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In the supplementary material, we first provide extensional theoretical arguments concerning the two

specific statistical models and remark on the optional fine-tuning step. Then, we present additional numerical

details that further support our arguments. Finally, we provide the proofs of the theoretical results.

S.1 Extensional Theoretical Arguments

In this section, we present some extensional theoretical arguments. The preceding

deterministic arguments are discussed under two specific statistical models, namely

sparse linear regression and generalized low-rank trace regression, respectively. Thanks

to Theorem 1, which guaranties an oracle local minimum of (2.5), it suffices to discuss

the oracle pooling estimator θ̂P thoroughly in these two specific cases.



S.1.1 Oracle pooling estimator under specific models

We first discuss the oracle pooling estimator under two specific statistical models,

namely sparse linear regression and generalized low-rank trace regression, from a

theoretical perspective, while providing some intuition on enlarging the regularization

strength.

Sparse linear regression

We assume that the k-th dataset consists of nk i.i.d. samples from the linear model

yk,i = ⟨θ∗
k,Xk,i⟩ + εk,i and k = 0, . . . , K. Let θ∗

0 be s-sparse with s < ∞. To cope

with the sparsity structure of θ∗
0, we take the decomposable regularizer R = ∥ · ∥1.

We follow Raskutti et al. (2010) and (a) assume that the nk × p design matrices

Xk = (Xk,1, . . . ,Xk,nk
)⊤ are formed by independently sampling nk identical Xk,i ∼

N(0,Σk) with the covariance matrices Σk satisfying M−1
1 ≤ λmin(Σk) ≤ λmax(Σk) ≤

M1, which is often referred to as the Σk-Gaussian ensembles; (b) assume that εk,i

are independently drawn from the same centered sub-Gaussian distribution; and (c)

for k = 1, . . . , K, we assume either ∥δ∗
k∥1 ≤ h or ∥δ∗

k∥2 ≤ h (if ∥δ∗
k∥2 ≤ h, we further

assume that p/nk → ck holds for some positive constant ck) for δ
∗
k = θ∗

0 − θ∗
k.

Corollary 1 (Sparse linear regression). Given the above settings, we can solve the

problem (2.4) with λP ≍
[
(log p/nP)

1/2 + h
]
. As mink∈P nk → ∞, p → ∞ with
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maxk∈P log p/nk → 0 and h → 0, the oracle pooling estimator satisfies∥∥∥θ̂P − θ∗
0

∥∥∥2 = Op

[
s log p

nP
+ sh2

]
,
∥∥∥θ̂P − θ∗

0

∥∥∥
1
= Op

[
s

(
log p

nP

)1/2

+ sh

]
.

In Li et al. (2022), the authors introduce the population oracle pooling parameter

as θ∗
P = argmin

∑
k∈P nkE[Lk(Zk;θ)]/nP , where Lk is the least squared error loss. In

the first step, they acquire the estimator of θ∗
P as θ̃P . In the second step, they plug-in

θ̃P and estimate θ∗
0 − θ∗

P by solving a fine-tuning optimization problem. When there

is no model shift, namely h = 0, we have θ∗
P = θ∗

0, and we shall solve (2.4) with the

tuning parameter λP ≍ (log p/nP)
1/2. We also call it the default rate of regularization,

corresponding to the pooled variance term. In fact, in the pooling step of the classical

two-step procedures (Bastani, 2021; Li et al., 2022; Tian and Feng, 2023), when h ̸= 0,

the typical rate for regularization is also λP ≍ (log p/nP)
1/2. However, the second

fine-tuning step of Li et al. (2022) relies heavily on the sparsity of θ∗
P − θ∗

0, which,

in turn, requires sparse contrast vectors and homogeneous Hessian matrices of the

population loss functions. In the case of linear regression, the Hessian matrices are the

population covariance matrices of the covariates, namely Σk := E[Xk,iX
⊤
k,i]. Hence,

these two-step methods are quite sensitive to covariate shift, as remarked in He et al.

(2024). In fact, we now provide a toy example where the procedures might fail under

nearly homogeneous covariates.

Example 1 (Almost homogeneous covariates). For independentXk,i such that EXk,i =

0, Σk = EXk,iX
⊤
k,i, and independent noise εk,i ∼ N(0, Ip), let yk,i = ⟨θ∗

k,Xk,i⟩+ εk,i,



k = 0, 1, 2. In addition, assume that n0 = n1 = n2 and θ∗
0 is s-sparse. It is shown in

Li et al. (2022) that for δ∗
k = θ∗

0 − θ∗
k, we have

θ∗
0 − θ∗

P =

(
2∑

k=0

Σk

)−1

(Σ1δ1 +Σ2δ2) .

