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This is a supplement to the paper “Detecting Structural Breaks in High-Dimensional Functional

Time Series Factor Models”, in which it contains the numerical studies, additional results of

the application, technical proofs of Theorems 1–8 and Lemmas 1–4 with their proofs.

S1 Simulation studies

In this section, we conduct simulation studies to evaluate the performance

of the proposed method under finite sample.

S1.1 Data generation process

For each trajectory Xit(s), 100 observation time points are uniformly gener-

ated within the interval (0, 1) and 500 replicates are applied in each scenario
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unless otherwise stated. We generate data under the framework of high di-

mensional functional factor models with r = 3 and r = 5 common factors:

Xit(s) = λT
itft(s) + uit(s), i = 1, . . . , N, t = 1, . . . , T,

where random error ut(s) ∼ N(0, I).

To construct λt, we start by generating T samples of the N -dimensional

vector kt from a multivariate normal distribution N(0, (σij)N×N), where

σij = a|i−j| and a ∈ (0, 1). We then define K = (k1, . . . ,kT )
T . Next, we

perform eigen decomposition on the matrix KKT to obtain the eigenvalues

and eigenvectors. The diagonal matrix λr consists of the first r largest

eigenvalues, and Kr is a matrix of the corresponding eigenvectors in RT×r.

We calculate λT as the product KTKr, and then proceed to perform QR

decomposition on λT , resulting in λT = QTRT . Finally, to ensure the

identification condition on λ is met, we set λ =
√
NQT . This construction

process allows us to account for change points in the sequence by performing

segment-wise operations on different intervals. In each time segment, the

variance of the normal distribution from which kt is drawn is adjusted,

thereby modifying the parameter a and effectively changing the magnitude

of λ.

In order to account for the influence of inter-factor correlation on the

model, we consider the following two scenarios when constructing ξt for



S1. SIMULATION STUDIES

ftq(s):

Scenario1: There is no correlation among the factors. We independently

generate ξ∗tk ∼ N(0, Krk−1), denote ξ∗t = (ξ∗t,1, . . . , ξ
∗
t,Kr)

T and ξ∗ = (ξ∗1, . . . , ξ
∗
T ).

We then perform eigen decomposition of the matrix ξ∗Tξ∗ to obtain matri-

ces ΛKr andMKr, which consist of the first Kr largest eigenvalues and their

corresponding eigenvectors, respectively. As a result of this procedure, we

obtain ξ = (ξ1, . . . , ξT )
T .

Scenario2: There are correlations among the factors. Specifically, we gen-

erate ξtk = (ξt1k, . . . , ξtrk)
T from a vector autoregressive model, given by

ξtk = V ξ(t−1)k + ϵt, where V is a matrix with elements 0.46|q−q′|+1 for

1 ≤ q, q′ ≤ r. The innovation term ϵtk = (ϵt1k, . . . , ϵtrk)
T is composed of

independent components drawn from a normal distribution N(0, k−1.5).

Given ξt, the factor process ft(s) = (ft1(s), . . . , ftr(s))
T is generated

by ftq(s) =
∑K

k=1 ξtqkϕqk(s), where ϕqk(s) =
√
2 sin[{2(q ̸= 2) + (q =

2)}kπs/10] if k is odd and ϕqk(s) =
√
2 cos[{2(q ̸= 2)k + (q = 2)(2k +

1)}πs/10] if k is even. The setting is used to ensure the orthogonality of

eigenfunctions.

We consider the following setups for the number of breaks.

DGP1 (Single structural break):
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λit =


αi1 for t = 1, . . . , t1,

αi2 for t = t1 + 1, . . . , T .

In this scenario, we set t1 = ⌊T/2⌋+ 1 for different sample cases (N, T ).

DGP2 (Two structural breaks):

λit =


αi1 for t = 1, . . . , t1,

αi2 for t = t1 + 1, . . . , t2,

αi3 for t = t2 + 1, . . . , T .

In this scenario, we set t1 = ⌊T/3⌋+1, t2 = ⌊2T/3⌋+1 for different sample

cases (N, T ).

DGP3 (Three structural breaks):

λit =



αi1 for t = 1, . . . , t1,

αi2 for t = t1 + 1, . . . , t2,

αi3 for t = t2 + 1, . . . , t3,

αi4 for t = t3 + 1, . . . , T .

In this scenario, we set t1 = ⌊T/4⌋+1, t2 = ⌊2T/4⌋+1, t3 = ⌊3T/4⌋+1 for

different sample cases (N, T ).

As the factor loadings are presumed to be nonrandom, we generate

them once and maintain their fixed values throughout the 500 replications.
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S1.2 Determination of the number of factors

To determine the number of factors, we employ the information criteria

functions ER and GR in equation (2.3). The empirical probability of cor-

rect selection (PROB) and the average selected number of factors (AVE)

determined by ER are presented in Table 1 and Table 3 respectively. The

corresponding results of GR can be found in Table 2 and Table 4. It is

noteworthy that we observe for both ER and GR estimators, PROB is con-

sistently equal to one for all cases, indicating that the selected number of

factors accurately reflects the true number of factors. Additionally, the AVE

is either three or five, which aligns with the true number of factors. These

results, detailed in Tables 1-4, provide evidence for the selection consistency

of the information criteria discussed in Section 3.

Table 1: Empirical probability of correct selection (PROB) by ER

scenario1 scenario2

(N,T ) (100,200) (100,400) (200,400) (100,200) (100,400) (200,400)

r 3 5 3 5 3 5 3 5 3 5 3 5

DGP1 1 1 1 1 1 1 1 1 1 1 1 1

DGP2 1 1 1 1 1 1 1 1 1 1 1 1

DGP3 1 1 1 1 1 1 1 1 1 1 1 1
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Table 2: Empirical probability of correct selection (PROB) by GR

scenario1 scenario2

(N,T ) (100,200) (100,400) (200,400) (100,200) (100,400) (200,400)

r 3 5 3 5 3 5 3 5 3 5 3 5

DGP1 1 1 1 1 1 1 1 1 1 1 1 1

DGP2 1 1 1 1 1 1 1 1 1 1 1 1

DGP3 1 1 1 1 1 1 1 1 1 1 1 1

Table 3: Average selected number of factors (AVE) by ER

scenario1 scenario2

(N,T ) (100,200) (100,400) (200,400) (100,200) (100,400) (200,400)

r 3 5 3 5 3 5 3 5 3 5 3 5

DGP1 3 5 3 5 3 5 3 5 3 5 3 5

DGP2 3 5 3 5 3 5 3 5 3 5 3 5

DGP3 3 5 3 5 3 5 3 5 3 5 3 5

Table 4: Average selected number of factors (AVE) by GR

scenario1 scenario2

(N,T ) (100,200) (100,400) (200,400) (100,200) (100,400) (200,400)

r 3 5 3 5 3 5 3 5 3 5 3 5

DGP1 3 5 3 5 3 5 3 5 3 5 3 5

DGP2 3 5 3 5 3 5 3 5 3 5 3 5

DGP3 3 5 3 5 3 5 3 5 3 5 3 5
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S1.3 Estimation of the break points

Figure 1 and Figure 2 depict the distribution of dt after 500 repeated ex-

periments for scenario 1 and scenario 2, respectively, with the same sample

size. In the absence of change points, the values of dt should be close to

zero. It can be observed that for both scenario 1 and scenario 2, regardless

of whether the number of change points m is 1, 2, or 3, d̂t effectively repre-

sents the positions of the change points. However, due to the interference of

correlation, scenario 2 exhibits higher levels of noise compared to scenario

1.

Then we use WBS Algorithm to estimate the number and positions

of breaks points. During our simulation, we set thresholds of the form

∆T = {Cσ
√
T}, C = [0.2, 6], and α = 1.05 for sSIC information criterion,

where σ is the median absolute deviation estimator from the r package wbs.

Table 5 presents the accuracy of estimating the number of change points,

and we can observe that the method proposed in this paper exhibits high

accuracy. Additionally, for scenario 1, as the sample size increases, the

accuracy improves accordingly. The increase in the number of factors also

has a positive impact on the estimation accuracy. In scenario 2, we observe

that increasing the sample size in the temporal dimension, T , can introduce

interference in accurately identifying the number of change points. On the
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other hand, increasing the sample size in the factor dimension, N , has a

positive impact on the accuracy of identification.

Figure 1: d̂t when N = 100, T = 400, r = 5 for scenario1, from left to right, the samples represent

DGP1, DGP2, and DGP3.

Figure 2: d̂t when N = 100, T = 400, r = 5 for scenario2, from left to right, the samples represent

DGP1, DGP2, and DGP3.

Table 6 shows the accuracy of break-point estimation, which is mea-

sured by normalised mutual information (NMI) measurements for cluster
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membership estimation defined by :

NMI(ê·, e·) = 2
MI(ê·, e·)

H(ê·) +H(e·)′
, (S1.1)

where ê· = {I1, . . . , Im̂+1} is the estimate of e· = {I1, . . . , Im0+1}, H(e·)

denotes the entropy of e·, MI(ê·, e·) is the mutual information between ê·

and e· defined by

MI(ê·, e·) =
m̂+1∑
k=1

m0+1∑
j=1

(
|Îk ∩ Ij|

T
) log2(

T |Îk ∩ Ij|
|Îk∥Ij|

)

Table 5: Percentage of correct detection of the number of breaks

scenario1 scenario2

(N,T ) (100,200) (100,400) (200,400) (100,200) (100,400) (200,400)

DGP1
r = 3 0.938 0.992 0.996 0.956 0.908 0.968

r = 5 0.980 0.996 0.998 0.904 0.964 0.972

DGP2
r = 3 0.942 0.988 0.992 0.974 0.926 0.968

r = 5 0.988 0.990 0.994 0.900 0.976 0.972

DGP3
r = 3 0.942 0.972 0.986 0.936 0.834 0.924

r = 5 0.976 0.994 0.996 0.884 0.964 0.972

Table 7 shows average Hausdorff distance of the estimated and true

break points divided by 100 ×HD/T . Let D(A,B) ≡ supb∈Binfa∈A|a − b|

for any two sets A and B. The Hausdorff distance between A and B is

defined as max{D(A,B),D(B,A)} .

