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Supplementary Material

This supplemental material is organized as follows. Section S1 presents the algorithmic

details of the penalized MLE using alternating minimization outlined in Section 3.1. In

Section S2, we prove Proposition 1 on the equivalence of the estimation problem of MARAC

to a kernel ridge regression problem. In Section S3, we prove Theorem 1 on the joint

stationarity condition of the matrix and auxiliary vector time series. Then in Section S4,

we provide proofs of the theoretical results under fixed spatial dimensionality, including

Proposition 2, Theorem 2 and Corollary 1. In Section S5, we present proofs of the theoretical

results under high spatial dimensionality, namely Theorem 3. All essential lemmas used

throughout the proofs are presented and proved in Section S6. Finally, we include additional

details of the simulation in Section S7 as well as an approximated estimating algorithm for

obtaining the penalized MLE via kernel truncation.

In this supplemental material, we use ρ̄(·), ρi(·),
¯
ρ(·), and ‖ · ‖s to denote the maximum,

ith largest, minimum eigenvalue, and spectral norm of a matrix. We use a∨ b, a∧ b to denote

the maximum and minimum of a and b, respectively. For two sequences of random variables,
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say Xn, Yn, we use Xn . Yn to denote the case where Xn/Yn = OP (1), and Xn & Yn to

denote the case where Yn/Xn = OP (1). We then use Xn � Yn to denote the case where both

Xn . Yn and Xn & Yn hold.

S1 Alternating Minimization Algorithm for PMLE

To solve the optimization problem in (3.11) for Ap at the (l + 1)th iteration, it suffices to

solve the following least-square problem:

min
Ap

∑
t∈[T ]

tr

(
X̃t(Ap)

>
(
Σ(l)
r

)−1

X̃t(Ap)
(
Σ(l)
c

)−1
) , (S1.1)

where X̃t(Ap) is the residual matrix when predicting Xt:

X̃t(Ap) = Xt −
∑
p′<p

A
(l+1)

p′
Xt−p′

(
B

(l+1)

p′

)>
−
∑
p′>p

A
(l)

p′
Xt−p′

(
B

(l)

p′

)>
−
∑
q∈[Q]

G(l)
q ×̄zt−q −ApXt−p

(
B(l)
p

)>
= X̃t,−p −ApXt−p

(
B(l)
p

)>
and we use X̃t,−p to denote the partial residual excluding the term involving Xt−p and use G(l)

q

to denote the tensor coefficient satisfying [G(l)
q ]ijd = 〈[K]>u:, [Γ

(l)
q ]:d〉, with u = i + (j − 1)M .

The superscript l represents the value at the lth iteration. To simplify the notation, we

define Φ(At,Bt,Σ) =
∑

t A
>
t Σ−1Bt, where Σ,At,Bt are arbitrary matrices/vectors with

conformal matrix sizes and we simply write Φ(At,Σ) if At = Bt. Solving (S1.1) yields the

following updating formula for A
(l+1)
p :

A(l+1)
p ← Φ

(
X̃>t,−p,B

(l)
p X>t−p,Σ

(l)
c

)
Φ
(
B(l)
p X>t−p,Σ

(l)
c

)−1

(S1.2)

Similarly, we have the following updating formula for B
(l+1)
p :

B(l+1)
p ← Φ

(
X̃t,−p,A

(l+1)
p Xt−p,Σ

(l)
r

)
Φ
(
A(l+1)
p Xt−p,Σ

(l)
r

)−1

(S1.3)
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For updating Γq, or its vectorized version γq = vec (Γq), it is required to solve the

following kernel ridge regression problem:

min
γq

{
1

2T
Φ
(
x̃t,−q −

(
z>t−q ⊗K

)
γq,Σ

(l)
)

+
λ

2
γ>q (ID ⊗K)γq

}
,

where Σ(l) = Σ(l)
c ⊗ Σ(l)

r and x̃t,−q is the vectorized partial residual of Xt by leaving out

the lag-q auxiliary predictor, defined in a similar way as X̃t,−p. Solving the kernel ridge

regression leads to the following updating formula for γ
(l+1)
q :

γ(l+1)
q ←

∑
t∈[T ]

zt−qz
>
t−q

⊗K + λT
(
ID ⊗Σ(l)

)−1 ∑
t∈[T ]

(zt−q ⊗ x̃t,−q)

 . (S1.4)

The step in (S1.4) can be slow since one needs to invert a square matrix of sizeMND×MND.

In the supplemental material, we propose an approximation to (S1.4) to avoid inverting large

matrices.

The updating rule of Σ(l+1)
r and Σ(l+1)

c can be easily derived by taking their derivative

in (3.11) and setting it to zero. Specifically, we have:

Σ(l+1)
r ← 1

NT
Φ
(
X̃>t ,Σ

(l)
c

)
(S1.5)

Σ(l+1)
c ← 1

MT
Φ
(
X̃t,Σ

(l+1)
r

)
. (S1.6)

where X̃t is the full residual when predicting Xt.

The algorithm cycles through (S1.2), (S1.3), (S1.4), (S1.5) and (S1.6) and terminates

when B
(l)
p ⊗A

(l)
p , G(l)

q , Σ(l)
c ⊗Σ(l)

r have their relative changes between iterations fall under a

pre-specified threshold. We summarize the algorithm in pseudo-code in Algorithm 1.

Remark S1.1. (Convergence of Kronecker Product) When dealing with high-dimensional

matrices, it is cumbersome to compute the change between B
(l)
p ⊗A

(l)
p and B

(l+1)
p ⊗A

(l+1)
p

under the Frobenius norm. An upper bound of ‖B(l+1)
p ⊗A

(l+1)
p −B

(l)
p ⊗A

(l)
p ‖F can be used
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Algorithm 1 Alternating Minimization Algorithm for PMLE

Randomly initialize parameters Θ(0) = {A(0)
1 ,B

(0)
1 , . . . ,A

(0)
P ,B

(0)
P ,Γ

(0)
1 , . . . ,Γ

(0)
Q ,Σ(0)

r ,Σ(0)
c }.

k ← 0.

while not converge do

for η(k) in [A
(k)
1 ,B

(k)
1 , . . . ,A

(k)
P ,B

(k)
P ,Γ

(k)
1 , . . . ,Γ

(k)
Q ,Σ(k)

r ,Σ(k)
c ] do

η(k+1) ← argminη Lλ

(
η;Θ(k) \ {η(k)}

)
. . Details in (S1.2), (S1.3), (S1.4), (S1.5) and (S1.6).

Replace η(k) with η(k+1) in Θ(k).

end for

Θ(k+1) ← Θ(k).

k ← k + 1.

end while

for p = 1, 2, . . . , P do

c← sign(tr(A
(k)
p )) · ‖A(k)

p ‖F.

A
(k)
p ← c−1 ·A(k)

p ,B
(k)
p ← c ·B(k)

p .

end for

return Θ(k).
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instead:

‖B(l+1)
p −B(l)

p ‖F · ‖A(l+1)
p ‖F + ‖B(l)

p ‖F · ‖A(l+1)
p −A(l)

p ‖F, (S1.7)

and a similar bound can be used for the convergence check of Σ(l)
c ⊗Σ(l)

r .

S2 Proof of Proposition 1

Proof. For each function gq,d(·) ∈ Hk, we can decompose it as follows:

gq,d(·) =
∑
s∈S

γq,d,sk(·, s) +
J∑
j=1

αq,d,jφj(·) + hq,d(·),

where hq,d(·) does not belong to the null space of Hk nor the span of {k(·, s)|s ∈ S}. Here

we assume that the null space of Hk contains only the zero function, so φj(·) = 0, for all j.

By the reproducing property of the kernel k(·, ·), we have 〈gq,d, k(·, s′)〉Hk
= gq,d(s

′) =∑
s∈S γq,d,sk(s, s′), which is independent of hq,d(·), and therefore hq,d(·) is independent of the

prediction for xt in the MARAC model. In addition, for any hq,d(·) /∈ span({k(·, s)|s ∈ S}),

we have:

‖gq,d‖2
Hk

= γ>q,dKγq,d + ‖hq,d‖2
Hk
≥ ‖

∑
s∈S

γq,d,sk(·, s)‖2
Hk
,

and the equality holds only if hq,d(·) = 0. Consequently, the global minimizer for the con-

strained optimization problem (3.7) must have hq,d(·) = 0. It then follows that the squared

RKHS functional norm penalty for gq,d can be written as γ>q,dKγq,d and the tensor coefficient

Gq satisfies vec ([G]::d) = Kγq,d. The remainder of the proof is straightforward by simple

linear algebra, and thus we omit it here.
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S3 Proof of Theorem 1

Proof. Under Assumption 1 that the vector time series zt follows a VAR(Q̃) process, we can

derive that the vectorized matrix time series Xt and the vector time series zt jointly follow

a VAR(max(P,Q, Q̃)) process, namely,xt

zt

 =

max(P,Q,Q̃)∑
l=1

(Bl ⊗Al)� 1{l≤P} G>l � 1{l≤Q}

OD×S Cl � 1{l≤Q̃}


xt−l

zt−l

+

et

νt

 . (S3.8)

Let L = max(P,Q, Q̃) and yt = [x>t , z
>
t ]. Denote the transition matrix in (S3.8) at lag-l as

Jl ∈ R(S+D)×(S+D) and the error term as u>t = [e>t ,ν
>
t ], then we can rewrite the VAR(L)

process in (S3.8) as a VAR(1) process as:



yt

yt−1

...

yt−L+1


=



J1 J2 · · · JL−1 JL

IS+D OS+D · · · · · · OS+D

OS+D IS+D OS+D · · · OS+D

...
...