As for homogeneous covariates, such that the covariance matrices are set as Σ0 =

Σ1 = Σ2, we have θ
∗
0−θ∗

P ≍ (δ1+δ2), which should be well-bounded by ∥·∥1 according

to the triangular inequality, once we assume ∥δ∗
k∥1 ≤ h. However, consider the nearly

homogeneous covariates such that

Σ0 = Ip, Σ1 = Ip + cZp, Σ2 = Ip − cZp,

where Zp is a fixed realization from the standard Gaussian orthogonal ensemble

(GOE), which is the symmetric random matrix with the diagonal elements taken

independently from N(0, 2p−1) and the off-diagonal elements taken independently

from N(0, p−1). As p → ∞, the spectrum of Zp is bounded within [−2, 2] with high

probability, so Σ1 and Σ2 are positive definite with high probability for sufficiently

small c > 0. Notably, ∥vec(Σ1) − vec(Σ2)∥∞ ≍ ∥vec(Zp)∥∞ ≲ (log p/p)1/2 → 0 as

p → ∞. In this case, we have θ∗
0 − θ∗

P ≍ (δ1 + δ2) + cZp(δ1 − δ2). Let δ1 = −δ2 =

(h, 0, · · · , 0)⊤, Zp = (z1, z2, · · · , zp); we have

∥θ∗
0 − θ∗

P∥1 ≍ ch∥z1∥1 ≳ ch
√
p → ∞,

by observing that ∥z1∥1 approximately equals the sum of p independent absolute

values of N(0, p−1).
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That is to say, the population pooling parameter θ∗
P could be significantly dif-

ferent from θ∗
0 even if all θ∗

k are close in terms of ℓ1 norm, under heterogeneous

covariates. On the other hand, if we instead impose the slightly stronger regulariza-

tion λP ≍ (log p/nP)
1/2 + h, which could be viewed as the combination of bias and

variance, we shall have θ̂P close to θ∗
0, as ensured by Corollary 1 above.

Here, we slightly enlarge the regularization strength from the default rate to

λP ≍ (log p/nP)
1/2 + h to address any potential covariate shift. We would like

to provide some intuitions on such enlarging regularization. It is well-known that

R = ∥ · ∥1 is able to element-wise shrink the estimator towards 0. Recall that θ∗
0 is

supported on some subset S ⊂ {0, 1, . . . , p} with cardinality s. However, given the

potential model shift of sources, it is likely that we will have non-zero estimates in

Sc, the magnitude of which is bounded above by h. By enlarging the regularization

by h, we are likely to penalize those estimates in Sc to zero, as desired. The price

we pay is that additional regularization is simultaneously enforced on each element

in S, which also shrinks more towards 0 by h, resulting in the additional sh2 term

in Corollary 1. The very same intuition applies to the generalized low-rank trace

regression below; except there, we use the matrix nuclear norm R = ∥ · ∥N to shrink

all the singular values.

In Li et al. (2022, 2024), for their oracle transfer learning estimators to be prefer-

able, they need h ≲ (log p/n0)
1/2, which results in the rate of s log p/nP +h2. Hence,



if s is finite, then the direct oracle pooling estimator is no worse than the minimax

optimal oracle transfer learning estimators. This is also in the spirit of Chen et al.

(2021), where the authors suggest that either the target estimator or the oracle pool-

ing estimator is minimax optimal in low-dimensional knowledge transfer problems

under certain distance similarities. If s is able to diverge as well, the uniform over-

shrinkage discussed above might be sub-optimal, and we suggest considering more

sophisticated methods to overcome the covariate shift (Li et al., 2024; He et al., 2024).

Meanwhile, in many practical cases when s is not too large, we can consider using

the more user-friendly θ̂P after simply enlarging the regularization from the default

rate.

Generalized low-rank trace regression

Then, we present the case for generalized low-rank trace regression; the results are

analogous to those of the sparse regression case. Let the k-th dataset consist of

nk i.i.d. samples of Zk,i = (Xk,i, yk,i), where P(yk,i|Xk,i) ∝ exp {yk,iηk,i − bk(ηk,i)}

for ηk,i = ⟨θ∗
k,Xk,i⟩. Assume θ∗

0 is of rank r with r < ∞. Recall the subspaces

defined in equations (1.1) and (1.2), and we take R = ∥ · ∥N as the decomposable

regularizer. We follow Fan et al. (2019) and assume θ∗
k to be d× d square matrices.

