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Supplementary Material

The supplementary material provides additional information on the proposed model, including

the convergence rate of the connection probability estimator, an example using normalized

Laplace matrix, a discussion on constant values in EETE, and an analysis of node heterogeneity.

Furthermore, the supplementary material includes additional real data analysis and detailed

proofs of all propositions and theorems.

A.1 Remark of the mixed membership autoregressive

network model

A.1.1 Convergence rate of the connection probability estimator

In Subsection 2.1 of our paper, we give the estimator of the connection

probability αi,j and βi,j in Jiang et al. (2023), which is:
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We now present the uniform convergence rate of this estimator. The

following proposition is the same as Proposition 4 in Jiang et al. (2023).

Proposition A.1.1. If Assumptions 1 - 2 hold, then for any constant c > 2,

there exists a sufficiently large constant C > 0 such that

P

(
max

1≤i<j≤p
|α̂i,j − αi,j| ≥ l−1C

√
log p/n

)
≤ 2p2 exp{−c log p},

P

(
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|β̂i,j − βi,j| ≥ l−1C

√
log p/n

)
≤ 2p2 exp{−c log p}.

Consequently, as n, p→∞, we have

max
1≤i<j≤p

|α̂i,j − αi,j| = Op

(√
log p/n

)
and max

1≤i<j≤p
|β̂i,j − βi,j| = Op

(√
log p/n

)
.

The proof of Proposition A.1.1 can be found in Jiang et al. (2023), and

hence omitted.

A.1.2 Example of using the normalized Laplacian matrix

In Subsection 2.2, we find that it is not appropriate to use the normalized

Laplacian matrices L1 and L2 to obtain the community structure. Here,

we set up two networks as examples to support this argument.

For both networks, we set p = 9 and K = 3. The first network con-

tains only pure nodes, where communities 1, 2, and 3 contain 1, 1, and 7
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pure nodes, respectively. The second network contains 6 pure nodes and

3 mixed nodes, where communities 1, 2, and 3 contain 1, 1, and 4 pure

nodes, respectively, and the membership vectors of the mixed nodes are

(0.1, 0.2, 0.7), (0.3, 0.5, 0.2), and (0.8, 0.1, 0.1), respectively. At the same

time, we set the diagonal elements of B1 to 0.8 and all other elements to

0.1.

Then, we consider the latent community structure ofL1. Assuming that

the eigen-decomposition of L1 is UΛU>, it is obvious that if L1 satisfies

L1 = ΘΨΘ> for the matrix Ψ, then UU> = Θ>(Θ>Θ)−1Θ. We calculate

the maximum singular value of UU> −Θ>(Θ>Θ)−1Θ for both networks.

For the second network, the maximum singular value is about 0.0659.

Compared with 5× 10−16 of the first network, this result cannot be ignored

because the first network, though does not contain mixed nodes, is also

community-unbalanced. Such results indicate that the normalized Lapla-

cian matrix is not applicable to the mixed membership case.

A.1.3 Discussion on constant values in EETE

As mentioned in Remark 4, we adopt ξ = 0.02 and r = 0.5 in our analysis

of EETE. Here, we provide some explanation for this setting. Note that
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our estimator is applied to the eigenvalues of P ∗, where

P ∗ = P ∗1P
∗
1 + P ∗2P

∗
2 . (A.2)

In a similar estimator from Zhang et al. (2021), the constant coefficient

(analogous to ξ in our estimator) is set to 0.1. However, their estimator

operates on the eigenvalues of the adjacency matrix, which corresponds to

P ∗1 and P ∗2 in our work. Given the form of P ∗, ξ = (0.1)2 + (0.1)2 = 0.02

may be a more appropriate setting. Therefore, we set ξ = 0.02 and find

that it performs well in both simulations and real data analysis.

For the constant r, 0 < r < 1 needs to be satisfied to ensure the

theoretical consistency of the estimator. We set r = 0.5 and observe good

performance in both simulations and real data analysis.

Finally, we present the eigenvalues of P ∗ and P̂ ∗ in a simulated network

to provide more details and show the rationality of the estimator. The

number of communities K is set to 3, and the number of nodes p to 200.

For i = 1, . . . , K, we set ζi,i = ηi,i = 0.4, and for 1 ≤ i < j ≤ K, we let ζi,j

and ηi,j be independently drawn from U [0.05, 0.25].We set 50 pure nodes

for each community and the remaining 50 nodes as mixed nodes, with the

membership of each mixed node randomly set to (xi, xi, 1 − 2xi), (xi, 1 −

2xi, xi), or (1− 2xi, xi, xi), with a probability of 1/3. Here, for node i, xi is

a random value uniformly drawn from the interval [0,0.5]. The eigenvalues
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Table A.1: The six largest eigenvalues of P ∗ and P̂ ∗in a simulated network.

Eigenvalue 1 2 3 4 5 6

P ∗ 1.5335 0.2959 0.1706 0 0 0

P̂ ∗ 1.1403 0.1477 0.0799 0.0098 0.0098 0.0093

are shown in Table A.1. It can be seen that, for both matrices, there is a

significant gap between the third and fourth largest eigenvalues.

A.1.4 Discussion on node heterogeneity

Node heterogeneity is not addressed in our study, so we discuss it here.

In standard stochastic block models (without autoregressive structure),

node heterogeneity often manifests as degree heterogeneity, which can be

addressed by degree-corrected models. These models introduce node-specific

coefficients to scale the connection probability pij. However, in our frame-

work, since the static probabilities are replaced by the dynamic probabilities

α and β, introducing the degree heterogeneity requires model refinement

and parameter tuning. Jiang et al. (2023) proposed a two-way heterogene-

ity model for this purpose, providing a comprehensive analysis.