. . .
. . .

...

OS+D OS+D · · · IS+D OS+D





yt−1

yt−2

...

yt−L


+



ut

0S+D

...

0S+D


, (S3.9)

where we use OS+D to denote a zero matrix of size (S + D) × (S + D). For this VAR(1)

process to be stationary, we require that det (λI− J) 6= 0 for all |λ| ≥ 1, λ ∈ C, where J is

the transition matrix in (S3.9). The determinant det (λI− J) can be simplified by column

operations as:

det (λI− J)

= det


λLIS −

L∑
l=1

λL−l (Bl ⊗Al)� 1{l≤P} −
L∑
l=1

λL−lG>l � 1{l≤Q}

O λLID −
L∑
l=1

λL−lCl � 1{l≤Q̃}


= λ2Ldet [Φ1(λ)] det [Φ2(λ)] ,
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where Φ1(λ) = IS−
∑P

p=1 λ
−p (Bp ⊗Ap) and Φ2(λ) = ID−

∑Q̃
q̃=1 λ

−q̃Cq̃, and setting y = 1/λ

completes the proof.

S4 Theory under Fixed Spatial Dimension

S4.1 Proof of Proposition 2

Proof. For the brevity of the presentation, we fix P,Q as 1, but the proofs presented below

can be easily extended to an arbitrary P,Q. For the vectorized MARAC(1, 1) model (2.4),

we can equivalently write it as:

xt = ytθ + et, (S4.10)

where yt = [x>t−1 ⊗ IS; z>t−1 ⊗K] and θ = [vec (B1 ⊗A1)> ,γ>1 ]>. Using Ω = Σ−1 to denote

the precision matrix for et, we can rewrite the penalized likelihood in (3.11) for (θ,Ω) as:

h(θ,Ω) = −1

2
log |Ω|+ 1

2
tr (ΩS(θ)) +

λ

2
θ>K̃θ, (S4.11)

where S(θ) = T−1
∑T

t=1(xt − ytθ)(xt − ytθ)>, K̃ is defined as:

K̃ =

OS×S ⊗K OS×D ⊗K

OD×S ⊗K ID ⊗K

 .
We use θ∗,Ω∗ to denote the ground truth of θ,Ω, respectively. We define Fθ and FΩ as:

Fθ = {[vec (B1 ⊗A1)> ,γ>1 ]>|‖A1‖F = 1, sign(tr (A1)) = 1}

FΩ = {Σ−1
c ⊗Σ−1

r |Σr ∈ RM×M ,Σc ∈ RN×N ,
¯
ρ(Σr),

¯
ρ(Σc) > 0}.

The estimators of MARAC, denoted as θ̂, Ω̂, is the minimizer of h(θ,Ω) with θ ∈ Fθ,Ω ∈ FΩ.

In order to establish the consistency of Σ̂ = Ω̂
−1

, it suffices to show that for any constant

c > 0:

P

(
inf

‖Ω̄−Ω∗‖F≥c
inf
θ̄
h(θ̄, Ω̄) ≤ h(θ∗,Ω∗)

)
→ 0, as T →∞. (S4.12)
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This is because if (S4.12) is established, then as T →∞ we have:

P

(
inf

‖Ω̄−Ω∗‖F≥c
inf
θ̄∈Fθ

h(θ̄, Ω̄) ≥ inf
‖Ω̄−Ω∗‖F≥c

inf
θ̄
h(θ̄, Ω̄) > h(θ∗,Ω∗) ≥ h(θ̂, Ω̂)

)
approaching 1 and thus we must have ‖Ω̂ − Ω∗‖F < c with probability approaching 1 as

T →∞, and the consistency is established since c is arbitrary.

To prove (S4.12), we first fix Ω = Ω̄ and let θ̃(Ω̄) = arg minθ h(θ, Ω̄), thus we have:

θ̃(Ω̄) =

(∑
t y
>
t Ω̄yt
T

+ λK̃

)−1(∑
t y
>
t Ω̄xt
T

)
, (S4.13)

which is a consistent estimator of θ∗ for any Ω̄ given that λ→ 0 and the matrix and vector

time series are covariance-stationary. To see that θ̃(Ω̄)
p.→ θ∗, notice that:

θ̃(Ω̄) = (I− λK̃)θ∗ +

(∑
t y
>
t Ω̄yt
T

+ λK̃

)−1(∑
t y
>
t Ω̄et
T

)
, (S4.14)

and the first term converges to θ∗ since λ = o(1). In the second term of (S4.14), we have:

∑
t y
>
t Ω̄yt
T

+ λK̃
p.→

 Σ∗x,x ⊗ Ω̄ Σ∗x,z ⊗ Ω̄K

Σ∗z,x ⊗KΩ̄ Σ∗z,z ⊗KΩ̄K

 , (S4.15)

where Σ∗x,x = Var(xt), Σ∗x,z = Cov(xt, zt) and Σ∗z,z = Var(zt). The convergence in prob-

ability in (S4.15) holds due to the joint stationarity of xt and zt and the assumption that

λ = o(1). We further note that the sequence {y>t Ω̄et}Tt=1 is a martingale difference sequence

(MDS), and we have
∑T

t=1 y>t Ω̄et/T = OP (T−1/2) by the central limit theorem (CLT) of

MDS (see proposition 7.9 of Hamilton (2020) for the central limit theorem of martingale dif-

ference sequence). Combining this result together with (S4.15), we conclude that the second

term in (S4.14) is oP (1) and thus θ̃(Ω̄) is consistent for θ∗.

Plugging θ̃(Ω̄) into h(θ, Ω̄) yields the profile likelihood of Ω̄:

`(Ω̄) = −1

2
log |Ω̄|+ 1

2
tr

(
Ω̄

∑
t xt[xt − ytθ̃(Ω̄)]>

T

)
.
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To prove (S4.12), it suffices to show that:

P

(
inf

‖Ω̄−Ω∗‖F≥c
`(Ω̄) ≤ `(Ω∗)

)
→ 0, as T →∞, (S4.16)

since `(Ω∗) ≤ h(θ∗,Ω∗). Now, since θ̃(Ω̄)
p.→ θ∗, we can write θ̃(Ω̄) = θ∗ + ζ, with

‖ζ‖F = oP (1). Using this new notation, we can rewrite `(Ω̄) as:

`(Ω̄) = −1

2
log |Ω̄|+ 1

2
tr

(
Ω̄

∑
t xte

>
t

T

)
− 1

2
tr

((∑
t x
>
t Ω̄yt
T

)
ζ

)
(S4.17)

= ˜̀(Ω̄)− 1

2
tr

((∑
t x
>
t Ω̄yt
T

)
ζ

)
,

where we define the first two terms in (S4.17) as ˜̀(Ω̄).

By the Cauchy-Schwartz inequality, we have:∣∣∣∣12tr

((∑
t x
>
t Ω̄yt
T

)
ζ

)∣∣∣∣ ≤ 1

2

∥∥∥∥∑t x
>
t Ω̄yt
T

∥∥∥∥
F

· ‖ζ‖F. (S4.18)

By the definition of yt, we have:∑
t x
>
t Ω̄yt
T

=

[(∑
t xt−1 ⊗ xt

T

)> (
IS ⊗ Ω̄

)
;

(∑
t zt−1 ⊗ xt
T

)> (
ID ⊗ Ω̄K

)]
,

and notice that xt−1 ⊗ xt and zt−1 ⊗ xt are just rearranged versions of xtx
>
t−1 and xtz

>
t−1,

respectively. Therefore, by the joint stationarity of xt and zt, we have the time average of

xt−1⊗xt and zt−1⊗xt converging to the rearranged version of some constant auto-covariance

matrices and therefore we have the term on the right-hand side of (S4.18) being oP (1).