It is evident that the NMI values of the estimated time intervals before

and after the change points in Table 6 are close to the ideal value of one

and HD in Table 7 are close to the ideal value of zero. Furthermore, these
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Table 6: NMI measurements for cluster membership estimation

scenario1 scenario2

(N,T ) (100,200) (100,400) (200,400) (100,200) (100,400) (200,400)

DGP1
r = 3 0.9868 0.9981 0.9984 0.9887 0.9837 0.9946

r = 5 0.9898 0.9977 0.9993 0.9794 0.9929 0.9917

DGP2
r = 3 0.9908 0.9973 0.9971 0.9934 0.9936 0.9965

r = 5 0.9952 0.9975 0.9977 0.9839 0.9948 0.9939

DGP3
r = 3 0.9915 0.9971 0.9972 0.9894 0.9885 0.9956

r = 5 0.9945 0.9987 0.9989 0.9868 0.9962 0.9960

NMI and HD values demonstrate consistency with the accuracy of change

point identification.

Table 7: The HD measurements for cluster membership estimation

scenario1 scenario2

(N,T ) (100,200) (100,400) (200,400) (100,200) (100,400) (200,400)

DGP1
r = 3 0.0430 0.0085 0.0165 0.0330 0.0140 0.0080

r = 5 0.0560 0.0125 0.0090 0.0130 0.0015 0.0075

DGP2
r = 3 0.1020 0.0260 0.0220 0.0900 0.0185 0.0230

r = 5 0.0870 0.0210 0.0110 0.0500 0.0070 0.0120

DGP3
r = 3 0.1430 0.0440 0.0335 0.1590 0.0265 0.0150

r = 5 0.0990 0.0355 0.0210 0.0880 0.0255 0.0165

S1.4 Re-estimating the functional factor model

In Section 2.5 of the main paper, the determination of the value of K

through principal components analysis, ultimately depends on the parame-

ter KPCA. Here, we provide detailed insights into the process of establishing
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KPCA, which is closely associated with a thorough sensitivity analysis. By

varying the KPCA values and evaluating the corresponding accuracy of esti-

mating K, the numerical results are presented in Table 8. The data clearly

indicate that 97.5% consistently delivers favorable results, with an average

correct estimation rate exceeding 90% across all scenarios. This conclusion

is further supported by Figure 3, illustrating that maintaining KPCA within

the range of 95% to 98% results in stable accuracy of estimation across all

cases, with 97.5% emerging as one of the optimal choices.

Figure 3: Accuracy in identifying the number of K Using various KPCA values in Scenario 2, r = 3.

(N,T,DGP) representing different sample cases.

In order to demonstrate the influence of the number of change points

and the detection of change points on the normalized prediction error (PE),
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Table 8: Accuracy in Determining the Number of K with Varied KPCA

KPCA/(N,T ) (100,200) (100,400) (200,400)

k = 2, r = 3 DGP1 DGP2 DGP3 DGP1 DGP2 DGP3 DGP1 DGP2 DGP3

90 0.318 0.448 0.524 0.218 0.286 0.392 0.246 0.286 0.344

90.5 0.36 0.48 0.57 0.266 0.332 0.434 0.298 0.342 0.412

91 0.394 0.512 0.606 0.332 0.402 0.484 0.35 0.396 0.474

91.5 0.448 0.55 0.658 0.4 0.476 0.554 0.406 0.464 0.536

92 0.506 0.58 0.702 0.478 0.532 0.606 0.474 0.536 0.596

92.5 0.576 0.626 0.724 0.55 0.584 0.646 0.544 0.604 0.656

93 0.618 0.664 0.76 0.618 0.644 0.722 0.61 0.67 0.71

93.5 0.668 0.704 0.790 0.67 0.698 0.784 0.686 0.724 0.774

95 0.712 0.746 0.816 0.742 0.756 0.844 0.756 0.79 0.828

94.5 0.758 0.786 0.848 0.804 0.81 0.888 0.816 0.826 0.878

95 0.8 0.824 0.888 0.86 0.87 0.926 0.872 0.886 0.906

95.5 0.842 0.858 0.896 0.888 0.91 0.944 0.914 0.93 0.934

96 0.874 0.894 0.906 0.934 0.954 0.966 0.942 0.95 0.968

96.5 0.904 0.918 0.912 0.962 0.968 0.986 0.97 0.97 0.988

97 0.908 0.934 0.904 0.982 0.982 0.988 0.98 0.984 0.998

97.5 0.912 0.928 0.904 0.994 0.99 0.992 0.986 0.994 0.994

98 0.928 0.904 0.868 0.994 0.986 0.978 0.996 0.988 0.98

98.5 0.892 0.856 0.778 0.98 0.95 0.918 0.972 0.952 0.948

99 0.75 0.676 0.568 0.85 0.794 0.71 0.846 0.818 0.732

99.5 0.348 0.274 0.214 0.286 0.27 0.19 0.3 0.262 0.208
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we compared our approach with Wen and Lin (2022), which corresponds to

the scenario without any change points. The normalized prediction error

(PE) is defined as follows:

PE =
∑
i,t

n−1

n∑
l=1

(X̂it(sl)−Xit(sl))
2/

∑
i,t

n−1

n∑
l=1

X2
it(sl)

Figure 4: Normalized prediction error (PE) before and after the breaks when N = 100, T = 200, r = 3

for scenario2, from left to right, the samples represent DGP1, DGP2, and DGP3. PE represents the

estimation error before identifying the change points, while rePE represents the estimation error after

identifying the change points.

From Figure 4, We observe that before estimating the change points, the

more change points actually present, the greater the interference introduced

in the estimation, resulting in higher PE values. However, after estimating

the change points, the influence of the change points on the estimation is

mitigated, and the impact of the number of change points in the sequence

on the estimation is eliminated.
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S1.5 Comparisons between Change Points of Mean Functions

and Loadings

In this section, we present comparisons between change points of mean func-

tions and loadings. Our aim is to illustrate that when the factor structure

exists and the change points of the mean function align with those of the

loadings, detecting the change points of the loadings yields superior perfor-

mance. This highlights how the loadings of factor models capture unique

information compared to the original functional time series.

The dynamic nature of functional factors in factor models implies that

the breakpoints in loadings may not align precisely with changes in mean

functions. To begin, we contrast our approach with the method for identi-

fying change points in mean functions based on Kovács et al. (2023) under

scenario 1, where we assume a consistent distribution of factors, allowing

us to consider the change-point locations in loading and mean function are

identical. The subsequent tables present the outcomes of detecting change

points in mean functions, offering a basis for comparison with the results

of loading change-point detection outlined in subsection S1.3.

Upon comparing Table 9, 10, 11 with Table 5, 6, 7 respectively, the

findings indicate that while the approach of identifying change points in

mean functions shows some efficacy, it falls short compared to the method
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that incorporates the factor structure. This suggests that in the presence

of a factor structure, relying solely on detecting change points in mean

functions may not suffice.

Table 9: Percentage of correct detection of the number of breaks

(N, J) (100,200) (100,400) (200,400)

DGP1
r = 3 0.924 0.912 0.888

r = 5 0.912 0.896 0.886

DGP2
r = 3 0.920 0.942 0.904

r = 5 0.924 0.942 0.910

DGP3
r = 3 0.798 0.864 0.838

r = 5 0.812 0.862 0.832

Table 10: NMI measurements for cluster membership estimation

(N, J) (100,200) (100,400) (200,400)

DGP1
r = 3 0.7504 0.7146 0.7341

r = 5 0.7493 0.7193 0.7333

DGP2
r = 3 0.7332 0.7431 0.7296

r = 5 0.7335 0.7433 0.7273

DGP3
r = 3 0.7333 0.7390 0.7460

r = 5 0.7333 0.7369 0.7439

S2 Additional Results of Application

In this section we supplement some results for the application, which il-

lustrate the presence of change points in the loading and the influence of

climate factors.
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Table 11: The HD measurements for cluster membership estimation

(N, J) (100,200) (100,400) (200,400)

DGP1
r = 3 0.0525 0.0590 0.0488

r = 5 0.0517 0.0549 0.0548

DGP2
r = 3 0.06843 0.06560 0.0687

r = 5 0.06844 0.06561 0.0692

DGP3
r = 3 0.0763 0.0768 0.0738

r = 5 0.0764 0.0773 0.0745

Figure 5: d̂t for PM2.5 in 2018 and 2019 from left to right. The red triangles indicating the positions

of change points, while the dots indicate the absence of detected change points.
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Figure 5 presents the estimation of dt and change points for PM2.5 in

2018 and 2019. The overall trend of dt reveals the influence of climate and

seasons on pollutant levels. In both 2018 and 2019, the dt values for the

months of June, July, and August were relatively small, indicating a rel-

atively stable level of pollutant emissions during this period. However, in

the months of March, April, September, and October, which fall between

the seasons of summer and winter, the values of dt were larger, indicating

greater fluctuations in pollutant levels. According to Liang et al. (2016),

Liang et al. (2015), during winter, the climatic conditions such as tempera-

ture, wind speed, and wind direction, are unfavorable for the dispersion of

pollutants. Additionally, the use of heating systems during winters in north-

ern regions leads to higher emissions of pollutants, resulting in significantly

higher pollution levels compared to summer. Therefore, our estimation of

the overall trend in d̂t aligns with the actual variations in pollution levels.

The detected change points illustrate the influence of human activities, as

demonstrated in our manuscript.

S3 Proofs

In this section, we present the proofs of technical lemmas and theorems.