At the same time, another type of node heterogeneity is also worth
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exploring, that is, the heterogeneity of node change trends. In a mixed-

membership autoregressive network model, the dynamic transition proba-

bilities of nodes (i.e., α and β) may contain individual characteristics of

each node, meaning that for each node i, there may be a heterogeneity

parameter di, and the connection probabilities of nodes satisfy

P1 = DΘB1Θ
>D and P2 = DΘB2Θ

>D, (A.3)

where D is a p× p diagonal matrices with elements di. Such networks also

exist in reality and have certain research value.

To investigate the heterogeneity of node trends, we apply the AMSC

algorithm in simulations. We construct a network consisting of 200 nodes

and 3 communities, each containing 50 pure nodes. The memberships of

the remaining 50 mixed nodes are randomly assigned from (xi, xi, 1− 2xi),

(xi, 1− 2xi, xi), or (1− 2xi, xi, xi), where xi is a random value uniformly

drawn from the interval [0, 0.5]. For the community transition probabilities,

ζi,i = ηi,i = 0.4, ζi,j and ηi,j are independently drawn from U [0.05, 0.25].

For each node i, di is a random number uniformly drawn from the interval

[0.5,1].

The simulation results are shown in Table A.2. As can be seen, the

AMSC algorithm demonstrates excellent performance in estimating the

membership matrix for models with heterogeneous node trends. Further-
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Table A.2: Mixed-Hamming error rates of the estimated and true membership matrices

with 500 replications on the AR-1 mixed membership model with heterogeneity in node

change trends.

K p n Mixed-Hamming error rate

3 200

5 0.2211

20 0.1626

50 0.0944

100 0.0575

more, the estimated membership matrix and connection probability matrix

can be used to estimate the node heterogeneity parameter di. However,

within this model framework, the theoretical foundation for the algorithm’s

application remains to be established. Furthermore, the methods used in

static degree correction networks can be extended to dynamic autoregres-

sive networks to improve estimation accuracy. These issues warrant further

investigation.



FIRSTNAME1 LASTNAME1 AND FIRSTNAME2 LASTNAME2

A.1.5 Discussion on BIC

From the definition of BICj, we can analyze the difference between consec-

utive BIC values:

BICK − BICK+1 = (p− 1−K) log
λ̄K
λ̄K+1

+ log λ̄K+1 − log λ̂K+1 −
p−K − 1

p
log p

= (p− 1−K) log[1−
(1− λ̂K+1

λ̄K+1
)

p− 1−K
]− log

λ̂K+1

λ̄K+1

− p−K − 1

p
log p

= (p− 1−K){log[1 +

λ̂K+1

λ̄K+1
− 1

p− 1−K
]−

log λ̂K+1

λ̄K+1

p− 1−K
− log p

p
}

For the true number of communities K to be selected, we require K =

arg minj≤p−2 BICj, which implies BICK ≤ BICK+1. As p tends to infinity,

if the ratio λ̂K+1/λ̄K+1 is much larger than log p, i.e., λ̂K+1/λ̄K+1 >> log p,

then we would have BICK > BICK+1, leading to an incorrect estimator.

Thus, the condition λ̂K+1/λ̄K+1 = O(log p) is necessary for K to be the

minimum argument. This implies that the performance of BIC is sensitive

to the ratio λ̂K+1/λ̄K+1, a ratio that incorporates all of the remaining small

eigenvalues λ̂K+2, . . . , λ̂p−1 through λ̄K+1, making the criterion unstable.

A.2 Supplement to the real data analysis

A.2.1 Global trade data

In Subsection 6.1 of the paper, we used the proposed algorithm to analyze

the global trade data. Here, we present some further details of the results.
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First, we provide some analysis results when K is set to 2, Figure A.1 shows

the average adjacency matrix of 195 countries from 1991 to 2014, with

countries sorted by estimated membership. In Figure A.1, red indicates

large values and blue indicates small values. It can be seen that during

the estimation period, trade intensity is concentrated in most developed

industrial countries in Community 1, while countries in Community 2 have

sparse trade, indicating that trade globalization has not yet spread to most

underdeveloped countries.

Next, when K is set to 6, we display the specific classification results of

the global trade data from 1991 to 2014 in Table A.3. The analytical con-

clusions we presented in the main text are consistent with this classification

results.

Furthermore, To test the robustness of the classification results on

global trade data, we estimate the membership using data from 1991 to

2011 and data from 1991 to 2006, and then compare their results.

For data up to 2011, only three of the 195 countries had different clas-

sifications than those up to 2014: Malta, Kuwait, and Singapore. For data

up to 2006, thirteen countries had different classifications than those up to

2014: Saint Kitts and Nevis, Argentina, Malta, Croatia, Slovenia, Liberia,
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Figure A.1: Average adjacency matrix for the 195 countries in the Global trade data.

Egypt, Yemen, Kuwait, Bahrain, Qatar, Tajikistan, and Singapore. Fur-

thermore, for these thirteen countries whose classifications changed, we find

that their maximum memberships in the estimates up to 2006 were all be-

low 0.6, and nine of these countries had maximum memberships below 0.5,

meaning that they were considered nodes between multiple communities in

the original results, but their distances from any one community were not

significantly close. We believe these results indicate that our estimates are



A.2. SUPPLEMENT TO THE REAL DATA ANALYSIS

Table A.3: The community detection result of the global trade data (1991-2014) for six

communities.
Country

Cluster1 United States of America, Canada, Colombia, Peru, Brazil, Argentina, United Kingdom, Ireland, Netherlands, Bel-

gium, Luxembourg, France, Switzerland, Spain, Portugal, Germany, Poland, Austria, Slovakia, Italy, Greece, Cyprus,

Finland, Sweden, Norway, Denmark, Turkey, Egypt, China, Taiwan, South Korea, Japan, India, Pakistan, Thailand,

Malaysia, Singapore, Philippines, Indonesia, Australia, New Zealand .

