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S1 Simulation studies

In this section, we conduct simulation studies to evaluate the performance

of the proposed method under finite sample.

S1.1 Data generation process

For each trajectory X;(s), 100 observation time points are uniformly gener-

ated within the interval (0, 1) and 500 replicates are applied in each scenario
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unless otherwise stated. We generate data under the framework of high di-

mensional functional factor models with » = 3 and r = 5 common factors:
Xit(s) = ALfi(s) +uy(s),i=1,...,N,t=1,...,T,

where random error wu;(s) ~ N(0, I).

To construct A;, we start by generating 7' samples of the N-dimensional
vector k; from a multivariate normal distribution N(0, (0;;)nxn), Where
0ij = a7 and a € (0,1). We then define K = (ki,...,kr)T. Next, we
perform eigen decomposition on the matrix K K7 to obtain the eigenvalues
and eigenvectors. The diagonal matrix A, consists of the first r largest
eigenvalues, and K, is a matrix of the corresponding eigenvectors in R7*".
We calculate A as the product KT K, and then proceed to perform QR
decomposition on Ap, resulting in Ay = QrRy. Finally, to ensure the
identification condition on X is met, we set A = v/ NQ. This construction
process allows us to account for change points in the sequence by performing
segment-wise operations on different intervals. In each time segment, the
variance of the normal distribution from which k; is drawn is adjusted,
thereby modifying the parameter a and effectively changing the magnitude
of .

In order to account for the influence of inter-factor correlation on the

model, we consider the following two scenarios when constructing &; for
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fia(s):
Scenariol: There is no correlation among the factors. We independently
generate &, ~ N(0, Krk™"), denote & = (&,..., & k)" and € = (&5,...,&7).
We then perform eigen decomposition of the matrix £*7€* to obtain matri-
ces Ak, and M,, which consist of the first Kr largest eigenvalues and their
corresponding eigenvectors, respectively. As a result of this procedure, we
obtain € = (&1,...,&r)7.
Scenario2: There are correlations among the factors. Specifically, we gen-
erate & = (Ek,y - - - ,Etrk)T from a vector autoregressive model, given by
& = V&1 + €, where V is a matrix with elements 0.46/7¢*1 for
1 < ¢,¢ < r. The innovation term €; = (€k,- .-, €mk) . is composed of
independent components drawn from a normal distribution N (0, k~15).

Given &;, the factor process fi(s) = (fu(s),..., fir(s))T is generated
by fias) = 34ls Gandar(s), where du(s) = vZsinl{2(q # 2) + (¢ =
2)}ers/10] if k is odd and ¢gi(s) = v2cos[{2(q # 2)k + (¢ = 2)(2k +
1)}ms/10] if k is even. The setting is used to ensure the orthogonality of
eigenfunctions.

We consider the following setups for the number of breaks.

DGP1 (Single structural break):
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(8 75} for t = 1,...,t1,
At =

oy fort=t;+1,....T.
In this scenario, we set t; = |T/2| + 1 for different sample cases (N, T).

DGP2 (Two structural breaks):

(
(0 751 fOI't:L...,tl,

Ait_< (0 7)) fort:t1+1,...,t2,

L Q3 fOI't:tg—i-l,...,T.

In this scenario, we set t; = |1/3| 4+ 1,t2 = |27/3] + 1 for different sample
cases (N, T).
DGP3 (Three structural breaks):

(

(8 751 fortzl,...,tl,
(8 7)) fOrt:t1+1,...,t27
(8 721 fort:t2+1,...,t3,

oy fort=t3+1,....T.

In this scenario, we set t; = |T'/4] +1,to = [2T/4] +1,t3 = |317/4] + 1 for
different sample cases (N, 7).
As the factor loadings are presumed to be nonrandom, we generate

them once and maintain their fixed values throughout the 500 replications.
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S1.2 Determination of the number of factors

To determine the number of factors, we employ the information criteria
functions ER and GR in equation (2.3). The empirical probability of cor-
rect selection (PROB) and the average selected number of factors (AVE)
determined by ER are presented in Table [I| and Table |3| respectively. The
corresponding results of GR can be found in Table [2| and Table It is
noteworthy that we observe for both ER and GR estimators, PROB is con-
sistently equal to one for all cases, indicating that the selected number of
factors accurately reflects the true number of factors. Additionally, the AVE
is either three or five, which aligns with the true number of factors. These
results, detailed in Tables[I}{4], provide evidence for the selection consistency

of the information criteria discussed in Section 3.

Table 1: Empirical probability of correct selection (PROB) by ER

scenariol scenario?
(N,T) (100,200) (100,400) (200,400) | (100,200) (100,400) (200,400)
T 3 ) 3 5) 3 5 3 ) 3 ) 3 )
DGP1 1 1 1 1 1 1 1 1 1 1 1 1
DGP2 1 1 1 1 1 1 1 1 1 1 1 1
DGP3 1 1 1 1 1 1 1 1 1 1 1 1
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Table 2: Empirical probability of correct selection (PROB) by GR

scenariol scenario2
(N,T) (100,200) (100,400) (200,400) | (100,200) (100,400) (200,400)
T 3 5 3 5 3 5 3 5 3 5 3 5
DGP1 1 1 1 1 1 1 1 1 1 1 1 1
DGP2 1 1 1 1 1 1 1 1 1 1 1 1
DGP3 1 1 1 1 1 1 1 1 1 1 1 1
Table 3: Average selected number of factors (AVE) by ER
scenariol scenario2
(N,T) (100,200) (100,400) (200,400) | (100,200) (100,400) (200,400)
r 3 5 3 5 3 5 3 5 3 5 3 5
DGP1 3 ) 3 ) 3 5 3 ) 3 5 3 5
DGP2 3 5 3 5 3 5 3 5 3 5 3 5
DGP3 3 5 3 5 3 5 3 5 3 5 3 5
Table 4: Average selected number of factors (AVE) by GR
scenariol scenario?
(N,T) (100,200) (100,400) (200,400) | (100,200) (100,400) (200,400)
r 3 5 3 5 3 5 3 5 3 5 3 5
DGP1 3 5 3 ) 3 5 3 5 3 5 3 5
DGP2 3 ) 3 5) 3 5 3 ) 3 5 3 5
DGP3 3 5 3 5 3 5 3 5 3 5 3 5
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S1.3 Estimation of the break points

Figure [1] and Figure [2| depict the distribution of d; after 500 repeated ex-
periments for scenario 1 and scenario 2, respectively, with the same sample
size. In the absence of change points, the values of d; should be close to
zero. It can be observed that for both scenario 1 and scenario 2, regardless
of whether the number of change points m is 1, 2, or 3, d, effectively repre-
sents the positions of the change points. However, due to the interference of
correlation, scenario 2 exhibits higher levels of noise compared to scenario
1.

Then we use WBS Algorithm to estimate the number and positions
of breaks points. During our simulation, we set thresholds of the form
Ar = {CoV/T}, C =1[0.2,6], and o = 1.05 for sSIC information criterion,
where o is the median absolute deviation estimator from the r package wbs.
Table [5| presents the accuracy of estimating the number of change points,
and we can observe that the method proposed in this paper exhibits high
accuracy. Additionally, for scenario 1, as the sample size increases, the
accuracy improves accordingly. The increase in the number of factors also
has a positive impact on the estimation accuracy. In scenario 2, we observe
that increasing the sample size in the temporal dimension, 7', can introduce

interference in accurately identifying the number of change points. On the
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other hand, increasing the sample size in the factor dimension, N, has a

positive impact on the accuracy of identification.
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Figure 1: d; when N = 100, T = 400, r = 5 for scenariol, from left to right, the samples represent

DGP1, DGP2, and DGP3.
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Figure 2: d; when N = 100, T = 400, r = 5 for scenario2, from left to right, the samples represent

DGP1, DGP2, and DGP3.