Given this argument, proving (S4.16) is now equivalent to proving:

P

(
inf

‖Ω̄−Ω∗‖F≥c
˜̀(Ω̄) ≤ ˜̀(Ω∗))→ 0, as T →∞. (S4.19)

Define Ω̃ as the unconstrained minimizer of ˜̀(Ω), then explicitly, we have:

Ω̃ = arg min
Ω

˜̀(Ω) =

(∑
t etx

>
t

T

)−1

=

(∑
t ete

>
t

T
+

∑
t et (ytθ

∗)>

T

)−1

p.→ Ω∗,
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where the final argument on the convergence in probability to Ω∗ is based on the fact that∑T
t=1 et (ytθ

∗)> /T = OP (T−1/2) by the CLT of MDS. By the second-order Taylor expansion

of ˜̀(Ω̄) at Ω̃, we have:

˜̀(Ω̄) = ˜̀(Ω̃) +
1

4
vec

(
Ω̄− Ω̃

)> [
Ω̌−1 ⊗ Ω̌−1

]
vec

(
Ω̄− Ω̃

)
, (S4.20)

where Ω̌ = Ω̃+η(Ω̄−Ω̃), for some η ∈ [0, 1]. For any constant c > 0 such that ‖Ω̄−Ω∗‖F = c,

let c = κρ̄(Ω∗), where κ > 0 is also a constant that relates to c only. Consequently, we have:

∣∣ρ̄(Ω̄)− ρ̄(Ω∗)
∣∣ ≤ ‖Ω̄−Ω∗‖s ≤ ‖Ω̄−Ω∗‖F = κρ̄(Ω∗),

and thus ρ̄(Ω̄) ≤ (1 + κ)ρ̄(Ω∗). Conditioning on the event that ‖Ω̄ − Ω∗‖F = c, we first

have ‖Ω̄ − Ω̃‖F ≥ c/2 to hold with probability approaching one, due to the consistency of

Ω̃. Furthermore, we also have:

¯
ρ(Ω̌−1 ⊗ Ω̌−1) =

¯
ρ(Ω̌−1)2 =

1

ρ̄(Ω̌)2

≥

[
1

ρ̄(Ω̃) + ρ̄(Ω̄)

]2

≥
[

1

2ρ̄(Ω∗) + (c+ ρ̄(Ω∗))

]2

=
1

(3 + κ)2
· 1

ρ̄(Ω∗)2
,

where the last inequality holds with probability approaching one since P
[
ρ̄(Ω̃) ≤ 2ρ̄(Ω∗)

]
→

1. Utilizing these facts together with (S4.20), we end up having:

P

[˜̀(Ω̄) ≥ ˜̀(Ω̃) +
1

16
·
(

κ

3 + κ

)2
]
→ 1, as T →∞, (S4.21)

for any Ω̄ such that ‖Ω̄−Ω∗‖F = c = κρ̄(Ω∗). Since κ is an arbitrary positive constant and

˜̀(Ω̃)
p.→ ˜̀(Ω∗), we establish (S4.19) and thereby completes the proof.
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S4.2 Proof of Theorem 2

To prove Theorem 2, we first establish the consistency and the convergence rate of the

estimators in Lemma S4.1 below.

Lemma S4.1. Under the same assumption as Theorem 2, all model estimators for MARAC

are
√
T -consistent, namely:

‖Âp −A∗p‖F = OP

(
1√
T

)
, ‖B̂p −B∗p‖F = OP

(
1√
T

)
, ‖γ̂q − γ∗q‖F = OP

(
1√
T

)
,

for p ∈ [P ], q ∈ [Q]. As a direct result, we also have:

‖B̂p ⊗ Âp −B∗p ⊗A∗p‖F = OP

(
1√
T

)
, for p ∈ [P ].

We delay the proof of Lemma S4.1 to Section S6.2. With this lemma, we are now ready

to present the proof of Theorem 2.

Proof. For the simplicity of notation and presentation, we fix P,Q as 1, but the proving

technique can be generalized to arbitrary P,Q. To start with, we revisit the updating

rule for A
(l+1)
p in (S1.2). By plugging in the data-generating model for Xt according to

MARAC(1, 1) model, we can transform (S1.2) into:

∑
t∈[T ]

[
∆A1Xt−1B̂

>
1 + A∗1Xt−1∆B>1 + ∆G1×̄zt−1 − Et

]
Σ̂
−1

c B̂1X
>
t−1 = OM×M ,

where for any arbitrary matrix/tensor M, we define ∆M as ∆M = M̂ −M∗. One can

simplify the estimating equation above by left multiplying Σ̂
−1

r and then vectorize both
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sides to obtain:

∑
t∈[T ]

[
(B∗1X

>
t−1)>(Σ∗c)

−1(B∗1X
>
t−1)⊗ (Σ∗r)

−1
]
vec

(
Â1 −A∗1

)
+
∑
t∈[T ]

[
(B∗1X

>
t−1)>(Σ∗c)

−1 ⊗ (Σ∗r)
−1A∗1Xt−1

]
vec

(
B̂>1 − (B∗1)>

)
+
∑
t∈[T ]

{
z>t−1 ⊗

[
(B∗1X

>
t−1)>(Σ∗c)

−1 ⊗ (Σ∗r)
−1K

]}
vec (γ̂1 − γ∗1)

=
∑
t∈[T ]

[
(B∗1X

>
t−1)>(Σ∗c)

−1 ⊗ (Σ∗r)
−1
]
vec (Et) + oP (

√
T ).

On the left-hand side of the equation above, we replace B̂1, Σ̂r, Σ̂c with their true values

B∗1,Σ
∗
r,Σ

∗
c , since the discrepancies are of order oP (1) and can thus be incorporated into the

oP (
√
T ) term given the

√
T -consistency of Â1, B̂1, γ̂1. On the right-hand side, we have:

∑
t

vec
(
Σ̂
−1

r EtΣ̂
−1

c B̂1X
>
t−1

)
=
∑
t

[
e>t ⊗ (Xt−1 ⊗ IM)

]
vec

[(
B̂>1 ⊗ IM

)
Σ̂
−1
]
,

where the process {e>t ⊗ (Xt−1 ⊗ IM)}Tt=1 is a martingale difference sequence and the mar-

tingale central limit theorem (Hall and Heyde, 2014) implies that
∑

t

[
e>t ⊗ (Xt−1 ⊗ IM)

]
=

OP (
√
T ), and thus by the consistency of Σ̂ and B̂1, we can replace Σ̂ and B̂1 with their true

values and incorporate the remainders into oP (
√
T ).

Similar transformations can be applied to (S1.3) and (S1.4), where the penalty term

is incorporated into oP (
√
T ) due to the assumption that λ = o(T−

1
2 ). With the notation

that Ut = IN ⊗A∗1Xt−1, Vt = B∗1X
>
t−1 ⊗ IM , Yt = z>t−1 ⊗K and Wt = [Vt; Ut; Yt], these

transformed estimating equations can be converted altogether into: 1

T

∑
t∈[T ]

W>
t (Σ∗)−1Wt

vec
(
Θ̂−Θ∗

)
=

1

T

∑
t∈[T ]

W>
t (Σ∗)−1vec (Et)

+ oP (T−1/2), (S4.22)
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where vec
(
Θ̂−Θ∗

)
= [vec

(
Â−A∗

)>
,vec

(
B̂ −B∗

)>
,vec

(
R̂−R∗

)>
]>, and Â, B̂, R̂

are defined as [Â]::p = Âp, [B̂]::p = B̂>p , [R̂]:dq = γ̂q,d and A∗,B∗,R∗ are the corresponding

true coefficients.

In (S4.22), we first establish that:

(1/T )
∑
t∈[T ]

W>
t (Σ∗)−1Wt

p.→ E
[
W>

t (Σ∗)−1Wt

]
. (S4.23)

To prove S4.23, by the assumption that Xt and zt are zero-meaned and jointly stationary, we

have T−1
∑

t∈[T ] x̃tx̃
>
t

p.→ E[x̃tx̃
>
t ] by Lemma S6.1 and Corollary S6.2, where x̃t = [x>t , z

>
t ]>.

See details of Lemma S6.1 and Corollary S6.2 in Section S6.1. Then since each element of

W>
t (Σ∗)−1Wt is a linear combination of terms in x̃tx̃

>
t (thus a continuous mapping), it is

straightforward that (S4.23) holds elementwise.

Given (S4.23) and the fact that Θ̂ is
√
T -consistent, we can rewrite (S4.22) as:

E
[
W>

t (Σ∗)−1Wt

]
vec

(
Θ̂−Θ∗

)
=

1

T

∑
t∈[T ]

W>
t (Σ∗)−1vec (Et)

+ oP (T−1/2), (S4.24)

For the term on the right-hand side of (S4.24), first notice that the sequence {ηt}Tt=1,

where ηt = W>
t (Σ∗)−1vec (Et), is a zero-meaned, stationary vector martingale difference

sequence (MDS), thanks to the independence of Et from the jointly stationary Xt−1 and

zt−1. By the martingale central limit theorem (Hall and Heyde, 2014), we have:

1√
T

∑
t∈[T ]

W>
t (Σ∗)−1vec (Et)

d.→ N (0,E
[
W>

t (Σ∗)−1Wt

]
). (S4.25)

Combining (S4.24) and (S4.25), we end up having:

E
[
W>

t (Σ∗)−1Wt

]√
Tvec

(
Θ̂−Θ∗

)
d.→ N (0,E

[
W>

t (Σ∗)−1Wt

]
). (S4.26)
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The asymptotic distribution of
√
Tvec

(
Θ̂−Θ∗

)
can thus be derived by multiplying both

sides of (S4.26) by the inverse of L = E
[
W>

t (Σ∗)−1Wt

]
. However, the matrix L is not a full-

rank matrix, because Lµ = 0, where µ = [vec (A∗)> ,−vec (B∗)> ,0>]>. As a remedy, let

ζ = [vec (A∗1)> 0>]> ∈ RM2+N2+DMN , then given the identifiability constraint that ‖A∗1‖F =

‖Â1‖F = 1 and the fact that Â1 is
√
T -consistent, we have vec (A∗1)> vec

(
Â1 −A∗1

)
=

oP (T−1/2). Therefore, we have:

√
Tζ>vec

(
Θ̂−Θ∗

)
p.→ 0. (S4.27)

Combining (S4.26) and (S4.27) and using the Slutsky’s theorem, we have H
√
Tvec(Θ̂ −

Θ∗)
d.→ N (0,L), where H = L + ζζ> and thus:

√
Tvec(Θ̂−Θ∗)

d.→ N (0,H−1LH−1). (S4.28)

The final asymptotic distribution of vec(B̂>1 )⊗ vec(Â1) and Kγ̂q,d can be derived easily

from (S4.28) with the multivariate delta method, and we omit the details here.