Cluster2 Bahamas, Cuba, Haiti, Dominican Republic, Jamaica, Trinidad and Tobago, Barbados, Dominica, Grenada, St. Lucia,

St. Vincent and the Grenadines, Antigua & Barbuda, St. Kitts and Nevis, Mexico, Belize, Guatemala, Honduras, El

Salvador, Nicaragua, Costa Rica, Panama, Venezuela, Guyana, Suriname, Ecuador, Bolivia, Paraguay, Chile, Uruguay,

Israel.

Cluster3 Monaco, Liechtenstein, Andorra, San Marino, Yugoslavia, Kosovo, Cape Verde, South Sudan, East Timor, Marshall

Islands, Palau, Federated States of Micronesia.

Cluster4 Hungary, Czech Republic, Malta, Albania, Montenegro, Macedonia, Croatia, Slovenia, Bulgaria, Moldova, Romania,

Russia, Estonia, Latvia, Lithuania, Ukraine, Belarus, Armenia, Georgia, Azerbaijan, Iran, Iraq, Syria, Jordan, Kuwait,

Bahrain, Qatar, United Arab Emirates, Afghanistan, Tajikistan, Kyrgyzstan, Kazakhstan, Mongolia, Bangladesh, Sri

Lanka, Cambodia, Vietnam.

Cluster5 Bosnia and Herzegovina, Sao Tome and Principe, Guinea-Bissau, Equatorial Guinea, Sierra Leone, Chad, Burundi,

Rwanda, Somalia, Djibouti, Eritrea, Malawi, Namibia, Lesotho, Botswana, Swaziland, Comoros, Seychelles, Turk-

menistan, Uzbekistan, Bhutan, Myanmar, Maldives, Nepal, Laos, Brunei, Papua New Guinea, Vanuatu, Solomon

Islands, Kiribati, Tuvalu, Fiji, Tonga, Nauru, Samoa.

Cluster6 Iceland, Gambia, Mali, Senegal, Benin, Mauritania, Niger, Ivory Coast, Guinea, Burkina Faso, Liberia, Ghana,

Togo, Cameroon, Nigeria, Gabon, Central African Republic, Congo, Democratic Republic of the Congo, Uganda,

Kenya, Tanzania, Ethiopia, Angola, Mozambique, Zambia, Zimbabwe, South Africa, Madagascar, Mauritius, Morocco,

Algeria, Tunisia, Libya, Sudan, Lebanon, Saudi Arabia, Yemen, Oman, North Korea.

sufficiently robust.

In addition to the above analysis, since the original data covers the

period from 1870 to 2014, we also analyze trade data before 1991. Using

Jiang et al. (2023), we find a change point in the trade data in 1991, likely

due to changes in the global situation caused by the end of the Cold War.
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Therefore, we analyze the network data before and after 1991 separately to

see if there were any significant changes in country classifications.

We initially attempt to use data from 1870 to 1991 for our analysis,

but the lack of early trade data made the classification results less inter-

pretable. Therefore, we follow Jiang et al. (2023) and use data from 1950

to 1991. The classification results are shown in Table A.4. Clearly, the

classification results before 1991 differ significantly from those after 1991.

In addition to the geographic characteristics of other communities, Com-

munity 1 and Community 3 include major countries, led by the United

States and Russia, respectively—the two major opposing sides of the Cold

War—which is consistent with the historical context of the time. These re-

sults are consistent with the conclusions of Jiang et al. (2023) and confirm

that international trade relations underwent significant changes with 1991

as the dividing point.

A.2.2 French high school contact data

We present details of the analysis of French high school contact data. The

dataset is taken from Mastrandrea et al. (2015). Students in the school

have different majors: the “MP” classes focus more on mathematics and

physics, the “PC” classes focus on physics and chemistry, the “PSI” classes
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Table A.4: The community detection results of the global trade data (1950-1991) for six

communities
Country

Cluster1 United States of America, Canada, United Kingdom, Netherlands, Belgium, Luxembourg, France, Switzerland, Spain,

Italy, Finland, Sweden, Norway, Denmark, Japan, India.

Cluster2 Jamaica, Trinidad and Tobago, Barbados, Dominica, Guyana, Austria, Malta, Cyprus, Uganda, Kenya, Tanzania,

Burundi, Rwanda, Somalia, Djibouti, Mozambique, Zambia, Zimbabwe, Swaziland, Madagascar, Mauritius, Seychelles,

Libya, Sudan, Syria, Jordan, Yemen Arab Republic, Yemen, Yemen People’s Republic, Kuwait, Bahrain, Qatar,

United Arab Emirates, Oman, Afghanistan, North Korea, Bangladesh, Nepal, Malaysia, Singapore, Brunei, Papua

New Guinea, Fiji.

Cluster3 Cuba, Brazil, Ireland, Portugal, Poland, Hungary, Czechoslovakia, Yugoslavia, Greece, Bulgaria, Romania, Russia,

Iceland, Ethiopia, South Africa, Iran, Turkey, Iraq, Egypt, Lebanon, Israel, Saudi Arabia, China, South Korea,

Pakistan, Myanmar, Sri Lanka, Thailand, Philippines, Indonesia, Australia, New Zealand.

Cluster4 Bahamas, Haiti, Dominican Republic, Mexico, Belize, Guatemala, Honduras, El Salvador, Nicaragua, Costa Rica,

Panama, Colombia, Venezuela, Suriname, Ecuador, Peru, Bolivia, Paraguay, Chile, Argentina, Uruguay.

Cluster5 Grenada, St. Lucia, St. Vincent and the Grenadines, Antigua & Barbuda, St. Kitts and Nevis, Liechtenstein,

German Federal Republic, Albania, Cape Verde, Sao Tome and Principe, Guinea-Bissau, Equatorial Guinea, Zanzibar,

Namibia, Lesotho, Botswana, Comoros, Mongolia, Bhutan, Maldives, Cambodia, Laos, Republic of Vietnam, Vanuatu,

Solomon Islands, Samoa.

