Statistica Sinica: Supplement

MATRIX AUTOREGRESSIVE MODEL
WITH VECTOR TIME SERIES COVARIATES

FOR SPATIO-TEMPORAL DATA

Hu Sun', Zuofeng Shang?, Yang Chen'

TUniversity of Michigan and *New Jersey Institute of Technology

Supplementary Material

This supplemental material is organized as follows. Section [S1| presents the algorithmic
details of the penalized MLE using alternating minimization outlined in Section In
Section we prove Proposition [I]on the equivalence of the estimation problem of MARAC
to a kernel ridge regression problem. In Section we prove Theorem [I| on the joint
stationarity condition of the matrix and auxiliary vector time series. Then in Section [S4]
we provide proofs of the theoretical results under fixed spatial dimensionality, including
Proposition 2| Theorem [2]and Corollary[I} In Section [S5| we present proofs of the theoretical
results under high spatial dimensionality, namely Theorem [3] All essential lemmas used
throughout the proofs are presented and proved in Section [S6] Finally, we include additional
details of the simulation in Section [S7] as well as an approximated estimating algorithm for
obtaining the penalized MLE via kernel truncation.

In this supplemental material, we use p(-), p;(+), p(-), and || - ||s to denote the maximum,
ith largest, minimum eigenvalue, and spectral norm of a matrix. We use a\Vb,a Ab to denote

the maximum and minimum of a and b, respectively. For two sequences of random variables,
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say Xp, Yy, we use X,, <Y, to denote the case where X,,/Y,, = Op(1), and X,, 2 Y, to
denote the case where Y,,/X,, = Op(1). We then use X,, <Y, to denote the case where both

X, <Y, and X,, 2 Y, hold.

S1 Alternating Minimization Algorithm for PMLE

To solve the optimization problem in (3.11]) for A, at the (I + 1)*" iteration, it suffices to
solve the following least-square problem:
~ -1 - —1
i d 3 e (Ruan)” (20) %) (30) ) (51
te[T]
where X;(A,) is the residual matrix when predicting X,:
X,(A,) =X ALIX, L (BED) AUX, , (BY)
t( p) - Lt Z p/ t_P/ p/ o Z p, t—p/ p/
p <p ' >p

-y ¢V%z,— AX,, (BY) =X, — AX,, (BY)
q€[Q]

T

and we use Xt,_p to denote the partial residual excluding the term involving X;_,, and use gél)

to denote the tensor coefficient satisfying [gél)]ijd = (K], [TW].y), with uw =i + (j — 1) M.

u I+ g

The superscript | represents the value at the ' iteration. To simplify the notation, we
define ®(A;,B;,X) = >, A/ X 7'B,, where X, A;, B, are arbitrary matrices/vectors with
conformal matrix sizes and we simply write ®(A;, X) if A; = B;. Solving (S1.1)) yields the

following updating formula for A},Hl):

Al e@(Xj ,BOX]  s( )@(B”XT

t—p?

. >>_1 (S1.2)

Similarly, we have the following updating formula for B(ZH)

_ -1
BI* @ (X, AlX, ,, 20) @ (ALK, 30) (S1.3)

P



S1. ALTERNATING MINIMIZATION ALGORITHM FOR PMLE

For updating Iy, or its vectorized version v, = vec (T',), it is required to solve the

following kernel ridge regression problem:

. ~ T I AT
n%n {ﬁ(b <xt7_q — (2, ®K)~,, x( )> + 5% Ip®@K)vy, ¢,

where =0 = 20 @ =0 and X,_q is the vectorized partial residual of X, by leaving out

c T

the lag-q auxiliary predictor, defined in a similar way as )Nitv_p. Solving the kernel ridge

regression leads to the following updating formula for 73“):

-1

A Z g7, | @K 4T (ID 2 2(0) Z (Z1g @%1_q)| - (S1.4)
te[T] te[T]

The step in ((S1.4)) can be slow since one needs to invert a square matrix of size MNDxMN D.
In the supplemental material, we propose an approximation to to avoid inverting large
matrices.

The updating rule of Eff“) and E[(:Hl) can be easily derived by taking their derivative

in (3.11)) and setting it to zero. Specifically, we have:

1 -

B - @ (Xj, zg”) (S1.5)
1 ~

T (Xt, 21{’“)) . (S1.6)

where )Zt is the full residual when predicting X;.

The algorithm cycles through (S1.2)), (S1.3), (S1.4), (S1.5) and (S1.6) and terminates

when BS) ® Az(,l), él), Zg) ® Ef,l) have their relative changes between iterations fall under a

pre-specified threshold. We summarize the algorithm in pseudo-code in Algorithm [I}

Remark S1.1. (Convergence of Kronecker Product) When dealing with high-dimensional

matrices, it is cumbersome to compute the change between Bg) ® Az(gl) and BI(,HI) ® AI(,HI)

under the Frobenius norm. An upper bound of ||B;(,l+1) ® A;(,Hl) - B;()l) ® A;(yl) |r can be used
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Algorithm 1 Alternating Minimization Algorithm for PMLE

Randomly initialize parameters ©(®) = {Ago)7 B§0)7 . ,Ast?), Bst(,)), I‘go), ol 1"8)7 27(“0), EE:O)}.
k <« 0.

while not converge do

for n® in [ATY B, .. AD B, T, ... T} =H M) do

n+1  argmin, £, (n;G)(k) \ {n<k>}). > Details in (S1.2), (S1.3), (S1.4), (S1.5) and (SL.6).

Replace n*) with n*+1) in @®).

end for

@(kJrl) . @(k)

k< k+1.
end while
forp=1,2,...,Pdo

¢« sign(tr(AS)) - [ AS .

AP ot AW B B,
end for

return ©*),




S2. PROOF OF PROPOSITION 7?7

instead:

B =B lr - AL e + B e - AL — AD|p, (SL.7)

and a similar bound can be used for the convergence check of £ @ =0,

S2 Proof of Proposition

Proof. For each function g, 4(-) € Hy, we can decompose it as follows:

J
9oa() =D Vaask(5) + Y gadi(-) + hea("),
j=1

seS

where hy4(+) does not belong to the null space of Hy nor the span of {k(-,s)|s € S}. Here
we assume that the null space of Hl; contains only the zero function, so ¢;(-) = 0, for all j.