S4.3 Proof of Corollary 1

Proof. Based on the asymptotic distribution of the MARAC model estimators in (4.16), it

is straightforward that the marginal asymptotic distribution of Ĝ1, . . . , ĜQ follows:

√
T


vec

(
Ĝ1 − G∗1

)
· · ·

vec
(
ĜQ − G∗Q

)

 d.−→ N

0,

[
O : IQD ⊗K

]
Ξ

 O

IQD ⊗K


 . (S4.29)

Unwrapping the matrix Ξ, one can simplify the asymptotic variance in (S4.29) as:

Ψ :=

[
O : IQD ⊗K

]
Ξ

 O

IQD ⊗K

 = (I⊗K)
[
D−Cγ (Cγ)>

]
(I⊗K) ,
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where D is the lower-right MNQD ×MNQD block of H−1, and C is the lower-left block

under the same block partition. To estimate the rank of matrix Ψ, it is sufficient to estimate

the rank of D, as I⊗K is full-rank, and Cγ (Cγ)> is rank-1. Note that matrix H is full-rank,

and the top-left block of H, denoted as H11, is:

E





. . . · · · . .
. . . . · · · . .

.

· Xt−iB
>
i Σ−1

c BjX
>
t−j ⊗Σ−1

r · · · · · · Xt−iB
>
i Σ−1

c ⊗Σ−1
r AjXt−j · · ·

. .
.

· · ·
. . . . .

.
· · ·

. . .

. . . · · · . .
. . . . · · · . .

.

· Σ−1
c BiX

>
t−i ⊗X>t−jA

>
j Σ−1

r · · · · · · Σ−1
c ⊗X>t−iA

>
i Σ−1

r AjXt−j · · ·

. .
.

· · ·
. . . . .

.
· · ·

. . .





+αα>,

where 1 ≤ i, j ≤ P , and α = [vec (A1)> , . . . ,vec (AP )> ,0>]>. Here, all model parameters

are the ground truth values, and we omit the asterisk notation for simplicity. This matrix is

the key component of the asymptotic variance of the MAR(P ) model, see Theorem 3 of Chen

et al. (2021), and is thus invertible. Consequently, the Schur complement of H is invertible

and thus D is a full-rank matrix. Therefore, we have rank(Ψ) ≥MNQD − 1.

Finally, based on (S4.29), we have T ·(ĝ − g∗)>Ψ† (ĝ − g∗)
d.−→ χ2

r, where r = rank(Ψ) ≥

MNQD − 1, and thus completes the proof. In practice, when we utilize this result to test

the hypothesis of g∗ = 0, we will plug in the estimator of all parameters and compute the

test statistics T · ĝ>Ψ̂†ĝ, and set the critical region based on χ2
MNQD−1.

S5 Theory under High Spatial Dimension
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S5.1 Proof of Theorem 3

Proof. In this proof, we will fix P,Q as 1 again for the ease of presentation, but the technical

details can be generalized to arbitrary P,Q. Since we fix the lags to be 1, we drop the

subscript of the coefficients for convenience.

Under the specification of the MARAC(1, 1) model, we restate the model as:

xt =
(
x>t−1 ⊗ IS

)
vec (B∗ ⊗A∗) +

(
z>t−1 ⊗K

)
γ∗ + et,

where S = MN and we introduce the following additional notations:

YT :=


x1

...

xT

 , X̃T :=


x>0

...

x>T−1

⊗ IS, z̃T :=


z>0

...

z>T−1

 , ET =


e1

...

eT

 .

We will drop the subscript T for convenience. Let φ∗ = vec (B∗ ⊗A∗), and g∗1, . . . , g
∗
D ∈ Hk

be the true autoregressive and functional parameters. Correspondingly, let γ∗1, . . . ,γ
∗
D be the

coefficients for the representers when evaluating g∗1, . . . , g
∗
D on a matrix grid, i.e., Kγ∗d is a

discrete evaluation of g∗d on the matrix grid. Let Fφ = {vec (B⊗A) |‖A‖F = sign(tr (A)) =

1,A ∈ RM×M ,B ∈ RN×N}. Using these new notations, the MARAC estimator is obtained

by solving the following penalized least squares problem:

min
φ∈Fφ,γ∈RSD

Lλ(φ,γ) :=

{
1

2T
‖Y − X̃φ− (z̃⊗K)γ‖2

F +
λ

2
γ> (ID ⊗K)γ

}
. (S5.30)

By fixing φ, the estimator for γ is given by γ̂(φ) = arg minγ Lλ(φ,γ), and can be explicitly

written as:

γ̂(φ) = T−1
(
Σ̂z ⊗K + λ · ISD

)−1 (
z̃> ⊗ IS

) (
Y − X̃φ

)
. (S5.31)

Plugging (S5.31) into (S5.30) yields the profile likelihood for φ:

`λ(φ) = Lλ(φ, γ̂(φ)) =
1

2T

(
Y − X̃φ

)>
W
(
Y − X̃φ

)
, (S5.32)
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where W is defined as:

W =

I−
(z̃⊗K)

[
Σ̂z ⊗K + λ · ISD

]−1 (
z̃> ⊗ IS

)
T

 =

(
I +

z̃z̃>

λT
⊗K

)−1

, (S5.33)

and the second equality in (S5.33) is by the Woodbury matrix identity. It can be seen that

W is positive semi-definite and has all of its eigenvalues within (0, 1). To improve the clarity

and organization of the proof, we break down the proof into several major steps. In the first

step, we establish the following result on φ̂:

Proposition S5.1. Under the assumptions of Theorem 3, we have:

(
φ̂− φ∗

)>(X̃>WX̃

T

)(
φ̂− φ∗

)
. OP (Cgλ) +OP (c1,S · SD/T ), (S5.34)

where Cg =
∑D

d=1 ‖g∗d‖2
Hk

.

In order to derive the convergence rate of φ̂, we still require one additional result:

Lemma S5.2. Under the assumptions of Theorem 3 and the requirement that S logS/T → 0,

it holds that:

¯
ρ
(
X̃>WX̃/T

)
≥ c0,S

2
> 0, (S5.35)

with probability approaching 1 as S, T → ∞, where
¯
ρ(·) is the minimum eigenvalue of a

matrix and c0,S =
¯
ρ(Σ∗x,x −

(
Σ∗z,x

)> (
Σ∗z,z

)−1
Σ∗z,x).

The proof of Proposition S5.1 and Lemma S5.2 are relegated to Section S5.2 and S6.3,

respectively. Combining Proposition S5.1 and Lemma S5.2, we can derive the error bound

of φ̂ as:

1

S
‖φ̂− φ∗‖F . OP (

√
CgγS
c0,SS

) +OP (

√
c1,SD

c0,STS
). (S5.36)
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Now with this error bound of the autoregressive parameter φ̂, we further derive the

prediction error bound for the functional parameters. To start with, we have:

1√
TS
‖(z̃⊗K)(γ̂ − γ∗)‖F =

1√
TS

∥∥∥(I−W)(Y − X̃φ̂)− (z̃⊗K)γ∗
∥∥∥

F

≤ 1√
TS

[
‖(I−W)E‖F︸ ︷︷ ︸

J1

+ ‖(I−W)X̃(φ̂− φ∗)‖F︸ ︷︷ ︸
J2

+ ‖W(z̃⊗K)γ∗‖F︸ ︷︷ ︸
J3

]
,

and we will bound the terms J1, J2, J3 separately.

To bound J1, we first establish two lemmas.

Lemma S5.3. Given the definition of W in (S5.33) and under the assumptions of Theo-

rem 3, we have OP (γ
−1/2r0
S ) ≤ tr (I−W) ≤ OP (

√
Sγ
−1/2r0
S ), where γS = λ/S. Furthermore,

we have tr (W) ≤ SD.

Lemma S5.4. Given the definition of W in (S5.33) and under the assumptions of Theo-

rem 3, we have that:

E>WE/tr (W) = OP (c1,S),

where c1,S = ‖Σ‖s. Furthermore, we have E> (I−W)2 E/tr
(
(I−W)2) = OP (c1,S).

We leave the proof of Lemma S5.3 and Lemma S5.4 to Section S6.4 and S6.5. By

Lemma S5.4, we have:

J2
1 � c1,S · tr

(
(I−W)2

)
. c1,S · tr (I−W) .

And by Lemma S5.3, we have J1 ≤ OP (c
1/2
1,S · S1/4γ

−1/4r0
S ).
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For J2, we have the following bound:

J2 = ‖(I−W)W−1/2W1/2X̃(φ̂− φ∗)‖F (S5.37)

≤ ‖(I−W)W−1/2‖s · ‖W1/2X̃(φ̂− φ∗)‖F

≤ ‖W−1/2‖s · ‖W1/2X̃(φ̂− φ∗)‖F. (S5.38)

To bound ‖W−1/2‖s, we can take advantage of the simpler form of W using the Woodbury

matrix identity in (S5.33) and obtain:

‖W−1/2‖s = ρ̄(W−1)
1
2 = ρ̄

(
I + (λT )−1z̃z̃> ⊗K

) 1
2

≤
[
1 + λ−1ρ̄(K)ρ̄(T−1z̃z̃>)

] 1
2 ≤

[
1 + λ−1ρ̄(K)tr

(
Σ̂z

)] 1
2
.