The technical lemmas are used to prove the theorems of the paper. We
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first present some notations that will be used in the proofs of lemmas and

theorems.

To fix notation, let ∥A∥F = [tr(AAT )]1/2 be the Frobenius norm of

any matrix A, ∥A∥2 =
√
ψmax(ATA) as its spectral norm, ∥A∥1 be the 1-

norm of any matrix A, ∥A∥∞ be the sup-norm. Note that the Frobenius

norm and spectral norm are equal when A is a vector and we always have

∥A∥2 ≤ ∥A∥F ≤ ∥A∥2
√
r(A), ∥A∥∞ = ∥AT∥1 and ∥A∥2 ≤

√
∥A∥∞ · ∥A∥1.

Proof of Theorem 1: Consider the inequalities

c/(1 + c) < ln(1 + c) < c (A.1)

for c > 0. These inequalities lead to that

ln(1 + ψ̃r′/V (r′))

ln(1 + ψ̃r′+1/V (r′ + 1))
<

ψ̃r′/V (r′)

(ψ̃r′+1/V (r′ + 1))/(1 + ψ̃r′+1/V (r′ + 1))
=

ψ̃r′

ψ̃r′+1

= Op(1)

for r′ = 1, . . . , r − 1, r + 1, . . . , rmax. Use equation A.1 again we have

ln(1 + ψ̃r/V (r))

ln(1 + ψ̃r+1/V (r + 1))
>

(ψ̃r/V (r))/(1 + ψ̃r/V (r))

ψ̃r+1/V (r + 1)
=

ψ̃rV (r + 1)

ψ̃r+1V (r − 1)

by Lemma 12 of Ahn and Horenstein (2013), under Assumptions 1-4, we

have V (r + 1) = Op(1), and then

V (r + 1)

V (r − 1)
=

V (r + 1)

ψ̃r + ψ̃r+1 + V (r + 1)
= Op(1),

and

ψ̃rV (r + 1)

ψ̃r+1V (r − 1)
= Op(η

2
N,n)Op(1) = Op(η

2
N,n) = Op(min{N, n}).
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These results indicate that the GR estimator is consistent.

Lemma C.1. Suppose that Assumptions 1-4 hold. Then for all t ∈ Ik, as

(N, n) → ∞, it holds that

1

N
∥λ̂t −α0

kHt∥2F = Op(η
−2
N,n)

for t = 1, . . . , T , where ηNn = min{
√
N,

√
n}, Ht = (

∑n
l=1 ft(sl)f

T
t (sl)/n)

(α0T
k λ̂t/N)V −1

t and Vt denote the r×r diagonal matrix of the first r largest

eigenvalues of matrix (Nn)−1∑n
l=1Xt(sl)X

T
t (sl) in descending order.

The convergence rate described in Lemma C.1 bears resemblance to

those observed in the functional factor model Wen and Lin (2022).

Proof of Lemma C.1: By the definition of Vt, we have (Nn)
−1Xt(sl)X

T
t (sl)λ̂t =
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λ̂tVt. Then, we can decompose λ̂t −α0
kHt as follows:

λ̂t −α0
kHt

=
1

Nn

n∑
l=1

Xt(sl)X
T
t (sl)λ̂tV

−1
t −α0

kHt

=
1

Nn

n∑
l=1

(α0
kft(sl) + ut(sl))(α

0
kft(sl) + ut(sl))

T λ̂tV
−1
t −α0

kHt

=
1

Nn

n∑
l=1

α0
kft(sl)f

T
t (sl)α

0T
k λ̂tV

−1
t −α0

kHt +
1

Nn

n∑
l=1

α0
kft(sl)u

T
t (sl)λ̂tV

−1
t

+
1

Nn

n∑
l=1

uT
t (sl)f

T
t (sl)α

0T
k λ̂tV

−1
t +

1

Nn

n∑
l=1

ut(sl))u
T
t (sl))λ̂tV

−1
t

=
1

Nn

n∑
l=1

E[ut(sl)u
T
t (sl)]λ̂tV

−1
t +

1

Nn

n∑
l=1

[ut(sl))u
T
t (sl))− E(ut(sl)u

T
t (sl))]λ̂tV

−1
t

+
1

Nn

n∑
l=1

uT
t (sl)f

T
t (sl)α

0T
k λ̂tV

−1
t +

1

Nn

n∑
l=1

ut(sl))u
T
t (sl))λ̂tV

−1
t

or in vector form:

λ̂it −HT
t α

0
i,k

=V −1
t [

1

Nn

N∑
j=1

λ̂jt

n∑
l=1

E[uit(sl)ujt(sl)] +
1

Nn

N∑
j=1

λ̂jt

n∑
l=1

(uit(sl)ujt(sl)− E[uit(sl)ujt(sl)])

+
1

Nn

N∑
j=1

λ̂jtα
0T
j,k

n∑
l=1

fT
t (sl)uit(sl) +

1

Nn

N∑
j=1

λ̂jtα
0T
i,k

n∑
l=1

fT
t (sl)ujt(sl)]

=A1,ti + A2,ti + A3,ti + A4,ti. (∗)

Then by the Cauchy-Schwarz inequality, we have

1

N
∥λ̂t −α0

kHt∥2 =
1

N

N∑
i=1

∥λ̂it −HT
t α

0
ik∥2 ≤

4∑
k=1

∥Ak,ti∥2.
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Following Bai and Ng (2002), we can readily show thatN−1
∑N

i=1 ∥A1,ti∥2 =

Op(N
−1) and N−1

∑N
i=1 ∥Ak,ti∥2 = Op(n

−1) for k = 2, 3, 4. Consequently,

N−1∥λ̂t −α0
kHt∥2 = Op(η

−2
N,n).

Proof of Theorem 2: Noting that

1

N
∥λ̂t − λ̂t−1∥2F

≤ 1

N
∥λ̂t −α0

kHt∥2F +
1

N
∥λ̂t−1 −α0

kHt−1∥2F +
1

N
∥α̂0

kHt −α0
kHt−1∥2F

:=At1 + At2 + At3

by Lemma C.1, At1 = Op(η
−2
N,n), At2 = Op(η

−2
N,n). SinceN

−1λ̂T
t α

0
k = N−1(λ̂t−

α0
kHt)

Tα0
k + N−1HT

t α̂
0T
k α0

k = N−1(λ̂t − α0
kHt)

Tα0
k +HT

t and N−1(λ̂t −

α0
kHt)

Tα0
k = Op(η

−2
N,n) by Lemma B.2 in Bai (2003), we only need focus

on the convergence properties of Ht. Right multiply Ht to both sides of

N−1λ̂T
t α

0
k = HT

t +Op(η
−2
N,n), we have

1

N
λ̂T

t α
0
kHt = HT

t Ht +Op(η
−2
N,n).

Rewrite the left hand side of above as

1

N
λ̂T

t α
0
kHt =

1

N
λ̂T

t (α
0
kHt − λ̂t + λ̂t)

=
1

N
λ̂T

t (α
0
kHt − λ̂t) +

1

N
λ̂T

t λ̂t

=Ir +Op(η
−2
N,n),

according to N−1λ̂T
t (α

0
kHt−λ̂t) = Op(η

−2
N,n) and N

−1λ̂T
t λ̂t = Ir, see Lemma
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B.3 of Bai (2003). Equating the above two equations we obtain

Ir = HT
t Ht +Op(η

−2
N,n).

By ignoring the term Op(η
−2
N,n), the above shows that Ht is an orthogonal

matrix so that its eigenvalues are either 1 or −1. We need to show that Ht

is a diagonal matrix. From the definition of Ht,

HT
t =V −1

t (
1

N
λ̂T

t α
0
k)(

1

n

n∑
l=1

ft(sl)f
T
t (sl))

=V −1
t HT

t (
1

n

n∑
l=1

ft(sl)f
T
t (sl)) +Op(η

−2
N,n),

where we use the fact that N−1λ̂T
t α

0
k = HT

t +Op(η
−2
N,n) under N

−1λ̂T
t λ̂t =

Ir. Multiplying Vt on both sides and taking the transpose

1

n

n∑
l=1

ft(sl)f
T
t (sl))Ht = HtVt +Op(η

−2
N,n).

This equation implies that Ht (up to a negligible term) is a matrix consist-

ing of eigenvectors of 1
n

∑n
l=1 ft(sl)f

T
t (sl)). The latter matrix is diagonal

and has distinct eigenvalues by assumption. Thus, each eigenvalue is as-

sociated with a unique unitary eigenvector (up to a sign change) and each

eigenvector has a single non-zero element. This implies that Ht is a diago-

nal matrix up to an Op(η
−2
N,n) order. It is already known that the eigenvalues

of Ht are 1 or −1, Ht is a diagonal matrix with elements of 1 or −1 as

its elements. Without loss of generality, we can assume all elements are 1.



S3. PROOFS

This implies Ht = Ir +Op(η
−2
N,n) and

At3 =
1

N
∥α̂0

kHt −α0
kHt−1∥2F

≤ 1

N
∥α̂0

k∥2F∥Ht −Ht−1∥2F = Op(η
−2
N,n).

Combining results we obtain Theorem 1.

Lemma C.2. Suppose that Assumptions 1-4 hold. Then for all t ∈ Ik, as

(N, n) → ∞, we have

f̂t(s) =
1

N
λ̂T

t α
0
kf

0
t (s) +Op(

1√
N

+ η−1
Nn)

for s = s1, . . . , sn.

Proof of Lemma C.2: we can decompose ft(s) as follows:

ft(s) =
1

N
λ̂T

t Xt(s) =
1

N
λ̂T

t (α
0
kf

0
t (s) + ut(s))

=
1

N
λ̂T

t α
0
kf

0
t (s) +

1

N
HT

t α
0T
k ut(s) +

1

N
(λt −α0

kH
T
t )ut(s)

:=
1

N
λ̂T

t α
0
kf

0
t (s) +D1,t +D2,t.

