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Supplementary Material

The supplementary material provides additional information on the proposed model, including
the convergence rate of the connection probability estimator, an example using normalized
Laplace matrix, a discussion on constant values in EETE, and an analysis of node heterogeneity.
Furthermore, the supplementary material includes additional real data analysis and detailed

proofs of all propositions and theorems.

A.1 Remark of the mixed membership autoregressive

network model

A.1.1 Convergence rate of the connection probability estimator

In Subsection 2.1 of our paper, we give the estimator of the connection

probability «;; and 3;; in Jiang et al.| (2023), which is:
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We now present the uniform convergence rate of this estimator. The

(A.1)

following proposition is the same as Proposition 4 in |Jiang et al.| (2023).

Proposition A.1.1. If Assumptions 1 - 2 hold, then for any constant ¢ > 2,

there exists a sufficiently large constant C' > 0 such that

P ( max |a;; — o] > llC\/logp/n) < 2p? exp{—clog p},

1<i<j<p

P < max \@A’” — Bijl > l_lC’\/logp/n) < 2p? exp{—clog p}.
P

1<i<g<

Consequently, as n,p — oo, we have

max |a;; — | =0, (x/logp/n> and  max |§” — Bijl =0, <\/logp/n) )

1<i<j<p 1<i<j<p
The proof of Proposition can be found in Jiang et al.| (2023)), and

hence omitted.

A.1.2 Example of using the normalized Laplacian matrix

In Subsection 2.2, we find that it is not appropriate to use the normalized
Laplacian matrices L; and Ly to obtain the community structure. Here,
we set up two networks as examples to support this argument.

For both networks, we set p = 9 and K = 3. The first network con-

tains only pure nodes, where communities 1, 2, and 3 contain 1, 1, and 7
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pure nodes, respectively. The second network contains 6 pure nodes and
3 mixed nodes, where communities 1, 2, and 3 contain 1, 1, and 4 pure
nodes, respectively, and the membership vectors of the mixed nodes are
(0.1,0.2,0.7), (0.3,0.5,0.2), and (0.8,0.1,0.1), respectively. At the same
time, we set the diagonal elements of B; to 0.8 and all other elements to
0.1.

Then, we consider the latent community structure of L;. Assuming that
the eigen-decomposition of Ly is UAU ", it is obvious that if L; satisfies
L, = 0OP0O" for the matrix ¥, then UU" = ©T(©TO®)"1@. We calculate
the maximum singular value of UUT — ©®T(©7®)~1® for both networks.

For the second network, the maximum singular value is about 0.0659.
Compared with 5 x 1071 of the first network, this result cannot be ignored
because the first network, though does not contain mixed nodes, is also
community-unbalanced. Such results indicate that the normalized Lapla-

cian matrix is not applicable to the mixed membership case.

A.1.3 Discussion on constant values in EETE

As mentioned in Remark 4, we adopt £ = 0.02 and r» = 0.5 in our analysis

of EETE. Here, we provide some explanation for this setting. Note that
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our estimator is applied to the eigenvalues of P*, where

In a similar estimator from Zhang et al.| (2021]), the constant coefficient
(analogous to ¢ in our estimator) is set to 0.1. However, their estimator
operates on the eigenvalues of the adjacency matrix, which corresponds to
P} and Py in our work. Given the form of P*, & = (0.1)? + (0.1)* = 0.02
may be a more appropriate setting. Therefore, we set & = 0.02 and find
that it performs well in both simulations and real data analysis.

For the constant r, 0 < r < 1 needs to be satisfied to ensure the
theoretical consistency of the estimator. We set » = 0.5 and observe good
performance in both simulations and real data analysis.

Finally, we present the eigenvalues of P* and P~ in a simulated network
to provide more details and show the rationality of the estimator. The
number of communities K is set to 3, and the number of nodes p to 200.
Fori=1,...,K, weset (;; =n,; =04, and for 1 <i < j < K, we let (;;
and 7, ; be independently drawn from U[0.05,0.25].We set 50 pure nodes
for each community and the remaining 50 nodes as mixed nodes, with the
membership of each mixed node randomly set to (z;,x;,1 — 2z;), (z;,1 —
2x;,x;), or (1 — 2z, x;, x;), with a probability of 1/3. Here, for node i, z; is

a random value uniformly drawn from the interval [0,0.5]. The eigenvalues
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Table A.1: The six largest eigenvalues of P* and P*in a simulated network.

Eigenvalue 1 2 3 4 ) 6
P 1.5335  0.2959 0.1706 0 0 0
p* 1.1403 0.1477 0.0799 0.0098 0.0098 0.0093

are shown in Table It can be seen that, for both matrices, there is a

significant gap between the third and fourth largest eigenvalues.

A.1.4 Discussion on node heterogeneity

Node heterogeneity is not addressed in our study, so we discuss it here.