Table [6] shows the accuracy of break-point estimation, which is mea-

sured by normalised mutual information (NMI) measurements for cluster
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membership estimation defined by :

MI(é. e.)

NMI@ e) = 2 ey

(S1.1)

where é. = {I,..., [;+1} is the estimate of e. = {[},..., L,,11}, H(e)
denotes the entropy of e., MI(é.,e.) is the mutual information between é.

and e. defined by

m+1mo+1 - -
. Iy N 1] T\l N I
MI(é. e) = E E (Tj)logQ(A—])
k=1 j=1 |Ik||]j|

Table 5: Percentage of correct detection of the number of breaks

scenariol scenario?2
(N,T) (100,200) (100,400) (200,400) |(100,200) (100,400) (200,400)
r=3 0.938 0.992 0.996 0.956 0.908 0.968

DGP1 r=25 0.980 0.996 0.998 0.904 0.964 0.972
r=3 0.942 0.988 0.992 0.974 0.926 0.968
bGP2 =25 0.988 0.990 0.994 0.900 0.976 0.972
r=3 0.942 0.972 0.986 0.936 0.834 0.924
DGP3

r=25 0.976 0.994 0.996 0.884 0.964 0.972

Table [7] shows average Hausdorff distance of the estimated and true
break points divided by 100 x HD/T. Let D(A, B) = sup,cpinfscala — b|
for any two sets A and B. The Hausdorff distance between A and B is
defined as max{D(A, B),D(B,A)} .

It is evident that the NMI values of the estimated time intervals before
and after the change points in Table [6] are close to the ideal value of one

and HD in Table [7| are close to the ideal value of zero. Furthermore, these
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Table 6: NMI measurements for cluster membership estimation

scenariol

scenario?2

(N,T) (100,200) (100,400) (200,400)

(100,200) (100,400) (200,400)

r=3 0.9868 0.9981 0.9984 0.9887  0.9837  0.9946
bGP1 r=5 0.9898 0.9977  0.9993 0.9794  0.9929 0.9917
r=3 0.9908 0.9973 0.9971 0.9934  0.9936 0.9965
bGp2 r=5 0.9952 0.9975 0.9977 0.9839 0.9948 0.9939
r=3 0.9915 0.9971 0.9972 0.9894  0.9885 0.9956
bGP3 r=5 0.9945 0.9987  0.9989 0.9868 0.9962 0.9960

NMI and HD values demonstrate consistency with the accuracy of change

point identification.

Table 7: The HD measurements for cluster membership estimation

scenariol

scenario?2

(N,T) (100,200) (100,400) (200,400)

(100,200) (100,400) (200,400)

r=3 0.0430 0.0085  0.0165 0.0330  0.0140  0.0080
DGP1 r=>5 0.0560 0.0125  0.0090 0.0130  0.0015  0.0075
r=3 0.1020 0.0260  0.0220 0.0900  0.0185  0.0230
bGP2 r=>5 0.0870  0.0210  0.0110 0.0500  0.0070  0.0120
r=3 0.1430  0.0440  0.0335 0.1590  0.0265  0.0150
bGP3 r=95 0.0990 0.0355 0.0210 0.0880  0.0255  0.0165

S1.4 Re-estimating the functional factor model

In Section 2.5 of the main paper, the determination of the value of K

through principal components analysis, ultimately depends on the parame-

ter Kpca. Here, we provide detailed insights into the process of establishing
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Kpca, which is closely associated with a thorough sensitivity analysis. By
varying the Kpca values and evaluating the corresponding accuracy of esti-
mating K, the numerical results are presented in Table |8, The data clearly
indicate that 97.5% consistently delivers favorable results, with an average
correct estimation rate exceeding 90% across all scenarios. This conclusion
is further supported by Figure [3] illustrating that maintaining Kpca within
the range of 95% to 98% results in stable accuracy of estimation across all

cases, with 97.5% emerging as one of the optimal choices.

E
—~
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Figure 3: Accuracy in identifying the number of K Using various Kpca values in Scenario 2, r = 3.

(N, T,DGP) representing different sample cases.

In order to demonstrate the influence of the number of change points

and the detection of change points on the normalized prediction error (PE),
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Table 8: Accuracy in Determining the Number of K with Varied Kpca

Kpca/(N,T) (100,200) (100,400) (200,400)
k=2,r=3 |DGP1 DGP2 DGP3 |DGP1 DGP2 DGP3|DGP1 DGP2 DGP3
90 0.318 0.448 0.524| 0.218 0.286 0.392| 0.246 0.286 0.344
90.5 0.36 048  0.57| 0.266 0.332 0.434| 0.298 0.342 0.412
91 0.394 0.512 0.606| 0.332 0.402 0.484| 0.35 0.396 0.474
91.5 0448 055 0.658| 0.4 0476 0.554| 0.406 0.464 0.536
92 0.506 0.58 0.702| 0.478 0.532 0.606| 0.474 0.536 0.596
92.5 0.576 0.626 0.724| 0.55 0.584 0.646| 0.544 0.604 0.656
93 0.618 0.664 0.76| 0.618 0.644 0.722| 0.61 0.67 0.71
93.5 0.668 0.704 0.790| 0.67 0.698 0.784| 0.686 0.724 0.774
95 0.712 0.746 0.816| 0.742 0.756 0.844| 0.756 0.79 0.828
94.5 0.758 0.786 0.848| 0.804 0.81 0.888| 0.816 0.826 0.878
95 0.8 0.824 0.888| 0.86 0.87 0.926| 0.872 0.886 0.906
95.5 0.842 0.858 0.896| 0.888 0.91 0.944| 0.914 0.93 0.934
96 0.874 0.894 0.906| 0.934 0.954 0.966| 0.942 0.95 0.968
96.5 0.904 0.918 0.912| 0.962 0.968 0.986| 0.97 0.97 0.988
97 0.908 0.934 0.904| 0.982 0.982 0.988| 0.98 0.984 0.998
97.5 0.912 0.928 0.904|0.994 0.99 0.992| 0.986 0.994 0.994
98 0.928 0.904 0.868(0.994 0.986 0.9780.996 0.988 0.93
98.5 0.892 0.856 0.778| 0.98 0.95 0.918| 0.972 0.952 0.948
99 0.75 0.676 0.568| 0.85 0.794 0.71| 0.846 0.818 0.732
99.5 0.348 0274 0.214| 0.286 0.27 0.19| 0.3 0.262 0.208
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we compared our approach with [Wen and Lin/ (2022), which corresponds to

the scenario without any change points. The normalized prediction error

(PE) is defined as follows:

n

PE = Z n Y (Xi(s) —

=1

06- 06-
o 0.4- L o 04-
= =
© ©
> >
0.2- ‘ 0.2-
PE rePE

PE

Xu(s1))?/ Z Y Xi(s)

rePE

0.6~
o 04- variable
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© [
g =
o . rePE
027 +
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Figure 4: Normalized prediction error (PE) before and after the breaks when N = 100, T = 200,r = 3

for scenario2, from left to right, the samples represent DGP1, DGP2, and DGP3. PE represents the

estimation error before identifying the change points, while rePE represents the estimation error after

identifying the change points.