Cluster6 Germany, German Democratic Republic, Gambia, Mali, Senegal, Benin, Mauritania, Niger, Ivory Coast, Guinea,

Burkina Faso, Liberia, Sierra Leone, Ghana, Togo, Cameroon, Nigeria, Gabon, Central African Republic, Chad,

Congo, Democratic Republic of the Congo, Angola, Malawi, Morocco, Algeria, Tunisia, Vietnam.

focus on engineering studies, and the “BIO” classes focus on biology. The

data comes from students in nine classes: 3 classes of the “MP” type (MP1,

MP2, MP3), two classes of the “PC” type (PC1 and PC2), one class of the

“PSI” type (PSI), and 3 classes of the “BIO” type (BIO1, BIO2, BIO3).

The dataset contains information on a total of 329 students. Since two of

the students did not communicate with anyone else, we excluded them from
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the data and used the data of the remaining 327 students for the analysis.

We apply the empirical eigenvalue-threshold estimator to the data set.

The result shows that K = 9 is the most appropriate setting, which also

coincides with the number of classes.

Assume that the community number K = 9. We apply the AMSC

algorithm to the data and classify students to different communities based

on their respective largest membership, we present the result in Table A.5.

It can be seen that students of the 9 original classes are identified perfectly

into 9 communities, which is better than the result given by Jiang et al.

(2023) for the same dataset. In addition, since the algorithm gives a mem-

bership vector instead of a simple community label, we can not only clas-

sify students by the community that each node belongs to with the largest

membership but also explore each node’s tendency to belong to other com-

munities, which can help us study the unique communication tendencies of

different students in the same class.

Further, to demonstrate the robustness of our estimation of the French

high school contact data, we try to randomly delete the contact data of some

students and then use the AMSC algorithm to estimate the communities

of the remaining students. We try to keep 200 students and 100 students

respectively, which means that 127 and 227 students are removed, and
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Table A.5: Estimated community distribution for 327 students by the proposed commu-

nity detection method. The number of communities K = 9.

Class Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9

BIO1 36 0 0 0 0 0 0 0 0

BIO2 0 34 0 0 0 0 0 0 0

BIO3 0 0 40 0 0 0 0 0 0

MP1 0 0 0 33 0 0 0 0 0

MP2 0 0 0 0 29 0 0 0 0

MP3 0 0 0 0 0 38 0 0 0

PC1 0 0 0 0 0 0 44 0 0

PC2 0 0 0 0 0 0 0 39 0

PSI 0 0 0 0 0 0 0 0 34

we repeat the experiment several times with different random seeds. The

results show that the deviation of the estimate gradually becomes larger as

the number of students included in the estimation decreases. However, the

estimation of our method is always better than the original AR-1 algorithm

in Jiang et al. (2023). Table A.6 and Table A.7 show the comparison of our

estimation with the estimation using the AR-1 algorithm when the random

seed is set to 0. It can be seen that for 200 students, the AMSC algorithm

identified all the 9 original classes as the 9 clusters with only 2 students

being placed outside their classes, while for the original AR-1 algorithm,

9 students are being placed in the wrong classes. In the situation of 100

students, the AMSC algorithm identified 9 classes as the 9 clusters with 2
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Table A.6: Estimated community distribution of the AMSC algorithm after removing

127 students (random seed set to 0), and estimated communities of the AR-1 algorithm

for the same dataset. In each cell, the black number on the left is the estimation by the

AMSC algorithm, and the red number in parentheses on the right is the estimation by

the AR-1 algorithm.

Class Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9

BIO1 25(25) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

BIO2 0(0) 18(18) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

BIO3 0(0) 0(0) 22(21) 0(0) 0(0) 0(0) 0(0) 0(0) 0(1)

MP1 0(0) 0(0) 0(0) 14(12) 0(2) 1(1) 0(0) 0(0) 1(1)

MP2 0(0) 0(0) 0(0) 0(0) 19(19) 0(0) 0(0) 0(0) 0(0)

MP3 0(0) 0(0) 0(0) 0(0) 0(0) 23(23) 0(0) 0(0) 0(0)

PC1 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 29(27) 0(1) 0(1)

PC2 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 23(22) 0(1)

PSI 0(0) 0(0) 0(0) 0(0) 0(1) 0(0) 0(0) 0(0) 25(24)

students being placed outside their classes. The original AR-1 algorithm, on

the other hand, performed poorly and even divided the majority of students

from two different classes ”PC1” and ”PSI” into the same cluster, Cluster

7.
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Table A.7: Estimated community distribution of the AMSC algorithm after removing

227 students (random seed set to 0), and estimated communities of the AR-1 algorithm

for the same dataset. In each cell, the black number on the left is the estimation by the

AMSC algorithm, and the red number in parentheses on the right is the estimation by

the AR-1 algorithm.

Class Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9

BIO1 14(14) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

BIO2 0(0) 13(5) 0(6) 0(0) 0(0) 0(0) 0(0) 0(0) 0(2)

BIO3 0(0) 0(4) 10(4) 0(0) 0(0) 0(0) 0(0) 0(0) 0(2)

MP1 0(0) 0(0) 0(0) 8(6) 0(1) 0(1) 0(0) 0(0) 0(0)

MP2 0(0) 0(0) 0(0) 1(0) 11(10) 0(0) 0(0) 0(0) 0(2)

MP3 0(0) 0(0) 0(0) 0(0) 1(0) 8(8) 0(0) 0(0) 0(1)

PC1 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 12(10) 0(1) 0(1)

PC2 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 11(10) 0(1)

PSI 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(8) 0(0) 11(3)

A.3 Technical proofs

A.3.1 Proof of Theorem 1

proof : It is obvious that for any pure node i belonging to the community k,

the corresponding row θi in Θ satisfies θi(k) = 1 and all remaining elements

are 0. Since I is the indices of rows corresponding to K pure nodes from

each community, without loss of generality, we can reorder the nodes to

ensure that Θ(I, :) = I. Here, I is the identity matrix.
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Note that

P ∗ =
P1P1

‖P1‖2
F

+
P2P2

‖P2‖2
F

= Θ

(
B1Θ

>ΘB1

‖P1‖2
F

+
B2Θ

>ΘB2

‖P2‖2
F

)
Θ>.