In standard stochastic block models (without autoregressive structure),
node heterogeneity often manifests as degree heterogeneity, which can be
addressed by degree-corrected models. These models introduce node-specific
coefficients to scale the connection probability p;;. However, in our frame-
work, since the static probabilities are replaced by the dynamic probabilities
«a and [, introducing the degree heterogeneity requires model refinement
and parameter tuning. |Jiang et al.| (2023) proposed a two-way heterogene-
ity model for this purpose, providing a comprehensive analysis.

At the same time, another type of node heterogeneity is also worth
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exploring, that is, the heterogeneity of node change trends. In a mixed-
membership autoregressive network model, the dynamic transition proba-
bilities of nodes (i.e., @ and [3) may contain individual characteristics of
each node, meaning that for each node 7, there may be a heterogeneity

parameter d;, and the connection probabilities of nodes satisfy
P, =DOB,®'D and P,=DOB,0'D, (A.3)

where D is a p X p diagonal matrices with elements d;. Such networks also
exist in reality and have certain research value.

To investigate the heterogeneity of node trends, we apply the AMSC
algorithm in simulations. We construct a network consisting of 200 nodes
and 3 communities, each containing 50 pure nodes. The memberships of
the remaining 50 mixed nodes are randomly assigned from (x;, z;, 1 — 2x;),
(i, 1 — 2x;,x;), or (1 — 2z, x;, x;), where z; is a random value uniformly
drawn from the interval [0, 0.5]. For the community transition probabilities,
Gi = ni; = 0.4, ¢; and n, ; are independently drawn from U[0.05,0.25].
For each node i, d; is a random number uniformly drawn from the interval
[0.5,1].

The simulation results are shown in Table [A.2] As can be seen, the
AMSC algorithm demonstrates excellent performance in estimating the

membership matrix for models with heterogeneous node trends. Further-
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Table A.2: Mixed-Hamming error rates of the estimated and true membership matrices
with 500 replications on the AR-1 mixed membership model with heterogeneity in node

change trends.

K »p n  Mixed-Hamming error rate
) 0.2211
20 0.1626
3 200
50 0.0944
100 0.0575

more, the estimated membership matrix and connection probability matrix
can be used to estimate the node heterogeneity parameter d;. However,
within this model framework, the theoretical foundation for the algorithm’s
application remains to be established. Furthermore, the methods used in
static degree correction networks can be extended to dynamic autoregres-
sive networks to improve estimation accuracy. These issues warrant further

investigation.
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A.1.5 Discussion on BIC

From the definition of BIC;, we can analyze the difference between consec-

utive BIC values:

A _ .
BICk — BIC). = (p—1 - K)log K log Axit — log Agsr —

K+1

P -1
—logp
p

A R
<1_>\§i>] 1 Ak+1 p— K -1
—_Og7 —
p—1-K AK 11
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g lo
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=(p—1-— K){log|1l —

(v Hlogl1 4 ] — e, A0

For the true number of communities K to be selected, we require K =

= (p—1-K)log[l -

logp

arg min;<,_» BIC;, which implies BICx < BICk.;. As p tends to infinity,
if the ratio ;\K+1/5\K+1 is much larger than log p, i.e., 5\K+1/5\K+1 >> logp,
then we would have BICx > BICk,1, leading to an incorrect estimator.
Thus, the condition 5\K+1/5\K+1 = O(logp) is necessary for K to be the
minimum argument. This implies that the performance of BIC is sensitive
to the ratio \ K+1/ A K41, a ratio that incorporates all of the remaining small

eigenvalues A K42y -+, 5\p_1 through A1, making the criterion unstable.

A.2 Supplement to the real data analysis

A.2.1 Global trade data

In Subsection 6.1 of the paper, we used the proposed algorithm to analyze

the global trade data. Here, we present some further details of the results.
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First, we provide some analysis results when K is set to 2, Figure shows
the average adjacency matrix of 195 countries from 1991 to 2014, with
countries sorted by estimated membership. In Figure [A.1] red indicates
large values and blue indicates small values. It can be seen that during
the estimation period, trade intensity is concentrated in most developed
industrial countries in Community 1, while countries in Community 2 have
sparse trade, indicating that trade globalization has not yet spread to most
underdeveloped countries.

Next, when K is set to 6, we display the specific classification results of
the global trade data from 1991 to 2014 in Table [A.3] The analytical con-
clusions we presented in the main text are consistent with this classification

results.

Furthermore, To test the robustness of the classification results on
global trade data, we estimate the membership using data from 1991 to
2011 and data from 1991 to 2006, and then compare their results.