From Figure[d] We observe that before estimating the change points, the

more change points actually present, the greater the interference introduced

in the estimation, resulting in higher PE values. However, after estimating

the change points, the influence of the change points on the estimation is

mitigated, and the impact of the number of change points in the sequence

on the estimation is eliminated.
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S1.5 Comparisons between Change Points of Mean Functions

and Loadings

In this section, we present comparisons between change points of mean func-
tions and loadings. Our aim is to illustrate that when the factor structure
exists and the change points of the mean function align with those of the
loadings, detecting the change points of the loadings yields superior perfor-
mance. This highlights how the loadings of factor models capture unique
information compared to the original functional time series.

The dynamic nature of functional factors in factor models implies that
the breakpoints in loadings may not align precisely with changes in mean
functions. To begin, we contrast our approach with the method for identi-
fying change points in mean functions based on Kovacs et al.| (2023) under
scenario 1, where we assume a consistent distribution of factors, allowing
us to consider the change-point locations in loading and mean function are
identical. The subsequent tables present the outcomes of detecting change
points in mean functions, offering a basis for comparison with the results
of loading change-point detection outlined in subsection [S1.3|

Upon comparing Table [9] [10] with Table [}, [6] [7] respectively, the
findings indicate that while the approach of identifying change points in

mean functions shows some efficacy, it falls short compared to the method



S2. ADDITIONAL RESULTS OF APPLICATION

that incorporates the factor structure. This suggests that in the presence
of a factor structure, relying solely on detecting change points in mean
functions may not suffice.

Table 9: Percentage of correct detection of the number of breaks

N,J) (100,200) (100,400) (200,400)
r=3 0.924 0.912 0.888
DGP1 r=5 0.912 0.896 0.886
r=3 0.920 0.942 0.904
DGP2 r=5 0.924 0.942 0.910
r=3 0.798 0.864 0.838
DGP3 r=5 0.812 0.862 0.832

Table 10: NMI measurements for cluster membership estimation

N, J) (100,200) (100,400) (200,400)
r=3 0.7504 0.7146 0.7341
bGP r=>5 0.7493 0.7193 0.7333
r=3 0.7332 0.7431 0.7296
bGP2 r=>5 0.7335 0.7433 0.7273
r=3 0.7333 0.7390 0.7460
bGP3 r=>5 0.7333 0.7369 0.7439

S2 Additional Results of Application

In this section we supplement some results for the application, which il-
lustrate the presence of change points in the loading and the influence of

climate factors.
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Table 11: The HD measurements for cluster membership estimation

(N, J) (100,200) (100,400) (200,400)
r=3 0.0525 0.0590 0.0488
DGP1 r=2>5 0.0517 0.0549 0.0548
r=23 0.06843 0.06560 0.0687
DGP2 r=2>5 0.06844 0.06561 0.0692
r=23 0.0763 0.0768 0.0738
DGP3 r=2>5 0.0764 0.0773 0.0745
I S break date break date
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Figure 5: dy for PM2.5 in 2018 and 2019 from left to right. The red triangles indicating the positions

of change points, while the dots indicate the absence of detected change points.
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Figure [5| presents the estimation of d; and change points for PM2.5 in
2018 and 2019. The overall trend of d; reveals the influence of climate and
seasons on pollutant levels. In both 2018 and 2019, the d; values for the
months of June, July, and August were relatively small, indicating a rel-
atively stable level of pollutant emissions during this period. However, in
the months of March, April, September, and October, which fall between
the seasons of summer and winter, the values of d; were larger, indicating
greater fluctuations in pollutant levels. According to [Liang et al. (2016]),
Liang et al.| (2015), during winter, the climatic conditions such as tempera-
ture, wind speed, and wind direction, are unfavorable for the dispersion of
pollutants. Additionally, the use of heating systems during winters in north-
ern regions leads to higher emissions of pollutants, resulting in significantly
higher pollution levels compared to summer. Therefore, our estimation of
the overall trend in d, aligns with the actual variations in pollution levels.
The detected change points illustrate the influence of human activities, as

demonstrated in our manuscript.

S3 Proofs

In this section, we present the proofs of technical lemmas and theorems.

The technical lemmas are used to prove the theorems of the paper. We
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first present some notations that will be used in the proofs of lemmas and
theorems.

To fix notation, let ||A|lz = [tr(AAT)]'/? be the Frobenius norm of
any matrix A, ||Ally = \/Ymax(ATA) as its spectral norm, ||Al|; be the 1-
norm of any matrix A, ||All~ be the sup-norm. Note that the Frobenius
norm and spectral norm are equal when A is a vector and we always have

[All2 < |AllF < [|Allzv/7(A), [[Allee = [[AT]l1 and [[A]l2 < V/[[Alls - [|A]1-

Proof of Theorem 1: Consider the inequalities
c/(14+¢)<in(l+c)<c (A.1)

for ¢ > 0. These inequalities lead to that

ln<1 j_ @Er’/voal)) < — ’QET//V(T‘/Z _ }er’
(L + G [V 1) @V D)L+ Gt V1)) T

for v’ =1,...,7 — 1,7 +1,...,"max. Use equation [A.1] again we have

(LG /V()) @V +5/VE) _ BV+1)
In(1 4 pia/V(r+1)) U1 /V(r+1) U V(r—1)

by Lemma 12 of /Ahn and Horenstein (2013]), under Assumptions 1-4, we

- Op(1>

have V(r +1) = O,(1), and then

V(ir+1) V(r+1) _
V(ir—1) Uy + @/;r+1 +V(r+1) = O(1);

and

&TV(T +1)

7;7“—&—1‘/(7' ~ 1) = Op(nN,n)Op(l) = Op(nN,n) = Op(min{N,n}).
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These results indicate that the GR estimator is consistent.

Lemma C.1. Suppose that Assumptions 1-4 hold. Then for allt € Iy, as

(N,n) — oo, it holds that

1.3 _
NHAt - agHtva = OP(UN?n)

fort=1,...,T, where ny, = min{V/N,/n}, H, = (31—, fi(s))fL (s1)/n)
(@Y X;/N)V; ™! and V; denote the rx r diagonal matriz of the first r largest

eigenvalues of matriz (Nn) ™" S X,(s)) X[ (s;) in descending order.