First, D1,t = N−1HT
t α

0T
k ut(s) = Op(N

−1/2) for each t. Now, we use equa-

tion (∗) and make the following decomposition

D2,t =
1

N
(λt −α0

kH
T
t )ut(s) =

1

N

N∑
i=1

(λ̂it −HT
t α

0
ik)uit(s)

=
1

N

N∑
i=1

4∑
k=1

Aktiuit(s) = V −1
t

4∑
k=1

1

N

N∑
i=1

VtAktiuit(s)

:=V −1
t

4∑
k=1

D2tk.
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We further decompose D2t1 as follows:

D2t1 =
1

N
VtA1tiuit(s) =

1

N

1

Nn

N∑
j=1

λ̂jt

n∑
l=1

E[uit(sl)ujt(sl)]uit(s)

=
1

N2

N∑
i=1

N∑
j=1

(λ̂jt − ĤT
t α

0
j,k)

n∑
l=1

E[uit(sl)ujt(sl)]uit(s)

+
1

N2

N∑
i=1

N∑
j=1

ĤT
t α

0
j,k

n∑
l=1

E[uit(sl)ujt(sl)]uit(s)

:=D
(1)
2t1 + ĤT

t D
(2)
2t1.

By the repeated use of Cauchy-schwarz inequality, Lemma C.1, and As-

sumptions 4 (i) and (iii),

∥D(1)
2t1∥F ≤ 1√

N
[
1

N

N∑
j=1

∥λ̂jt − ĤT
t α

0
j,k∥2F ]1/2[

1

N

N∑
i=1

N∑
j=1

1

n

n∑
l=1

ω2
ij(sl)u

2
it(s)]

1/2

≤ 1√
N
[
1

N

N∑
j=1

∥λ̂jt − ĤT
t α

0
j,k∥2F ]1/2max

i

N∑
j=1

1

n

n∑
l=1

ω2
ij(sl)[

1

N

N∑
i=1

u2it(s)]
1/2

= N−1/2Op(η
−1
N,n)Op(1)Op(1) = N−1/2Op(η

−1
N,n).

Noting that

E∥D(2)
2t1∥ ≤ 1

N2
E∥

N∑
i=1

N∑
j=1

α0
j,k

1

n

n∑
l=1

E[uit(sl)ujt(sl)]uit(s)∥

≤CN−1max
i,t

E∥uit(s)∥ ·
1

n

n∑
l=1

max
j

N∑
i=1

ωij(sl)

=Op(
1

N
).

By Markov inequality, D
(2)
2t1 = Op(N

−1). ThenD2t1 = N−1/2Op(η
−1
N,n).

For D2t2, we use v̄ij(sl) = uit(sl)ujt(sl)−E[uit(sl)ujt(sl)] and make the
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following decomposition:

D2t2 =
1

N

N∑
i=1

VtA2tiuit(s)

=
1

N

N∑
i=1

1

Nn

N∑
j=1

λ̂jt

n∑
l=1

(uit(sl)ujt(sl)− E[uit(sl)ujt(sl)])uit(s)

=
1

N2

N∑
i=1

N∑
j=1

λ̂jt
1

n

n∑
i=1

(uit(sl)ujt(sl)− E[uit(sl)ujt(sl)])uit(s)

=
1

N

N∑
j=1

(λ̂jt − ĤT
t α

0
j,k)

1

N

N∑
i=1

1

n

n∑
l=1

v̄ij(sl)uit(s)

+
1

N

N∑
i=1

ĤT
t α

0
j,k

1

N

N∑
i=1

1

n

n∑
l=1

v̄ij(sl)uit(s)

= D
(1)
2t2 +D

(2)
2t2.

By Cauchy-schwarz inequality, ∥D(1)
2t2∥ ≤ (N−1

∑N
i=1 ∥λ̂jt−ĤT

t α
0
j,k∥2)1/2(D̄

(1)
2t2)

1/2,

where D̄
(1)
2t2 = N−1

∑N
j=1(N

−1
∑N

i=1 n
−1

∑n
l=1 v̄ij(sl)uit(s))

2. Noting that by

Assumptions 4 (i) and (iv)

E(D̄
(1)
2t2) =

1

N3

N∑
i=1

N∑
j=1

N∑
k=1

E[
1

n

n∑
l=1

v̄ij(sl)v̄ik(sl)u
2
it(s)]

≤ 1

n

n∑
l=1

max
i,j

∥v̄ij(sl)∥24max
i,t

∥ūit(s)∥24 = Op(
1

n
),

then we have ∥D(1)
2t2∥ = Op(η

−1
N,n)Op(n

−1) by Markov inequality and Lemma

1. By direct moment calculation and Chebyshev inequality, we can show

that D
(2)
2t2 = Op(N

−1/2η−1
N,n). It follows that D2t2 = Op(η

−2
N,n).
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Next

D2t3 =
1

N

N∑
i=1

VtA3tiuit(s)

=
1

N

N∑
i=1

1

Nn

N∑
j=1

λ̂jtα
0T
j,k

n∑
l=1

ft(sl)uit(sl)uit(s)

=
1

N2n

N∑
j=1

λ̂jtα
0T
j,k

N∑
i=1

n∑
l=1

ft(sl)uit(sl)uit(s)

=
1

N
λ̂T

t α
0
k

1

Nn

n∑
l=1

ft(sl)u
T
t (sl)ut(s)

:=
1

N
λ̂T

t α
0
kdt.

Note that

dt =
1

Nn

n∑
l=1

ft(sl)u
T
t (sl)ut(s)

=
1

Nn

n∑
l=1

E(ft(sl)u
T
t (sl)ut(s)) +

1

Nn

n∑
l=1

[ft(sl)u
T
t (sl)ut(s)− E(ft(sl)u

T
t (sl)ut(s))]

=dt1 + dt2.

By Assumption 4 (ii), |dt1| ≤ 1
n

∑n
l′=1 |γN,F (l

′, l)| = Op(n
−1). By Assump-

tion 4 (vi),

E[|dt2|2] =
1

n2

n∑
l=1

n∑
l′=1

E[ζF,ll′ζF,ll′′ ] ≤
1

N
max
l,l′

∥
√
NζF,ll′∥2F = Op(

1

N
).

It follows that dt2 = Op(N
−1/2), dt = Op(N

−1/2+n−1) andD2t3 = Op(N
−1/2+
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n−1). Similarly, we can show that

D2t4 =
1

N

N∑
i=1

VtA4tiuit(s)

=
1

N

N∑
i=1

1

Nn

N∑
j=1

λ̂jtα
0T
j,k

n∑
l=1

ft(sl)ujt(sl)uit(s)

=
1

N2n

N∑
i=1

N∑
j=1

λ̂jtα
0T
j,k

n∑
l=1

ft(sl)uit(sl)uit(s)

=
1

N2n
λ̂T

t

n∑
l=1

ut(sl)f
T
t (sl)α

0T
k ut(s)

=
1

N2n
(λ̂t −α0

kHt)
T

n∑
l=1

ut(sl)f
T
t (sl)α

0T
k ut(s)

+HT
t

1

N2n
α0T

k

n∑
l=1

ut(sl)f
T
t (sl)α

0T
k ut(s)

= Op(η
−1
N,n)Op(

1√
N
) +Op(

1

N
).

It follows that D2,t = Op(N
−1/2 + η−2

N,n). Thus Lemma 2 follows.

Proof of Theorem 3: Noting that

∥f̂t(s)−H−1
t f 0

t (s)∥2F

=∥ 1

N
λ̂T

t α
0
kf

0
t (s)−H−1

t f 0
t (s) +Op(

1√
N

+ η−2
N,n)∥

2
F

≤C · ∥λ̂t −α0
kHt∥2F∥f 0

t (s)∥2F +Op(
1

N
+ η−4

N,n)

≤C · tr(f 0
t (s)f

0T
t (s))Op(η

−2
N,n) +Op(

1

N
+ η−4

N,n)

=C ·Op(η
−2
N,n) +Op(

1

N
+ η−4

N,n)

=Op(η
−2
N,n)
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by Lemma C.2. Thus theorem 3 follows.

Proof of Theorem 4: We first state the following three Lemmas that are

used in proving theorem 4.

Lemma C.3. Suppose that Assumption 5 hold. There exist two constants

C1, C2 such that if C1 log
1/2 T ≤ ∆T ≤ C2δ

1/2
T µ̃T,N , then for certain positive

C3, C4, it holds that

P (AT ) ≥ 1− C3/T − Tδ−1
T (1− δ2TT

−2/9)M ,

where AT = {m̂ = m; max
i=1,...,m

|t̂′i − t′i| ≤ C4 log T (µ̃
−2
T )}.

The aforementioned Lemma C.3 is derived from Theorem 2 in Fry-

zlewicz (2014), which demonstrates that when the minimum distance be-

tween change points is characterized and regulated, the WBS algorithm can

ensure, with probability approaching one, the accuracy of both the number

and the location of the change points. Building upon this Lemma, to prove

Theorem 4, it suffices to demonstrate that the sSIC criterion is minimized

when the number of change points is m.

Lemma C.4. Use X̂K
t (sl), α̂

K
t and f̂K

t (sl) to denote the estimate of Xt(sl),

α0
t and f 0

t (sl) when the number of change points m is estimated by K, where

α̂K
t = N1/2Eeigen(

1

nTk

∑
t∈Ik

n∑
l=1

Xt(sl)X
T
t (sl); r),
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f̂K
t (sl) = α̂KT

t Xt(sl),

σ̂2
K =

1

Tn

T∑
t=1

n∑
l=1

∥X̂K
t (sl)−Xt(sl)∥2F

for t ∈ Ik and |Ik| = t̂′k+1 − t̂′k. Then there are

(i) when K ≥ m and all the conditions in Lemma C.3 are satisfied, we can

conclude that (σ̂2
m − σ̂2

K)/σ̂
2
m ≤M1 where M1 = Op(η

−2
NδT

).