For data up to 2011, only three of the 195 countries had different clas-
sifications than those up to 2014: Malta, Kuwait, and Singapore. For data
up to 2006, thirteen countries had different classifications than those up to

2014: Saint Kitts and Nevis, Argentina, Malta, Croatia, Slovenia, Liberia,
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Cluster 1

Cluster 2

Cluster 1 Cluster 2

Figure A.1: Average adjacency matrix for the 195 countries in the Global trade data.

Egypt, Yemen, Kuwait, Bahrain, Qatar, Tajikistan, and Singapore. Fur-
thermore, for these thirteen countries whose classifications changed, we find
that their maximum memberships in the estimates up to 2006 were all be-
low 0.6, and nine of these countries had maximum memberships below 0.5,
meaning that they were considered nodes between multiple communities in
the original results, but their distances from any one community were not

significantly close. We believe these results indicate that our estimates are
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Table A.3: The community detection result of the global trade data (1991-2014) for six

communities.

Country

Clusterl

United States of America, Canada, Colombia, Peru, Brazil, Argentina, United Kingdom, Ireland, Netherlands, Bel-
gium, Luxembourg, France, Switzerland, Spain, Portugal, Germany, Poland, Austria, Slovakia, Italy, Greece, Cyprus,
Finland, Sweden, Norway, Denmark, Turkey, Egypt, China, Taiwan, South Korea, Japan, India, Pakistan, Thailand,

Malaysia, Singapore, Philippines, Indonesia, Australia, New Zealand .

Cluster2

Bahamas, Cuba, Haiti, Dominican Republic, Jamaica, Trinidad and Tobago, Barbados, Dominica, Grenada, St. Lucia,
St. Vincent and the Grenadines, Antigua & Barbuda, St. Kitts and Nevis, Mexico, Belize, Guatemala, Honduras, El
Salvador, Nicaragua, Costa Rica, Panama, Venezuela, Guyana, Suriname, Ecuador, Bolivia, Paraguay, Chile, Uruguay,

Israel.

Cluster3

Monaco, Liechtenstein, Andorra, San Marino, Yugoslavia, Kosovo, Cape Verde, South Sudan, East Timor, Marshall

Islands, Palau, Federated States of Micronesia.

Clusterd

Hungary, Czech Republic, Malta, Albania, Montenegro, Macedonia, Croatia, Slovenia, Bulgaria, Moldova, Romania,
Russia, Estonia, Latvia, Lithuania, Ukraine, Belarus, Armenia, Georgia, Azerbaijan, Iran, Iraq, Syria, Jordan, Kuwait,
Bahrain, Qatar, United Arab Emirates, Afghanistan, Tajikistan, Kyrgyzstan, Kazakhstan, Mongolia, Bangladesh, Sri

Lanka, Cambodia, Vietnam.

Cluster5

Bosnia and Herzegovina, Sao Tome and Principe, Guinea-Bissau, Equatorial Guinea, Sierra Leone, Chad, Burundi,
Rwanda, Somalia, Djibouti, Eritrea, Malawi, Namibia, Lesotho, Botswana, Swaziland, Comoros, Seychelles, Turk-
menistan, Uzbekistan, Bhutan, Myanmar, Maldives, Nepal, Laos, Brunei, Papua New Guinea, Vanuatu, Solomon

Islands, Kiribati, Tuvalu, Fiji, Tonga, Nauru, Samoa.

Cluster6

Iceland, Gambia, Mali, Senegal, Benin, Mauritania, Niger, Ivory Coast, Guinea, Burkina Faso, Liberia, Ghana,
Togo, Cameroon, Nigeria, Gabon, Central African Republic, Congo, Democratic Republic of the Congo, Uganda,

Kenya, Tanzania, Ethiopia, Angola, Mozambique, Zambia, Zimbabwe, South Africa, Madagascar, Mauritius, Morocco,

Algeria, Tunisia, Libya, Sudan, Lebanon, Saudi Arabia, Yemen, Oman, North Korea.

sufficiently robust.

In addition to the above analysis, since the original data covers the

period from 1870 to 2014, we also analyze trade data before 1991. Using

Jiang et al.| (2023), we find a change point in the trade data in 1991, likely

due to changes in the global situation caused by the end of the Cold War.
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Therefore, we analyze the network data before and after 1991 separately to
see if there were any significant changes in country classifications.

We initially attempt to use data from 1870 to 1991 for our analysis,
but the lack of early trade data made the classification results less inter-
pretable. Therefore, we follow |Jiang et al.| (2023) and use data from 1950
to 1991. The classification results are shown in Table [A.4] Clearly, the
classification results before 1991 differ significantly from those after 1991.
In addition to the geographic characteristics of other communities, Com-
munity 1 and Community 3 include major countries, led by the United
States and Russia, respectively—the two major opposing sides of the Cold
War—which is consistent with the historical context of the time. These re-
sults are consistent with the conclusions of [Jiang et al.| (2023) and confirm
that international trade relations underwent significant changes with 1991

as the dividing point.