All analyzes could be readily extended to rectangular cases of dimensions d1 × d2,

with the rate replaced by d = max(d1, d2). In addition, assume all datasets share
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the same bk(·) = b(·), where b′ (ηk,i) = E (yk,i|Xk,i) is called the inverse link function

and b′′ (ηk,i) = Var (yk,i|Xk,i). As also pointed out in Tian and Feng (2023), using

different bk is allowed; however, it is less practical.

We take Lk(θ) =
∑

i≤nk
[−yk,i⟨θ,Xk,i⟩+ b(⟨θ,Xk,i⟩)] /nk, whose gradient and

Hessian matrices at θ are, respectively, ∇Lk(θ) =
∑

i≤nk
[b′(⟨θ,Xk,i⟩)− yk,i]Xk,i/nk

and Ĥk(θ) :=
∑

i≤nk
b′′(⟨θ,Xk,i⟩)vec(Xk,i)vec(Xk,i)

⊤/nk. We make the following

assumptions under the guidance of Fan et al. (2019): (a) for each k ∈ P , the vec-

torized version of Xk,i is taken independently from a sub-Gaussian random vector

with bounded Ψ2-norm, namely ∥vec(Xk,i)∥Ψ2 ≤ M1; (b) we assume |b′′(ηk,i)| ≤

M2 and |b′′′(ηk,i)| ≤ M3 almost surely; (c) let Hk(θ
∗
k) = EĤk(θ

∗
k); assume that

λmin [Hk(θ
∗
k)] ≥ κk; (d) we assume either ∥δ∗

k∥F ≤ h, ∥δ∗
k∥N ≤ h, or ∥vec(δ∗

k)∥1 ≤ h

for δ∗
k = θ∗

0 − θ∗
k; and (e) assume that ∥θ∗

0∥F ≥ α
√
d for some constant α. We claim

the following rates of convergence.

Corollary 2 (Generalized low-rank trace regression). Given the above settings, if

we solve the problem (2.4) with λP ≍ (d/nP)
1/2 + h, as mink∈P nk → ∞, d → ∞,

and h → 0 with d ≲ mink∈P nk and (d/nP)
1/2 + h → 0, the oracle pooling estimator

satisfies

∥∥∥θ̂P − θ∗
0

∥∥∥2
F
= Op

[
rd

nP
+ rh2

]
,
∥∥∥θ̂P − θ∗

0

∥∥∥
N
= Op

[
r

(
d

nP

)1/2

+ rh

]
.



S.1.2 Optional fine-tuning

Recall that given the oracle pooling estimator θ̂P (or θ̂0 from the non-oracle method),

we can choose to fine-tune the primal estimator using the target dataset by solving

the following problem:

δ̂ = argmin
δ∈Rp

1

n0

∑
i≤n0

L0(Z0,i; θ̂P + δ) + λdR(δ). (S.1.1)

To some extent, the resulting fine-tuned estimator, denoted as θ̂⋆
P := θ̂P + δ̂,

could be viewed as an interpolation between the oracle pooling estimator and the

target estimator, which places a greater emphasis on the personalized aspect of the

target dataset.

When the sources are sufficiently informative, the fine-tuning step is, in fact, not

statistically necessary; hence, the term is optional. For instance, in the extreme case

that h = 0, any interpolation towards the target estimator only introduces addi-

tional variance to the oracle pooling estimator, leading to statistically sub-optimal

performance. This is particularly likely to happen when the target sample size n0

is also relatively small, which is common in practical transfer learning applications.

Meanwhile, in certain cases when θ∗
0 has a low-dimensional model shift from the

sources, as will be shown by numerical simulation and real data analysis in the ap-

pendix, the fine-tuning step is able to alleviate such influence in the same way as in

Li et al. (2022); Tian and Feng (2023) and serves as the final assurance for satisfying



S.2. ADDITIONAL NUMERICAL DETAILS

knowledge transfer performance.