By the reproducing property of the kernel k(-,-), we have (g,q,k(-,s))m, = 9q.4(s’) =
Y ses Yad,sk(s, s"), which is independent of hq4(-), and therefore hy 4(-) is independent of the
prediction for x; in the MARAC model. In addition, for any h,q(-) ¢ span({k(-,s)|s € S}),
we have:

I90.allfs, = VoaKaa+ lhgalli, > 1D vaask( ),
seS

and the equality holds only if h,4(-) = 0. Consequently, the global minimizer for the con-
strained optimization problem (3.7 must have h,4(-) = 0. It then follows that the squared
RKHS functional norm penalty for g, 4 can be written as v, ;JKv,.q4 and the tensor coefficient
G, satisfies vec ([G]..4) = K~,q4. The remainder of the proof is straightforward by simple

linear algebra, and thus we omit it here. O
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S3 Proof of Theorem 1

Proof. Under Assumption |1| that the vector time series z; follows a VAR(@) process, we can
derive that the vectorized matrix time series X; and the vector time series z; jointly follow

a VAR (max(P, Q, @)) process, namely,

x| PO (B @A) O lgep G ©lu<gy| X ©t
S . (53.8)
Z =1 Opxs Ciolygy | |2 e

Let L = max(P,Q), @) and y; = [x/,2/]. Denote the transition matrix in ((S3.8) at lag- as

J; € RSFDIX(S+D) and the error term as u, = [e], /], then we can rewrite the VAR(L)

process in (S3.8)) as a VAR(1) process as:

_ - J, J, S P _ - _ i
Yy Y u;
Is.p Osip - -+ Ogip
Yi—1 Yi—2 Os+p
= 10ssp Isyp Osip -+ Osyp T . ’ (53.9)
Yi-L+1 YVi-L Os+p
) ) Osip Osip -+ Isyp Osip| = )

where we use Og;p to denote a zero matrix of size (S + D) x (S + D). For this VAR(1)
process to be stationary, we require that det (\I — J) # 0 for all |A] > 1, € C, where J is
the transition matrix in (S3.9)). The determinant det (A\I — J) can be simplified by column

operations as:

det (AL — J)
L L
)\LIS — Z P (Bl & Al) ® 1{[§P} — Z /\LilGlT ® 1{1§Q}
— det =1 =1 i
O )\LID — Z )\L—lcl ® 1{ZSQ}

=1

= A det [@1(N)] det [D,(N)]



S4. THEORY UNDER FIXED SPATIAL DIMENSION

where ®;(\) =Ig—Y7 | A7 (B, ® A,) and ®5(\) =Ip— Y 2

o A1Cg, and setting y = 1/\

completes the proof. O]

S4 Theory under Fixed Spatial Dimension

S4.1 Proof of Proposition

Proof. For the brevity of the presentation, we fix P, as 1, but the proofs presented below
can be easily extended to an arbitrary P, Q. For the vectorized MARAC(1,1) model ,
we can equivalently write it as:

x; = y:0 + e, (54.10)
where y; =[x, ® Is;z] , @ K] and 8 = [vec (B; ® A;) ,~]]T. Using Q = 7! to denote
the precision matrix for e;, we can rewrite the penalized likelihood in for (6,) as:

h(0,9) = —% log || + %tr (2S(0)) + %HTKH, (S4.11)
where S(0) =T! Zle(xt — y:0)(x; — v:0)7, K is defined as:
- Osxs ® K Ogxp ® K

K=
OD><S®K ID®K

We use 8%, Q2" to denote the ground truth of 8,2, respectively. We define Fg and Fq as:
Fo = {[vec (B1® A1) ",/ ]"[[|A1]lr = 1,sign(tr (A1) = 1}
Fo={E'®@ 2|2, e RMM 5, e RVN p(=,), p(E,) > 0}.

The estimators of MARAC, denoted as 5, ﬁ, is the minimizer of h(@, Q) with 8 € Fg, Q € Fq,.

~ -l
In order to establish the consistency of 3 = € |, it suffices to show that for any constant

c>0:

P < _inf  infh(6,Q) < h(G*,Q*)) — 0, as T — 0. (S4.12)
12-Q*[[e>c 6
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This is because if (S4.12)) is established, then as T" — oo we have:

P( inf  inf h(6,Q) > inf infh(@,ﬁ)>h(0*,ﬂ*)2h(§,ﬁ))

[Q—Q* ||p>c B€F, T Q-QF||p>c 6
approaching 1 and thus we must have HSAZ — Q|| < ¢ with probability approaching 1 as
T — oo, and the consistency is established since ¢ is arbitrary.

To prove (54.12), we first fix @ = Q and let 6(£2) = arg ming h(6, ), thus we have:

0(Q) = (Zty#myt + Af{) h <EY+TQX1,) : (S4.13)

which is a consistent estimator of 8* for any Q given that A — 0 and the matrix and vector

time series are covariance-stationary. To see that 8(€2) 2 6*, notice that:

0(Q) = (I- \K)6* + (Zt%m + )\I~<>_1 <Emiet) , (S4.14)

and the first term converges to 8™ since A = o(1). In the second term of (S4.14)), we have:

_ e 3, 0K
+ MK % ’ ’ , (S4.15)
¥ 0K X @ KOQK

Zt YtTQYt
T

where X} = Var(x;), 3

vz = Cov(x4,2;) and X, = Var(z;). The convergence in prob-

ability in holds due to the joint stationarity of x; and z; and the assumption that
A = o(1). We further note that the sequence {y, Qe;}L, is a martingale difference sequence
(MDS), and we have 3., v/ Qe,/T = Op(T~*/?) by the central limit theorem (CLT) of
MDS (see proposition 7.9 of Hamilton| (2020) for the central limit theorem of martingale dif-
ference sequence). Combining this result together with , we conclude that the second

term in ([S4.14)) is op(1) and thus 8(2) is consistent for 6*.

Plugging 6(£2) into h(0, ) yields the profile likelihood of €2:

- y{ém)r) |

S\ 1 = 1 7tht[xt
Q) = §log\ﬂl + §tr (Q 7
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To prove ((S4.12), it suffices to show that:

P (| inf () < €(Q*)> — 0, as T — o0, (54.16)

|Q-Q*|[p>c
since ((Q*) < h(6*,2%). Now, since 8(2) & 6*, we can write 8(Q) = 6 + ¢, with

|¢|lr = op(1). Using this new notation, we can rewrite £(2) a

e(Q):—-log|Q|+ tr( thtet>——tr(( t %1 Q”) ) (S4.17)

A Zt Xy [ Qy,
=) - g (=57 ¢).
where we define the first two terms in (S4.17) as £(€2).

By the Cauchy-Schwartz inequality, we have:

(B3

By the definition of y,;, we have:

TQ T B T B
2 X% Ye _ (Zt Xt; ®_Xt) (Is 2 Q); (_Zt Zt; ® X_t) (Ip ® OK)

- IICIIF- (54.18)

and notice that x;_; ® x; and z;_; ® x; are just rearranged versions of xtxtT_1 and xtth_l,
respectively. Therefore, by the joint stationarity of x; and z;, we have the time average of
X;_1 ®X; and z;_1 ®x; converging to the rearranged version of some constant auto-covariance
matrices and therefore we have the term on the right-hand side of being op(1).