The convergence rate described in Lemma bears resemblance to

those observed in the functional factor model [Wen and Lin| (2022).

t:

Proof of Lemma : By the definition of V;, we have (Nn) ™" X, (s) X7 (s) A
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;\t‘/;. Then, we can decompose S\t — a%Ht as follows:
Xt — aOHt

~Nn ZXt s)XT(s)\V, ! — ol H,
:N_n Z(agft(sl) +uy(s) (@) fi(s) + ui(s0) ANV, — o) H,
=1
n . 1 n )
" Nn Yo fi(s) f (snal" MV, — o H, + N > al fls)ul (s)A V!
=1 =1

1 & c o 1 « c o
+mlz_;utT(Sl)ftT(8z)agT>\tVt b m;ut(‘sl))u?(sl))At‘/z& !

n

~

= > Bl (0AV 4 5 S lan(sn)ul (50) — Bu(suf (s0)JAY;

=1

1 i “ B 1 n R -
+m lzlutT(Sl)ftT(Sl)O‘gT)\tVt b N lzlut(sl))utT(sl)))\tW 1

or in vector form:

\ T 0
n

N
1
;A]tZE wit(s1)uje(s1)] N_g Z wit(st)uje(s1) — Elua(si)uje(si)])

N
+—§ Aﬁa E T (s)ui(s)) E ta,kg I (s)wji(s1)]

=Ay4 + Aoyi + As i + Ag i (%)

Then by the Cauchy-Schwarz inequality, we have

N 4

1, ¢ 1 .

A = QR = =7 A = HE ol < 3 ([ Awal
=1 =
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Following Bai and Ng| (2002), we can readily show that N1 Z@Nﬂ | Ay 4* =
Op(N71) and N™* Zf\;l |A.uill? = Op(n™') for k = 2,3,4. Consequently,

N7YA — o H|? = Op(m?z,?n)-

Proof of Theorem 2: Noting that

1 . .

SIA = Al
<A = ORHLE 4 At — 0l H, 13+ | GLH, — alH |
= t p = N t—1 — O Iy || N O il — O Iy || p

=An + A + A

by LemmalC.1} Ay = O,(ny2,), Az = Op(ny2,)- Since N"'ATad = N=1(A,—

alH)"a? + N THT 6 al = N7'( A, — a?H,) o + HT and N~1(X, —
aVH;)Ta? = Op(n;,?n) by Lemma B.2 in [Bai| (2003), we only need focus
on the convergence properties of H;. Right multiply H; to both sides of
N-\\Taf) = HF + O,(ny?%), we have

1

NN erH = H H, + 0, ().

Rewrite the left hand side of above as

1 1. C .
N}Jagﬂt :N)\tT(agHt — A+ A)
1 . 1 cre
=M (QRH = )+ A

:H”‘ + Op(n]:f?n)v

according to N~'AT (a0 H,—\;) = Op(ny>,) and N=ATX, =1, see Lemma
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B.3 of Bail (2003). Equating the above two equations we obtain

I, = H{ Hy + Oy (137,)-

By ignoring the term Op(ng,?n), the above shows that H; is an orthogonal
matrix so that its eigenvalues are either 1 or —1. We need to show that H;

is a diagonal matrix. From the definition of H;,
H;I :V AT v th S .ft s1))
VA HIE S R0 A7) + O,

where we use the fact that N"'ATa) = H] + O,(ny2,) under N~'ATX, =

I.. Multiplying V; on both sides and taking the transpose

LS ) 7 (0) He = HVE+ 0,137,

=1
This equation implies that H; (up to a negligible term) is a matrix consist-
ing of eigenvectors of X 3" fi(s)f (s1)). The latter matrix is diagonal
and has distinct eigenvalues by assumption. Thus, each eigenvalue is as-
sociated with a unique unitary eigenvector (up to a sign change) and each
eigenvector has a single non-zero element. This implies that H, is a diago-
nal matrix up to an Op(n;[?n) order. It is already known that the eigenvalues
of H, are 1 or —1, H,; is a diagonal matrix with elements of 1 or —1 as

its elements. Without loss of generality, we can assume all elements are 1.
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This implies H; = I + Op(n]_v?n) and
L.
A IﬁHagﬂt — o H |7
L. _
< lealEH: — Hia |7 = Op(ny,).

Combining results we obtain Theorem 1.

Lemma C.2. Suppose that Assumptions 1-4 hold. Then for allt € I, as
(N,n) — oo, we have

. 1 - 1 B
fi(s) = N)‘?ag 2 (s) + Op(ﬁ + Nvn)

fors=s1,...,8,.

Proof of Lemma [C.2} we can decompose f(s) as follows:

1 - 1 -
fi(s) ZNAtTXt(S) = NA?(aZ P (s) 4+ w(s))
1 - 1 1
:NAtTang(s) + NHtTagTUt(S) + N(At — o H/ Yuy(s)
1.
:N)\?QQ tO(S) + Dl,t + D2,t-

First, Dy, = N""H o u,(s) = O,(N~Y/?) for each t. Now, we use equa-

tion and make the following decomposition

N

1 1 N
Doy =77 (A = ap H Juy(s) = N > (A — H o) ui(s)
i=1
LN ‘1N
=N Z Z Agriuig(s) = Vrl Z I Z Vi At ()
i=1 k=1 k=1 " i=1
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We further decompose Dy as follows:

n

N
1
Doy :NWAltiuzt s) = NN_ Z Z [wir (s1)wj (1)) wir(s)

N
1 - N
:mzz(}‘ﬁ — H/ o)) Z [wie (s1)wje(s)]wir(s)

i=1 j=1

+% SOSTHTQST Elu(sug(s)]ua(s)

i=1 j=1 =1

1 2 2
3:D§ti + HtTDéti-

By the repeated use of Cauchy-schwarz inequality, Lemma [C.I| and As-

sumptions 4 (i) and (iii),

N N n
1 1
| D5l < T Z 1Aje = BT af 11205 DD~ Y whsui ()

=1 j=1 =1

11 Al 1

S\/_N[N Z [Aje — HT OkHF]l/ZmiaXZ n ng(sl)[ﬁ Z u?t(s)]lﬂ
j=1 j=1 =1 i=1
= Nﬁl/ZOp(nJ?f}n)Op(DOp(l) = Nfl/QOp(an}n)'

Noting that

E||\Dgl] S EH Zzam ZEun st)uje(si)]wa(s) |

=1 j=1

<CN-~ 1maxEHuzt ZmaxZw” s1)

By Markov inequality, D') = Op(N7!). ThenDoyy = N7H20,(nyh,)

For Dyo, we use 0;;(s1) = wi(s1)uje(s1) — Eluir(si)uji(si)] and make the
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following decomposition:

N N n
1 1 )
N Z N 2o At Q2 (wie(si)uge(st) — Bluie(si)uje(si)])uie(s)
i=1 Jj=1 =1
YN
N2 Z Jt_z(uzt(sl)ujt(sl) Elui(s1)wji(s0)])uie ()
i=1 j=1 i=1
1« 1 L1
=y 2 = A 3D (sl
1 & 1 N1 &
yT 0 _
EO IS Dol ue

By Cauchy-schwarz inequality, | D3| < (N7V 2N [ X~ HF a2, 1) /2(D5) 2,

where D{}) = N~! Z] (NI U ST (s ui(s))?. Noting that by

Assumptions 4 (i) and (iv)

n

N N
1 1 _ _
E(Dy3) =575 2 D > Bl D oy (s1)vies0)uiy(5)]
i=1 j=1 k=1 =1

1
ZniaXva st) ||4maX||uzt( )i = Op(ﬁ)?

=1

<

3I>—‘

then we have ||D$%|| = Op(n;,}n)Op(nfl) by Markov inequality and Lemma
1. By direct moment calculation and Chebyshev inequality, we can show

that D§) = O,(N~Y2pyL). It follows that Dy = O,(ny2,).
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Next
1
D2t3 - N Z A3tzuzt
1 ~ 1 I
N;N_H;Ajta]kz.ft Sl Uit Sl)uzt( )
1 N
N2 Z)‘Jtangth s1) Uit (51)uit(s)
" Jj=1 =1 =1
1 AT .0 1 . T
= Mol ; Filsuf (si)ua(s)
1 -
= N i
Note that