Using interpolation between the knowledge transfer estimator and the target es-

timator for robustness against negative transfer is, in fact, common practice. Please

refer to Duan and Wang (2023), where the authors use a similar procedure to (S.1.1)

to avoid the negative impact caused by misusing the data pooling strategy. In the

same spirit, Li et al. (2024) proposes splitting the samples to learn the best linear

combination of the knowledge transfer estimator and the individual estimator using

target data only, which has been proven to be no worse than the single-task estima-

tor with high probability. Cross validation is suggested when choosing the tuning

parameter for the fine-tuning step in practice.

S.2 Additional Numerical Details

Here, we provide additional numerical details that further support our arguments.

S.2.1 Implement details in Section 4

We first provide the implementation details of the competitors in Section 4 of the main

article. Specifically, for θ̂TF, we apply the proposed truncated norm optimization on

the datasets P with sufficiently large τ to obtain (θ̂0, · · · , θ̂K). Then θ̂TF is defined

as the weighted average of θ̂k, i.e., θ̂TF =
∑

k∈P nkθ̂k/nP . For θ̂agg, we first randomly

divide the target data into two groups, T1 and T2, of equal size. We then obtain



the θ0 estimator θ̂1
agg by truncated norm optimization on the datasets T1 ∪ [K] with

sufficiently large τ . We can also obtain θ̂2
agg using the lasso estimator on the dataset

T1. Then, for Θ̄ = (θ̂1
agg, θ̂

2
agg), the aggregation estimator is defined as θ̂agg = Θ̄η

where

η = argmin
η∈positive simplex

L0(ZT2 , Θ̄η), ZT2 are samples from T2.

For θ̂CV, we first estimate Â, which is used to obtain the oracle pooling estimator

θ̂CV. We randomly divide the target data into three groups of equal size, denoted as

Tr and r ≤ 3. Next, for each r, we obtain the lasso estimator θ̂r
Target on the T−r, where

T−r is the target data without Tr. Then we obtain θ̂r
k by truncated norm optimization

on the datasets k∪T−r with sufficiently large τ . Accordingly, we can calculate the loss

function L0(ZTr , θ̂
r
k) for each k and r. Finally, we calculate Lk

0 =
∑3

r=1 L0(ZTr , θ̂
r
k)/3,

L0
0 =

∑3
r=1 L0(ZTr , θ̂

r
0)/3, and σ̂ =

√∑3
r=1(L0(ZTr , θ̂

r
0)− L0

0)
2/2. Then we have

Â =
{
k ̸= 0,Lk

0 − L0
0 ≤ C0(σ̂ ∨ 0.01)

}
. We set C0 = 1 in the experiments.

DC-ADMM details

To solve the problem (2.6), the scaled augmented Lagrangian function is set as

Lρ(Θ, δ) = S(m+1)(Θ, δ) +
ρ

2

K∑
k=1

||δk + θk − θ0 + νk||22 −
ρ

2

K∑
k=1

||νk||22.
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Then, the standard ADMM procedure can be implemented as

θ̂l+1
k = argmin

θk∈Rp

αk∥yk −Xkθk∥22 + nkλP∥θk∥1 +
ρ

2
∥δ̂l

k + θk − θ̂l
0 + ν̂ l

k∥22,

θ̂l+1
0 = argmin

θ0∈Rp

α0∥y0 −X0θ0∥22 + n0λP∥θ0∥1 +
ρ

2

K∑
k=1

∥δ̂l
k + θ̂l+1

k − θ0 + ν̂ l
k∥22,

δ̂l+1
k =


−θ̂l+1

k + θ̂l+1
0 − ν̂ l

k, if ∥δ̂(m)
k ∥1 ≥ τ,

proxnkλQk
/ρ(−θ̂l+1

k + θ̂l+1
0 − ν̂ l

k), if ∥δ̂(m)
k ∥1 < τ,

ν̂ l+1
k = ν̂ l

k + δ̂l+1
k + θ̂l+1

k − θ̂l+1
0 ,

where the superscript l denotes the l-th step of the ADMM iteration, νk is the

scaled dual variable, and the parameter ρ affects the speed of convergence The

proximal operator under ℓ1 penalty could be defined element-wise as proxa(b)i =

(|bi| − a)+ sign(bi) (Parikh et al., 2014). To acquire θ̂l+1
k , we construct artificial

observations (X ′
k,y

′
k) and solve standard lasso problems θ̂l+1

k = argminθk∈Rp ∥y′
k −

X ′
kθk∥22 + nkλP∥θk∥1 via the cyclic coordinate descent (Friedman et al., 2010). Let

(X ′
0,y

′
0) =



√
α0X0

√
α0y0√

ρ
2
Ip×p

√
ρ
2

(
δ̂l
1 + θ̂l+1

1 + ν̂ l
1

)
...