A.2.2 French high school contact data

We present details of the analysis of French high school contact data. The
dataset is taken from Mastrandrea et al| (2015). Students in the school
have different majors: the “MP” classes focus more on mathematics and

physics, the “PC” classes focus on physics and chemistry, the “PSI” classes
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Table A.4: The community detection results of the global trade data (1950-1991) for six

communities

Country

Clusterl

United States of America, Canada, United Kingdom, Netherlands, Belgium, Luxembourg, France, Switzerland, Spain,

Italy, Finland, Sweden, Norway, Denmark, Japan, India.

Cluster2

Jamaica, Trinidad and Tobago, Barbados, Dominica, Guyana, Austria, Malta, Cyprus, Uganda, Kenya, Tanzania,
Burundi, Rwanda, Somalia, Djibouti, Mozambique, Zambia, Zimbabwe, Swaziland, Madagascar, Mauritius, Seychelles,
Libya, Sudan, Syria, Jordan, Yemen Arab Republic, Yemen, Yemen People’s Republic, Kuwait, Bahrain, Qatar,
United Arab Emirates, Oman, Afghanistan, North Korea, Bangladesh, Nepal, Malaysia, Singapore, Brunei, Papua

New Guinea, Fiji.

Cluster3

Cuba, Brazil, Ireland, Portugal, Poland, Hungary, Czechoslovakia, Yugoslavia, Greece, Bulgaria, Romania, Russia,
Iceland, Ethiopia, South Africa, Iran, Turkey, Iraq, Egypt, Lebanon, Israel, Saudi Arabia, China, South Korea,

Pakistan, Myanmar, Sri Lanka, Thailand, Philippines, Indonesia, Australia, New Zealand.

Clusterd

Bahamas, Haiti, Dominican Republic, Mexico, Belize, Guatemala, Honduras, El Salvador, Nicaragua, Costa Rica,

Panama, Colombia, Venezuela, Suriname, Ecuador, Peru, Bolivia, Paraguay, Chile, Argentina, Uruguay.

Clusterb

Grenada, St. Lucia, St. Vincent and the Grenadines, Antigua & Barbuda, St. Kitts and Nevis, Liechtenstein,
German Federal Republic, Albania, Cape Verde, Sao Tome and Principe, Guinea-Bissau, Equatorial Guinea, Zanzibar,
Namibia, Lesotho, Botswana, Comoros, Mongolia, Bhutan, Maldives, Cambodia, Laos, Republic of Vietnam, Vanuatu,

Solomon Islands, Samoa.

Cluster6

Germany, German Democratic Republic, Gambia, Mali, Senegal, Benin, Mauritania, Niger, Ivory Coast, Guinea,
Burkina Faso, Liberia, Sierra Leone, Ghana, Togo, Cameroon, Nigeria, Gabon, Central African Republic, Chad,

Congo, Democratic Republic of the Congo, Angola, Malawi, Morocco, Algeria, Tunisia, Vietnam.

focus on engineering studies, and the “BIO” classes focus on biology. The

data comes from students in nine classes: 3 classes of the “MP” type (MP1,

MP2, MP3), two classes of the “PC” type (PC1 and PC2), one class of the

“PSI” type (PSI), and 3 classes of the “BIO” type (BIO1, BIO2, BIO3).

The dataset contains information on a total of 329 students. Since two of

the students did not communicate with anyone else, we excluded them from
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the data and used the data of the remaining 327 students for the analysis.

We apply the empirical eigenvalue-threshold estimator to the data set.
The result shows that K = 9 is the most appropriate setting, which also
coincides with the number of classes.

Assume that the community number K = 9. We apply the AMSC
algorithm to the data and classify students to different communities based
on their respective largest membership, we present the result in Table |A.5]
It can be seen that students of the 9 original classes are identified perfectly
into 9 communities, which is better than the result given by |Jiang et al.
(2023)) for the same dataset. In addition, since the algorithm gives a mem-
bership vector instead of a simple community label, we can not only clas-
sify students by the community that each node belongs to with the largest
membership but also explore each node’s tendency to belong to other com-
munities, which can help us study the unique communication tendencies of
different students in the same class.

Further, to demonstrate the robustness of our estimation of the French
high school contact data, we try to randomly delete the contact data of some
students and then use the AMSC algorithm to estimate the communities
of the remaining students. We try to keep 200 students and 100 students

respectively, which means that 127 and 227 students are removed, and
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Table A.5: Estimated community distribution for 327 students by the proposed commu-

nity detection method. The number of communities K = 9.