In Lemma S6.1, which we state later in Section S6.1, we have shown that for N -dimensional

stationary vector autoregressive process, the covariance estimator is consistent in the spectral

norm as long as N logN/T → 0. Therefore, since {zt}Tt=1 follows a stationary VAR(Q̃)

process and its dimensionality D is fixed, we have ‖Σ̂z−Σ∗z‖s
p.→ 0 and thus with probability

approaching 1, we have tr(Σ̂z) ≤ 2tr(Σ∗z). Therefore, we have ‖W−1/2‖s ≤ OP (
√

1 + c0/λ),

where c0 is a constant related to tr (Σ∗z) and ρ̄(K). Combining this with the result in

Proposition S5.1, we can bound J2 via its upper bound (S5.38) as:

J2 ≤ OP

(√
CgλT

)
+OP

(√
CgT

)
+OP (

√
c1,SS) +OP

(√
c1,Sγ

−1
S

)
. (S5.39)

Finally, for J3, we first notice that:

J3 = ‖W(z̃⊗K)γ∗‖F ≤ ‖W1/2‖s · ‖W1/2(z̃⊗K)γ∗‖F ≤ ‖W1/2(z̃⊗K)γ∗‖F.
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The upper bound of J3 above can be further bounded by:

‖W1/2(z̃⊗K)γ∗‖2
F = (λT )[(ID ⊗K)γ∗]>

{
ISD −

(
λ−1Σ̂z ⊗K + ISD

)−1
}
γ∗

= (λT )

(
D∑
d=1

‖g∗d‖2
Hk

)

− (λ2T ) (γ∗)>
[
(ID ⊗K)

(
Σ̂z ⊗K + λISD

)−1
]
γ∗

≤ CgλT, (S5.40)

where Cg =
∑D

d=1 ‖g∗d‖2
Hk

is the norm of all the underlying functional parameters. The last

inequality of (S5.40) follows from the fact that the quadratic form led by λ2T is non-negative.

To see why, first note that:

(ID ⊗K)
(
Σ̂z ⊗K + λISD

)−1

=
(
Σ̂z ⊗ IS

)−1

−
[
Σ̂z ⊗ IS + λ−1Σ̂

2

z ⊗K
]−1

.

Then, we have the following lemma:

Lemma S5.5. If A,B are symmetric, positive definite real matrices and A−B is positive

semi-definite, then B−1 −A−1 is also positive semi-definite.

We leave the proof to Section S6.6. Let M = Σ̂z⊗IS+λ−1Σ̂
2

z⊗K and N = Σ̂z⊗IS, then

both M and N are positive definite and M −N is positive semi-definite. By Lemma S5.5,

we have N−1 −M−1 being positive semi-definite and thus (S5.40) holds.

Using the result in (S5.40), we eventually have J3 ≤ OP (
√
CgλT ). Combining all the

bounds for J1, J2, J3, we end up with:

1√
TS
‖(z̃⊗K)(γ̂ − γ∗)‖F ≤ OP

√c1,S

√
γ
−1/2r0
S√

T 4
√
S

+OP (
√
γS)

+OP

(
1√
S

)
+OP

(√
c1,S

T

)
+OP


√
c1,Sγ

−1
S√

TS

 .
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S5.2 Proof of Proposition S5.1

Proof. The MARAC estimator φ̂ is the minimizer of `λ(φ), defined in (S5.32), for all φ ∈ Fφ

and thus `λ(φ̂) ≤ `λ(φ
∗). Equivalently, this means that:

1

2

(
φ̂− φ∗

)>(X̃>WX̃

T

)(
φ̂− φ∗

)
≤ 1

T
[(z̃⊗K)γ∗ + E ]>WX̃

(
φ̂− φ∗

)
.

Let δ = W1/2X̃(φ̂− φ∗)/
√
T and ω = W1/2 [(z̃⊗K)γ∗ + E ] /

√
T , then the inequality can

be simply written as δ>δ ≤ 2δ>ω, and we can upper bound our quantity of interest, namely

δ>δ, as:

δ>δ ≤ 2(δ − ω)>(δ − ω) + 2ω>ω ≤ 4ω>ω.

Therefore, the bound of ‖δ‖2
F can be obtained via the bound of ‖ω‖2

F. We have the following

upper bound for ‖ω‖2
F:

‖δ‖2
F ≤ 4‖ω‖2

F =
4

T
[(z̃⊗K)γ∗ + E ]>W [(z̃⊗K)γ∗ + E ]

≤ 8

T

‖W1/2 (z̃⊗K)γ∗‖2
F︸ ︷︷ ︸

I1

+ ‖W1/2E‖2
F︸ ︷︷ ︸

I2

 , (S5.41)

where the last inequality follows from the fact that W is positive semi-definite.

For I1, it can be bounded by (S5.40) and thus I1 ≤ CgλT . To bound I2, we utilize

Lemma S5.4 and bound I2 as I2 � c1,S · tr (W) ≤ c1,S · SD. Combining the bounds for I1

and I2, we have:

‖δ‖2
F =

(
φ̂− φ∗

)>(X̃>WX̃

T

)(
φ̂− φ∗

)
. OP (Cgλ) +OP (c1,S · SD/T ),

which completes the proof.
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S6 Technical Lemmas & Proofs

In this section, we first introduce Lemma S6.1 on the consistency of the covariance matrix

estimator for any stationary vector autoregressive process and then Corollary S6.2 on the

consistency of the covariance estimator of our MARAC model, given the joint stationarity

condition. Then we provide proof for Lemma S4.1 used in Section S4.2 when proving The-

orem 2 on the asymptotic normality under fixed spatial dimension. Then we provide proofs

for Lemma S5.2, S5.3, S5.4 and S5.5 used in Section S5 when proving the error bounds with

high spatial dimensionality.

S6.1 Statement of Lemma S6.1

In Lemma S6.1, we restate the result of Propositions 6 and 7 of Li and Xiao (2021), which

covers the general result of the consistency of the estimator for the lag-0 auto-covariance

matrix of a stationary VAR(p) process.

Lemma S6.1. Let xt ∈ RN be a zero-meaned stationary VAR(p) process: xt =
∑p

l=1 Φpxt−p+

ξt, where ξt have independent sub-Gaussian entries. Let Σ̂ = (1/T )
∑T

t=1 xtx
>
t and Σ =

E[Σ̂], then we have:

E‖Σ̂−Σ‖s ≤ C

(√
N logN

T
+
N logN

T

)
‖Σ‖s, (S6.42)

where C is an absolute constant.

We refer our readers to Appendix C.3 of Li and Xiao (2021) for the proof. As a corollary

of Lemma S6.1, we have the following results:

Corollary S6.2. Assume that {zt}Tt=1 is generated by a stationary VAR(Q̃) process: zt =∑Q̃
q̃=1 Cq̃zt−q̃+νt, with νt having independent sub-Gaussian entries, then with Σ̂z = (1/T )

∑T
t=1 ztz

>
t
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and Σ∗z = E[Σ̂z], we have:

P
(∥∥∥Σ̂z −Σ∗z

∥∥∥
s
≥ ε
)
≤ Cε−1

(√
D

T
+
D

T

)
, (S6.43)

with C being an absolute constant and ε being a fixed positive real number, and thus
∥∥∥Σ̂z −Σ∗z

∥∥∥
s

p.→

0.

Let {Xt}Tt=1 be a zero-meaned matrix time series generated by the MARAC model with

lag P,Q and {zt}Tt=1 satisfies the assumption above and {Xt, zt}Tt=1 are jointly stationary in

the sense of Theorem 1. Assume further that Et has i.i.d. Gaussian entries with constant

variance σ2, then for yt = [x>t , z
>
t ]>, Σ̂0 = (1/T )

∑T
t=1 yty

>
t and Σ∗0 = E[yty

>
t ], we have:

E
∥∥∥Σ̂0 −Σ∗0

∥∥∥
s
≤ C

(√
S logS

T
+
S logS

T

)
‖Σ∗0‖s, (S6.44)

where C is an absolute constant.

Proof. The proof of (S6.43) is straightforward from Lemma S6.1 together with Markov in-

equality. The proof of (S6.44) also follows from Lemma S6.1 since {yt}Tt=1 follows a stationary

VAR(max(P,Q, Q̃)) process with i.i.d. sub-Gaussian noise (see (S3.8)) and E[(1/T )
∑T

t=1 yty
>
t ] =

E[yty
>
t ] due to stationarity.

Note that the convergence of the variance estimator in spectral norm also indicates that

each element of the variance estimator converges in probability. Also, the assumption that

Et has i.i.d. Gaussian entries can be relaxed to Et having independent sub-Gaussian entries.

S6.2 Proof of Lemma S4.1

Proof. Without loss of generality, we fix P,Q as 1 and use the same notation as (S4.10) in

Section S4.1, so the MARAC model can be written as xt = ytθ
∗ + et. Correspondingly, the

penalized log-likelihood h(θ,Ω) is specified by (S4.11) and given any Ω̄, we have θ̃(Ω̄) =
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arg minθ h(θ, Ω̄) as specified by (S4.13). Given the decomposition of θ̃(Ω̄) in (S4.14), we

have:

θ̃(Ω̄)− θ∗ = −λK̃θ∗ +

(∑
t y
>
t Ω̄yt
T

+ λK̃

)−1(∑
t y
>
t Ω̄et
T

)
,

where ‖λK̃θ∗‖F = o(T−1/2) since λ = o(T−1/2) and the norm of the second term isOP (T−1/2).