=5 D e )

:Nin > E(fuls)uf (s)wi(s)) + Nin > (s (s)uels) — E(fils)uf (si)u(s))]

=1

=dy1 + dya.
By Assumption 4 (ii), |du| < 230 [wr(l,1)] = Op(n'). By Assump-
tion 4 (vi),

n

E[|ds|?] ZZE CrurCrur] S aXH\/_CFzz/HF = 0,)(— )

=1 1=1

It follows that diy = O,(N~Y2), d; = O,(N~Y24n"1) and Dy = O,(N~/2+
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n~1). Similarly, we can show that

N
1
Doy = N ZZ:; WA4tiUit(5)

N

N n
1 1 <
TN Z Nn Z A E Z Filsoyue(si)uin(s)
1
NQn E E )\]tajk E ft Sl uzt S1 uzt( )

zljl

Zut s) fE(s)ad uy(s)

1 .
= N2n()\t_ Ht Zut Si ft Sl)ak uy(s)
=1
+HtT Tzut S ft Si ak Ut()

— 0, (131)0p(—=) + Oy~

It follows that Dy, = O,(N~1/2 + 77]}72”). Thus Lemma 2 follows.

Proof of Theorem 3: Noting that

1£i(s) — H ' £(s)]13

1 .

= AT £ (s) — H' F1(5) + Oy m+ vl
<C - | Ae — oRH 7| £ ()13 + Op ( )
<C-tr(f(s) E%))O (Mn) + Op ( + )
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by Lemma [C.2] Thus theorem 3 follows.
Proof of Theorem 4: We first state the following three Lemmas that are

used in proving theorem 4.

Lemma C.3. Suppose that Assumption 5 hold. There exist two constants
C1, Cy such that if Cy logl/2 T<Ar< Czéilp/gﬂmv, then for certain positive

Cs, Cy, it holds that

P(Ar) > 1—C3)T — To:' (1 — 63772 /9)M

where Ap = {m =m; .:maxm\f; —tl] < Cylog T(fi7)}.

The aforementioned Lemma is derived from Theorem 2 in |[Fry-
zlewicz (2014), which demonstrates that when the minimum distance be-
tween change points is characterized and regulated, the WBS algorithm can
ensure, with probability approaching one, the accuracy of both the number
and the location of the change points. Building upon this Lemma, to prove

Theorem 4, it suffices to demonstrate that the sSIC criterion is minimized

when the number of change points is m.

Lemma C.4. Use XX (s)), & and X (s) to denote the estimate of X(s;),

a? and f2(s;) when the number of change points m is estimated by K, where

at — N1/2Eezgen Z Z Xt Sl )

tEIll
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fort € I, and |Iy| = t, ., — ;.. Then there are
(i) when K > m and all the conditions in Lemma[C.3 are satisfied, we can
conclude that (63, — 6% ) /67, < My where My = Oy(ny3, ).

(ii) When K < m, we have (6% — 62,)/62, > My where My = Oy(ny3 ).

Proof of Lemma (i): Define

[

Ar={l(c=b+ 17 e[ <k, 1 <b< e < T} < (6logT) ™7,
t=b

Br = max Db @b | < kol ke > 8log T2
T {a,b,c:1§a§b<c§T’ a,c:ua,c‘ - 2}’ 2= &

and
D?z{Vi:1,...,m,E|p:1,...,P,(ap,ﬁp)EIixIZ-H},

where [; = [t;_y 4+ (t; —t/_y),ti_; + 2(t; —t;_,)],i=1,...,m+1, by which
we only have one change point in each ;. From the proof of Lemma
in [Fryzlewicz (2014), we have P(Ay N By N Cr) > 1 — C3/T — T (1 —

62T-2/9)M and the following considerations are valid on the this set. First
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consider the case K > m, we have

G = 0% a2 |1 X7 (1) = Xe(s) | — 2y S X (1) = Xa(so) 1%
T S Y 1X 7 (s0) — Xa(s1)|13
Y i e Xa(s) — Xe(s)ll — Yimy i 16765 Xo(s1) — Xa(s0) 17
Z;F:I 27:1 ||dthtKTXt(Sl) - Xt(Sl)”%
Y i X ()6 ) — (af &) X (s1)
Sy Yy X (s) (6 a T — Iy)2 X (s))
CIN=) Y Y X ()6 ey — o &l ) X (1)
Sy Yoy XE(s) (N — 2)adraiT + Iy ) X (s1)

(A.2)
where the equation (x) following by &' é&;/N = I.. Without loss of gen-
erality, we can assume the length of each subset T}, = dr. Furthermore,

let
&td? :(dt — a?Ht + a?Ht)(&t — a?Ht + a?Ht)T
:(dt — agHt)<dt — a?Ht)T + QQ?Ht(dt — a?Ht)T + aga?T,
then according to Assumption 1 (i), it follows:
(N = 2)maxT || 6" — @Y H||3 + || 6 — @V Hy|[3 + 2(N — 2)tbmax >op, tr(a Hy(6d" — &ff)
(N = 2)pmin |67 — o Hy||% + (N = 2)thminTtr(afag™)
< VNYmaOp(ny, ) + 2maxOp (s, )
\/N@Z)minOp(n;[?;T) + ﬁ¢min

C _
\/—NOP(HNéT),

(xx) <

~Y

where

tr(afHy(&f" 6 ) < VNtr(a—af) = VN(tr(6)—af)—(af —a)) < VNO,(155.)-
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We also use

1 ~
&y = alHLIE = 0,(n33,)

and

L. _
Cllal = aH|[E = O3,

following by Proposition 3.1 of Ma and Su (2018)).

Proof of Lemma (ii): Similar to case (i), when K < m, we have

Ok — Om _ S o IXE (s0) = Xo(s)l13 = Sy S 1 X0 (s1) — Xa(so) I3
o S o 1 X (s1) — X(si) |12
(N =2) 3 Y X (sp)l(@F 6T — 6 e ™)) X, (s)
Yooy oy XE(s) (N = 2) ™ + 1y)2 X, (s1)
>Z?:1 Umax|[ 6 — VH |3 — S0 Ymin]| 6" — @Y HY||% + 2¢min 3oy, tr(al Hy(&F — &)
- S i Ve |G — QVH |2 + 20ma Sy (6 HE @) + Thpna
> \/Nwminop(n&% +71/67)? — \/Nwmaxop (WJQ?ST) + 2¢minOp (nJ;}iT + 71/0r) — zwmaxOp(an}ST)
N UnaxOp (M2 )/ VN + 200 VN = Urin VN + Y/ VN

C _
N\/—NOp(mvﬁT +71/07)

on the set Ar N Br N Cr. We also use
Lk 0 2 -1 2
NHat — o, Hyl|p = Op(nNéT +71/07)

when K < m following by Lemma A.1 and A.2 of Ma and Sul (2018).