From Assumption 3 and Θ(I, :) = I, it can be seen that rank(P ∗) = K.

Then, we have

Γ(I, :)ΛΓ(I, :)> = P ∗(I, I) = Θ(I, :)(B1Θ
>ΘB1

‖P1‖2
F

+
B2Θ

>ΘB2

‖P2‖2
F

)Θ(I, :)> = B∗,

which shows that Γ(I, :) ∈ RK×K is full rank. Then, we can obtain that

Γ(I, :)ΛΓ> = P ∗(I, :) = Θ(I, :)(B1Θ
>ΘB1

‖P1‖2
F

+
B2Θ

>ΘB2

‖P2‖2
F

)Θ> = B∗Θ>,

therefore, we have

Γ = P ∗ΓΛ−1 = ΘB∗Θ>ΓΛ−1 = ΘΓ(I, :)ΛΓ>ΓΛ−1 = ΘΓ(I, :).

This completes the proof.

A.3.2 Proof of Proposition 1

Proof : Note that λ1 ≥ · · · ≥ λK > λK+1 = · · · = λp = 0 are the eigenvalues

of P ∗, and λ̂1 ≥ · · · ≥ λ̂p ≥ 0 are the eigenvalues of P̂ ∗. Since both P ∗

and P̂ ∗ are symmetric matrices, by Theorem A.37 in Bai and Silverstein

(2010), it follows that

max
i=1,...,p

{
λi − λ̂i

}2

≤
p∑
i=1

{
λi − λ̂i

}2

≤ tr

{(
P ∗ − P̂ ∗

)(
P ∗ − P̂ ∗

)T
}

≤ ‖P ∗ − P̂ ∗‖2
F .
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Therefore, using the conclusion in (A.12), we have that with probability

1− 4 exp{−c log p}, there exists a constant C such that

max
i=1,...,p

|λi − λ̂i| ≤ ‖P ∗ − P̂ ∗‖F ≤
C(
√
p log p+

√
n)

√
np

, (A.4)

which, jointly with (A.4), implies that

max
i=1,...,K

|λi − λ̂i| ≤
C(
√
p log p+

√
n)

√
np

, (A.5)

max
i=(K+1),...,p

λ̂i ≤
C(
√
p log p+

√
n)

√
np

. (A.6)

If k ≤ K, by the assumption that λK > c0, we have λk > c0, which,

jointly with (A.5), yields that λ̂k > c0 − C(
√
p log p+

√
n)√

np
with probability

1− 4 exp{−c log p}. Since
√
p log p+

√
n√

np
→ 0 as n, p→∞, if we set ξ ≤ c0/2,

it follows that λ̂k > ξ ∗min (1, (
√
p log p+

√
n√

np
)r), a.s. as n, p→∞.

Similarly, if k > K, since r satisfy 0 < r < 1, by (A.6), for any

constant cr, λ̂k ≤ cr(
(
√
p log p+

√
n)√

np
)r, a.s. as n, p → ∞. Therefore, we have

λ̂k < ξ ∗min (1, (
√
p log p+

√
n√

np
)r), a.s. as n, p→∞.

A.3.3 Proof of Theorem 2

Proof : We first find a bound of ‖P̂ ∗ − P ∗‖F . Note that

‖P̂ ∗ − P ∗‖F = ‖(P̂ ∗1 P̂ ∗1 + P̂ ∗2 P̂
∗
2 )− (P ∗1P

∗
1 + P ∗2P

∗
2 )‖F

= ‖(P̂ ∗1 P̂ ∗1 − P ∗1P ∗1 ) + (P̂ ∗2 P̂
∗
2 − P ∗2P ∗2 )‖F

≤ ‖P̂ ∗1 P̂ ∗1 − P ∗1P ∗1 ‖F + ‖P̂ ∗2 P̂ ∗2 − P ∗2P ∗2 ‖F .

(A.7)
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To bound ‖P̂ ∗ − P ∗‖F , we only need to bound ‖P̂ ∗1 P̂ ∗1 − P ∗1P ∗1 ‖F since a

bound of ‖P̂ ∗2 P̂ ∗2 −P ∗2P ∗2 ‖F can be obtained in a similar way. In view that

‖P̂ ∗1 P̂ ∗1 − P ∗1P ∗1 ‖F ≤ ‖ P̂1P̂1

‖P̂1‖2F
− P̂1P̂1

‖P1‖2F
‖F + ‖ P̂1P̂1

‖P1‖2F
− P1P1

‖P1‖2F
‖F

=
|‖P̂1‖2F−‖P1‖2F |‖P̂1P̂1‖F

‖P̂1‖2F ‖P1‖2F
+ ‖P̂1P̂1−P1P1‖F

‖P1‖2F

≤ (‖P̂1‖F+‖P1‖F |‖P̂1‖F−‖P1‖F |)‖P̂1‖2F
‖P̂1‖2F ‖P1‖2F

+ ‖P̂1P̂1−P1P1‖F
‖P1‖2F

≤ 2‖P1‖F |‖P̂1‖F−‖P1‖F |
‖P1‖2F

+ (‖P̂1‖F−‖P1‖F )2

‖P1‖2F
+ ‖P̂1P̂1−P1P1‖F

‖P1‖2F

≤ 2‖P̂1−P1‖F
‖P1‖F

+ (‖P̂1−P1‖F
‖P1‖F

)2 + ‖P̂1P̂1−P1P1‖F
‖P1‖2F

,

(A.8)

we first bound ‖P̂1−P1‖F . Denote P̃1 = P1−diag(P1). Since diag(P̂1) = 0,

we have

‖P̂1 − P1‖F ≤ ‖P̂1 − P̃1‖F + ‖P̃1 − P1‖F

=
√ ∑

1≤i,j≤p
i 6=j

(α̂i,j − αi,j)2 + ‖ diag(P1)‖F

=
√ ∑

1≤i,j≤p
i 6=j

(α̂i,j − αi,j)2 +
√ ∑

1≤k≤p
(αk,k)2.