To show that the norm of the second term is OP (T−1/2), we first observe that:∥∥∥∥∥
(∑

t y
>
t Ω̄yt
T

+ λK̃

)−1(∑
t y
>
t Ω̄et
T

)∥∥∥∥∥
F

≤

∥∥∥∥∥∥∥∥∥∥
(∑

t y
>
t Ω̄yt
T

+ λK̃

)−1

︸ ︷︷ ︸
L−1
T

∥∥∥∥∥∥∥∥∥∥
F

·

∥∥∥∥∥∥∥∥∥
(∑

t y
>
t Ω̄et
T

)
︸ ︷︷ ︸

RT

∥∥∥∥∥∥∥∥∥
F

.

For the sequence of random matrices {LT}∞T=1, we have:

LT =

∑
t y
>
t Ω̄yt
T

+ λK̃
p.→

 Cov(xt,xt)⊗ Ω̄ Cov(xt, zt)⊗ Ω̄K

Cov(zt,xt)⊗KΩ̄ Cov(zt, zt)⊗KΩ̄K

 ,
and we define the limiting matrix as L. To show this, first note that the covariance estimator

V̂ar([x>t , z
>
t ]>) = T−1

∑
t[x
>
t , z

>
t ]>[x>t , z

>
t ] converges in probability to the true covariance

Var([x>t , z
>
t ]>), which we prove separately in Corollary S6.2. Secondly, notice that λ =

o(T−1/2), thus we have λK̃ → O and thus we have the convergence in probability of LT to

L holds.

Notice that the limiting matrix L is invertible because the matrix L′, defined as:

L′ =

I⊗K O

O I

L

I⊗K O

O I

 = Var([x>t , z
>
t ]>)⊗ (KΩ̄K),

is invertible. To see why, firstly note that Var([x>t , z
>
t ]>) is invertible because we can ex-

press [x>t , z
>
t ]> as

∑∞
j=0 Φj[e

>
t ,ν

>
t ]>, where {Φj}∞j=0 is a sequence of matrices whose el-

ements are absolutely summable and Φ0 = I, therefore, we have
¯
ρ(Var([x>t , z

>
t ]>)) ≥
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¯
ρ(Var([e>t ,ν

>
t ]>)) > 0. Secondly, by Assumption 2, we have

¯
ρ(K) > 0 and we also have

¯
ρ(Ω̄) > 0 by definition, therefore we have KΩ̄K to be positive definite. The invertibility

of L and the fact that LT
p.→ L indicates that L−1

T

p.→ L−1, since matrix inversion is a con-

tinuous function of the input matrix and the convergence in probability carries over under

continuous transformations. Eventually, this leads to the conclusion that ‖L−1
T ‖F = OP (1).

For the sequence of random matrices {RT}∞T=1, we note that the sequence {y>t Ω̄et}∞t=1

is a martingale difference sequence (MDS) such that ‖RT‖F = OP (T−1/2) (see proposition

7.9 of Hamilton (2020) for the central limit theorem of martingale difference sequence).

Combining the result of ‖LT‖F and ‖RT‖F, we conclude that ‖θ̃(Ω̄)− θ∗‖F = OP (T−1/2).

Fix Ω = Ω̄, we can decompose h(θ, Ω̄) via the second-order Taylor expansion as follows:

h(θ, Ω̄) = h(θ̃(Ω̄), Ω̄) +
1

2
(θ − θ̃(Ω̄))>

(∑
t y
>
t Ω̄yt
T

+ λK̃

)
(θ − θ̃(Ω̄))

≥ h(θ̃(Ω̄), Ω̄) +
1

2¯
ρ(LT )‖θ − θ̃(Ω̄)‖2

F, (S6.45)

and recall that LT = T−1
∑

t y
>
t Ω̄yt+λK̃. In the previous proof, we’ve shown that LT

p.→ L,

with L being a positive definite matrix. Therefore, with probability approaching 1, we have

¯
ρ(LT ) ≥

¯
ρ(L)/2 > 0.

With the lower bound on
¯
ρ(LT ), we can claim that for some constant C1 > 0:

inf
Ω̄∈FΩ:‖Ω̄−Ω∗‖F≤C1

h(θ, Ω̄)

≥ inf
Ω̄∈FΩ:‖Ω̄−Ω∗‖F≤C1

{
h(θ̃(Ω̄), Ω̄) +

1

4¯
ρ(L) · ‖θ − θ̃(Ω̄)‖2

F

}
, (S6.46)

with probability approaching 1. Now consider θ belongs to the set {θ ∈ Fθ|
√
T‖θ− θ∗‖F ≥

cT}, where cT → ∞ is an arbitrary sequence that diverges to infinity. Within this set, we

have:

‖θ − θ̃(Ω̄)‖F ≥
cT√
T
− ‖θ∗ − θ̃(Ω̄)‖F, (S6.47)



Hu Sun, Zuofeng Shang and Yang Chen

thus ‖θ−θ̃(Ω̄)‖F & OP (c′T/
√
T ) for some sequence c′T →∞ since ‖θ̃(Ω̄)−θ∗‖F = OP (T−1/2).

By the Taylor expansion in (S6.45), we can conclude that h(θ∗, Ω̄) = h(θ̃(Ω̄), Ω̄)+OP (T−1),

also using that ‖θ̃(Ω̄) − θ∗‖F = OP (T−1/2). Combining this result together with the order

of ‖θ − θ̃(Ω̄)‖F, we have the following hold according to (S6.46):

P

(
inf√

T‖θ−θ∗‖F≥cT
inf

Ω̄∈FΩ:‖Ω̄−Ω∗‖F≤C1

h(θ, Ω̄) > inf
Ω̄∈FΩ:‖Ω̄−Ω∗‖F≤C1

h(θ∗, Ω̄)

)
→ 1. (S6.48)

The result in (S6.48) indicates that for any θ that lies outside of the set {θ ∈ Fθ|
√
T‖θ −

θ∗‖F < cT}, the penalized log-likelihood is no smaller than a sub-optimal solution with

probability approaching 1. Therefore, with probability approaching 1, one must have
√
T‖θ−

θ∗‖F ≤ cT . And since the choice of cT is arbitrary, we can conclude that ‖θ̂ − θ∗‖F =

OP (T−1/2) and thus each block of θ̂, namely Âp, B̂p, γ̂q converges to their ground truth

value at the rate of T−1/2.

The convergence rate of B̂p ⊗ Âp can be derived from the following inequality:

‖B̂p ⊗ Âp −B∗p ⊗A∗p‖F ≤ ‖B̂p‖F · ‖Âp −A∗p‖F + ‖B̂p −B∗p‖F · ‖A∗p‖F,

as well as the convergence rate of Âp and B̂p.

S6.3 Proof of Lemma S5.2

Proof. Based on the definition of W in equation (S5.33), we have

X̃>WX̃

T
= Σ̂x,x ⊗ IS −

(
Σ̂
>
z,x ⊗K

)(
Σ̂z,z ⊗K + λISD

)−1 (
Σ̂z,x ⊗ IS

)
=
(
Σ̂x,x − Σ̂

>
z,xΣ̂

−1

z,zΣ̂z,x

)
⊗ IS

+
(
Σ̂z,x ⊗ IS

)> [
Σ̂

2

z,z ⊗ λ−1K + Σ̂z,z ⊗ IS

]−1 (
Σ̂z,x ⊗ IS

)
, (S6.49)
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where the second term in (S6.49) is positive semi-definite since both
¯
ρ(Σ̂z,z) and

¯
ρ(K) are

non-negative and the whole term is symmetric. Therefore, by Weyl’s inequality, one can

lower bound
¯
ρ(X̃>WX̃/T ) by

¯
ρ(Σ̂x,x − Σ̂

>
z,xΣ̂

−1

z,zΣ̂z,x). For simplicity, we will use A,B,C

to denote Σ∗x,x,Σ
∗
z,x, (Σ

∗
z,z)−1, and Â, B̂, Ĉ to denote Σ̂x,x, Σ̂z,x, Σ̂

−1

z,z, respectively. We will

use Σ̂ and Σ∗ to denote the estimated and true covariance matrix of [x>t , z
>
t ]>. It is evident

that ‖A‖s ≤ ‖Σ∗‖s and ‖B‖s ≤ ‖Σ∗‖s, since both A and B are blocks of Σ∗ and can thus

be represented as E>1 Σ∗E2 with E1,E2 being two block matrices with unity spectral norm.

The rest of the proof focuses on showing that with S logS/T → 0,
¯
ρ(Σ̂x,x−Σ̂

>
z,xΣ̂

−1

z,zΣ̂z,x)
p.→

¯
ρ(Σ∗x,x −

(
Σ∗z,x

)> (
Σ∗z,z

)−1
Σ∗z,x). For brevity, we omit the subscript s for the spectral norm

notation and simply use ‖ · ‖ in this proof.

