AFANA—ANNFON—ANANO—AFTFON—"FANONANNFO—<HFAIM D~
AN ANAF—IOMNOF—AFMNMOANANF—AMN—ANMNFNOANAF—ONOF—MNMNOANTANNTFOF—OANON
AN MO—TANFO—/MNFOANMNMHF—AANNHF—ANMNF—IANMNO—TANFO—MNFOANMFOANMNTFONMNFHF—AIM
COOOOMMMMN aArd A< IFTFANANANN A" FFFAANANNOODODOMNMMMANANNOODOoOOoOMmM
COCONANANANFIFHrArA—"A 0NN rArdr—r—MNMMOMNOOCOOANANANANFFFFANANANAN < < < < v
OO A" AN ANNNMMMONIHIFTFHFIFAA AN NIFIFFOODODOANAANANNMmMM <A <A

OO0 OO OOAdA A A A A A rdArdrdrA A A A A AN AANANANANANANANN

Run] 1T 2 3 4 5 6 7 8 91011121314151617 1819 20
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Table @ (continued): OA(100,20,5,2)

TOMANAFO NN OO FANNFOAFOANO—TANNFFNONAN AN —ONFO—ANOFMN AN <FO
ANF—FANN N ONNAN—AOFANOAF—NNONONITFANF—ANFNOAN—AOMN—AANOANF—AN—FOMNMOAN <A
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M AOANFTFIF AN ONFOAOANFTMN IO ANFNAMNMOONFAFOAAN—MNOFANFMOMOMNMANF—A—NOAN
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Table S.9: Selected columns and Level permutation for OA(25,6,5,2)

Design | 25 x 3 25 x 4 25 x 5 25 x 6
Sel-col | (1,2,3) (1,2,3,4) (1,2,3.45)  (1,2,3,4,5,6)
Lel-per | (IIL,LI) (ILILLI) (ILIILILLLD)  (V,ILILLLI)

& Sel-col represents the column labels selected from the orthogonal array.

b Lel-per represents the level permutation applied to the selected columns.

Table S.10: Selected columns and Level permutation for OA(50,10,5,2)

Design | 50 x 3 50 x 4 50 X 5 50 X 6
Sel-col | (1,2,3) (1,2,3,4) (1,2,3,4,5) (1,2,3,4,5,6)
Lel-per | (IILI,I) (ITT,ITL,I,T) (ILIV ILLI) (LV,IL V. ILI)
Design 50 x 7 50 x 8

Sel-col (1,2,3,4,5,6,7) (1,2,3,4,5,6,7.8)
Lel-per (IL,LITT,LITT ILT) (ILILITIV IV IILIILIV)
Design 50 x 9 50 x 10

Sel-col (1,2,3,4,5,6,7,8,9) (1,2,3,4,5,6,7,8,9,10)
Lel-per (IV,V,IV,L LIV, V ILII) (ILV,LILV ILIILLIV,I)

Table S.11: Selected columns and Level permutation for OA(75,7,5,2)

Design | 75 x 3 75 x 4 75 X b
Sel-col | (1,2,3) (1,2,34) (1,2,3,4,5)
Lel-per | (ILLI) (LLLI) (VILIV,LI)
Design 75 % 6 7D X7

Sel-col (1,2,3,4,5,6) (1,2,3,4,5,6,7)
Lel-per | (IV,IL,V,V IIL]I) (LIILIIL VILILIV)
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Table S.12: Selected columns and Level permutation for OA(100,20,5,2)

Design | 100 x 3 100 x 4 100 x 5 100 x 6

Sel-col | (1,2,5) (1,2,5,6) (1,4,5,8,20) (1,4,5,8,17,20)
Lel-per | (LLI) (LLLI) (LLLLI) (LLLLLI)
Design 100 x 7 100 x 8

Sel-col (1,4,5,6,8,17,20) (1,2,6,7,9,10,13,15)
Lel-per (V,V,V,IILV.IV,IV) (LILV,LIV,V,V,III)
Design 100 x 9 100 x 10

Sel-col | (9,10,11,13,14,15,17,18,19)  (1,2,4,6,7,9,10,13,15,16)
Lel-per (IL,V,V,IILV,V,LILI) (V,IV,LLILV ILIV,ILV)

Table S.13: Selected columns and Level permutation for OA(125,31,5,2)

Design | 125 x 3 125 x 4 125 x5 125 x 6

Sel-col | (1,2,3) (1,2,3,10) (1,2,3,10,15) (1,2,3,10,15,18)

Lel-per | (ILLI) (LLLI) (LLLLI) (LLLLLI)

Design 125 x 7 125 x 8

Sel-col (1,2,3,4,7,18,20) (1,2,3,4,12,13,14,16)

Lel-per (ILITT,IIL, V,V ILIT) (IV,ILIV ILV,ILIV,V)

Design 125 x 9 125 x 10

Sel-col (1,2,3,4,7,8,12,15,19) (1,2,3,4,5,6,10,14,15,17)

Lel-per (IV,IL,LILI,LITLITTIT) (VIV IV IV IV I V,IV,V II)
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