Given this argument, proving (S4.16|) is now equivalent to proving:

p ( inf /() < E(Q*)) — 0, as T — oo. (S4.19)

Q- |p>c

Define £2 as the unconstrained minimizer of Z(Q), then explicitly, we have:
Q =argminl(Q) = (M)
Q T

Yool | Yie0) ) i g,
( - T > = O,
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where the final argument on the convergence in probability to £2* is based on the fact that
ST e (y:0")" /T = Op(T/2) by the CLT of MDS. By the second-order Taylor expansion

of £(2) at Q, we have:

Q) =4(Q) + }lvec (Q - ﬁ)T Q' ® Q'] vec (Q - ﬁ) : (54.20)

where Q = Q+7(Q2—Q), for some ) € [0,1]. For any constant ¢ > 0 such that [|Q2—Q*||r = ¢,

let ¢ = kp(2*), where £ > 0 is also a constant that relates to ¢ only. Consequently, we have:
() — p()] < [ = @|fs < (192 — Q@ [lr = mp(X),

and thus p(Q) < (1 + x)p(2*). Conditioning on the event that || — Q*||r = ¢, we first
have || — QHF > ¢/2 to hold with probability approaching one, due to the consistency of

Q. Furthermore, we also have:

et - i
— 120(927) + (e + p(27)) (3+r)? p()*

where the last inequality holds with probability approaching one since P [ﬁ(ﬁ) < 2p(2)| —

1. Utilizing these facts together with (S4.20)), we end up having:

P — 1, as T — o0, (S4.21)

Z(Q)zaﬁw%-(gf_ﬁf

for any € such that |2 — Q*||r = ¢ = kp(£2*). Since & is an arbitrary positive constant and

Q) & (9", we establish (S4.19) and thereby completes the proof. O
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S4.2 Proof of Theorem [2|

To prove Theorem [2, we first establish the consistency and the convergence rate of the

estimators in Lemma below.

Lemma S4.1. Under the same assumption as Theorem[d, all model estimators for MARAC

are v/ T'-consistent, namely:

~ % 1 = * 1 = * 1
I8, ~ A5l = Or (= ) 1By = Bille = Or () 1A, = 73l = Or )

forp € [P],q € [Q]. As a direct result, we also have:

~ N * * 1
B, ® A, — B, ® Alllp = Op (ﬁ) , forpe[P].

We delay the proof of Lemma to Section [S6.2] With this lemma, we are now ready

to present the proof of Theorem [2]

Proof. For the simplicity of notation and presentation, we fix P,Q as 1, but the proving
technique can be generalized to arbitrary P,(). To start with, we revisit the updating
rule for AZ(,ZH) in (S1.2). By plugging in the data-generating model for X; according to

MARAC(1,1) model, we can transform ((S1.2)) into:

~ B ~—1~
3 [AAleBlT + ATX, AB] + AG Xz, — Et] S 'BiX,, = Onrenrs

te(T)

where for any arbitrary matrix/tensor M, we define AM as AM = M — M*. One can

~—1
simplify the estimating equation above by left multiplying 3, and then vectorize both
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sides to obtain:

> IBIXL)T(Z) 7 BIX,) @ ()] vec (A - Aj)

te(T]

30 [BIXL) (57 @ () ATX ] vee (B] — (B))T)

te(T]

+ Z {Zttl ® [(BTXll)T(Z:)il ® (EDAK] } vec (¥, — 1)

te([T]

= Z [(BiX[ )" () @ ()7 vec (Br) + op(VT).

On the left-hand side of the equation above, we replace EAh, f)r, f]c with their true values
B, X7, 37 since the discrepancies are of order op(1) and can thus be incorporated into the

op(V/T) term given the /T-consistency of A, B, 7. On the right-hand side, we have:
S S
3 vec (EJT ES. BIXH)
t
~ ~—1
= Z [e: X (Xt—l X IM)] vec |:<BI (29 IM> 2 :| s
t

where the process {e] ® (X;_; ® In)}L, is a martingale difference sequence and the mar-
tingale central limit theorem (Hall and Heyde, 2014) implies that Y-, [e] ® (Xy—1 ® Iny)] =
Op(v/T), and thus by the consistency of > and ]§1, we can replace > and B, with their true
values and incorporate the remainders into op(v/T).

Similar transformations can be applied to and , where the penalty term
is incorporated into op(v/T) due to the assumption that A = o(7~2). With the notation
that U; = Iy ® AiX; 1, V, = BiX/] @Iy, Yy =2z , ® K and W, = [V;; U;; Y], these

transformed estimating equations can be converted altogether into:

Z W/ (='W, | vec <@ — @*) Z W/ (%) vec (Ey)

te (7] te 7]

+op(T7Y?), (S4.22)



S4. THEORY UNDER FIXED SPATIAL DIMENSION

~ . T . T R T o~
where vec (@ — @*) = |[vec (A— A*) ,vec (B — B*) ,vec (’R — ’R*) ]",and A, B, R
are defined as [AA]::p = ;&p, [B\]::p = ﬁ;, [ﬁ]:dq = 9,4 and A", B*,'R* are the corresponding
true coefficients.

In (S4.22), we first establish that:

(1/T) Y W[ (='W, 5 E[W/(Z)'W,] . (S4.23)

te[T)

To prove by the assumption that X; and z, are zero-meaned and jointly stationary, we

have T 37, oy XX/ % E[xx,;] by Lemma [36.1| and Corollary [36.2 where X, = [x,,2/]".

See details of Lemma and Corollary in Section [S6.1] Then since each element of
W/ (Z*)"'W;, is a linear combination of terms in X;X,; (thus a continuous mapping), it is
straightforward that holds elementwise.
Given and the fact that © is v/T' -consistent, we can rewrite as:
E[W/(Z%)'W,] vec ((?) . @*) - % 3 W/ (B%) vec (Ey)
te[T)

+op(T1?), (S4.24)

For the term on the right-hand side of (S4.24), first notice that the sequence {n,}{,,
where 1, = W/ (X%)"vec (E;), is a zero-meaned, stationary vector martingale difference
sequence (MDS), thanks to the independence of E; from the jointly stationary X;_; and
z;_1. By the martingale central limit theorem (Hall and Heyde] 2014), we have:

% ST W/ (27 vec (By) 5 N(0,E [W] (25)7'W,]). (S4.25)

te|T)

Combining ((S4.24)) and (S4.25)), we end up having:

E[W/(2%)'W,] VTvec ((:) - @*) A N(0,E [W](27)'W,)). (S4.26)



Hu Sun, Zuofeng Shang and Yang Chen

The asymptotic distribution of vTvec ((:) — @*> can thus be derived by multiplying both
sides of by the inverse of L = E [W/ (£*)7'W,]. However, the matrix L is not a full-
rank matrix, because Ly = 0, where g = [vec (A*) ", —vec (B*)",07]T. As a remedy, let
¢ = [vec(A)' 07| e RM*+N*+DMN then given the identifiability constraint that ||A%||p =
|Ai|[p = 1 and the fact that A, is v/T-consistent, we have vec (A1)’ vec (fAl — A*{) =

op(T~/%). Therefore, we have:
VT¢ vec ((:) — @*) 2. (54.27)

Combining ((S4.26) and (S4.27)) and using the Slutsky’s theorem, we have H\/Tvec((:) —

©*) % N(0,L), where H = L + ¢¢7 and thus:
VTvec(® — ©%) & N0, H'LH ™). (S4.28)
The final asymptotic distribution of vec(B{) ® vec(A;) and K#,.4 can be derived easily
from with the multivariate delta method, and we omit the details here. O
S4.3 Proof of Corollary

Proof. Based on the asymptotic distribution of the MARAC model estimators in (4.16)), it

is straightforward that the marginal asymptotic distribution of gﬂ, ey QAQ follows:

vec (él — g;)
] 0
VT 25y N | o, [O;IQD®K = . ($4.29)

| vec (QQ - gg;)_

Unwrapping the matrix E, one can simplify the asymptotic variance in (S4.29) as:

= [O;IQD@)K]E ° = (I®K) D—CV(CV)T}(M@K),

Iop @ K



S5.