Class Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9
BIO1 36 0 0 0 0 0 0 0 0
BIO2 0 34 0 0 0 0 0 0 0
BIO3 0 0 40 0 0 0 0 0 0
MP1 0 0 0 33 0 0 0 0 0
MP2 0 0 0 0 29 0 0 0 0
MP3 0 0 0 0 0 38 0 0 0
PC1 0 0 0 0 0 0 44 0 0
PC2 0 0 0 0 0 0 0 39 0
PSI 0 0 0 0 0 0 0 0 34

we repeat the experiment several times with different random seeds. The
results show that the deviation of the estimate gradually becomes larger as
the number of students included in the estimation decreases. However, the
estimation of our method is always better than the original AR-1 algorithm
in|Jiang et al. (2023). Table and Table show the comparison of our
estimation with the estimation using the AR-1 algorithm when the random
seed is set to 0. It can be seen that for 200 students, the AMSC algorithm
identified all the 9 original classes as the 9 clusters with only 2 students
being placed outside their classes, while for the original AR-1 algorithm,
9 students are being placed in the wrong classes. In the situation of 100

students, the AMSC algorithm identified 9 classes as the 9 clusters with 2
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Table A.6: Estimated community distribution of the AMSC algorithm after removing
127 students (random seed set to 0), and estimated communities of the AR-1 algorithm
for the same dataset. In each cell, the black number on the left is the estimation by the
AMSC algorithm, and the red number in parentheses on the right is the estimation by

the AR-1 algorithm.

Class Cluster 1  Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9

BIO1  25(25) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
BIO2  0(0) 18(18) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
BIO3  0(0) 0(0) 22(21) 0(0) 0(0) 0(0) 0(0) 0(0) 0(1)
MP1  0(0) 0(0) 0(0) 14(12) 0(2) 1(1) 0(0) 0(0) 1(1)
MP2  0(0) 0(0) 0(0) 0(0) 19(19) 0(0) 0(0) 0(0) 0(0)
MP3  0(0) 0(0) 0(0) 0(0) 0(0) 23(23) 0(0) 0(0) 0(0)
PC1 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 29(27) 0(1) 0(1)
PC2  0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 23(22) 0(1)
PSI 0(0) 0(0) 0(0) 0(0) 0(1) 0(0) 0(0) 0(0) 25(24)

students being placed outside their classes. The original AR-1 algorithm, on
the other hand, performed poorly and even divided the majority of students
from two different classes "PC1” and ”PSI” into the same cluster, Cluster

7.
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Table A.7: Estimated community distribution of the AMSC algorithm after removing
227 students (random seed set to 0), and estimated communities of the AR-1 algorithm
for the same dataset. In each cell, the black number on the left is the estimation by the
AMSC algorithm, and the red number in parentheses on the right is the estimation by

the AR-1 algorithm.

Class Cluster 1  Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9

BIO1  14(14) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
BIO2  0(0) 13(5) 0(6) 0(0) 0(0) 0(0) 0(0) 0(0) 0(2)
BIO3  0(0) 0(4) 10(4) 0(0) 0(0) 0(0) 0(0) 0(0) 0(2)
MP1  0(0) 0(0) 0(0) 8(6) 0(1) 0(1) 0(0) 0(0) 0(0)
MP2  0(0) 0(0) 0(0) 1(0) 11(10) 0(0) 0(0) 0(0) 0(2)
MP3  0(0) 0(0) 0(0) 0(0) 1(0) 8(8) 0(0) 0(0) 0(1)
PC1 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 12(10) 0(1) 0(1)
PC2  0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 11(10) 0(1)
PSI 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(8) 0(0) 11(3)

A.3 Technical proofs

A.3.1 Proof of Theorem 1

proof: It is obvious that for any pure node ¢ belonging to the community £,
the corresponding row 6; in © satisfies 8;(k) = 1 and all remaining elements
are (. Since Z is the indices of rows corresponding to K pure nodes from
each community, without loss of generality, we can reorder the nodes to

ensure that @(Z,:) = I. Here, I is the identity matrix.
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Note that
P P PP,
I1PuE 1P
_ e (Bl@T@Bl n B2®T®B2> ~
|| P[5 | P15
From Assumption 3 and ©(Z,:) = I, it can be seen that rank(P*) = K.

P =

Then, we have

Bl@T@Bl+Bg@T@Bg
| P17 | Pa|%

[(Z,))AT(Z,))" = P*(Z,7) = ©(Z,:)( )O(Z,:)" = B*,

which shows that T'(Z,:) € RF*X is full rank. Then, we can obtain that

B,©'©B, B0 OB,
1P 1% 11

['(Z,:)AT" = P*(Z,:) = ©(Z,:)( 0" =B,

therefore, we have
I'=PTA'=0OB'©'TA ' =0OI'(Z,:)) AT’ TA ! =OI'(Z,").

This completes the proof.