(ii) When K < m, we have (σ̂2
K − σ̂2

m)/σ̂
2
m ≥M2 where M2 = Op(η

−2
NδT

).

Proof of Lemma C.4 (i): Define

AT = {|(c− b+ 1)−1/2

c∑
t=b

ϵt| ≤ κ1, 1 ≤ b ≤ c ≤ T}, κ1 ≤ (6 log T )−1/2,

BT = { max
a,b,c:1≤a≤b<c≤T

|D̃b
a,cµ̃

b
a,c| ≤ κ2}, κ2 ≥ 8 log T−1/2

and

DP
T = {∀i = 1, . . . ,m, ∃p = 1, . . . , P, (αp, βp) ∈ Ii × Ii+1},

where Ii = [t′i−1 +
1
3
(t′i − t′i−1), t

′
i−1 +

2
3
(t′i − t′i−1)], i = 1, . . . ,m+1, by which

we only have one change point in each Ii. From the proof of Lemma C.3

in Fryzlewicz (2014), we have P (AT ∩ BT ∩ CT ) ≥ 1 − C3/T − Tδ−1
T (1 −

δ2TT
−2/9)M and the following considerations are valid on the this set. First
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consider the case K > m, we have

σ̂2
m − σ̂2

k

σ̂2
m

=

∑T
t=1

∑n
l=1 ∥X̂m

t (sl)−Xt(sl)∥2F −
∑T

t=1

∑n
l=1 ∥X̂K

t (sl)−Xt(sl)∥2F∑T
t=1

∑n
l=1 ∥X̂m

t (sl)−Xt(sl)∥2F

=

∑T
t=1

∑n
l=1 ∥α̂m

t α̂
mT
t Xt(sl)−Xt(sl)∥2F −

∑T
t=1

∑n
l=1 ∥α̂m

t α̂
mT
t Xt(sl)−Xt(sl)∥2F∑T

t=1

∑n
l=1 ∥α̂K

t α̂
KT
t Xt(sl)−Xt(sl)∥2F

=

∑T
t=1

∑n
l=1X

T
t (sl)[(α̂

m
t α̂

mT
t )2 − (α̂K

t α̂
KT
t )2]Xt(sl)∑T

t=1

∑n
l=1 X

T
t (sl)(α̂

m
t α̂

mT
t − IN)2Xt(sl)

=
(N − 2)

∑T
t=1

∑n
l=1X

T
t (sl)[(α̂

m
t α̂

mT
t − α̂K

t α̂
KT
t )2]Xt(sl)∑T

t=1

∑n
l=1X

T
t (sl)((N − 2)α̂m

t α̂
mT
t + IN)2Xt(sl)

, (∗∗)

(A.2)

where the equation (∗∗) following by α̂T
t α̂t/N = Ir. Without loss of gen-

erality, we can assume the length of each subset Tk = δT . Furthermore,

let

α̂tα̂
T
t =(α̂t −α0

tHt +α0
tHt)(α̂t −α0

tHt +α0
tHt)

T

=(α̂t −α0
tHt)(α̂t −α0

tHt)
T + 2α0

tHt(α̂t −α0
tHt)

T +α0
tα

0T
t ,

then according to Assumption 1 (i), it follows:

(∗∗) ≤(N − 2)ψmaxT∥α̂m
t −α0

tHt∥2F + ∥α̂K
t −α0

tHt∥2F + 2(N − 2)ψmax

∑T
t=1 tr(α

0
tHt(α̂

m
t − α̂K

t )

(N − 2)ψminT∥α̂m
t −α0

tHt∥2F + (N − 2)ψminTtr(α0
tα

0T
t )

≤
√
NψmaxOp(η

−2
NδT

) + 2ψmaxOp(η
−1
NδT

)
√
NψminOp(η

−2
NδT

) +
√
Nψmin

∼ C√
N
Op(η

−1
NδT

),

where

tr(α0
tHt(α̂

m
t −α̂K

t ) ≤
√
Ntr(α̂m

t −α̂K
t ) =

√
N(tr(α̂m

t −α0
t )−(α̂K

t −α0
t )) ≤

√
NOp(η

−1
NδT

).
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We also use

1

N
∥α̂m

t −α0
tHt∥2F = Op(η

−2
NδT

)

and

1

N
∥α̂K

t −α0
tHt∥2F = Op(η

−2
NδT

)

following by Proposition 3.1 of Ma and Su (2018).

Proof of Lemma C.4 (ii): Similar to case (i), when K < m, we have

σ̂2
K − σ̂2

m

σ̂2
m

=

∑T
t=1

∑n
l=1 ∥X̂K

t (sl)−Xt(sl)∥2F −
∑T

t=1

∑n
l=1 ∥X̂m

t (sl)−Xt(sl)∥2F∑T
t=1

∑n
l=1 ∥X̂m

t (sl)−Xt(sl)∥2F

=
(N − 2)

∑T
t=1

∑n
l=1X

T
t (sl)[(α̂

K
t α̂

KT
t − α̂m

t α̂
mT
t )2]Xt(sl)∑T

t=1

∑n
l=1X

T
t (sl)((N − 2)α̂m

t α̂
mT
t + IN)2Xt(sl)

≥
∑T

t=1 ψmax∥α̂K
t −α0

tHt∥2F −
∑T

t=1 ψmin∥α̂m
t −α0

tHt∥2F + 2ψmin

∑T
t=1 tr(α

0
tHt(α̂

K
t − α̂m

t )∑T
t=1 ψmax∥α̂m

t −α0
tHt∥2F + 2ψmax

∑T
t=1 tr(α̂

m
t H

T
t α

0
t ) + Tψmax

≥
√
NψminOp(η

−1
NδT

+ τ1/δT )
2 −

√
NψmaxOp(η

−2
NδT

) + 2ψminOp(η
−1
NδT

+ τ1/δT )− 2ψmaxOp(η
−1
NδT

)

ψmaxOp(η
−2
NδT

)/
√
N + 2ψmax

√
N − ψmin

√
N + ψmax/

√
N

∼ C√
N
Op(η

−1
NδT

+ τ1/δT )

on the set AT ∩BT ∩ CT . We also use

1

N
∥α̂K

t −α0
tHt∥2F = Op(η

−1
NδT

+ τ1/δT )
2

when K < m following by Lemma A.1 and A.2 of Ma and Su (2018).

Now we begin the proof of Theorem 4, which suffices to prove that the
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sSIC criterion achieves its minimum at m. When K > m, We have

sSIC(K)− sSIC(m) =
T

2
log

σ̂2
K

σ̂2
m

+ (K −m) logα T

=
T

2
log(1− σ̂2

m − σ̂2
K

σ̂2
m

) + (K −m) logα T

≥− T

2

σ̂2
m − σ̂2

K

σ̂2
m

+ (K −m) logα T

≥− C
√
δT + (K −m) logα T

which is guaranteed to be positive for T large enough by Lemma C.4. Con-

versely, if K < m, then we have

sSIC(K)− sSIC(m) =
T

2
log

σ̂2
K

σ̂2
m

+ (K −m) logα T

=
T

2
log(1 +

σ̂2
K − σ̂2

m

σ̂2
m

) + (K −m) logα T

≥T
2

σ̂2
K − σ̂2

m

σ̂2
m −m logα T

≥CδT 3/4 + (K −m) logα T

which is again guaranteed to be positive for T large enough by Lemma C.4

and Assumption 5. Hence for T large enough and on the set AT ∩BT ∩CT ,

it follows that sSIC(k) is minimized at m, leading to the conclusion that

m̂ = m, as desired.

Proof of Theorem 5: Denote V̌k be the r × r diagonal matrix com-

posed by the first r largest eigenvalues of (NTk)
−1

∑
t∈Ik Xt(s)X

T
t (s) and

Ȟk = N−1V̌ −1
k α̂T

kα
0
kΛξ, where Xt(s) = (Xt(s1), . . . ,Xt(sn)) and Λξ =

diag(
∑K

k=1 ρ1k, . . . ,
∑K

k=1 ρrk), ρqk = var(ξtqk). Since (NTk)
−1

∑
t∈Ik n

−1Xt(s)
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XT
t (s)α̂k = α̂kV̌k, we have α̂k = (NTk)

−1
∑

t∈Ik n
−1Xt(s)X

T
t (s)α̂kV̌

−1
k ,

thus

α̂k −α0
kȞ

T
k

=
1

NTk

∑
t∈Ik

1

n
Xt(s)X

T
t (s)α̂kV̌

−1
k −α0

kȞ
T
k

=
1

NTk

∑
t∈Ik

1

n

n∑
l=1

(α0
kΦ

T (sl)ξt + ut(sl))(α
0
kΦ

T (sl)ξt + ut(sl))
T α̂kV̌

−1
k −α0

kȞ
T
k

=
1

NTk

∑
t∈Ik

1

n

n∑
l=1

(α0
kΦ

T (sl)ξtξ
T
t Φ(sl)α

0T
k )α̂kV̌

−1
k −α0

kȞ
T
k

+
1

NTk

∑
t∈Ik

1

n

n∑
l=1

ut(sl)ξ
T
t Φ(sl)α

0T
k α̂kV̌

−1
k +

1

NTk

∑
t∈Ik

1

n

n∑
l=1

α0
kΦ

T (sl)ξtu
T
t (sl)α̂kV̌

−1
k

+
1

NTk

∑
t∈Ik

1

n

n∑
l=1

ut(sl)u
T
t (sl)α̂kV̌

−1
k

:=A1k + A2k + A3k + A4k.