Now we begin the proof of Theorem 4, which suffices to prove that the
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sSIC criterion achieves its minimum at m. When K > m, We have

O

sSIC(K) — sSIC(m) zglog + (K —m)log®T

52
Om

>—Cvor+ (K —m)log"T
which is guaranteed to be positive for T' large enough by Lemma [C.4] Con-

versely, if K < m, then we have

~2

SSIC(K) — sSTC(m) == log 7K 1 (K — m)log® T

52
2 oz

~2 ~2

T _
=—log(1 + UK&—Q%) + (K —m)log™®T

2
A2 a2
T o3 —o05,

262 —mlog® T

m

>

>Cor% + (K —m)log® T

which is again guaranteed to be positive for T" large enough by Lemma
and Assumption 5. Hence for T large enough and on the set Ax N BrNCr,
it follows that sSIC(k) is minimized at m, leading to the conclusion that
m = m, as desired.

Proof of Theorem 5: Denote Vj, be the r x r diagonal matrix com-
posed by the first r largest eigenvalues of (NT})~' Y7, X(s) X[ (s) and
H, = N7'V'ala)Ae, where X,(s) = (X(s1),..., X(s,)) and Ag =

diag(Zle Plky - - Z?:l Prk), Pgk = Var(ftqk). Since (NTk)_l Ztelk TL_IXt(8>
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XT(s)é = &, Vi, we have &y, = (NTy)~ " e T Xa(s )X (s)a Vit

thus

NTkZ —X,(s (8)a,V, ' — ol HF

tely

NTk Z Z ak T(s0)& + Ut(Sz))(ag‘PT(Sz)St + Ut(&))Tdk% 1 aka

tely

NTk Z Z ak(I)T Sl €t£t (Sl)ak )akV 1_ Oék,HT

tely =1
1
Z Z’U,t Sl €t Sl ak akV + —Z Zag@ sl)&ut (sl)akV
NTk tel, Vs NTj teh, V=1

=Aq + Ao + Az + Aup.

First we prove Ay := (NT},) ' >0,c, n™ S (@)@ ()€ B (s) ) e, Vit —
QT = O,(NT) ) by [} E[(NTL)™ Sy, (008 (5)6,67 B () )y Vs =
N7 AT & Vi = o HY E(T 7 3,0 n ™ S [ (s)—B(fy f2(s1)dt)]) =
0 and var(Z}, Ztelk i 1[ftq S1)— fo ftq t)]) = Op(1/T¢ > ier, 1/n) =
O,(1/nTy).

For I, := (Ag)f, = (NTp) ' Vi ' Y ,e), @ adn™ Y70 @7 (s)€uan(s1),
we have [|I]| 7 = | L]l < (NT) IV o llwll - llaflle | Y per, Sory BF (si)&wi(s) |l
and gy = Vir(@ra]) = O,(VF). We first show [V l; = O(L).

Denote X, ¥ x(s) and 3,(s) be the covariance matrix of &, X,(s) and
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u(s) respectively for the fixed s. Further, denote Xy = [ Xx(s)ds and

E —fE )ds, then

Sy _/agch(s)E@( )alds + 3, = alAea)’ + 3,

Since Y 2y pgi < 00, we have || Aglla = y /Ymax(Af Ag) = maxi<oer Y4y pgr =
C < oo, we obtain N7'|2x — aAead|; = N‘lHiqu — 0. Let UZ?UT
be the SVD of Xy, where U = (uq, ..., uy) and the first nonzero element
of u; is positive for i = 1,..., N and ¥? = diag(o?,...,0%) with g% > --- >
0% > 0. We further define U, = (uy,...,u,) and ¥? = diag(o?,...,d2).
T OAL/2 Al/2 ~1/2
Letting QDK™ be the SVD of ag A", A,/" can be well defined and A,
because Aém is diagonal. Then af = QDKTA;/2 and afAca) =
QDETA;?AA*KDTQT = QDKTKDTQ" = QDDTQT = QD*Q",

which implies QD?Q7 is the eigenvalues decomposition of alA¢ad’. Thus

NHUSUT - QD*Q ||l = N7!|[Ex — agAea’ |

N5k — Al [Ex — alAeal (A3)
:N_1||2~:X —_ agAgagTHl — 0.

Since V! = diag((NT) ™! > e, X;(s)X[(s);r)and Sy~ 1/T, > e, X, (s) XTI (s),

we have V, ! = N7122 4 Op(1) and by afa)? = NI, we have ¢(A¢) =
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Y(a’/vVNAea® /+/N). Combined with equation we have

IV, = Agll

—\/¢max Vil = AV = AT

by Lemma 2 of Jiang et al.| (2019), we have ||V, —A 2 = 0,(1)- A
Agllz = 0,(1), it follows [V = [Vi7" — Ag + Agll2 = Op(1). Moreover,

note that

r K
Z Z Z ftqk Z (I)qk Sl Z uzy Sl Tk)

q=1 tel, k=1

Letn = 2221 Zt;ﬁt’ Zk;ﬁk’ Euan€rrar(L/n 3210 Par(s)uin(s1))(1/n 30, P (st)uav (s1)),
since E[rlpar’] = 0, E[&ipuin(s1)] = 0 and Efuy(s)] = 0, we have En] = 0,

var(n) = E(n) = O,(T2), which means n = O,(T}), then

HZZ T(s1)&ua(s:)|%

tel =1
r K n
:Zzzgtqk Zq)qk s1)) (%Z“Z(Sl)) +
q=1 tely k=1 I=1
=Op(Tk)-

This gives || L[| p = [Toll2 < (NT3) ' Op(1) Op(VN)Op(VN)Oy(Ta) = Op(1/v'Ti)-
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Let ]I]Ib = (A3k’)17;h = 1/Tk Ztelk 1/7’L Zlnzl Vk_ldkut(sl)sfq)(sl)a?k and

Z ZV akutslgt ()

tEIk
NT — V- Z — H05,) Z Zuw s1)EX®(s;))al,
k =1 teT, V1=
NT — V. ZHka T Z Zum 51)EX P (s57)ad,..
k i'=1 tETk =1
By Lemma B.3 of Bai| (2003), we have
L or o 1 T 0T | 1 0Ty .0
| ] . . (A4)
=5 (G~ Hyo")ay + Hy = Hy, + Op(y + ﬁ)
and
ol ol H] = &l (alH] —+ay) = &l (alH] —a)+T, = L+0, ().
N N N T N

Thus, HkH + O, (Tk !+ N-1) =1, This shows that Hj, is an orthogonal
matrix so that its eigenvalues are either 1 or —1 up to the order of O]D(Tk;_1 +

N-1). From the definition of Hj

. 1.
szﬁv,;l FadAe = Vi P HpAg + O,(—

where we use equation . Multiplying Vk_l on both sides we have V, H, =
H xA¢. This equation implies that H, (up to a negligible term) is a matrix
consisting of eigenvectors of the diagonal matrix Ag. It follows that

- 1 1
H,—1|r= — 4+ —). A.
[ =1 = Oyl + ) (A.5)
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Recalling & = (NT3) ™" D cp ' D000, X,(8) X[ (s)a,V,7 !, we can get
that the first term of IT, is of the order O,(N~*+T},~!) and the second term
is of the order O,(N~Y2T, /%) by noting that | Hy—1I,||p = Op(N~'+T, ).
At last, we consider I, := (Ay,)T, = (NT) 'V, ' o0, dun der,
S (wie(se)uie(s1) = Bluge(so)uie(s0)]) + (NTe) Vi 3200, @i Syep, ™!