A.3.2 Proof of Proposition 1

Proof: Note that A\; > -+ > Ag > Agy1 = --- = A\, = 0 are the eigenvalues
of P*, and AN > > jxp > 0 are the eigenvalues of P*. Since both P*
and P* are symmetric matrices, by Theorem A.37 in Bai and Silverstein

(2010), it follows that

max {3 -4 ) <3 -4 < tr{@* P (P ﬁ*)T}

i=1

< |P* — P*||%.
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Therefore, using the conclusion in (A.12)), we have that with probability

1 — 4 exp{—clogp}, there exists a constant C' such that

R ~ |
max [ — Al < [P - Bl < CWRIBREVI) )
1=1,....p \/ NP

which, jointly with (A.4]), implies that

| CVpTogp + Vi)

Ai = Ail < ;
e, | | NG
max \; < Clvplosp + \/ﬁ) (A.6)

i=(K+1),....,p A/ NP

If # < K, by the assumption that \x > ¢y, we have A\, > ¢y, which,

(A.5)

jointly with (AJ5), yields that A, > ¢o — SWEREPEVM with probability

/np
1 — 4exp{—clogp}. Since —””bg\/%j*/ﬁ — 0 asn,p — oo, if we set £ < ¢q/2,
it follows that Az > & * min (1, (—”’log\/nﬂ;\/ﬁ)r), a.s. as n,p — oo.

Similarly, if & > K, since r satisfy 0 < r < 1, by (A.6]), for any

constant ¢,, \p < CT((—W)T, a.s. as n,p — oo. Therefore, we have
A\ < € # min (1, (—W)T), a.s. as n,p — oo.

NG
A.3.3 Proof of Theorem 2
Proof: We first find a bound of || P* — P*||z. Note that
|P*—P*|r= |(P; Py +P;P;) — (P{Pf + P;F;)||r
= ||(131*131* - PrPy) + (132*132* — Py P;)||F (A.T)

< |[PrPr = PrP|p + || PPy — PPy .
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To bound ||[P* — P*||r, we only need to bound || P; Py — Py P} since a

bound of ||132*132* — Py PyS||r can be obtained in a similar way. In view that

|Pr Py — PyPy|p < |2 — BE||p + |2 T — e

P12 AR 1P 1P%

F

_ |\\P1||2F:||P1H2F|||P1P1IIF_|_ | PP —P\ P |
1Pl 1Py 15 1PL]|%

(1Pl + Pl PrLe— [ P2 DI P + | PP —P Py
1P 1P P17

< 2APdrlPr=]Pr] _i_(”Pl”F*HPl”F)Q_}_ | PP —PiPi| r
= P13 1PII7. P13

IN

IN

2|P—Pi | |P.—P1 || \2 PP — P, Py|
e e )t T ER

(A.8)
we first bound || P,— P ||z. Denote P, = P, —diag(P,). Since diag(P}) = 0,

we have

|P.— Pillr < P~ Pilr+||P— P|r

= > (Guj — aij)* + || diag(Py) r

1<4,5<p
1#]
= \/ > <@1~,j—az~,j>2+¢ > (on)?
1<7,5<p 1<k<p
i#j

From Assumption 1, we have for all 1 <14, j <p, | < a;; <1, which, jointly
with Proposition [A.1.1] implies that for any constant ¢ > 0, there exists a

large constant C' such that with probability 1 — 2 exp{—clogp},

n

~ 1
1P~ P|r<C (p Py \/T?> . (A.9)
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We next bound ||131131 — P, Py||F. Since

Hﬁlﬁl—PlleFS Hﬁlﬁl_ﬁlﬁl”F+Hﬁlﬁl_Plpl”F

p
= > [ (Ginbyp — aipayp)? 4+ [ >0 (i + )i ]? —
\ 1<ij<p k=1 1<ij<p
i

= > Do (@i,k@j,k — 0 Qi+ RO — ai,kaj,k)]z

1<i7<p k=1
i
+ \/ > i+ )2 — Y o)
1<i7<p 1<
= > A2 Gk(din — aig) + @ir(Gyr — ajp)]}?
1<ij<p k=1
i
+ > leii +ajj)ai ] = >0 3(auq)h
1<i7<p 1<i<p

(A.10)

Note that by (2.5), it follows that for all 1 <4i,j < p, &;; < 1. Therefore,

by Assumption 1, Proposition and (A.10]), we have

2
p.P lo lo
|PLP—Py P < C(y|p? (p\/ Sp> +vp*—p) <C <p2,/_§p +p> .