From Assumption 1, we have for all 1 ≤ i, j ≤ p, l ≤ αi,j ≤ 1, which, jointly

with Proposition A.1.1, implies that for any constant c > 0, there exists a

large constant C such that with probability 1− 2 exp{−c log p},

‖P̂1 − P1‖F ≤ C

(
p

√
log p

n
+
√
p

)
. (A.9)
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We next bound ‖P̂1P̂1 − P1P1‖F . Since

‖P̂1P̂1 − P1P1‖F ≤ ‖P̂1P̂1 − P̃1P̃1‖F + ‖P̃1P̃1 − P1P1‖F

=

√√√√ ∑
1≤i,j≤p
i 6=j

[
p∑

k=1

(α̂i,kα̂j,k − αi,kαj,k)]2 +
√ ∑

1≤i,j≤p
[(αi,i + αj,j)αi,j]2 −

∑
1≤i≤p

3(αi,i)4

=

√√√√ ∑
1≤i,j≤p
i 6=j

[
p∑

k=1

(α̂i,kα̂j,k − αi,kα̂j,k + αi,kα̂j,k − αi,kαj,k)]2

+
√ ∑

1≤i,j≤p
[(αi,i + αj,j)αi,j]2 −

∑
1≤i≤p

3(αi,i)4

=

√√√√ ∑
1≤i,j≤p
i 6=j

{
p∑

k=1

[α̂j,k(α̂i,k − αi,k) + αi,k(α̂j,k − αj,k)]}2

+
√ ∑

1≤i,j≤p
[(αi,i + αj,j)αi,j]2 −

∑
1≤i≤p

3(αi,i)4.

(A.10)

Note that by (2.5), it follows that for all 1 ≤ i, j ≤ p, α̂i,j ≤ 1. Therefore,

by Assumption 1, Proposition A.1.1 and (A.10), we have

‖P̂1P̂1−P1P1‖F ≤ C(

√√√√p2

(
p

√
log p

n

)2

+
√
p2 − p) ≤ C

(
p2

√
log p

n
+ p

)
.

(A.11)

Note that

‖P1‖F =

√ ∑
1≤i,j≤p

(αi,j)2 ≥ pl.
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By (A.8), (A.9) and (A.11), it follows that

‖P̂1 − P1‖F
‖P1‖F

≤ C

l

(√
log p

n
+

√
p

p

)
,

|‖P̂1P̂1 − P1P1‖F
‖P1‖2

F

≤ C

l2

(√
log p

n
+

1

p

)
.

When n, p→∞, it is easy to show that(
‖P̂1 − P1‖F
‖P1‖F

)2

= o

(√
log p

n
+

√
p

p

)
.

Therefore, for any constant c > 0, there exists a large constant Cp1 such

that with probability 1− 2 exp{−c log p},

‖P̂ ∗1 P̂ ∗1 − P ∗1P ∗1 ‖F ≤ Cp1

(√
log p

n
+

√
p

p

)
.

Similarly, we can show that there exists a large constant Cp2 such that with

probability 1− 2 exp{−c log p},

‖P̂ ∗2 P̂ ∗2 − P ∗2P ∗2 ‖F ≤ Cp2

(√
log p

n
+

√
p

p

)
.

Therefore, by (A.7), we have that for any constant c > 0, with probability

1− 4 exp{−c log p}, there exists a constant Cp = Cp1 + Cp2 satisfy that

‖P̂ ∗ − P ∗‖F ≤ Cp

(√
log p

n
+

√
p

p

)
= Cp

(√
p log p+

√
n

√
np

)
. (A.12)

To show (4.2), by Davis-Kahan Theorem in Yu et al. (2014), we have

that for constant Cγ = 23/2Cp, there exist a K × K orthogonal matrix O
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such that

‖Γ̂O − Γ‖F ≤
Cγ(
√
p log p+

√
n)

√
npλK

.

This completes the proof.

A.3.4 Proof of Theorem 3

Proof : As mentioned in Section 4 of our paper. The set S is defined as

S = {U ∈ RK×K}. We show that for any U ∈ S, L(Γ̂O;U) converges to

L(Γ;U). For each i, let u1i and u2i be the rows in U that are closest to

(Γ̂O)(i, :) and Γ(i, :), respectively, note that

‖Γ(i, :)− u2i‖2 ≤ ‖Γ(i, :)− u1i‖2,

‖(Γ̂O)(i, :)− u1i‖2 ≤ ‖(Γ̂O)(i, :)− u2i‖2.

so we have

‖Γ(i, :)− u2i‖2 − ‖(Γ̂O)(i, :)− u1i‖2 ≤ ‖Γ(i, :)− u1i‖2 − ‖(Γ̂O)(i, :)− u1i‖2

≤ ‖Γ(i, :)− (Γ̂O)(i, :)‖2,

‖(Γ̂O)(i, :)− u1i‖2 − ‖Γ(i, :)− u2i‖2 ≤ ‖(Γ̂O)(i, :)− u2i‖2 − ‖Γ(i, :)− u2i‖2

≤ ‖Γ(i, :)− (Γ̂O)(i, :)‖2.

Therefore, we have

|‖(Γ̂O)(i, :)− u1i‖2 − ‖Γ(i, :)− u2i‖2| ≤ ‖Γ(i, :)− (Γ̂O)(i, :)‖2,
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Note that the loss function L(Q,U) is defined as

L(Q,U ) =
1

p

p∑
i=1

min
1≤k≤K

‖Q(i, :)−U(k, :)‖2.