Sy Elug(s)uie(sy)]. Similar to the proof of part (b) in Lemma A.2 in Bai

(2003), the first term is O, (T, ' + (NT})~'/?). Then we have
p\ L

N n
I & A 1
13T, Vi Z_:l G ) n > Elua(st)uii(s)]

tely, =1

< IV el S Blus(sundsn)

teTy, i=1

by Assumption 4. Then ||IT, ||y = O, (T, '+ (NT},) Y2+ N~/2). Therefore,
&, — Hial|ly = O,(N~'/2 + T,;l/Q + N(;l/Q) where the approximation
error Ny /% = (Nn)~!. Following by which we have |6y — Hpad|s =
Op(N"V241712) and [l —aly > = l|éin— Hioy o+ | Hi 1| p a2 =
O,(N~Y2 4+ T, Y 2) by This completes the proof of Theorem 5.

Proof of Theorem 6: By the proof procedure in Theorem 1, for each t,
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the order of & — @ is dominated by I, thus we have

V(6 — af)) = V/Ti(6uw — Hyady) + O,(1)

-1 1 = 1
Vi 1Na£a2\/_T_k Z Z E(I)T<Sl)€tuit(sl) +Op(1)

tel =1

:Vl%ég k\/—Z/‘I'T )& (s)ds + Op(1)

tely

based on numerical integration approximation. We have shown that Vj, =
Ae +0,(1) and V! = Agl + 0,(1) in the proof of Theorem 5. Further,
aTal /N = N-1(&T —alT)al + N1l = I,+0,(1/N+1/T;). Finally,

we have

VT, — Ag \/_Z/ 8)&un(s)ds + O,(1).

teTy

Since E[[ ®7(s)&ui(s)ds] = 0, denote B[ [ w;(s)®T (s)ds&&l [ ®T(s)ui(s)ds]
as ¥;, we have the desired limiting distribution follows from the central limit
theorem.

Proof of Theorem 7: Now we can proceed to demonstrate the conver-
gence rate of &. Denote M*(t) = I,&M(t), where ® is Kronecker product,

M = Z?:l M*(s;)M*"(s;) and f/k = ééT/Tk, we have

n

O zx 1), M7 (51)) MM (S M (51)6 X)),

t'ely =1

~

ét Tk N 2 ()OT]C
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We note that

~

O & ZXT (s)og M (s)M )M (Y~ M*(s)oq" X, (s1))

— oy ) Xi(s1))

& —
TkN2 SDTI@ vel, =1
———V () €l ZX (s) (6 — Q)M (s))) M )M (>~ M ()" X, (s1)
TkN SOTk el =1
+———V (D &l ZX si)o M ™ (s) M_I)M_I(ZM*(SZ)(d — o) Xo(s1))
TkN SDTk er —
= / X/ (s)) (& — ad)M*T M*(s
AR LRI o

=Cy + Ci2 + Cis.
(A.6)

First, we consider C};. Note

n

Vil 1€NR - 1Y X (s1) (6w — a) M7 (s1) M)

=1

1
Cills Lo
ICalls < s

O M (s Xo(s1) | -

I=1
Then we have ||Cy|ls = O,(T)/2(T"? 4+ N=1/2 4 Ny /%)) by noting
€]l = Op (K 2[[€]|2) = Op(T**)/2) and ||V, |l = Op(1).
In the following part, we will provide a detailed proof of ||é lF =

O,(T*)/2) and ||V, |y = O,(1). Denote L* = (L},) € RT*Tk wwith

K »
=——0 X/ M* MMy M (s)og Xo(s1)).
mmm; (s1)ou M (s1)) (Mol X

Then é = Vk_léL*. Multiplying both sides of the equation by T;1/2‘7;€1/27

we have T 1/2V1/2£ T, 12y 1/2£L* Since (T, 1/2%71/25)(T,;1/2‘~/;1/2£)T =
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T s kcrs f/k is diagonal matrix with decreasing entries consisting of the first
Kr largest eigenvalues of L* and T, Y 2‘~/kl/ 25 is the corresponding eigen-

vector matrix. Note
X, (s) = a%@T(s)£t+ut(s) = agM*T(S))GTft+0426T<5)€t+ut(5)7 (A7)

where e(s) = ®(s) — ®r, (s) = diag(ei(s), ..., e.(s)) is a Kr xr block diag-
onal matrix with block ¢ being e,(s) = (e,1(8), ..., e ()T and ei(s) =
Gqi(S) — dge 1, (8). By the asymptotic property of spline approximation,
we have sup,coy leqt(s)] = Subcion 6ok (5) — dak(s)] = Op(T™) for
q=1...,rk =1,... K. Thus, |[L* — T,7*¢7¢|, < |L* — L*||, +
|L* — T, ' €T¢|ls = 0,(1) similar to proof of Theorem 2 in Wen and Lin
(2022). Since the first Kr largest eigenvalues of £7€/T}, equal to those
of ¢€T /Ty, and €€ /T, is diagonal, £€£€7/T} is the diagonal matrix with
decreasing diagonal entries which consists of the first Kr largest eigen-
values of £€7€/T).. Since V. is the diagonal matrix with decreasing diag-

onal entries which consists of the first Kr largest eigenvalues of f)*, we

Serlls < 1L — 7€/ Thll2 + 1€E7 /T — Sell2 = 0,(1) by Weyl’s Theorem,
Where Z&k = diag(Egvkl, cee Eg}]w% Engq = diag(Z&th cey Zf,qu) and
€€ /Ty — ¢ k|l2 — 0 by Assumption 2. In addition, Assumption 2 show

|Zexll2 = Op(1), which indicates ||€/Ty|| = O,(1) because Vi, = £€7 /Ty



S3. PROOFS

From Lemma 2 of \Jiang et al.| (2019) we have ||V, — X 4ll2 = O,(1), which
implies ||V (|2 = Op(1).

By following the clues presented in the proof of the term Cy;, we can de-
duce that Cjy exhibits the same order as Cy;. Since ||& —al|| = o,(]|al||F)

, we have C3; = 0,(Cy). Therefore,

1€ — /(TN Vi (D & ZXT sl M (s) MM (Y M (s)eq Xi(s:) 2

tel, =1

_ Op(T]ie+1})/2(T];1/2 +N—1/2 +N0_1/2))

We denote Hj, = V, 2£¢°7 /T and get

n

& — Hpb = T NQSOT O Z [ (s0)a, M (1)) MM (Y M (s1)é Xo(s1)

t'ely, =1 =1

— —vyl S —1/2 1/2 1/2
TkV > €t Te 4 O,(T, 2 (T, Y+ N~12 4 N2,

t'ely

(A.8)

Substituting equation (A.7) into (A.8)), we have
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& -

Hp& =

N Z M*(s1)M'©"¢
t'ely,
Tk:NSDTkV t%;kgt’ Zut s))op M ()M 1) ©"¢

Tk o Vit Y €6e( ZM "M (s1)e” (s1))€

k t'ely,

N Z M*(s)M™")(>_ MM (s1)e" (s1))¢

t'ely, =1
+ N Vi) dul Zut s M (s) M) - M~ M (s))e” (s1))€
k ngk tlelk =1

o Vi D €@y MM (s) o wi(s)
k t'ely =1
Fo Vi D et (3_els) M (s)M (3 MM (si)a wi(s1)
k tely =1 =1
1 — A & * — - — *
Ty Ve 2 St ()akM T )M MM (o (o)