(A.11)

Note that
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By (A.8)), (A.9) and (A.11)), it follows that

1P — Pilr <O, Jlogp VP 7
1Py ! nop

|||P1P1—P1P1||F<O< logp_i_l)

P11 G nop

When n,p — oo, it is easy to show that

~ 2
| Py — Py|p logp /P
Ll E A L ME
| P » n P

Therefore, for any constant ¢ > 0, there exists a large constant C,; such

that with probability 1 — 2 exp{—clogp},

=k S . o /logp P
||P1P1_P1P1HF§CP1< n +%>

Similarly, we can show that there exists a large constant C)e such that with

probability 1 — 2 exp{—clogp},

|75 P _P2P2HF§CP2 (\/ Sp"‘%)‘

Therefore, by (A.7)), we have that for any constant ¢ > 0, with probability

1 — 4exp{—clogp}, there exists a constant C, = Cp; + Cp satisfy that

|P*— P*||r < C, (\/10% + @> =G, ( Yploep ﬁ) (A1)

p V1P
To show (4.2), by Davis-Kahan Theorem in |Yu et al.| (2014), we have

that for constant C., = 23/2C,, there exist a K x K orthogonal matrix O
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such that

Hi-w\O . FHF < CV(VPIng+ \/ﬁ)
NN

This completes the proof.

A.3.4 Proof of Theorem 3

Proof: As mentioned in Section 4 of our paper. The set S is defined as
S = {U € RE*K}. We show that for any U € S, £(T'O;U) converges to
L(T;U). For each i, let uy; and us; be the rows in U that are closest to

(fO)(i, :) and I'(¢, :), respectively, note that
1T, ) — waill2 < T 2) — vl
[(TO)(i:) — wsill2 < (TO)(i; ) — wail-
so we have

1T, 2) = waill = [(TOYG, ) = waslla < TG, ) = waglla = [(TO) (G, ) = wailo
< |T(i,:) = TO)(, )|,

ITO) (i, ) — willa — IT(i. ) — walla < [(TOY(,2) — waill — [T(i,2) — il
< |TG,:) = (TO) i, )l

Therefore, we have

ITO) () = wulls = [T (E,2) = waslo] < IT(i,2) = (TO)(,3)]o.
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Note that the loss function £(Q, U) is defined as

p

1
£@QU) =3 min Q) ~ Uk
=1 - =

We get
LTO;U) - L(T;U)| = \% Z(H(fO)(Z} ) = will2 = [0, ) — waill2)]
L= ;. SN2 L TO _
< J;;@OW’-) ~ TGl = = IF0 Tl

(A.13)

Since (|A.13)) holds for any matrix U, we obtain that

sup |£(T0;U) — £(r;0)| < PO Lllr,
Ues /P

Then, we bound ||‘A/O — V||r. Note that

L(T:VO) - LT; V) < |L(T;VO) — L(TO; VO)|
+ (£(TO; VO) — L(TO: V))
+|L(TO; V) = L(T; V)]

< 2sup |L(TO:U) — L(T; U)|.
UesS

By Assumption 4, we have that with probability at least 1—4 exp{—clog p},

the following holds:
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IVO - V|p < (kK™ (L(T;VO) — L(T; V)

2K -
< —sup [L(T'O;U) — LT U))
KR Ues

_ 2K (|TO -T||r
- NG

_K( L (vplogp +\/_)>

K p\/_)\K
K(v/plogp + /1)
PVnAK ’

where C, = % This completes the proof.

<

A.3.5 Proof of Theorem 4

Proof: First, let m = %F((Zz))llll% Note that ||T||p = VK, since V =
i )12

I'(Z,:) is a submatrix of I, we have

WViE, - @l
HVHF ||F||2 \/( 57:1 ||F(Z,)||%)K

K K K
[T K Ve €K = —.
P mp mp

Let each row y; of matrix Y satisfy

Therefore, we have

yi =0,
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It is obvious that

ei - L)
||y,~||1
and
Hence,
Y =TV (VVT)?,
Since
A 171' Y @H’yzHl - yzngHI
10; — 0ill2 = ||5= — |2 = || ~ 2
llyillx i1 il 1 l|yillx
_ H;i]z||yl||1 —yillyillh + villvillh — willyilla I
gl llyilla
< Mwillwilly = gillgalloll + [[:llyalls — willgsll[l2
N a1 /|yl
_ Nwillalllyill = llgelll + Ngillllg: — will
gillillyilla
< Ngillulllyslh = gl ] + llgills]lg: — il
B gl llyilla
_ Myills = Nyillal + llys — will2 < lyi — yills + ly: — will
i1 N i1
(VE + D)|g: — yilla -
< :ll: = (VK + 1)|1gi — yill2,
7

it follows that

1© —Ollr < (VK + 1|IY — Y||p.