First we proveAk := (NTk)
−1

∑
t∈Ik n

−1
∑n

l=1(α
0
kΦ

T (sl)ξtξ
T
t Φ(sl)α

0T
k )α̂kV̌

−1
k −

α0
kȞ

T
k = Op((NTk)

−1) by
∫ 1

0
E[(NTk)

−1
∑

t∈Ik(α
0
kΦ

T (s)ξtξ
T
t Φ(s)α0T

k )α̂kV̌
−1
k ]ds =

N−1α0
kΛξα

0T
k α̂kV̌

−1
k = α0

kȞ
T
k , E(Tk

−1∑
t∈Ik n

−1
∑n

l=1[f
2
tq(sl)−E(

∫ 1

0
f 2
tq(sl)dt)]) =

0 and var(Tk
−1∑

t∈Ik n
−1

∑n
l=1[f

2
tq(sl)−E(

∫ 1

0
f 2
tq(s)dt)]) = Op(1/T

2
k

∑
t∈Ik 1/n) =

Op(1/nTk).

For Ib := (A2k)
T
ith

= (NTk)
−1V̌ −1

k

∑
t∈Ik α̂

T
kα

0
kn

−1
∑n

l=1Φ
T (sl)ξtuit(sl),

we have ∥Ib∥F = ∥Ib∥2 ≤ (NTk)
−1∥V̌ −1

k ∥2·∥α̂k∥F ·∥α0
k∥2·∥

∑
t∈Ik

∑n
l=1Φ

T (sl)ξtuit(sl)∥F

and ∥α̂k∥F =
√
tr(α̂kα̂T

k ) = Op(
√
N). We first show ∥V̌ −1

k ∥2 = Op(1).

Denote Σξ, ΣX(s) and Σu(s) be the covariance matrix of ξt, Xt(s) and
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ut(s) respectively for the fixed s. Further, denote Σ̃X =
∫
ΣX(s)ds and

Σ̃u =
∫
Σu(s)ds, then

Σ̃X =

∫
α0

kΦ
T (s)ΣξΦ(s)α0T

k ds+ Σ̃u = α0
kΛξα

0T
k + Σ̃u.

Since
∑∞

k=1 ρqk <∞, we have ∥Λξ∥2 =
√
ψmax(ΛT

ξΛξ) = max1≤q≤r

∑K
k=1 ρqk =

Op(1). Since Assumption 4 (iii), ∥Σ̃u∥1 = maxj=1,...,N |
∫ ∑N

i′=1E[uij(s)ui′j(s)]ds| ≤

C ≤ ∞, we obtain N−1∥Σ̃X −α0
kΛξα

0T
k ∥1 = N−1∥Σ̃u∥1 → 0. Let UΣ2UT

be the SVD of Σ̃X , where U = (u1, . . . , uN) and the first nonzero element

of ui is positive for i = 1, . . . , N and Σ2 = diag(σ2
1, . . . , σ

2
N) with σ

2
1 ≥ · · · ≥

σ2
N ≥ 0. We further define Ur = (u1, . . . , ur) and Σ2

r = diag(σ2
1, . . . , σ

2
r).

Letting QDKT be the SVD of α0
kΛ

1/2
ξ , Λ

1/2
ξ can be well defined and Λ

−1/2
ξ

because Λ
1/2
ξ is diagonal. Then α0

k = QDKTΛ
−1/2
ξ and α0

kΛξα
0T
k =

QDKTΛ
−1/2
ξ ΛξΛ

1/2
ξ KDTQT = QDKTKDTQT = QDDTQT = QD2QT ,

which implies QD2QT is the eigenvalues decomposition of α0
kΛξα

0T
k . Thus

N−1∥UΣ2UT −QD2QT∥2 = N−1∥Σ̃X −α0
kΛξα

0T
k ∥2

≤N−1

√
∥Σ̃X −α0

kΛξα0T
k ∥1∥Σ̃X −α0

kΛξα0T
k ∥∞

=N−1∥Σ̃X −α0
kΛξα

0T
k ∥1 → 0.

(A.3)

Since V̌ −1
k = diag((NTk)

−1
∑

t∈Ik Xt(s)X
T
t (s); r) and Σ̃X ≈ 1/Tk

∑
t∈Ik Xt(s)X

T
t (s),

we have V̌ −1
k = N−1Σ2

r + OP (1) and by α0
kα

0T
k = NIr, we have ψ(Λξ) =
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ψ(α0/
√
NΛξα

0T/
√
N). Combined with equation A.3, we have

∥V̌ −1
k −Λξ∥2

=

√
ψmax(V̌

−1
k −Λξ)(V̌

−1
k −Λξ)T

=ψmax(N
−1Σ2

r −N−1α0
kΛξα

0T
k ) = op(1)

by Lemma 2 of Jiang et al. (2019), we have ∥V̌ −1
k −Λ−1

ξ ∥2 = Op(1) ·∥V̌ −1
k −

Λξ∥2 = op(1), it follows ∥V̌ −1
k ∥ = ∥V̌ −1

k − Λξ + Λξ∥2 = Op(1). Moreover,

note that

r∑
q=1

∑
t∈Ik

K∑
k=1

ξ2tqk(
1

n

n∑
l=1

Φ2
qk(sl))(

1

n

n∑
l=1

u2ij(sl)) = Op(Tk).

Let η =
∑r

q=1

∑
t̸=t′

∑
k ̸=k′ ξtqkξt′qk(1/n

∑n
l=1Φqk(sl)uit(sl))(1/n

∑n
l=1Φqk′(sl)uit′(sl)),

since E[ξtqkξt′qk′ ] = 0, E[ξtqkuit(sl)] = 0 and E[uit(s)] = 0, we have E[η] = 0,

var(η) = E(η) = Op(T
2
k ), which means η = Op(Tk), then

∥
∑
t∈Ik

n∑
l=1

1

n
ΦT (sl)ξtuit(sl)∥2F

=
r∑

q=1

∑
t∈Ik

K∑
k=1

ξ2tqk(
1

n

n∑
l=1

Φ2
qk(sl))(

1

n

n∑
l=1

u2ij(sl)) + η

=Op(Tk).

This gives ∥Ib∥F = ∥Ib∥2 ≤ (NTk)
−1Op(1)Op(

√
N)Op(

√
N)Op(Td) = Op(1/

√
Tk).
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Let IIb := (A3k)
T
ith

= 1/Tk
∑

t∈Ik 1/n
∑n

l=1 V̌
−1
k α̂kut(sl)ξ

T
t Φ(sl)α

0
ik and

1

Tk

∑
t∈Ik

1

n

n∑
l=1

V̌ −1
k α̂kut(sl)ξ

T
t Φ(sl)α

0
ik

=
1

NTk
V̌ −1

k

N∑
i′=1

(α̂0
i′k − Ȟkα

0
i′k)(

∑
t∈Tk

1

n

n∑
l=1

uij(sl)ξ
T
t Φ(sl))α

0
i′k

+
1

NTk
V̌ −1

k

N∑
i′=1

Ȟkα
0
i′k

∑
t∈Tk

1

n

n∑
l=1

uij(sl)ξ
T
t Φ(sl)α

0
i′k.

By Lemma B.3 of Bai (2003), we have

1

N
α̂T

kα
0
k =

1

N
(α̂T

k − Ȟkα
0T
k + Ȟkα

0T
k )α0

k

=
1

N
(α̂T

k − Ȟkα
0T
k )α0

k + Ȟk = Ȟk +Op(
1

N
+

1

Tk
)

(A.4)

and

1

N
α̂T

kα
0
kȞ

T
k =

1

N
α̂T

k (α
0
kȞ

T
k −α̂k+α̂k) =

1

N
α̂T

k (α
0
kȞ

T
k −α̂k)+Ir = Ir+Op(

1

Tk
+

1

N
).

Thus, ȞkȞ
T
k +Op(Tk

−1+N−1) = Ir, This shows that Ȟk is an orthogonal

matrix so that its eigenvalues are either 1 or −1 up to the order of Op(Tk
−1+

N−1). From the definition of Ȟk

Ȟk =
1

N
V̌ −1

k α̂T
kα

0
kΛξ = V̌ −1

k ȞkΛξ +Op(
1

N
+

1

Tk
),

where we use equation A.4. Multiplying V̌ −1
k on both sides we have V̌kȞk =

ȞkΛξ. This equation implies that Ȟk (up to a negligible term) is a matrix

consisting of eigenvectors of the diagonal matrix Λξ. It follows that

∥Ȟk − Ir∥F = Op(
1

N
+

1

Tk
). (A.5)
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Recalling α̂k = (NTk)
−1

∑
t∈Tk

n−1
∑n

l=1Xt(s)X
T
t (s)α̂kV̌

−1
k , we can get

that the first term of IIb is of the order Op(N
−1+Tk

−1) and the second term

is of the order Op(N
−1/2T

−1/2
k ) by noting that ∥Ȟk−Ir∥F = Op(N

−1+Tk
−1).

At last, we consider IIIb := (A4k)
T
ith

= (NTk)
−1V̌ −1

k

∑N
i′=1 α̂i′t

∑
t∈Ik n

−1

∑n
l=1(uit(sl)ui′t(sl)− E[uit(sl)ui′t(sl)]) + (NTk)

−1V̌ −1
k

∑N
i′=1 α̂i′t

∑
t∈Ik n

−1

∑n
l=1E[uit(sl)ui′t(sl)]. Similar to the proof of part (b) in Lemma A.2 in Bai

(2003), the first term is Op(T
−1
k + (NTk)

−1/2). Then we have

∥ 1

NTk
V̌ −1

k

N∑
i′=1

α̂i′t

∑
t∈Ik

1

n

n∑
l=1

E[uit(sl)ui′t(sl)]∥2

≤ 1

NTk
∥V̌ −1

k ∥2∥α̂k∥2(
∑
t∈Tk

N∑
i=1

E[uit(sl)ui′t(sl)])

= Op(
1√
N
)

by Assumption 4. Then ∥IIIb∥2 = Op(T
−1
k +(NTk)

−1/2+N−1/2). Therefore,

∥α̂t − Ȟkα
0
t∥2 = Op(N

−1/2 + T
−1/2
k + N

−1/2
0 ) where the approximation

error N
−1/2
0 = (Nn)−1. Following by which we have ∥α̂ik − Ȟkα

0
it∥2 =

Op(N
−1/2+T

−1/2
k ) and ∥α̂ik−α0

ik∥2 = ∥α̂ik−Ȟkα
0
ik∥2+∥Ȟk−Ir∥F∥α0

ik∥2 =

Op(N
−1/2 + T

−1/2
k ) by A.5. This completes the proof of Theorem 5.