=1+ T+ T+ IV +V+VI+VII+ VI

etv B
+0,(T,* (T, V2N Ny 1/2))- (A.9)



S3. PROOFS

For I, since for each t, we have

<SSO eanls)©L M (s) M)

Then by Cauchy’s inequality, we have ||I], < 1/(Tier )|V 2 - I1€]lF -
1€ll2 - [1€ell2 - Op(T ™ **) with [[€]ls = Op(VT) = O,(v/Ti) by condition
(IT) when T}, — oo. Therefore, ||I]jy = O,(T, " ***). Similarly, we can get
|11]l2 = Op(T, "),

For I1, since for each t, we have || >/, uf (s)adM*T(s))M )| =
Op(T,:_lmN*l/z) by Assumption 4, then we have || 11| < K/(TkNgoTk)Hf/k_ng-
€]l 7+ 1® 11 - €]l - Op (T /72N -1/2) and ||| by equation (2.8). Thus
| 11|z = Op(TkeﬂpN_l/Q). Similarly, we have |V ||, = Op(T]:+v/2N_1/2)_

For IV, since for each t, we have || > e(s;) M*(s))M 1) |2 = Op(Tk_“”Jr”ﬂ)_

Then we have

1
T, @1,

Vi - —2Kv+v —2rv+3
Vit o - 1€0s - €112 - 1€z - Op(Ti>™+) = Op(T,™2)

(A.10)

[TV ]2 <

and [V lo < 1/(TiNem)| Vi o |Ellr- 1l O (T~ 2N 42). 0y (1) =

OP(T];KU+€/2+1/2N_1/2)- Similarly, HVI[HQ _ Op(T];KU+e/2+1/2N_1/2),
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Similar to Cs, it follows

VI = — N%T D GBI uf (s)a M (s)M (Y M T M (s) o) wa(s1))]
k t'ely, =1 =1
TkN2g0T V! Z £u{ Z ul (s)a) M (s)) _1)(2 M M*(s)ad u,(s;))
k t'ely, =1
—E[(Z Uf(SZ)agM*T(Sz)M_l)(Z M~ M (s1) e w(s1))]}
=1 =1

by equation|A.9} we can conclude that ((T3) ™" > 7, 1€—&]12)V% = 0,(07,) =

Op(Tl;ere/z —|—Tk(e+v)/2(T,;1/2 N2 _'_N(;l/Z) +T};1+e/2+v +T}:/2+UN_1).
Then utilizing the analogous clues in Lemma A.2 of Bai (2003), we can get
IVILI|y = O, (T, T2 by, T V220 5y TP N2 oo 2712 172y
Therefore, € — H &, || = Op(Tk—l/ere/Hv/z+Tke/2+uN,1/2+T}:/2+11N0—1/2+
ToRvtey,

Now we show Hj = I, + Op,(61, T} 1/2). In fact, since éfT/Tk =
T,NE — Hyé + Hi£)E" = HySey + 0,051, %) and €6THT /T, =
Tk_lé(ETHg—éT+éT) = ‘7—|—Op(5Tka_1/2), we have Hy H} = Tk_lffl;léﬁTHg+
O, (61, T}, 1/2) Iy + Op(01, T, 1/2). This shows that Hj is an orthog-
onal matrix with the eigenvalues being either 1 or —1 up to the order
of Op((STka_I/Q). By the definition of H}, we have Hy = kalf/}fléﬁT +
0,61, T, /?) = V. HySe g, then V,  Hy, = Hy Se o+ 0, (07, T, ). Tt im-
plies that Hj, is a diagonal matrix up to the order of O, (5,7, T 2) That is,

HHk_HKr”F = (5Tk 1/2) Therefore, Hét_EtHZ = Hét—Hk&HQ-i-HHk—



S3. PROOFS

]IKT.HF”StHQ — Op(kal/2+e/2+v/2 + T];HU+6/2 + T]:/2+UN_1/2 + T]:/2+vN(;1/2>.
Proof of Theorem 8: The proof follows a similar approach to that of

Theorem 7. By utilizing the definition of eigenvectors, we can express

NTk Z@Zx s1) 6, M (s)) M)

tely

and

1© — ==V (D& Z ¢ (s)ag M (s0)) M )|

tEIk =1

—HNl Z&ZX si) (G — )M T (s) )M )| (A1)

tely
=0,((T, "+ N7V2 4 Ny o, K17%)

which is similar to the conclusion in equation (|A.6 . Then we show that

th ZX S1 akM ( ))M_l)_H(")HF

te[k
—H—Zastz DM ()M (A.12)
telk =
it V Zﬁtzut (s1)ag M (s)) M| .
tel, 1=1

The first term of the equation above is O,(K'/2¢™**1/2) and the second
term is O,( K2y, N71/2), which is similar to I and IT in equation (A.9).

We have shown that || H — I, || is sufficiently small, so we have O,((T} 12

+
N2 4 N()_1/2)K1/2‘;0Tk n Kl/%;:“ﬂ_ And ||©, — ©,]|r is of the same

order as ||© — O|| for each ¢ = 1,...,r because r is finite. Finally we have

|@:(s) — ®(s)llr = O((T; % + N2 4 Ny VA K205, + KM2077) by
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noting o, [ M(s)M"(s)ds = I, . Hence, we have successfully completed

the proof.

Bibliography

Ahn, S. C. and A. R. Horenstein (2013). Eigenvalue ratio test for the

number of factors. Econometrica 81(3), 1203-1227.

Bai, J. (2003). Inferential theory for factor models of large dimensions.

Econometrica 71(1), 135-171.

Bai, J. and S. Ng (2002). Determining the number of factors in approximate

factor models. Econometrica 70(1), 191-221.

Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point

detection. The Annals of Statistics 42(6), 2243-228]1.

Jiang, F., Y. Ma, and Y. Wei (2019). Sufficient direction factor model
and its application to gene expression quantitative trait loci discovery.

Biometrika 106(2), 417-432.

Kovécs, S., P. Bithlmann, H. Li, and A. Munk (2023). Seeded binary seg-
mentation: a general methodology for fast and optimal changepoint de-

tection. Biometrika 110(1), 249-256.



BIBLIOGRAPHY

Liang, X., S. Li, S. Zhang, H. Huang, and S. X. Chen (2016). Pm2. 5 data
reliability, consistency, and air quality assessment in five chinese cities.

Journal of Geophysical Research: Atmospheres 121(17), 10-220.

Liang, X., T. Zou, B. Guo, S. Li, H. Zhang, S. Zhang, H. Huang, and
S. X. Chen (2015). Assessing beijing’s pm2. 5 pollution: severity, weather
impact, apec and winter heating. Proceedings of the Royal Society A:

Mathematical, Physical and Engineering Sciences 471(2182), 20150257.

Ma, S. and L. Su (2018). Estimation of large dimensional factor models
with an unknown number of breaks. Journal of econometrics 207(1),

1-29.

Wen, S. and H. Lin (2022). Factor-guided functional pca for high-

dimensional functional data. arXww preprint arXiw:2211.12012.



	Simulation studies
	Data generation process
	Determination of the number of factors
	Estimation of the break points
	Re-estimating the functional factor model
	Comparisons between Change Points of Mean Functions and Loadings

	Additional Results of Application
	Proofs