THEORY UNDER HIGH SPATIAL DIMENSION

where D is the lower-right MNQD x MNQD block of H™!, and C is the lower-left block

under the same block partition. To estimate the rank of matrix W, it is sufficient to estimate

the rank of D, as I® K is full-rank, and C~ (C'y)T is rank-1. Note that matrix H is full-rank,

and the top-left block of H, denoted as Hj, is:

X,—B/%.'B;X_, @ %"

¥ 'BX/ @ X ATS !

X, BlE'e X TAX,

e XL ATS A X,

+ oo,

where 1 <i,j < P, and a = [vec (Al)T ,...,vec (Ap)T ,07]". Here, all model parameters

are the ground truth values, and we omit the asterisk notation for simplicity. This matrix is

the key component of the asymptotic variance of the MAR(P) model, see Theorem 3 of Chen

et al. (2021), and is thus invertible. Consequently, the Schur complement of H is invertible

and thus D is a full-rank matrix. Therefore, we have rank(¥) > MNQD — 1.

Finally, based on (54.29), we have T-(g — g*) " ¥' (g — g*) Ay X2, where r = rank(¥) >

MNQ@D — 1, and thus completes the proof. In practice, when we utilize this result to test

the hypothesis of g* = 0, we will plug in the estimator of all parameters and compute the

test statistics 7' - §T\TIT§, and set the critical region based on X%NQ D1

S5 Theory under High Spatial Dimension

]
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S5.1 Proof of Theorem [3l

Proof. In this proof, we will fix P, as 1 again for the ease of presentation, but the technical
details can be generalized to arbitrary P,(). Since we fix the lags to be 1, we drop the
subscript of the coefficients for convenience.

Under the specification of the MARAC(1, 1) model, we restate the model as:

Xy = (XtT,l ® IS) vec (B*® A*) + (z;1 ® K) ¥+ e,

where S = M N and we introduce the following additional notations:

X1 Xg Al e
YT = ) XT = ® IS: VA ) gT =
T T

We will drop the subscript 7" for convenience. Let ¢* = vec (B* ® A*), and g7, ..., g} € Hy
be the true autoregressive and functional parameters. Correspondingly, let v, ..., v}, be the
coefficients for the representers when evaluating g¢j, ..., g}, on a matrix grid, i.e., Kv} is a
discrete evaluation of ¢} on the matrix grid. Let F, = {vec (B ® A) |||A||r = sign(tr (A)) =
1,A € RM*M B ¢ RV*N1. Using these new notations, the MARAC estimator is obtained

by solving the following penalized least squares problem:

min sw,v)::{%uv—fw—<2®K>v||%+3vT<ID®K>7}. (55.30)

$EF 4, yERSD 2
By fixing ¢, the estimator for v is given by 7(¢) = arg min_, £,(¢, ), and can be explicitly

written as:

F(p) =171 (i DK+ - ISD) @ oL (Y — )’qu) , (85.31)

Plugging ([S5.31)) into (55.30)) yields the profile likelihood for ¢:

1

0(0) = 86, 3(8) = 5 (Y - Xg) W (Y -Xo), (5532
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where W is defined as:

W=<1-

~ -1
(z® K) |:Ez QK+ A- ISD] (z" ® 1) 5T -1
T = (I + T ® K) . (S5.33)

and the second equality in (S5.33)) is by the Woodbury matrix identity. It can be seen that
W is positive semi-definite and has all of its eigenvalues within (0, 1). To improve the clarity
and organization of the proof, we break down the proof into several major steps. In the first

step, we establish the following result on qAb:

Proposition S5.1. Under the assumptions of Theorem|[3, we have:

(?b _ qb*)T (iTT—Wi> (as - qb*) < Op(Cy\) + Op(ers - SD/T), (S5.34)

D
where Cy =34, ||g:l||112-]lk
In order to derive the convergence rate of (/;5, we still require one additional result:

Lemma S5.2. Under the assumptions of Theorem@ and the requirement that Slog S/T — 0,

it holds that:

Co,s

P ()N(TW)N(/T) > 28>0, (S5.35)

with probability approaching 1 as S, T — oo, where p(-) is the minimum eigenvalue of a

matriz and co.5 = p(3y , — (E;X)T (EZ,Z)_l 3 x)-

The proof of Proposition and Lemma are relegated to Section and [S6.3]

respectively. Combining Proposition and Lemma we can derive the error bound

o~

of ¢ as:

L= . C c1sD
56— &"lle £ Op(y] 278) + Oply | 7). (35.36)
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Now with this error bound of the autoregressive parameter qAb, we further derive the

prediction error bound for the functional parameters. To start with, we have:

1~ - . 1 -~ _ .
T IEE G )= = [T W)Y - X0) - Ge Ky

1 >/ %
< e | L= WiEle 1= WXG - ¢l

Jl J2

+[W@ES Kyl

~
J3

and we will bound the terms Ji, Js, J3 separately.

To bound J;, we first establish two lemmas.

Lemma S5.3. Given the definition of W in (S5.33) and under the assumptions of Theo-
rem@ we have Op(vgl/gro) <tr@—W)< 0P<\/§’YS_1/2TO), where vs = A/S. Furthermore,

we have tr(W) < SD.

Lemma S5.4. Giwven the definition of W in (S5.33) and under the assumptions of Theo-

rem[3, we have that:

ETWE/tr(W) = Op(c15),

where ¢.5 = ||Z|s. Furthermore, we have ET (I — W)? E/tr ((I— W)Q) = Op(c19).

We leave the proof of Lemma and Lemma to Section [S6.4] and [S6.5] By

Lemma [S5.4] we have:

Ji=cs-tr(I-W)») Sepg-tr(I—W).

And by Lemma [S5.3] we have J; < OP(C},/Sz GV AT,
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For J5, we have the following bound:

Jo = |(I- W)W12W2X($ — ¢")|r (S5.37)
< (T W)W - [W2X(p — ¢") I

< [[W2), - [[WY2X (@ — ¢")|p- (55.38)

To bound ||[W~1/2||,, we can take advantage of the simpler form of W using the Woodbury

matrix identity in (S5.33)) and obtain:

N

W2 = p(W)2 = 5 (T4 (AT)'72 ' @ K)

=

1 ~
< [1+ A )T 7)) < |14 A7 K (2]
In Lemma [S6.1], which we state later in Section [S6.1], we have shown that for N-dimensional
stationary vector autoregressive process, the covariance estimator is consistent in the spectral
norm as long as Nlog N/T — 0. Therefore, since {z;}._, follows a stationary VAR(Q)
process and its dimensionality D is fixed, we have Hf]z — X2, & 0 and thus with probability

approaching 1, we have tr(£,) < 2tr(X%). Therefore, we have [|[W=Y2||, < Op(\/1 + co/N),

») and p(K). Combining this with the result in

where ¢y is a constant related to tr (X}

Proposition [S5.1] we can bound J; via its upper bound ([S5.38)) as:

J2 < 0p (VOIT) + 0 (VET) + 0p(/c155) + O (,/cl,mgl)  (55.39)

Finally, for J3, we first notice that:

Js = Wz oK)yl < [WP2) - [W2E K7y e < [W(E 0 K)y'||r.
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The upper bound of J3 above can be further bounded by:
. —1
W58 K)7" [ = (D[ 8 Kiy T {Tsp - (VB 0K + 1) by

D

= (AT) (Z HgZHﬁuk>
d=1

2 *\ T - -1 *
- () () | 9 K) (£, 0K+ Msp) |
< C AT, (S5.40)

where C; = S0 || gulli, is the norm of all the underlying functional parameters. The last
inequality of (S5.40]) follows from the fact that the quadratic form led by A?T is non-negative.