We get

|L(Γ̂O;U)− L(Γ;U)| = |1
p

p∑
i=1

(‖(Γ̂O)(i, :)− u1i‖2 − ‖Γ(i, :)− u2i‖2)|

≤

√√√√1

p

p∑
i=1

‖(Γ̂O)(i, :)− Γ(i, :)‖2
2 =

1
√
p
‖Γ̂O − Γ‖F .

(A.13)

Since (A.13) holds for any matrix U , we obtain that

sup
U∈S
|L(Γ̂O;U)− L(Γ;U)| ≤ ‖Γ̂O − Γ‖F√

p
.

Then, we bound ‖V̂ O − V ‖F . Note that

L(Γ; V̂ O)− L(Γ;V ) ≤ |L(Γ; V̂ O)− L(Γ̂O; V̂ O)|

+ (L(Γ̂O; V̂ O)− L(Γ̂O;V ))

+ |L(Γ̂O;V )− L(Γ;V )|

≤ 2 sup
U∈S
|L(Γ̂O;U)− L(Γ;U)|.

By Assumption 4, we have that with probability at least 1−4 exp{−c log p},

the following holds:
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‖V̂ O − V ‖F ≤ (κK−1)−1(L(Γ; V̂ O)− L(Γ;V ))

≤ 2K

κ
sup
U∈S
|L(Γ̂O;U)− L(Γ;U)|

≤ 2K

κ

(
‖Γ̂O − Γ‖F√

p

)

≤ 2K

κ

(
Cγ(
√
p log p+

√
n)

p
√
nλK

)
=
CvK(

√
p log p+

√
n)

p
√
nλK

,

where Cv = 2Cγ
κ

. This completes the proof.

A.3.5 Proof of Theorem 4

Proof : First, let m =
mini{‖Γ(i,:)‖22}
maxi{‖Γ(i,:)‖22}

. Note that ‖Γ‖F =
√
K, since V =

Γ(I, :) is a submatrix of Γ, we have

‖V ‖F =

√
‖V ‖2

F

‖Γ‖2
F

‖Γ‖2
F =

√
‖Γ(I, :)‖2

F

(
∑p

i=1 ‖Γ(i, :)‖2
2)
K.

Therefore, we have

√
mK
√
p

=

√
mK

p
K ≤ ‖V ‖F ≤

√
K

mp
K =

K
√
mp

.

Let each row yi of matrix Y satisfy

yi = θi.
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It is obvious that

θi =
yi
‖yi‖1

,

and

Γ(i, :) = yiV .

Hence,

Y = ΓV >(V V >)−1,

Since

‖θ̂i − θi‖2 = ‖ ỹi
‖ỹi‖1

− yi
‖yi‖1

‖2 = ‖ ỹi‖yi‖1 − yi‖ỹi‖1

‖ỹi‖1‖yi‖1

‖2

= ‖ ỹi‖yi‖1 − ỹi‖ỹi‖1 + ỹi‖ỹi‖1 − yi‖ỹi‖1

‖ỹi‖1‖yi‖1

‖2

≤ ‖ỹi‖yi‖1 − ỹi‖ỹi‖1‖2 + ‖ỹi‖ỹi‖1 − yi‖ỹi‖1‖2

‖ỹi‖1‖yi‖1

=
‖ỹi‖2|‖yi‖1 − ‖ỹi‖1|+ ‖ỹi‖1‖ỹi − yi‖2

‖ỹi‖1‖yi‖1

≤ ‖ỹi‖1|‖yi‖1 − ‖ỹi‖1|+ ‖ỹi‖1‖ỹi − yi‖2

‖ỹi‖1‖yi‖1

=
|‖yi‖1 − ‖ỹi‖1|+ ‖ỹi − yi‖2

‖yi‖1

≤ ‖yi − ỹi‖1 + ‖ỹi − yi‖2

‖yi‖1

≤ (
√
K + 1)‖ỹi − yi‖2

‖yi‖1

= (
√
K + 1)‖ỹi − yi‖2,

it follows that

‖Θ̂−Θ‖F ≤ (
√
K + 1)‖Ỹ − Y ‖F .

Since all elements of Θ are non-negative, by the definition of Y , all elements

of Y are also non-negative, which means that for any 1 ≤ i ≤ p, 1 ≤ j ≤ K,
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Yij = max{Yij, 0}), so we have

|Ỹij − Yij| ≤ |Ŷij − Yij|,

which implies that

‖Ỹ − Y ‖F ≤ ‖Ŷ − Y ‖F .

Therefore, we only need to bound ‖Ŷ − Y ‖F . By Theorem 2, we have

‖Ŷ − Y ‖F = ‖Γ̂V̂ >(V̂ O(V̂ O)>)−1 − ΓV >(V V >)−1‖F

= ‖Γ̂O(V̂ O)>(V̂ O(V̂ O)>)−1 − ΓV >(V V >)−1‖F

= ‖Γ̂O(V̂ O)>(V̂ O(V̂ O)>)−1 − Γ̂OV >(V V >)−1

+ Γ̂OV >(V V >)−1 − ΓV >(V V >)−1‖F

≤ ‖Γ̂O(V̂ O)>(V̂ O(V̂ O)>)−1 − Γ̂OV >(V V >)−1‖F

+ ‖Γ̂OV >(V V >)−1 − ΓV >(V V >)−1‖F

≤ ‖Γ̂O‖F‖(V̂ O)>(V̂ O(V̂ O)>)−1 − V >(V V >)−1‖F

+ ‖Γ̂O − Γ‖F‖V >(V V >)−1‖F

≤ ‖Γ̂‖F‖(V̂ O)>(V̂ O(V̂ O)>)−1 − V >(V V >)−1‖F

+ ‖Γ̂O − Γ‖F‖V ‖F‖(V V >)
−1‖F

≤
√
K‖(V̂ O)>(V̂ O(V̂ O)>)−1 − V >(V V >)−1‖F + ‖Γ̂O − Γ‖F‖V ‖F‖(V V >)−1‖F

≤
√
K‖(V̂ O)>(V̂ O(V̂ O)>)−1 − V >(V V >)−1‖F +

CγK(
√
p log p+

√
n)

p
√
mnλK

‖(V V >)−1‖F .