To start with, we have:

‖Â− B̂>ĈB̂− (A−B>CB)‖

≤ ‖Â−A‖+ ‖B̂>ĈB̂−B>ĈB‖+ ‖B>ĈB−B>CB‖

≤ ‖Σ̂−Σ‖+ ‖(B̂−B)>ĈB̂‖+ ‖B>C(B̂−B)‖+ ‖B>(Ĉ−C)B̂‖

≤ ‖Σ̂−Σ‖+ ‖B̂−B‖ ·
(
‖Ĉ‖ · ‖B̂‖+ ‖C‖ · ‖B‖

)
+ ‖B‖ · ‖B̂‖ · ‖Ĉ−C‖. (S6.50)

Based on Corollary S6.2, under the condition that S logS/T → 0 and the conditions that zt

follows a stationary VAR(Q̃) process and is jointly stationary with xt, we have ‖Ĉ−C‖ p.→ 0

and ‖Σ̂ − Σ∗‖ p.→ 0. Therefore, with probability approaching 1, we have ‖Ĉ‖ ≤ 2‖C‖,

‖B̂−B‖ ≤ ‖Σ̂−Σ∗‖ ≤ 2‖Σ∗‖ and ‖B̂‖ ≤ 3‖Σ∗‖.

Combining these results and the upper bound in (S6.50), with probability approaching
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1, we have:

‖Â− B̂>ĈB̂− (A−B>CB)‖ ≤ (1 + 7‖C‖ · ‖Σ∗‖) · ‖Σ̂−Σ∗‖

+ 3‖Σ∗‖2 · ‖Ĉ−C‖. (S6.51)

The upper bound in (S6.51) can be arbitrarily small as S, T → ∞ since ‖Ĉ −C‖ p.→ 0 and

‖Σ̂−Σ∗‖ p.→ 0.

Eventually, with probability approaching 1, we have:

¯
ρ(Σ̂x,x − Σ̂

>
z,xΣ̂

−1

z,zΣ̂z,x) ≥ 1

2¯
ρ
(
Σ∗x,x −

(
Σ∗z,x

)> (
Σ∗z,z

)−1
Σ∗z,x

)
=
c0,S

2
. (S6.52)

This completes the proof.

S6.4 Proof of Lemma S5.3

Proof. By the definition of W in (S5.33), we have:

tr (I−W) = tr

[(
Σ̂z ⊗K + λISD

)−1 (
Σ̂z ⊗K

)]
=

S∑
s=1

D∑
d=1

ρd(Σ̂z)ρs(K)

λ+ ρd(Σ̂z)ρs(K)
≤ D ·

S∑
s=1

1

1 + λρ̄(Σ̂z)−1ρs(K)−1
. (S6.53)

Using Lemma S6.1, we can bound ρ̄(Σ̂z) by 2ρ̄(Σ∗z) with probability approaching 1 as T →

∞. Conditioning on this high probability event and using the Assumption 3 that the kernel

function is separable, the kernel Gram matrix K can be written as K2⊗K1 and thus (S6.53)

can be bounded as:

D ·
S∑
s=1

1

1 + λρ̄(Σ̂z)−1ρs(K)−1
≤ D ·

M∑
i=1

N∑
j=1

1

1 + czλρi(K1)−1ρj(K2)−1
, (S6.54)

where cz = 1/2ρ̄(Σ∗z). As M,N → ∞, based on Assumption 4, we have ρi(K1) → Mi−r0

and ρj(K2) → Nj−r0 . Consequently, we can find two constants 0 < c1 < c2, with c1 being
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sufficiently small and c2 being sufficiently large, such that:

M∑
i=1

N∑
j=1

1

1 + c2λ(ij)r0/S
≤

M∑
i=1

N∑
j=1

1

1 + czλρi(K1)−1ρj(K2)−1

≤
M∑
i=1

N∑
j=1

1

1 + c1λ(ij)r0/S
, (S6.55)

where we, with a little abuse of notations, incorporate cz into c1, c2. To estimate the order of

the lower and upper bound in (S6.55), we first notice that for any constant c > 0, one has:

M∧N∑
i=1

1

1 + cλi2r0/S
≤

M∑
i=1

N∑
j=1

1

1 + cλ(ij)r0/S
≤ 2(M ∨N)

M∨N∑
i=1

1

1 + cλi2r0/S
. (S6.56)

To approximate the sum in (S6.56), notice that:

M∨N∑
i=1

1

1 + cλi2r0/S
= (S/cλ)1/2r0 ·

M∨N∑
i=1

1

1 + [ i
(S/cλ)1/2r0

]2r0
· 1

(S/cλ)1/2r0
,

and furthermore, we have:

lim
S→∞

M∨N∑
i=1

1

1 + [ i
(S/cλ)1/2r0

]2r0
· 1

(S/cλ)1/2r0
=

∫ C

0

1

1 + x2r0
dx <∞,

where C = limS→∞ c(M ∨ N)2r0 · γS. In the assumptions of Theorem 3, we assume that

M ∨ N = O(
√
S) and limS→∞ γS · Sr0 → C1 where 0 < C1 ≤ ∞. As a result, we have C

being either a finite value or infinity, thus we have:

lim
S→∞

M∨N∑
i=1

1

1 + cλi2r0/S
=

∫ C

0

1

1 + x2r0
dx · lim

S→∞
(S/cλ)1/2r0 = O(γ

−1/2r0
S ). (S6.57)

Combining (S6.53), (S6.54), (S6.55) and (S6.57), we have tr (I−W) . OP ((M∨N)γ
−1/2r0
S ) =

OP (
√
Sγ
−1/2r0
S ). To obtain the lower bound of tr (I−W), we have:

tr (I−W) ≥ D ·
S∑
s=1

1

1 + λc′zρs(K)−1
≥ D ·

M∑
i=1

N∑
j=1

1

1 + c3λ(ij)r0/S
,

which holds with probability approaching 1 and c′z = 2/
¯
ρ(Σ∗z) and the second inequality

follows from (S6.55). To further lower bound the double summation, we have:

·
M∑
i=1

N∑
j=1

1

1 + c3λ(ij)r0/S
≥

M∧N∑
i=1

1

1 + c3λ(ij)r0/S
.
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This new lower bound can be approximated with the same method as (S6.57) under the as-

sumption thatM∧N = O(
√
S). We can obtain the lower bound of tr (I−W) asOP (γ

−1/2r0
S ),

which establishes the final result.

The upper bound of tr (W) is trivial since:

tr (W) =
S∑
s=1

D∑
d=1

λ

λ+ ρd(Σ̂z)ρs(K)
≤ SD.

S6.5 Proof of Lemma S5.4

Proof. Let W′ = (IT ⊗Σ1/2)W(IT ⊗Σ1/2), then by the Hanson-Wright inequality (Rudelson

and Vershynin, 2013), for any fixed W, with c, t > 0 being constants and K =
√

8/3, we

have:

P

[∣∣E>WE − E
[
E>WE

]∣∣ > t

∣∣∣∣W]
≤ 2 exp

[
−c ·min

(
t2

K4‖W′‖2
F

,
t

K2‖W′‖s

)]
. (S6.58)

We denote each of the S × S sub-matrix along the diagonal of W as W1, . . . ,WT , then for

E
[
E>WE|W

]
, we have:

E
[
E>WE|W

] (1)
=

T∑
t=1

〈Wt,Σ〉
(2)

≤
T∑
t=1

‖Σ‖s · ‖Wt‖∗
(3)
= ‖Σ‖s · tr (W) ,

where 〈·, ·〉 denotes the matrix inner product and ‖ ·‖∗ denotes the matrix nuclear norm. For

(1), this is because of the definition of E>W′E as well as the independence between W and

E . For (2), this inequality holds for the matrix/tensor inner product, and we refer our reader

to Lemma 1 of Wang and Li (2020). Similarly, we also have E
[
E>WE|W

]
≥

¯
ρ(Σ) · tr (W).

For (3), we can prove it via the semi-definiteness of W:

T∑
t=1

‖Wt‖∗ =
T∑
t=1

∥∥L>t WLt

∥∥
∗ = tr

(
W ·

(
T∑
t=1

LtL
>
t

))
= tr (W) = ‖W‖∗ ,
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where Lt = [

t-1 blocks︷ ︸︸ ︷
O, . . . ,O, I,

T-t blocks︷ ︸︸ ︷
O, . . . ,O]>.

Letting t = E
[
E>WE|W

]
/2, then we have:

2 exp

[
−cmin

(
t2

K4‖W‖2
F

,
t

K2‖W‖s

)]
≤ 2 exp

[
−c ·min

(
¯
ρ(Σ)2 · tr (W)2

K4‖W′‖F

2

, ¯
ρ(Σ) · tr (W)

K2 · ‖W′‖s

)]

≤ 2 exp

[
−c ·min

(
¯
ρ(Σ)2 · tr (W)2

K4ρ̄(Σ)2 · ‖W‖F

2

, ¯
ρ(Σ) · tr (W)

K2 · ρ̄(Σ)

)]

≤ 2 exp

[
− c

C2
1K

4
· tr (W)

]
(S6.59)

We can lower bound the trace of W as follows. First, note that:

tr (W) =
S∑
s=1

D∑
d=1

λ

λ+ ρd(Σ̂z)ρs(K)
≥ SD · λ

λ+ ρ̄(Σ̂z)ρ̄(K)
.

By the assumption that ρ̄(K) is bounded and that the fact that ρ̄(Σ̂z) ≤ 2ρ̄(Σ∗z) with

probability approaching 1 as T →∞, we have:

P

[
tr (W) ≥ SDλ

λ+ c̄

]
→ 1, as T →∞, (S6.60)

where c̄ = 2ρ̄(Σ∗z)ρ̄(K). Since r0 < 2 and γS · Sr0 → C1 as S → ∞, with C1 being either a

positive constant or infinity, we have γS · S2 = λ · S →∞. Therefore, we have tr (W)→∞

with probability approaching 1, as S, T →∞.