To see why, first note that:

~ —1 ~ —1 —~ —~ —1
(Ip @ K) (zz QK + /\ISD> - <2z ®IS> . [zz ol + A\ IS oK|

Then, we have the following lemma:

Lemma S5.5. If A, B are symmetric, positive definite real matrices and A — B is positive

semi-definite, then B~ — A~! is also positive semi-definite.

We leave the proof to Section |S6.6, Let M = iz@)ls—l—)\_liz@K and N = §Z®IS, then

both M and N are positive definite and M — N is positive semi-definite. By Lemma [S5.5]
we have N~! — M™! being positive semi-definite and thus (S5.40]) holds.
Using the result in (S5.40), we eventually have J; < Op(1/CyAT). Combining all the

bounds for Ji, Jy, J3, we end up with:

—1/2rg

\/C1,8\ Vs
VTVS

o (L)w (@)w Vst
"\Vs r T "\ VTS

1 -~ -~ *
— |z K)HF —v)|lr <Op

\/T_S + OP(\/%)
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S5.2 Proof of Proposition

~

Proof. The MARAC estimator $ is the minimizer of £,(¢), defined in ([S5.32)), for all ¢ € F,
and thus £)(¢) < l,(¢"). Equivalently, this means that:

N —

- XWX /~ _ <
(-¢) ( - ) (3-¢7) < plEoK)y +& WK (3 ¢7).
Let & = W/2X(¢p — ¢*)/VT and w = W2 [(Z® K)v* + €] /V/T, then the inequality can

be simply written as § 'd < 28" w, and we can upper bound our quantity of interest, namely

5'8, as:

076<20-w) (6 —w) +2w' w< 4w w.

Therefore, the bound of ||d]|% can be obtained via the bound of ||w]||%. We have the following

upper bound for ||w||3:

1617 < 4llwlf = Z[(ZoK)y + & W[ZzoK)y" +&]

Nl

<

| oo

W' @ K) '+ [WE]R |

~~
I Ip)

(S5.41)

where the last inequality follows from the fact that W is positive semi-definite.

For I, it can be bounded by (55.40) and thus I < CyAT. To bound I, we utilize

Lemma and bound Iy as Iy < ¢; g - tr (W) < ¢y - SD. Combining the bounds for I,

and I, we have:

~ ~T X ~
a2 = (397 <X ul X) (8- 6") S 0p(CA) + Oplers - SD/T),

which completes the proof.
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S6 Technical Lemmas & Proofs

In this section, we first introduce Lemma on the consistency of the covariance matrix
estimator for any stationary vector autoregressive process and then Corollary on the
consistency of the covariance estimator of our MARAC model, given the joint stationarity
condition. Then we provide proof for Lemma used in Section when proving The-
orem [2| on the asymptotic normality under fixed spatial dimension. Then we provide proofs

for Lemma [S5.2], [S5.3], [S5.4] and [S5.5] used in Section [S5| when proving the error bounds with

high spatial dimensionality.

S6.1 Statement of Lemma

In Lemma [S6.1} we restate the result of Propositions 6 and 7 of [Li and Xiao| (2021)), which
covers the general result of the consistency of the estimator for the lag-0 auto-covariance

matrix of a stationary VAR(p) process.

Lemma S6.1. Letx; € RY be a zero-meaned stationary VAR(p) process: x; = Y 1, ®pXe_p+

&,, where &, have independent sub-Gaussian entries. Let > = (1/T) Zthl x;x; and ¥ =

a NlogN Nlog N
Euz—znsso(\/ e )nzns, (56.42)

where C is an absolute constant.

E[S], then we have:

We refer our readers to Appendix C.3 of |Li and Xiao| (2021) for the proof. As a corollary

of Lemma we have the following results:

Corollary S6.2. Assume that {z;}1_, is generated by a stationary VAR(Q) process: z; =

q~Q:1 Cqzi_g+v,, with v, having independent sub-Gaussian entries, then with 3, = (1/7) Zthl Z4Z

T
t
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. > e) <Ce! (\/?4— ?) , (S6.43)

with C being an absolute constant and € being a fized positive real number, and thus Hf]z -

and % = E[S,), we have:

z

(5

N

S

Z

0.

Let {X;}I_, be a zero-meaned matriz time series generated by the MARAC model with
lag P,Q and {z;}1_, satisfies the assumption above and {Xy,z:}_, are jointly stationary in
the sense of Theorem[1. Assume further that E; has i.i.d. Gaussian entries with constant

variance o, then fory, =[x}, z/}]T, S = (1/T) S yeyr and 3% = Elyy/], we have:

[SlogsS SlogS .
< .

EHfzo—zg

where C is an absolute constant.

Proof. The proof of (56.43) is straightforward from Lemma together with Markov in-
equality. The proof of ([S6.44)) also follows from Lemma since {y;} L, follows a stationary
VAR(max(P, Q, Q)) process with i.i.d. sub-Gaussian noise (see (53.8)) and E[(1/T) S vyl =

Ely:y,] due to stationarity. O

Note that the convergence of the variance estimator in spectral norm also indicates that
each element of the variance estimator converges in probability. Also, the assumption that

E; has i.i.d. Gaussian entries can be relaxed to E; having independent sub-Gaussian entries.

S6.2 Proof of Lemma

Proof. Without loss of generality, we fix P, as 1 and use the same notation as (S4.10)) in
Section so the MARAC model can be written as x; = y;0* + e;. Correspondingly, the

penalized log-likelihood h(, ) is specified by (S4.11]) and given any Q, we have 5(()) =



Hu Sun, Zuofeng Shang and Yang Chen

arg ming h(0, ) as specified by (S4.13). Given the decomposition of 5(9) in ((S4.14)), we

have:

. - Q0 A\ ! O
0(Q) — 6" = - K" + <—Zt y;, LA AK) (—Zt yzi et) :

where |AKO* || = o(T~%/2) since A = o(T/2) and the norm of the second term is Op(T~1/2).