Since all elements of ® are non-negative, by the definition of Y, all elements

of Y are also non-negative, which means that forany 1 <i <p,1 <j <K,
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Y;; = max{Y};,0}), so we have
Y — Y| < 1Y - Yl

which implies that

1Y =Y[lr <[|Y =Y.
Therefore, we only need to bound ||Y — Y||s. By Theorem 2, we have

IY = Y|p =TV (VOVO) ) ' =TV (VV )5
=|[TovVo)" (VvO(VOo) ) =TV (VV ) ||
= [To(vo)"(vo(vo) )" —Tov (Vv )
+TOoVT(VV ) —TVT(VV )5
<|fo(vo)"(vo(vo) ) —Tov (VVT)
+TOVT(VV) L TV (VV )Y p
<[TOlr|(VO) (VO(VO) ) ' =V (VVT)!p
+[TO =TV (VVT)p
<|T[-I(VO) (VOVO) ) = VI(VV )
+TO =T V[£I(VVT) s

<VE[|(VO)"(VOVO)") ' = VT(VV) Y r +|TO ~T||VI|(VVT) e

C,K(Vplogp + v/n)

pv/mnAg
(A.14)

<VE[(VO)'(VO(VO) )" —VI(VVT)|p + VvV~ e
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Here, the second line holds because

~

LV (VO(VO)') " = (To)(Vo) (VO)VOo)) ™,
while the second line from the bottom hold because |||z = vK and
K
[VIlFr < Wt
Next, we need to bound ||(VO)T(VO(VO)" )1 =V T (VVT)~!||; and

|(VVT)7Y|r. Since VV'T is a positive definite symmetric matrix, we have

VK

VVH Y < ———~.
H( ) HF = )\min(VVT>

(A.15)

From the fact that |V||r < \/%, | Amin(V)| > 0, it follows that
IVOVOT —VV || <|[VOVO-V) + (VO - V)V ||

<UVOlr+IVIRIVO =V]r < (VO = VIr+2[|V|p)VO - V]
K

7

< (VO =V|p+2—)|VO - V|

Then we have

I(VOVO") ' —(vV ) p < [(VOVO! ) s(VV )| VOVOT —VV ||,
<VEK Qi (VOVO) " 'VE A (VV ) VOVOT —VV ||
<K (Aan(VVT) = [VOVOT = VVT 1) (o (VY ) [VOVOT = VYV

N K~
<K (M min - — 9 _ 1A Ty -1
<KAmin(VV') = ([[VO = V| + \/m—p)HVO Vir) ™ Amin(VV 1))

. K~
(IlVO - V|r+ 2W>IIVO -Vl
(A.16)
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Since (vplogp + v/n) /(\/np )\K) — 0, we have \/p|[VO — V| — 0.

- IVO-V]r 2/pK|VO-V
Therefore, M — 0 and v LA - H l= 0, Thus
2\/"77’ mm(VV ) v immy ’

2

K ~
Min(VVIN VO — V|,
mp( ( Nl | F

I(VO(VO) )™ = (VVT) Y p < Cy

(A.17)

)\min(VVT)(Q—i-i‘WI?_VHF)

Amin(VVT) =2 s +[VO-V]|p) [VO-Vr’

Next, by (A.15) and (A.17), we have

where C), =

I(Vvo)" (vovo) )y —=vi(vvT) |,
= (Vo) (VvO(VO)" )" = (VO) (VV ) + (VO) (VV ) = VI(VVT) 7|,
su?mwﬁthOFYJ—uﬂﬂwﬂu+nV0—waMVVTer

\K oOVO) ) = (VV) p+ VO = V| (VVT)|r

VE|[VO - V|
Amin(VV'T)

H(VO(VO) )= (VV) e+

ﬁﬁ

CAK3||VO ~Vl|r VE|VO-V|p
MPAmin(VV T )2 Amin(VVT)

(A.18)
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By (A.14), (A.15), and (A.18), it follows that

v OO (VOT O -1 T Ty-1 C,K(Vplogp + v/n) Ty-1
IY —Y|r < VE[|(VO) (VO(VO)) ! =VTI(VVT) ! r+ NP V'V lle

3 VO — 3/2
VE(—OF g VO Vi  CEP(Vplept vi)
mp)\min(VVT) )\min(VVT) DA /mn)\K)\min(VVT)

3 VO — 3/2
<R (CE2 | ) VO Vie | OV (PRS-

mmy my ARy
< (O)\K5/2 +1> c K2(\/plogp + /n) ) C.K32(\/pTogp + /)
S mmy v \/ﬁ/\Kmv \/ﬁ)\Kmv
< CYK7/2(\/M+ Vn)
B my/nAgmi ’
where Cy > C\C, + C”}{";%V + Cw@mv.

Let C, > Cy(1+ \/—%) By combining all the results above, we obtain
that

1©-06lr _ VE+DIY ~Yllr _ (VE+D|Y - Y|r _ C.K*(Vplogp + v/n)
VP VP - VP T mympAemy?

holds with probability at least 1 — 4exp{—clogp}, which concludes the

proof.
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