With these results, we can now upper bound the unconditional probability of the event

{
∣∣E>WE − E

[
E>WE

]∣∣ > E
[
E>WE

]
/2} as follows:

P
[∣∣E>WE − E

[
E>WE

]∣∣ > E
[
E>WE

]
/2
]

≤ E

[
2 exp

[
− c

C2
1K

4
· tr (W)

]]
≤ 2

{
1 · P

(
tr (W ) <

SDλ

λ+ c̄

)
+ exp

[
− c

C2
1K

4
· SDλ
λ+ c̄

]
· P
(

tr (W ) ≥ SDλ

λ+ c̄

)}
→ 0.

(S6.61)
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This indicates that E>WE concentrates around its mean E
[
E>WE

]
with high probability,

and thus E>WE/tr (W) = OP (‖Σ‖s) = OP (c1,S). To establish E>(I−W)2E/tr ((I−W)2) =

OP (‖Σ‖s) = OP (c1,S), we first note the unboundedness of tr ((I−W)2) by following the

same idea as the proof for Lemma S5.3, where we have:

tr
(
(I−W)2

)
≥ (S/cλ)1/2r0 ·

M∧N∑
i=1

 1

1 +
[

i
(S/cλ)1/2r0

]2r0


2

(S/cλ)−1/2r0 ,

with probability approaching 1 and c is some constant. The remainder of the proof follows

exactly the same steps, and we omit the rest of the details here.

S6.6 Proof of Lemma S5.5

Proof. For any two arbitrary symmetric matrices M,N with identical sizes, we use M & N

to indicate that M−N is positive semi-definite, and we use M1/2 to denote the symmetric,

positive semi-definite square root matrix of M.

Since A−B is positive semi-definite, multiplying it by B−1/2 on both left and right sides

of A−B, we have B−1/2AB−1/2 & I. Therefore, we have B−1/2A1/2A1/2B−1/2 & I. Notice

that the matrix A1/2B−1/2 is invertible and thus has no zero eigenvalues. As a result, all

eigenvalues of B−1/2A1/2A1/2B−1/2 are the same as the eigenvalues of A1/2B−1/2B−1/2A1/2

and thus A1/2B−1/2B−1/2A1/2 & I. Multiplying both sides by A−1/2 on both the left and

right sides yields B−1 & A−1, which completes the proof.

S7 Additional Details on Simulation and Algorithm
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S7.1 Simulation Setup

We generate the simulated dataset according to the MARAC(P,Q) model specified by (2.1)

and (2.3). We simulate the autoregressive coefficients Ap,Bp such that they satisfy the

stationarity condition specified in Theorem 1 and have a banded structure. We use a similar

setup for generating Σr,Σc with their diagonals fixed at unity. In Figure 1, we plot the

simulated A1,B1,Σr,Σc when (M,N) = (20, 20).

Simulated A1 Simulated B1 Simulated r Simulated c

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.00 0.05 0.10 0.15 0.20 0.25 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Visualization of the simulated A1,B1,Σr,Σc with M = N = 20.

To generate g1, g2, g3 ∈ Hk and mimic the spatial grid in our real data application

in Section 6, we specify the 2-D spatial grid with the two dimensions being latitude and

longitude of points on a unit sphere S2. Each of the evenly spaced M × N grid points

has its polar-azimuthal coordinate pair as (θi, φj) ∈ [0◦, 180◦] × [0◦, 360◦], i ∈ [M ], j ∈ [N ],

and one projects the sampled grid points on the sphere onto a plane to form an M × N

matrix. The polar θ (co-latitude) and azimuthal φ (longitude) angles are very commonly

used in the spherical coordinate system, with the corresponding Euclidean coordinates being

(x, y, z) = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)).

As for the spatial kernel, we choose the Lebedev kernel:

kη(s1, s2) =

(
1

4π
+

η

12π

)
− η

8π

√
1− 〈s1, s2〉

2
, s1, s2 ∈ S2, (S7.62)
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where 〈·, ·〉 denotes the angle between two points on the sphere S2 and η is a hyperparameter

of the kernel. In the simulation experiment as well as the real data application, we fix η = 3.

The Lebedev kernel has the spherical harmonics functions as its eigenfunction:

kη(s1, s2) =
1

4π
+
∞∑
l=1

η

(4l2 − 1)(2l + 3)

l∑
m=−l

Y m
l (s1)Y m

l (s2),

where Y m
l (·) is a series of orthonormal real spherical harmonics bases defined on sphere S2:

Y m
l (s) = Y m

l (θ, φ) =



√
2NlmP

m
l (cos(θ)) cos(mφ) if m > 0

Nl0P
0
l (cos(θ)) if m = 0

√
2Nl|m|P

|m|
l (cos(θ)) sin(|m|φ) if m < 0

,

with Nlm =
√

(2l + 1)(l −m)!/(4π(l +m)!), and Pm
l (·) being the associated Legendre poly-

nomials of order l. We refer our readers to Kennedy et al. (2013) for detailed information

about the spherical harmonics functions and the associated isotropic kernels. Under our 2-D

grid setup and the choice of kernel, we have found that empirically, the kernel Gram matrix

K has its eigen spectrum decaying at a rate of ρi(K) ≈ i−r with r ∈ [1.3, 1.5].

We randomly sample g1, g2, g3 from Gaussian processes with a covariance kernel being

the Lebedev kernel in (S7.62). Finally, we simulate the vector time series zt using a VAR(1)

process. In Figure 2, we visualize the simulated functional parameters as well as the vector

time series from one random draw.

S7.2 Approximated Penalized MLE with Kernel Truncation

The iterative algorithm in Section 3.1 requires inverting an MND×MND matrix in (S1.4)

when updating γq, i.e., the coefficients of the representer functions k(·, s). One way to reduce

the computational complexity without any approximation is to divide the step of updating

γq = [γ>q,1 : · · · : γ>q,D]> to updating one block of parameters at a time following the order of
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Figure 2: Simulated functional parameters g1, g2, g3 evaluated on a 20 × 20 spatial grid (top row) and the

corresponding auxiliary vector time series (bottom row).

γq,1 → · · · → γq,D. However, such a procedure requires inverting a matrix of size MN×MN ,

which could still be high-dimensional.

To circumvent the issue of inverting large matrices, we can approximate the linear combi-

nation of all MN representers using a set of R << MN basis functions, i.e., Kγq,d ≈ KRθq,d,

where KR ∈ RMN×R,θq,d ∈ RR. For example, one can reduce the spatial resolution by sub-

sampling a fraction of the rows and columns of the matrix and only use the representers at

the subsampled “knots” as the basis functions. In this subsection, we consider an alternative

approach by truncating the Mercer decomposition in (3.8). A similar technique can be found

in Kang et al. (2018).

Given the eigen-decomposition of k(·, ·) in (3.8), one can truncate the decomposition at

the Rth largest eigenvalue λR and get an approximation: k(·, ·) ≈
∑

r≤R λrψr(·)ψr(·). We

will use the set of eigen-functions {ψ1(·), . . . , ψR(·)} for faster computation. The choice of



Hu Sun, Zuofeng Shang and Yang Chen

R depends on the decaying rate of the eigenvalue sequence {λr}∞r=1 (thus the smoothness of

the underlying functional parameters) and can be done via cross-validation in practice. Our

simulation result shows that the estimation and prediction errors shrink monotonically as

R → ∞. Therefore, R can be chosen based on the computational resources available. The

kernel truncation speeds up the computation at the cost of providing an overly-smoothed

estimator, as we demonstrate later in this section.

Given the kernel truncation, any functional parameter gq,d(·) is now approximated as:

gq,d(·) ≈
∑

r∈[R][θq,d]rψr(·). The parameter to be estimated now is Θq = [θq,1; · · · ;θq,D] ∈

RR×D, whose dimension is much lower than before (Γq ∈ RMN×D). Estimating Θq requires

solving a ridge regression problem, and the updating formula for vec (Θq) = θq can be

written as:

θ(l+1)
q ←

[
Φ
(
z>t−q ⊗KR,Σ

(l)
)

+ λT
(
ID ⊗Λ−1

R

)]−1

Φ
(
z>t−q ⊗KR, x̃t,−q,Σ

(l)
)
,

where KR ∈ RMN×R satisfies [KR]ur = ψr(sij), u = i+ (j− 1)M , and Λr = diag(λ1, . . . , λR),

with λr being the rth largest eigenvalue of the Mercer decomposition of k(·, ·). Now we only

need to invert a matrix of size RD ×RD, which speeds up the computation.

In Figure 3, we visualize the ground truth of g3 and both its penalized MLE and truncated

penalized MLE estimators. It is evident that the truncated penalized MLE estimators give

a smooth approximation to g3, and the approximation gets better when R gets larger. The

choice of R should be as large as possible for accuracy, so one can determine R based on the

computational resources available.
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(a) Ground Truth g3 (b) g3 (PMLE) (c) g3 (R=49) (d) g3 (R=81) (e) g3 (R=121)
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Figure 3: Ground truth g3 (panel (a)) against the penalized MLE estimator ĝ3 (panel (b)) and the truncated

penalized MLE estimator ĝ3 using R ∈ {49, 81, 121} basis functions. M = 20.
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