(A.14)
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Here, the second line holds because

Γ̂V̂ >(V̂ O(V̂ O)>)−1 = (Γ̂O)(V̂ O)>((V̂ O)(V̂ O)>)−1,

while the second line from the bottom hold because ‖Γ̂‖F =
√
K and

‖V ‖F ≤ K√
mp

.

Next, we need to bound ‖(V̂ O)>(V̂ O(V̂ O)>)−1−V >(V V >)−1‖F and

‖(V V >)−1‖F . Since V V > is a positive definite symmetric matrix, we have

‖(V V >)−1‖F ≤
√
K

λmin(V V >)
. (A.15)

From the fact that ‖V ‖F ≤ K√
mp

, |λmin(V )| > 0, it follows that

‖V̂ OV̂ O> − V V >‖F ≤ ‖V̂ O(V̂ O − V )> + (V̂ O − V )V >‖F

≤ (‖V̂ O‖F + ‖V ‖F )‖V̂ O − V ‖F ≤ (‖V̂ O − V ‖F + 2‖V ‖F )‖V̂ O − V ‖F

≤ (‖V̂ O − V ‖F + 2
K
√
mp

)‖V̂ O − V ‖F

Then we have

‖(V̂ OV̂ O>)−1 − (V V >)−1‖F ≤ ‖(V̂ OV̂ O>)−1‖F‖(V V >)−1‖F‖V̂ OV̂ O> − V V >‖F

≤
√
K(λmin(V̂ OV̂ O>))−1

√
K(λmin(V V >))−1‖V̂ OV̂ O> − V V >‖F

≤K
(
λmin(V V >)− ‖V̂ OV̂ O> − V V >‖F

)−1

(λmin(V V >))−1‖V̂ OV̂ O> − V V >‖F

≤K(λmin(V V >)− (‖V̂ O − V ‖F + 2
K
√
mp

)‖V̂ O − V ‖F )−1(λmin(V V >))−1

(‖V̂ O − V ‖F + 2
K
√
mp

)‖V̂ O − V ‖F
(A.16)
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Since
(√

p log p+
√
n
)
/(
√
npλK) → 0, we have

√
p‖V̂ O − V ‖F → 0.

Therefore, ‖V̂ O−V ‖F
2 K√

mp

→ 0 and
2 K√

mp
‖V̂ O−V ‖F

λmin(V V >)
≤ 2

√
pK‖V̂ O−V ‖F√

mmV
→ 0, Thus

‖(V̂ O(V̂ O)>)−1 − (V V >)−1‖F ≤ Cλ
K2

√
mp

(λmin(V V >))−2‖V̂ O − V ‖F ,

(A.17)

where Cλ =
λmin(V V >)(2+

√
mp‖V̂ O−V ‖F

K
)

λmin(V V >)−(2 K√
mp

+‖V̂ O−V ‖F )‖V̂ O−V ‖F
.

Next, by (A.15) and (A.17), we have

‖(V̂ O)>(V̂ O(V̂ O)>)−1 − V >(V V >)−1‖F

= ‖(V̂ O)>(V̂ O(V̂ O)>)−1 − (V̂ O)>(V V >)−1 + (V̂ O)>(V V >)−1 − V >(V V >)−1‖F

≤ ‖V̂ ‖F‖(V̂ O(V̂ O)>)−1 − (V V >)−1‖F + ‖V̂ O − V ‖F‖(V V >)−1‖F

≤ K
√
mp
‖(V̂ O(V̂ O)>)−1 − (V V >)−1‖F + ‖V̂ O − V ‖F‖(V V >)−1‖F

≤ K
√
mp
‖(V̂ O(V̂ O)>)−1 − (V V >)−1‖F +

√
K‖V̂ O − V ‖F
λmin(V V >)

≤ CλK
3‖V̂ O − V ‖F

mpλmin(V V >)2
+

√
K‖V̂ O − V ‖F
λmin(V V >)

.

(A.18)



FIRSTNAME1 LASTNAME1 AND FIRSTNAME2 LASTNAME2

By (A.14), (A.15), and (A.18), it follows that

‖Ŷ − Y ‖F ≤
√
K‖(V̂ O)>(V̂ O(V̂ O)>)−1 − V >(V V >)−1‖F +

CγK(
√
p log p+

√
n)

p
√
mnλK

‖(V V >)−1‖F

≤
√
K

(
CλK

3

mpλmin(V V >)
+
√
K

)
‖V̂ O − V ‖F
λmin(V V >)

+
CγK

3/2(
√
p log p+

√
n)

p
√
mnλKλmin(V V >)

≤
√
K

(
CλK

3

mmV

+
√
K

)
p‖V̂ O − V ‖F

mV

+
CγK

3/2(
√
p log p+

√
n)√

mnλKmV

≤
(
CλK

5/2

mmV

+ 1

)
Cv
K2(
√
p log p+

√
n)√

nλKmV

+
CγK

3/2(
√
p log p+

√
n)√

mnλKmV

≤ CYK
7/2(
√
p log p+

√
n)

m
√
nλKm2

V

,

where CY ≥ CλCv + CvmmV
K3/2 + Cγ

√
mmV
K2 .

Let Cz ≥ CY (1 + 1√
K

). By combining all the results above, we obtain

that

‖Θ̂−Θ‖F√
p

≤ (
√
K + 1)‖Ỹ − Y ‖F√

p
≤ (
√
K + 1)‖Ŷ − Y ‖F√

p
≤ CzK

4(
√
p log p+

√
n)

m
√
npλKmV

2

holds with probability at least 1 − 4 exp{−c log p}, which concludes the

proof.
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