...√
ρ
2
Ip×p

√
ρ
2

(
δ̂l
K + θ̂l+1

K + ν̂ l
K

)


,

while for k ∈ [K], let

(X ′
k,y

′
k) =


√
αkXk

√
αkyk

−
√

ρ
2
Ip×p

√
ρ
2

(
δ̂l
k − θ̂l

0 + ν̂ l
k

)
.



For empirical realizations, we set θ̂0
k as the lasso solution for the k-th dataset,

and we also set θ̂
(0)
k = θ̂0

k, v̂
0
k = 0 for k ∈ {0, 1, · · · , K}, and δ̂

(0)
k = δ̂0

k = θ̂
(0)
0 − θ̂

(0)
k

for k ∈ {1, 2, · · · , K}.

S.2.2 Generalized low-rank trace regression

For generalized low-rank trace regression, we generate datasets for k = 0, . . . , 4 using

both both identity link b′(x) = x (corresponding to the linear model) and the logit link

b′(x) = 1/(1 + e−x) (corresponding to the logistic model), with r = 3, p1 = p2 = 20,

nk = 400 for k ∈ {0, · · · , 4}. Similarly, k = 0 is the target, k = 1, 2 are the useful

sources, while k = 3, 4 are the non-informative sources.

We report the results in Table 1 based on 100 replications. We draw the con-

clusion that the truncated-penalized algorithm still performs well in terms of si-

multaneously identifying the informative auxiliary datasets and recovering low-rank

parameters under the current setting.

DC-ADMM details

Here, we provide the numerical implementation details concerning the generalized

low-rank trace regression. We first present the standard ADMM procedure to solve

(2.7). Then, we also discuss the fine-tuning step under generalized low-rank trace

regression for the sake of completeness.
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Table 1: The mean and standard error of the simulation results for generalized low-rank trace

regression with unknown informative sources. For the column Datasets, by Target we mean only

the target dataset is used, Oracle means we only use the useful datasets, and All means we use

all the source datasets. In the case of using all datasets, if the method include dataset selection

capability, we report the (TPR,TNR) of dataset selection instead of All.

Estimator Link ∥ ·⋆ −θ∗
0∥F Datasets Estimator Link ∥ ·⋆ −θ∗

0∥F Datasets

θ̂target

linear

0.914 (0.073) All θ̂target

logit

1.473 (0.087) Target

θ̂P∪Ac 1.283 (0.085) All θ̂P∪Ac 1.429 (0.062) All

θ̂P 0.889 (0.056) Oracle θ̂P 1.282 (0.061) Oracle

θ̂TN 0.581 (0.043) (1.00,1.00) θ̂TN 1.326 (0.074) (1.00,0.94)

We first present the standard ADMM procedures that can solve (2.7) with the

nuclear norm penalty. Under the generalized linear model setting, recall that

∇Lk(θk) =

nk∑
i=1

[b′(ηk,i)− yk,i]Xk,i/nk,

∇2Lk(θk) =

nk∑
i=1

b′′(ηk,i)vec(Xk,i)vec
⊤(Xk,i)/nk.

We define the singular value shrinkage operator Sλ(Y ) for Y of rank r. Let

Y = UΣV ⊤ where Σ = diag
{
(σi)1≤i≤r

}
, U , and V are column orthogonal by the

singular value decomposition, then Sλ(Y ) := UΣλV
⊤, Σλ = diag

{
(σi − λ)+

}
.

the standard ADMM procedure could then be implemented as:



θ̂l+1
k = S nkλP

ρ1+ρ2

(
ρ1

ρ1 + ρ2

[
−δ̂l

k + θ̂l
0 − ν̂ l

k

]
+

ρ2
ρ1 + ρ2

[
γ̂ l
k + θ̂

(m)
k + µ̂l

k

])
, k = 1, 2, · · · , K,

θ̂l+1
0 = S n0λP

Kρ1+ρ2

(
1

Kρ1 + ρ2

[
ρ1

K∑
k=1

(
δ̂l
k + θ̂l+1

k + ν̂ l
k

)
+ ρ2

(
γ̂ l
0 + θ̂

(m)
0 + µ̂l

0

)])
,

δ̂l+1
k =


−θ̂l+1

k + θ̂l+1
0 − ν̂ l

k, if ∥δ̂(m)
k ∥N ≥ τ,

SnkλQk
/ρ1

(
−θ̂l+1

k + θ̂l+1
0 − ν̂ l

k

)
, if ∥δ̂(m)