To show that the norm of the second term is Op(T~'/2), we first observe that:

_ . _
Zt y;rﬂyt X \K Zt y;rQet
T T

F

IN

_ 1 _
> Yy 1LAK ) >0y Qe
T T

J/

-~

—1
L, F Ry F

For the sequence of random matrices {Lr}5_,, we have:

Zt y]ZI—Qyt ~ p. COV(Xta Xt) & Q COV(Xt, Zt) (%9 QK
==——"—4+)K
T TR ,

Cov(z,x;) @ KQ Cov(z, z) @ KQK

Ly

and we define the limiting matrix as L. To show this, first note that the covariance estimator
Var([x],2/]7) = T Y,[x/, 2] ]T[x], 2] converges in probability to the true covariance
Var([x/,z/]|"), which we prove separately in Corollary . Secondly, notice that A =
o(T~V %), thus we have MK — O and thus we have the convergence in probability of Ly to
L holds.

Notice that the limiting matrix L is invertible because the matrix L', defined as:

IK O IK O _
L - L — Var(ix], %) ® (KOK),

@) I 0) I

is invertible. To see why, firstly note that Var([x/,z,]") is invertible because we can ex-
press [x/,2/]" as D22 ®;e), v/]T, where {®;}52, is a sequence of matrices whose el-

ements are absolutely summable and ®, = I, therefore, we have p(Var([x/,z/]|")) >
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p(Var(le/,v/]")) > 0. Secondly, by Assumption , we have p(K) > 0 and we also have
p(Q) > 0 by definition, therefore we have KQK to be positive definite. The invertibility
of L and the fact that Ly 2 L indicates that L;l Py L1, since matrix inversion is a con-
tinuous function of the input matrix and the convergence in probability carries over under
continuous transformations. Eventually, this leads to the conclusion that |L;'||p = Op(1).

For the sequence of random matrices {R7}3_,, we note that the sequence {y, e},
is a martingale difference sequence (MDS) such that |Rr||p = Op(T~/2) (see proposition
7.9 of [Hamilton| (2020)) for the central limit theorem of martingale difference sequence).

Combining the result of |Lz|[p and |Ry||p, we conclude that [|8(£2) — 8*[|p = Op(T~1/2).

Fix © = Q, we can decompose h(0, 2) via the second-order Taylor expansion as follows:

6-06(Q)" (Zty%m” + Af() 6 —06(Q))

h(6,Q) = h(6(Q), Q) +

> h(0(Q), Q) + 5p(Lr) 6 — 6(Q)][3, (S6.45)

N — DN =

and recall that Ly = T7' 3", y, Qy, + K. In the previous proof, we’ve shown that Ly 2 L,
with L being a positive definite matrix. Therefore, with probability approaching 1, we have
p(Lr) > p(L)/2 > 0.

With the lower bound on p(Ly), we can claim that for some constant C; > 0:

inf h(6,Q)

QeFo:|Q-Q*[r<C1

> inf {h('é((z), Q) +

 QeFq:|Q-2*|p<Ch

p(L)- [0~ 5(9)|!%} , (56.46)

o

with probability approaching 1. Now consider 8 belongs to the set {0 € Fo|/T||0 — 0*||r >
cr}, where ¢ — oo is an arbitrary sequence that diverges to infinity. Within this set, we

have:

16— 6(Q)]r = N 16" — 8(2)]r, (56.47)
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thus |0—60(Q)||r = Op(cy/VT) for some sequence cy — oo since [|6()—8*||p = Op(T—1/2).
By the Taylor expansion in (S6.45)), we can conclude that k(6*, Q) = h(6(2), Q) +Op(T1),
also using that [|@(€2) — 6*[|p = Op(T~/2). Combining this result together with the order

of |6 — 8()||r, we have the following hold according to (S6.46)):

P< it inf hO.Q)> i h(e*,Q)) L1 (S6.48)
VT||0—8*||p>cr QEFa:||Q—Q"|[r<Cy QeFq:|Q-Q*||r<C)

The result in indicates that for any @ that lies outside of the set {6 € Fg|v/T||0 —
0%|lr < cr}, the penalized log-likelihood is no smaller than a sub-optimal solution with
probability approaching 1. Therefore, with probability approaching 1, one must have v/T' |0—
0%|lr < cr. And since the choice of er is arbitrary, we can conclude that ||§ — 0| =
Op(T~%2) and thus each block of 5, namely :&p,ﬁp,ﬁlq converges to their ground truth
value at the rate of 771/2.

The convergence rate of ]§p ® A\p can be derived from the following inequality:
1B, @ Ap =B, @ Ajllr < [[Byllr - [[Ap = Ajlle + (B, — By [lr - [[A5]lF,

as well as the convergence rate of ;‘lp and ]§p.

S6.3 Proof of Lemma

Proof. Based on the definition of W in equation ([S5.33)), we have

XX el (z;x ® K) (2 2K + /\ISD> (Ez,x 2 Is)
~ AT o~ ~
— (Bex — BaaZa D) @1
—~ T r~2 Y -1 /.
+(Bnek) [B,en K+, 0L (Saol), (S6.49)
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where the second term in (56.49)) is positive semi-definite since both p(izuz) and p(K) are
non-negative and the whole term is symmetric. Therefore, by Weyl’s inequality, one can

~ ~ ~ AT ~—1~
lower bound p(X"WX/T) by p(Exx — EzvxEZ;ELX). For simplicity, we will use A,B,C

to denote 3 ,,3; ., (X;,)"", and A, B, C to denote ixx, iz,x, >

X,X) “z,x)

respectively. We will

use 3 and * to denote the estimated and true covariance matrix of (x/,z/]". It is evident
that [|Alls < ||X*||s and ||B]|s < ||X7||s, since both A and B are blocks of 3* and can thus
be represented as E] £*E, with E{, E; being two block matrices with unity spectral norm.

The rest of the proof focuses on showing that with S'log S/T — 0, B(ixyx—iT S
Pk — (E;x)T (E;z)_l 3, x)- For brevity, we omit the subscript s for the spectral norm

notation and simply use || - || in this proof.

To start with, we have:

IA—BTCB - (A —B'CB)|
<|A-A||+|B"CB-B'CB|+|B"CB-B'CB]
<||E-3%[+[I(B-B)'CB| +|B'C(B-B)||+|B"(C-C)B|
< £ -3|+|B-B|- (IC]- Bl +C] - IBI|)

+ B[l [B] - [[C - Cl. (S6.50)

Based on Corollary under the condition that Slog.S/T — 0 and the conditions that z,
follows a stationary VAR(Q) process and is jointly stationary with x;, we have |C—C| % 0
and |2 — X*|| & 0. Therefore, with probability approaching 1, we have ||C|| < 2|/C||,
IB - B|| < [|= - % < 2|2 and | B] < 3]|"]].

Combining these results and the upper bound in (56.50)), with probability approaching
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1, we have:

IA-B'CB - (A-B'CB)|| < (1+7|C|-[Z[) = - =

+ 3|2 - ||C - C]|. (S6.51)

The upper bound in (S6.51)) can be arbitrarily small as S, — oo since ||C — C|| 2 0 and
1= -2 & o.

Eventually, with probability approaching 1, we have:
~—1~ 1 _
P(Ex = B0nB0s ) 2 50 (Tix — (Thn) | (T00) " Za) =55 (8652)

This completes the proof.