Proof of Theorem 6: By the proof procedure in Theorem 1, for each t,
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the order of α̂ik −α0
ik is dominated by Ib, thus we have

√
Tk(α̂ik −α0

ik) =
√
Tk(α̂ik − Ȟkα

0
ik) +Op(1)

=V̌ −1
k

1

N
α̂T

kα
0
k

1√
Tk

∑
t∈Ik

n∑
l=1

1

n
ΦT (sl)ξtuit(sl) +Op(1)

=V̌ −1
k

1

N
α̂T

kα
0
k

1√
Tk

∑
t∈Ik

∫
ΦT (s)ξtuit(s)ds+Op(1)

based on numerical integration approximation. We have shown that V̌k =

Λξ + op(1) and V̌ −1
k = Λ−1

ξ + op(1) in the proof of Theorem 5. Further,

α̂T
kα

0
k/N = N−1(α̂T

k −α0T
k )α̂T

k +N
−1α0T

k α0
k = Ir+Op(1/N+1/Tk). Finally,

we have

√
Tk(α̂ik −α0

ik) = Λ−1
ξ

1√
Tk

∑
t∈Tk

∫
ΦT (s)ξtuit(s)ds+Op(1).

Since E[
∫
ΦT (s)ξtuit(s)ds] = 0, denoteE[

∫
uit(s)Φ

T (s)dsξtξ
T
t

∫
ΦT (s)uit(s)ds]

as Ψi, we have the desired limiting distribution follows from the central limit

theorem.

Proof of Theorem 7: Now we can proceed to demonstrate the conver-

gence rate of ξ̂t. DenoteM
∗(t) = Iq⊗M(t), where ⊗ is Kronecker product,

M =
∑n

l=1M
∗(sl)M

∗T (sl) and Ṽk = ξ̂ξ̂T/Tk, we have

ξ̂t =
1

TkN2φTk

Ṽ −1
k (

∑
t′∈Ik

ξ̂t′(
n∑

l=1

XT
t (sl)α̂kM

∗T (sl))M
−1)M−1(

n∑
l=1

M ∗(sl)α̂
T
kXt(sl)).
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We note that

ξ̂t −
1

TkN2φTk

Ṽ −1
k (

∑
t′∈Ik

ξ̂t′(
n∑

l=1

XT
t (sl)α

0
kM

∗T (sl))M
−1)M−1(

n∑
l=1

M ∗(sl)α
0T
k Xt(sl))

=
1

TkN2φTk

Ṽ −1
k (

∑
t′∈Ik

ξ̂t′(
n∑

l=1

XT
t (sl)(α̂k −α0

k)M
∗T (sl))M

−1)M−1(
n∑

l=1

M ∗(sl)α
0T
k Xt(sl)

+
1

TkN2φTk

Ṽ −1
k (

∑
t′∈Ik

ξ̂t′(
n∑

l=1

XT
t (sl)α

0
kM

∗T (sl))M
−1)M−1(

n∑
l=1

M ∗(sl)(α̂
T
k −α0T

k )Xt(sl))

+
1

TkN2φTk

Ṽ −1
k (

∑
t′∈Ik

ξ̂t′(
n∑

l=1

XT
t (sl)(α̂k −α0

k)M
∗T (sl))M

−1)M−1(
n∑

l=1

M ∗(sl)(α̂
T
k −α0T

k )Xt(sl))

:=Ct1 + Ct2 + Ct3.

(A.6)

First, we consider Ct1. Note

∥Ct1∥2 ≤
1

TkN2φTk

∥Ṽ −1
k ∥2 · ∥ξ̂∥F · ∥(

n∑
l=1

XT
t (sl)(α̂k −α0

k)M
∗T (sl)M

−1)

×M−1(
n∑

l=1

M ∗(sl)α
0T
k Xt(sl))∥F .

Then we have ∥Ct1∥2 = Op(T
(e+v)/2(T

−1/2
k + N−1/2 + N

−1/2
0 )) by noting

∥ξ̂∥F = Op(K
1/2∥ξ̂∥2) = Op(T

(e+v)/2) and ∥Ṽ −1
k ∥2 = Op(1).

In the following part, we will provide a detailed proof of ∥ξ̂∥F =

Op(T
(e+v)/2) and ∥Ṽ −1

k ∥2 = Op(1). Denote L∗ = (L∗
tt′) ∈ RTk×Tk with

L∗
tt′ =

K

TkN2φTk

(
n∑

l=1

XT
t (sl)αkM

∗T (sl))M
−1M−1(

n∑
l=1

M ∗(sl)α
T
kXt(sl)).

Then ξ̂ = Ṽ −1
k ξ̂L∗. Multiplying both sides of the equation by T

−1/2
k Ṽ

1/2
k ,

we have T
−1/2
k Ṽ

1/2
k ξ̂ = T

−1/2
k Ṽ

−1/2
k ξ̂L∗. Since (T

−1/2
k Ṽ

−1/2
k ξ̂)(T

−1/2
k Ṽ

−1/2
k ξ̂)T =
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IKr×Kr, Ṽk is diagonal matrix with decreasing entries consisting of the first

Kr largest eigenvalues of L̂∗ and T
−1/2
k Ṽ

1/2
k ξ̂ is the corresponding eigen-

vector matrix. Note

Xt(s) = α0
kΦ

T (s)ξt+ut(s) = α0
kM

∗T (s))ΘTξt+α0
ke

T (s)ξt+ut(s), (A.7)

where e(s) = Φ(s)−ΦTk
(s) = diag(e1(s), . . . , er(s)) is a Kr×r block diag-

onal matrix with block q being eq(s) = (eq1(s), . . . , eqK(s))
T and eqk(s) =

ϕqk(s) − ϕqk,Tk
(s). By the asymptotic property of spline approximation,

we have sups∈[0,1] |eqk(s)| = sups∈[0,1] |ϕqk,Tk
(s) − ϕqk(s)| = Op(T

−κv
k ) for

q = 1. . . . , r, k = 1, . . . , K. Thus, ∥L̂∗ − Tk
−1ξTξ∥2 ≤ ∥L̂∗ − L∗∥2 +

∥L∗ − Tk
−1ξTξ∥2 = op(1) similar to proof of Theorem 2 in Wen and Lin

(2022). Since the first Kr largest eigenvalues of ξTξ/Tk equal to those

of ξξT/Tk and ξξT/Tk is diagonal, ξξT/Tk is the diagonal matrix with

decreasing diagonal entries which consists of the first Kr largest eigen-

values of ξTξ/Tk. Since Ṽk is the diagonal matrix with decreasing diag-

onal entries which consists of the first Kr largest eigenvalues of L̂∗, we

then have ∥Ṽk − Σξ,k∥2 ≤ maxp=1,...,Kr |ψp(L̂
∗)− ψp(ξ

Tξ/Tk)|+ ∥ξξT/Tk −

Σξ,k∥2 ≤ ∥L̂∗ − ξTξ/Tk∥2 + ∥ξξT/Tk − Σξ∥2 = op(1) by Weyl’s Theorem,

where Σξ,k = diag(Σξ,k1, . . . ,Σξ,kr), Σξ,kq = diag(Σξ,kq1, . . . ,Σξ,kqK) and

∥ξξT/Tk −Σξ,k∥2 → 0 by Assumption 2. In addition, Assumption 2 show

∥Σξ,k∥2 = Op(1), which indicates ∥ξ̂/Tk∥ = Op(1) because Ṽk = ξ̂ξ̂T/Tk.
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From Lemma 2 of Jiang et al. (2019) we have ∥Ṽ −1
k −Σ−1

ξ,k∥2 = Op(1), which

implies ∥Ṽ −1
k ∥2 = Op(1).

By following the clues presented in the proof of the term Ct1, we can de-

duce that Ct2 exhibits the same order as Ct1. Since ∥α̂k−α0
k∥ = op(∥α0

k∥F )

, we have C3t = op(C1t). Therefore,

∥ξ̂t − 1/(TkN
2)φTk

Ṽ −1
k (

∑
t′∈Ik

ξ̂t′(
n∑

l=1

XT
t (sl)α

0
kM

∗T (sl))M
−1)M−1(

n∑
l=1

M ∗(sl)α
0T
k Xt(sl)∥2

= Op(T
(e+v)/2
k (T

−1/2
k +N−1/2 +N

−1/2
0 )).

We denote Hk = Ṽ −1
k ξ̂ξ0T/T and get

ξ̂t −Hkξt =
1

TkN2φTk

Ṽ −1
k (

∑
t′∈Ik

ξ̂t′(
n∑

l=1

XT
t (sl)α̂kM

∗T (sl))M
−1)M−1(

n∑
l=1

M ∗(sl)α̂
T
kXt(sl))

− 1

Tk
Ṽ −1

k

∑
t′∈Ik

ξ̂t′ξ
Tξ +Op(T

e+v
2

k (T
−1/2
k +N−1/2 +N

−1/2
0 )).