k ∥N < τ,

k = 1, 2, · · · , K,

γ̂ l+1
k = argmin

γk

nkαkQ(γk; θ̂
(m)
k ) +

ρ2
2
∥γk − θ̂l+1

k + θ̂
(m)
k + µ̂l

k∥2F , k = 0, 1, · · · , K,

ν̂ l+1
k = ν̂ l

k + δ̂l+1
k + θ̂l+1

k − θ̂l+1
0 , k = 1, 2, · · · , K,

µ̂l+1
k = µ̂l

k + γ̂ l+1
k − θ̂l+1

k + θ̂
(m)
k , k = 0, 1, · · · , K,

where νk and µk are scaled dual variables, and ρ1 and ρ2 affect the speed of conver-

gence. By some simple algebra, the updating formula for γ̂ l+1
k is

vec
(
γ̂ l+1
k

)
= A−

{
ρ2vec

(
θ̂l+1
k − θ̂

(m)
k − µ̂l

k

)
− αkvec

(
nk∑
i=1

[(
b′(η

(m)
k,i )− yk,i

)
Xk,i

])}
,

where A =
[
αk

∑nk

i=1 b
′′(η

(m)
k,i )vec(Xk,i)vec

⊤(Xk,i) + ρ2I
]
and η

(m)
k,i = ⟨Xk,i, θ̂

(m)
k ⟩.

Naturally, we set θ̂0
k as the estimator by Fan et al. (2021), θ̂

(0)
k = θ̂0

k, µ̂
0
k = γ̂0

k = 0,

and v̂0
k = 0 for k ∈ {0, 1, · · · , K} and set δ̂

(0)
k = δ̂0

k = θ̂
(0)
0 − θ̂

(0)
k hereafter.

Indeed, the fine-tuning step of the generalized low-rank trace regression is also

not straightforward due to non-linearity. To fine-tune the generalized low-rank trace

regression with a given θ̂P ∈ Rd1×d2 , we rewrite the target problem (S.1.1) by omitting
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the subscript 0 as:

δ̂ = argmin
δ∈Rd1×d2

1

n

n∑
i=1

L(Zi, θ̂P + δ) + λdR(δ), (S.2.2)

where θ̂P is known, R = ∥ · ∥N , and L(δ) =
∑n

i=1 L
(
Zi, θ̂P + δ

)
/n. Analogously,

the local quadratic approximation of (S.2.2) is:

(
δ̂(m+1), γ̂

)
= argmin

δ,γ∈Rd1×d2

Q(γ; δ̂(m)) + λd∥δ∥N subject to γ = δ − δ̂(m),

where for η
(m)
i = ⟨Xi, θ̂P + δ̂(m)⟩:

Q(γ; δ̂(m)) = vec⊤ (γ)∇2L(δ̂(m))vec (γ) /2 + vec⊤ (γ) vec
(
∇L(δ̂(m))

)
,

∇L(δ̂(m)) =
n∑

i=1

[
b′
(
η
(m)
i

)
− yi

]
Xi/n,

∇2L(δ̂(m)) =
n∑

i=1

b′′
(
η
(m)
i

)
vec(Xi)vec

⊤(Xi)/n.

Accordingly, we can apply the standard ADMM procedure:

δ̂l+1 = Sλd/ρ

(
γ̂ l + δ̂(m) + ν̂ l

)
,

γ̂ l+1 = argmin
γ∈Rd1×d2

Q(γ; δ̂(m)) +
ρ

2
∥γ − δ̂l+1 + δ̂(m) + ν̂ l∥2F ,

ν̂ l+1 = ν̂ l + γ̂ l+1 − δ̂l+1 + δ̂(m),

where ν is the scaled dual variable and ρ affects the speed of convergence. We have:

vec
(
γ̂ l+1

)
= A−

(
ρvec

(
δ̂l+1 − δ̂(m) − ν̂ l

)
− vec

(
n∑

i=1

[(
b′
(
η
(m)
i

)
− yi

)
Xi

])
/n

)
,



whereA = ρI+
∑n

i=1 b
′′
(
η
(m)
i

)
vec(Xi)vec

⊤(Xi)/n. Note that the ADMM algorithm

is not affected by the initial values since the problem is a convex optimization problem.