S6.4 Proof of Lemma

Proof. By the definition of W in ([S5.33)), we have:
~ -1 /<
tr(I— W) = tr {<EZ®K+)\ISD) (&@K)}

Sy pd@i) ) _p. - . 56.53
ZZAerd(Ez)ps(K ;1+)\P ) Lps(K) ( )

Using Lemma [S6.1] we can bound ﬁ(f]z) by 2p(X;) with probability approaching 1 as T" —
oo. Conditioning on this high probability event and using the Assumption |3 that the kernel
function is separable, the kernel Gram matrix K can be written as Ko ® K; and thus (56.53))

can be bounded as:

s
1
DY - <D E:Ej , S6.54
11—|—)\p ) Lps(K)~ i1 =1 L+ e pi(Kp)71p;(Ky) ™! ( )

S=

where ¢, = 1/2p(2}). As M, N — oo, based on Assumption 4 we have p;(K;) — Mi™"

and p;(Ky) — Nj~". Consequently, we can find two constants 0 < ¢; < c¢g, with ¢; being
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sufficiently small and ¢y being sufficiently large, such that:

M N 1 M N 1
2.2, 1+ coM\(ij)0/S <22 L+ e Api (Kq)71p; (Ko)

i=1 j=1 i=1 j=1

1
= ZZ T+ enij)o/S’ (86.55)

where we, with a little abuse of notations, incorporate ¢, into ¢1, co. To estimate the order of

the lower and upper bound in (S6.55)), we first notice that for any constant ¢ > 0, one has:

MAN 1 M N 1 MVN 1
— < — <2(MV N) _ (S6.56)
; 14 cAi?ro/S ;;14—0)\(2])7“0/5 ; 14 cAi?ro /S
To approximate the sum in (S6.56)), notice that:
MVN MVN
1 1 1
P (S/c)\)l/%0 . ; : )
; 1+ C)\ZzTO/S ; 1+ [W]QTO (S/C)\)l/zro
and furthermore, we have:
LN 1 1 /C L
im . . = ——dzr < o0,
S—o0 p— 1+ [W]QTO (S/C)\)l/%o o 1+ a2

where C' = limg_,o ¢(M V N)?™ - vg. In the assumptions of Theorem , we assume that
MV N = O(VS) and limg_,o 75 - S — C; where 0 < C; < co. As a result, we have C

being either a finite value or infinity, thus we have:

MVN

1 ¢ 1 . _
1 _— = . | /27"0 — 1/27”0
S!grolo ;:1 FSYETyES /o T 22 dz Slglgo(S/c)\) O(vg ). (S6.57)

Combining ($6.53), (56.54), (S6.55) and (56.57), we have tr (I — W) < Op((MVN)y5'/*"*) =

Op(v/Sv5"?™®). To obtain the lower bound of tr (I — W), we have:

S M

1 1
tr(I—W)>D- >D'§:

a )= ;1+/\C/ZPS(K)_1_ L L] 4y N ()0 /S

j
which holds with probability approaching 1 and ¢, = 2/p(%

follows from ([S6.55)). To further lower bound the double summation, we have:

M N |
2.2 75 2
il csA(if)™ /S

MAN

1
Z 14 e3A(ij)o /S

=1
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This new lower bound can be approximated with the same method as (S6.57) under the as-
sumption that MAN = O(+/S). We can obtain the lower bound of tr (I — W) as Op(ygl/%),
which establishes the final result.

The upper bound of tr (W) is trivial since:

S6.5 Proof of Lemma

Proof. Let W' = (I; @ 2Y2)W (I; ® £/2), then by the Hanson-Wright inequality (Rudelson
and Vershynin, [2013)), for any fixed W, with ¢,¢ > 0 being constants and K = 4/8/3, we

have:

t? t
P||ETWE —E[ETWE]| >t W} < 2exp [—c-min( , )} S6.58
| |: ]| 4H IH% 2” /HS ( )

We denote each of the S x S sub-matrix along the diagonal of W as Wy, ..., Wy, then for

E [ETWE|W], we have:

T T
1) (2) 3)
E[ETWEIW] = Z<Wt,2> < Z 12]]s - [[Well, = [|%][s - tr (W),
t=1

t=1

where (-, -) denotes the matrix inner product and || - ||. denotes the matrix nuclear norm. For
(1), this is because of the definition of £TW'E as well as the independence between W and
E. For (2), this inequality holds for the matrix/tensor inner product, and we refer our reader
to Lemma 1 of Wang and Li (2020). Similarly, we also have E [ETWE|W] > p(E) - tr (W).

For (3), we can prove it via the semi-definiteness of W:

T T T
STIWL = LWLy, = tr (W. (Z LtLtT>> = tr (W) = [[W]|,,
t=1 t=1 t=1
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t-1 blocks T-t blocks
—N—  —— T
where L; = [0,...,0,1,0,...,0]".

Letting t = E [ETWE|W] /2, then we have:

2 exp {—cmin( £ ¢ )} < 2exp __c in p(X)? - tr (W)22 p() - tr (W)
KW k2w, /] =70 KW/ KW

< 2exp |- min (LS (W) 2 () - tr (W)
N I KAp(2)2- [Wle = K2-p(%)
< 2exp _—% - tr (W)} (S6.59)

We can lower bound the trace of W as follows. First, note that:

S D \
- SD - Z .
2.2 A+ pd(E )ps(K) - A+ p(3,)p(K)

s=1 d=1

By the assumption that p(K) is bounded and that the fact that ﬁ(f]z) < 2p(%r) with

probability approaching 1 as T" — oo, we have:

SDA
A+¢

P {tr (W) > } —1, asT — oo, (56.60)

where ¢ = 2p(3;)p(K). Since rg < 2 and g - S™ — C} as S — oo, with C} being either a
positive constant or infinity, we have vg - S? = A+ S — oco. Therefore, we have tr (W) — oo
with probability approaching 1, as S,T — oo.

With these results, we can now upper bound the unconditional probability of the event

{{ETWE —E [ETWE]| > E[ETWE] /2} as follows:
P[|ETWE -E[E'WE]| > E[ETWE] /2]

<E [Qexp [—% - tr (W)”

SDA c  SDX SDA
< . - - . . > .
_2{1 P(tr(W)<)\+E)+exp{ oK )\—1-51 P(tr(W)_)\+é)}—>O
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This indicates that £€TWE concentrates around its mean E [8 TWS] with high probability,
and thus ETWE /tr (W) = Op(||Z|ls) = Op(c1.5). To establish ET(I-W)2E /tr (I — W)?) =
Op(||Z]ls) = Op(c1,5), we first note the unboundedness of tr ((I — W)?) by following the
same idea as the proof for Lemma [S5.3] where we have:

2
MAN

tr (L= W)?) > (S/en)2r0 - > —
i=1 | 1+ [—(S/C)\)l/%}

1

(S/en)~H2r,

with probability approaching 1 and ¢ is some constant. The remainder of the proof follows

exactly the same steps, and we omit the rest of the details here. O

S6.6 Proof of Lemma

Proof. For any two arbitrary symmetric matrices M, N with identical sizes, we use M > N
to indicate that M — N is positive semi-definite, and we use M'/2 to denote the symmetric,
positive semi-definite square root matrix of M.