(A.8)

Substituting equation (A.7) into (A.8), we have
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ξ̂t −Hkξt =
1

TkφTk

Ṽ −1
k

∑
t′∈Ik

ξ̂t′ξt′(
n∑

l=1

e(sl)M
∗(sl))M

−1ΘTξ

+
1

TkNφTk

Ṽ −1
k

∑
t′∈Ik

ξ̂t′(
n∑

l=1

uT
t (sl)α

0
kM

∗T (sl)M
−1)ΘTξ

+
1

TkφTk

Ṽ −1
k

∑
t′∈Ik

ξ̂t′ξt′Θ(
n∑

l=1

M−1M ∗(sl)e
T (sl))ξ

+
1

TkφTk

Ṽ −1
k

∑
t′∈Ik

ξ̂t′ξt′(
n∑

l=1

e(sl)M
∗(sl)M

−1)(
n∑

l=1

M−1M ∗(sl)e
T (sl))ξ

+
1

TkNφTk

Ṽ −1
k

∑
t′∈Ik

ξ̂t′(
n∑

l=1

uT
t (sl)α

0
kM

∗T (sl)M
−1)(

n∑
l=1

M−1M ∗(sl)e
T (sl))ξ

+
1

TkφTk

Ṽ −1
k

∑
t′∈Ik

ξ̂t′ξt′Θ(
n∑

l=1

M−1M ∗(sl)α
0T
k ut(sl))

+
1

TkφTk

Ṽ −1
k

∑
t′∈Ik

ξ̂t′ξt′(
n∑

l=1

e(sl)M
∗(sl)M

−1)(
n∑

l=1

M−1M ∗(sl)α
0T
k ut(sl))

+
1

TkN2φTk

Ṽ −1
k

∑
t′∈Ik

ξ̂t′(
n∑

l=1

uT
t (sl)α

0
kM

∗T (sl)M
−1)(

n∑
l=1

M−1M ∗(sl)α
0T
k ut(sl))

+Op(T
e+v
2

k (T
−1/2
k +N−1/2 +N

−1/2
0 ))

:=I + II + III + IV + V + V I + V II + V III

+Op(T
e+v
2

k (T
−1/2
k +N−1/2 +N

−1/2
0 )). (A.9)
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For I, since for each t, we have

∥
n∑

l=1

e(sl)M
∗(sl)M

−1ΘT∥F

≤(
r∑

q=1

K∑
k=1

K∑
k′=1

(
n∑

l=1

eqk(sl)Θ
T
qk′M (sl)M

−1)2)−1/2

=Op(T
−κv+v
k )

Then by Cauchy’s inequality, we have ∥I∥2 ≤ 1/(TkφTk
)∥Ṽ −1

k ∥2 · ∥ξ̂∥F ·

∥ξ∥2 · ∥ξt∥2 · Op(T
−κv+v
k ) with ∥ξ∥2 = Op(

√
T ) = Op(

√
Tk) by condition

(II) when Tk → ∞. Therefore, ∥I∥2 = Op(T
−κv+e/2
k ). Similarly, we can get

∥III∥2 = Op(T
−κv+e/2
k ).

For II, since for each t, we have ∥
∑n

l=1 u
T
t (sl)α

0
kM

∗T (sl)M
−1)∥F =

Op(T
v−1/2
k N−1/2) by Assumption 4, then we have ∥II∥2 ≤ K/(TkNφTk

)∥Ṽ −1
k ∥2·

∥ξ̂∥F · ∥Θ∥F · ∥ξ∥2 ·Op(T
v+e/2−1/2
k N−1/2) and ∥Θ∥F by equation (2.8). Thus

∥II∥2 = Op(T
e+v/2
k N−1/2). Similarly, we have ∥V I∥2 = Op(T

e+v/2
k N−1/2).

For IV , since for each t, we have ∥
∑n

l=1 e(sl)M
∗(sl)M

−1)∥2 = Op(T
−κv+v/2
k ).

Then we have

∥IV ∥2 ≤
1

TkφTk

∥Ṽ −1
k ∥2 · ∥ξ̂∥F · ∥ξ∥2 · ∥ξt∥2 ·Op(T

−2κv+v
k ) = Op(T

−2κv+ e
2

k )

(A.10)

and ∥V ∥2 ≤ 1/(TkNφTk
)∥Ṽ −1

k ∥2·∥ξ̂∥F ·∥ξt∥2·Op(T
v−1/2
k N−1/2)·Op(T

−κv+v/2
k ) =

Op(T
−κv+e/2+1/2
k N−1/2). Similarly, ∥V II∥2 = Op(T

−κv+e/2+1/2
k N−1/2).
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Similar to C3t, it follows

V III =
1

TkN2φTk

Ṽ −1
k

∑
t′∈Ik

ξ̂t′E[(
n∑

l=1

uT
t (sl)α

0
kM

∗T (sl)M
−1)(

n∑
l=1

M−1M ∗(sl)α
0T
k ut(sl))]

+
1

TkN2φTk

Ṽ −1
k

∑
t′∈Ik

ξ̂t′{(
n∑

l=1

uT
t (sl)α

0
kM

∗T (sl)M
−1)(

n∑
l=1

M−1M ∗(sl)α
0T
k ut(sl))

−E[(
n∑

l=1

uT
t (sl)α

0
kM

∗T (sl)M
−1)(

n∑
l=1

M−1M ∗(sl)α
0T
k ut(sl))]}

by equation A.9, we can conclude that ((Tk)
−1

∑
t∈Tk

∥ξ̂t−ξt∥22)1/2 = Op(δTk
) =

Op(T
−κv+e/2
k + T

(e+v)/2
k (T

−1/2
k +N−1/2 +N

−1/2
0 ) + T

−1+e/2+v
k + T

e/2+v
k N−1).

Then utilizing the analogous clues in Lemma A.2 of Bai (2003), we can get

∥V III∥2 = Op(T
−1+e/2+v
k +δTk

T
−1/2+e/2+v
k +δTk

T
e/2+v
k N−1/2+T

v+e/2−1/2
k N−1/2).

Therefore, ∥ξ̂t−Hkξt∥2 = Op(T
−1/2+e/2+v/2
k +T

e/2+v
k N−1/2+T

e/2+v
k N

−1/2
0 +

T−κv+e
k ).

Now we show Hk = IKr + Op(δTk
T

−1/2
k ). In fact, since ξ̂ξT/Tk =

Tk
−1(ξ̂ − Hkξ + Hkξ)ξ

T = HkΣξ,k + Op(δTk
T

−1/2
k ) and ξ̂ξTHT

k /Tk =

Tk
−1ξ̂(ξTHT

k −ξ̂T+ξ̂T ) = Ṽ +Op(δTk
T

−1/2
k ), we haveHkH

T
k = Tk

−1Ṽ −1
k ξ̂ξTHT

k +

Op(δTk
T

−1/2
k ) = IKr + Op(δTk

T
−1/2
k ). This shows that Hk is an orthog-

onal matrix with the eigenvalues being either 1 or −1 up to the order

of Op(δTk
T

−1/2
k ). By the definition of Hk, we have Hk = Tk

−1Ṽ −1
k ξ̂ξT +

Op(δTk
T

−1/2
k ) = Ṽ −1

k HkΣξ,k, then Ṽ −1
k Hk = HkΣξ,k+Op(δTk

T
−1/2
k ). It im-

plies that Hk is a diagonal matrix up to the order of Op(δTk
T

−1/2
k ). That is,

∥Hk−IKr∥F = Op(δTk
T

−1/2
k ). Therefore, ∥ξ̂t−ξt∥2 = ∥ξ̂t−Hkξt∥2+∥Hk−
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IKr∥F∥ξt∥2 = Op(T
−1/2+e/2+v/2
k + T

−κv+e/2
k + T

e/2+v
k N−1/2 + T

e/2+v
k N

−1/2
0 ).

Proof of Theorem 8: The proof follows a similar approach to that of

Theorem 7. By utilizing the definition of eigenvectors, we can express

Θ̂ =
1

NTk
Ṽ −1(

∑
t∈Ik

ξ̂t(
n∑

l=1

X̂T
t (sl)α̂kM

∗T (sl))M
−1)

and

∥Θ̂− 1

NTk
Ṽ −1(

∑
t∈Ik

ξ̂t(
n∑

l=1

X̂T
t (sl)α

0
kM

∗T (sl))M
−1)∥F

=∥ 1

NTk
Ṽ −1(

∑
t∈Ik

ξ̂t(
n∑

l=1

X̂T
t (sl)(α̂k −α0

k)M
∗T (sl))M

−1)∥F

=Op((T
−1/2
k +N−1/2 +N

−1/2
0 )φTk

K1/2)

(A.11)

which is similar to the conclusion in equation (A.6). Then we show that

∥ 1

NTk
Ṽ −1(

∑
t∈Ik

ξ̂t(
n∑

l=1

X̂T
t (sl)α

0
kM

∗T (sl))M
−1)−HΘ∥F

=∥ 1

Tk

∑
t∈Ik

ξ̂tξ
T
t

n∑
l=1

e(sl)M
∗T (sl))M

−1∥F

+∥ 1

NTk
Ṽ −1

∑
t∈Ik

ξ̂t

n∑
l=1

uT
t (sl)α

0
kM

∗T (sl)M
−1∥F .

(A.12)

The first term of the equation above is Op(K
1/2φ−κ+1/2) and the second

term is Op(K
1/2φTk

N−1/2), which is similar to I and II in equation (A.9).

We have shown that ∥H−IKr∥F is sufficiently small, so we have Op((T
−1/2
k +

N−1/2 + N
−1/2
0 )K1/2φTk

+ K1/2φ
−κ+1/2
Tk

. And ∥Θ̂q − Θq∥F is of the same

order as ∥Θ̂−Θ∥F for each q = 1, . . . , r because r is finite. Finally we have

∥Φ̂t(s) − Φt(s)∥F = Op((T
−1/2
k + N−1/2 + N

−1/2
0 )K1/2φTk

+ K1/2φ−κ
Tk

) by
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noting φTk

∫
M (s)MT (s)ds = IφTk

. Hence, we have successfully completed

the proof.
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