In practice, we could set v̂0 = 0, δ̂0 = δ̂(0) = 0, γ̂0 = 0.

S.2.3 Enlarging regularization

Here, we numerically validate our claims about enlarging the regularization. For

numerical experiments, we generate useful datasets for k ∈ P = {0, . . . 5} in the

same way as in the main article on sparse linear regression, except that here we

do not deliberately set θk1 = −0.4 for all k ∈ [K]. Note that θ01 = 0.4 and the

non-informative sources are not included.

We set p = 500, n0 = 250, n1, · · · , n5 = 400, and report the results in Table

2 based on 100 replications. We consider the following competitors (together with

their fine-tuned versions denoted by the additional superscript ·⋆) and sketch how to

select tuning parameters for different methods:

(a) the target lasso estimator θ̂target using target data and λtarget obtained through

cross validation;

(b) the oracle pooling estimator θ̃P that targets the population parameter θ∗
P ,

for which the tuning parameter λP̃ is naturally (and most commonly) chosen by cross

validation using all pooling samples;
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Table 2: The means (standard deviations) of losses under the same settings of Table 3 in the article,

except here we do not deliberately set θk1 = −0.4 for all k ∈ [K]. Note that θ01 = 0.4. Here the

tuning parameter of θ̃ is acquired by cross validation whose validation set consists of the pooled

dataset (which is often the default choice). Meanwhile, the tuning parameter of θ̂ is acquired by cross

validation whose validation set consists of target data only (ending up in a larger λ as expected).

Setting Estimator ∥ · −θ∗
0∥2 ∥ ·⋆ −θ∗

0∥2 Selected λ ∥θ∗
P − θ∗

0∥1 ∥θ̂target − θ∗
0∥2

Hos

θ̃P 0.320(0.026) 0.330(0.036) 0.038(0.003)
1.038(0.000) 0.550(0.125)

θ̂P 0.322(0.027) 0.332(0.037) 0.049(0.009)

Hes

θ̃P 0.356(0.026) 0.363(0.033) 0.036(0.004)
5.001(0.147) 0.650(0.197)

θ̂P 0.351(0.026) 0.358(0.035) 0.047(0.007)

Hod

θ̃P 0.365(0.035) 0.371(0.038) 0.038(0.004)
6.565(0.000) 0.550(0.125)

θ̂P 0.348(0.034) 0.355(0.036) 0.056(0.008)

Hed

θ̃P 0.389(0.042) 0.398(0.049) 0.035(0.005)
8.618(0.196) 0.650(0.197)

θ̂P 0.348(0.028) 0.359(0.040) 0.058(0.009)

(c) the oracle pooling estimator θ̂P with the tuning parameter λP̂ selected by

cross validation using target samples;

(d) the fine-tuned versions θ̃⋆
P and θ̂⋆

P (for the sake of fairness in comparisons,

recall that θ̃P is originally used in two-step methods), with the tuning parameters in

the second step selected by cross validation using only the target dataset.

While both oracle transfer learning estimators outperform the original target es-

timation, as θ∗
P gets further away from θ∗

0 under the dense contrasts or heterogeneous

covariate cases, indicated by larger ∥θ∗
P −θ∗

0∥1, the default estimator θ̃P becomes less

reliable. On the other hand, cross validation using only the target samples naturally



Figure 1: The boxplots of the RMSE with respect to each step from the shrinking τ strategy the

same settings as Table 1 of the main article, based on 100 replications. The numerical stability of

the non-convex algorithm is guaranteed under different initializations.

gives us larger λ, namely stronger regularization strength. Moreover, it leads to a

more reliable estimator θ̂P . In addition, the fine-tuning step seems unnecessary in

all these cases.

S.2.4 The shrinking τ strategy

To avoid the vicious cycle caused by poor initializations, we suggest a shrinking τ

strategy that iteratively uses the output of our algorithm equipped with a larger τ

as the input for our algorithm equipped with a smaller τ . The rationale behind the

shrinking τ strategy is that if we take a sufficiently large τ and all sources are included

blindly, then the optimization problem can almost be viewed as a convex one, and
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the poor initialization does not matter much. The resulting output of this large τ

algorithm is numerically stable but also biased due to the inclusion of non-informative

sources. Then, we take this output to be the initialization of the algorithm with a

smaller τ to filter out the useless sources. The procedure above can be carried out in

an iterative manner (as τ shrinks), and the resulting estimator from the final round

(with a suitable τ) is more numerically stable.