Since A — B is positive semi-definite, multiplying it by B~/ on both left and right sides
of A — B, we have B"/2AB~/2 > 1. Therefore, we have B~/2AY2A/2B~/2 > 1. Notice
that the matrix A/2B~/2 is invertible and thus has no zero eigenvalues. As a result, all
eigenvalues of B™/2A1/2A1/2B~1/2 are the same as the eigenvalues of A/2B~1/2B~1/2A1/2
and thus AY?2B~1/2B~1/2A1/2 > 1. Multiplying both sides by A='/2 on both the left and

right sides yields B™! > A~!, which completes the proof. ]

S7 Additional Details on Simulation and Algorithm
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S7.1 Simulation Setup

We generate the simulated dataset according to the MARAC(P, Q) model specified by
and . We simulate the autoregressive coefficients A,, B, such that they satisfy the
stationarity condition specified in Theorem [1|and have a banded structure. We use a similar
setup for generating 3., 3. with their diagonals fixed at unity. In Figure [1 we plot the

simulated Ay, By, 3,, ¥, when (M, N) = (20, 20).

Simulated A; Simulated B; Simulated Z, Simulated Z.

0.00 0.02 0.04 0.06 008 010 0.12 0.00 005 010 015 0.20 0.25

Figure 1: Visualization of the simulated A,,B;,¥,, 3, with M = N = 20.

To generate ¢1,¢2,93 € Hp and mimic the spatial grid in our real data application
in Section [6] we specify the 2-D spatial grid with the two dimensions being latitude and
longitude of points on a unit sphere S2. Each of the evenly spaced M x N grid points
has its polar-azimuthal coordinate pair as (6;, ¢;) € [0°,180°] x [0°,360°],¢ € [M],j € [N],
and one projects the sampled grid points on the sphere onto a plane to form an M x N
matrix. The polar 6 (co-latitude) and azimuthal ¢ (longitude) angles are very commonly
used in the spherical coordinate system, with the corresponding Euclidean coordinates being
(x,y,2) = (sin(f) cos(¢), sin(0) sin(¢), cos(H)).

As for the spatial kernel, we choose the Lebedev kernel:

1 1—(s1,s
ky(s1,82) = (E + %) — 8% %, 1,59 € S?, (S7.62)
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where (-, -) denotes the angle between two points on the sphere S* and 7 is a hyperparameter
of the kernel. In the simulation experiment as well as the real data application, we fix n = 3.

The Lebedev kernel has the spherical harmonics functions as its eigenfunction:

o) l
k (317 52 + ; 412 — 1 2l 4 3) mg_ly;m(sl)y;m(SQ)a
where Y;"(-) is a series of orthonormal real spherical harmonics bases defined on sphere S%:
\/_Nlm " (cos(0)) cos(mo) if m>0

Yim(s) = lm(ea ¢) = Nl()PlO(COS(Q)) ifm=0:

| V2Nijy P (cos(0)) sin(|m]g)  if m < 0

with Ny, = /(20 4+ 1)(1 — m)!/(47 (L + m)!), and P/"(-) being the associated Legendre poly-
nomials of order [. We refer our readers to Kennedy et al.| (2013)) for detailed information
about the spherical harmonics functions and the associated isotropic kernels. Under our 2-D
grid setup and the choice of kernel, we have found that empirically, the kernel Gram matrix
K has its eigen spectrum decaying at a rate of p;(K) ~ i~ with r € [1.3,1.5].

We randomly sample g1, g2, g3 from Gaussian processes with a covariance kernel being
the Lebedev kernel in (S7.62). Finally, we simulate the vector time series z; using a VAR(1)
process. In Figure [2| we visualize the simulated functional parameters as well as the vector

time series from one random draw.

S7.2 Approximated Penalized MLE with Kernel Truncation

The iterative algorithm in Section [3.1] requires inverting an M N D x M N D matrix in (S1.4)
when updating v, i.e., the coefficients of the representer functions k(-, s). One way to reduce
the computational complexity without any approximation is to divide the step of updating

Y, = [’y;l D 'y; p]T to updating one block of parameters at a time following the order of
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Figure 2: Simulated functional parameters g1, g2, g3 evaluated on a 20 x 20 spatial grid (top row) and the

corresponding auxiliary vector time series (bottom row).

Vg1 = —> Y4p- However, such a procedure requires inverting a matrix of size M N x M'N
which could still be high-dimensional.

To circumvent the issue of inverting large matrices, we can approximate the linear combi-
nation of all M'N representers using a set of R << M N basis functions, i.e., Ky, ; & Kz0,4,
where K € RMN*E g, € R For example, one can reduce the spatial resolution by sub-
sampling a fraction of the rows and columns of the matrix and only use the representers at
the subsampled “knots” as the basis functions. In this subsection, we consider an alternative

approach by truncating the Mercer decomposition in (3.8). A similar technique can be found

in [Kang et al. (2018)).

Given the eigen-decomposition of k(-,-) in (3.8]), one can truncate the decomposition at
the R™ largest eigenvalue A\p and get an approximation: k(-,-) = >, p At (-)1r(-). We

will use the set of eigen-functions {¢1(-),...,9¥g(-)} for faster computation. The choice of
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R depends on the decaying rate of the eigenvalue sequence {\, }22, (thus the smoothness of
the underlying functional parameters) and can be done via cross-validation in practice. Our
simulation result shows that the estimation and prediction errors shrink monotonically as
R — oo. Therefore, R can be chosen based on the computational resources available. The
kernel truncation speeds up the computation at the cost of providing an overly-smoothed
estimator, as we demonstrate later in this section.

Given the kernel truncation, any functional parameter g,4(-) is now approximated as:
9q.4(") = 3 _,c(r[0qdlr¥r(+). The parameter to be estimated now is @4 = [641;- -+ ;04,p] €
RA*Pwhose dimension is much lower than before (T', € RMN*P) Estimating O, requires
solving a ridge regression problem, and the updating formula for vec(®,) = 6, can be

written as:

-1
0/« |@ (2,0 KnTO) 40T Iy @ AF)| @ (2], 9 Kn. %, 2"),

where K € RMV*E gatisfies [Kglur = ¢ (8i5),u =i+ (j —1)M, and A, = diag(\1, ..., Ar),
with )\, being the ! largest eigenvalue of the Mercer decomposition of k(-,-). Now we only
need to invert a matrix of size RD x RD, which speeds up the computation.

In Figure[3] we visualize the ground truth of g3 and both its penalized MLE and truncated
penalized MLE estimators. It is evident that the truncated penalized MLE estimators give
a smooth approximation to g3, and the approximation gets better when R gets larger. The
choice of R should be as large as possible for accuracy, so one can determine R based on the

computational resources available.
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(a) Ground Truth g3 (b) g3 (PMLE) (c) g3 (R=49) (d) g3 (R=81) (e) g5 (R=121)

2999

-1.00 -0.75 -0.50 -0.25 0.00 025 050 0.75 1.00

Figure 3: Ground truth gs (panel (a)) against the penalized MLE estimator g3 (panel (b)) and the truncated

penalized MLE estimator g3 using R € {49, 81,121} basis functions. M = 20.
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