In the following, we report the numerical performance of the shrinking τ strategy.

We work under almost the same settings as those in Table 1 of the main article. The

only difference is that, instead of using the local lasso estimates as the initialization,

we artificially construct three types of initialization: (1) bad prior: all θk = θ∗
K (the

K-th dataset is useless) for k ∈ {0} ∪ [K]; (2) good prior: θk = θ∗
k for k ∈ {0} ∪ [K];

and (3) no prior: all θk = 0 for k ∈ {0} ∪ [K]. We successively apply the proposed

algorithm with τ = 60 (large), τ = 30 (mid), and τ = 15 (small). The initialization

of the large τ is taken from the three priors above, and the inputs of the smaller τ

steps are the preceding outputs. We can see that the shrinking τ strategy is able

to ensure the numerical stability of the non-convex algorithm, even with very poor

initializations (bad priors).



S.2.5 Further numerical results

In this section, we report further numerical results (under 100 replications) to reflect

the effects of high-dimensionality and the performance of different methods under

more correlated covariates. We shall see that the proposed one-step algorithm remains

numerically stable as the dimension increases or as the correlation grows.

For the effect of high-dimensionality, the settings in the main article (n0 = 250,

p = 500, nk = 400 for k ̸= 0) are extended to (n0 = 500, p = 1000, nk = 800

for k ̸= 0) and (n0 = 750, p = 1500, nk = 1200 for k ̸= 0). As the dimension p

increases, we accordingly enlarge the candidate grid size for the tuning parameter τ ,

as the distance between the parameters of different datasets naturally increases with

the growth of dimensionality in our simulation settings. We only report the case of

sparse contrasts and heterogeneous covariates (Hes in the main article), as the results

are almost identical in other settings. The results are collected in Table 3, where we

can see that the performance of the proposed algorithm is numerically stable as the

dimensions increase.

Meanwhile, to increase the correlation between the covariates, we adopt the fol-

lowing spiked covariance structure:

Σk =
λspike

p
UkU

⊤
k +

2

3p
Λ⊤

k Λk,

where Λk is a matrix of 1.5p rows and p columns, and Uk is a matrix of p rows and
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Table 3: The means (standard deviations) of the simulation results for different methods with

the growing dimensionality and sample sizes. We only report the case of sparse contrasts and

heterogeneous covariates (Hes in the main article), as the results are almost identical in other

settings. For the column Datasets, by “Target” we mean only the target dataset is used, “Oracle”

means we only use the useful datasets, and “All” means we use all the source datasets. In the case

of using all datasets, if the method has dataset selection capability, we report the (TPR,TNR) of

dataset selection instead of “All”.

(nk, n0, p) Estimator ∥ · −θ∗
0∥2 ∥ ·⋆ −θ∗

0∥2 Datasets

(400, 250, 500)

θ̂target 0.782(0.097) NA Target

θ̂P 0.750(0.034) 0.406(0.063) Oracle

θ̂P∪Ac 1.190(0.092) 0.966(0.115) All

θ̂TN 0.397(0.105) 0.347(0.106) (1.000,0.000)

(800, 500, 1000)

θ̂target 0.789(0.079) NA Target

θ̂P 0.757(0.022) 0.374(0.035) Oracle

θ̂P∪Ac 1.621(0.078) 1.375(0.087) All

θ̂TN 0.314(0.034) 0.292(0.034) (1.000,0.000)

(1200, 750, 1500)

θ̂target 0.775(0.059) NA Target

θ̂P 0.764(0.016) 0.362(0.021) Oracle

θ̂P∪Ac 1.996(0.076) 1.704(0.077) All

θ̂TN 0.293(0.023) 0.277(0.022) (1.000,0.000)



r columns. The elements in both Λk and Uk are drawn independently from N(0, 1).

The spiked covariance model is commonly used to model stronger correlations among

the covariates (Paul, 2007; Baik and Silverstein, 2006; Bai et al., 2018), where the

spike parameter λspike reflects the correlation strength. Note that 2Λ⊤
k Λk/3p is an

unbiased estimator of Ip, resulting in a weakly correlated Σk if λspike = 0 (which

degenerates to the default heterogeneous setting in the main article). For λspike > 0,

Σk admits a spiked covariance structure: a larger λspike implies a stronger cross-

sectional correlation. For our experiments, we set r = 10 and let λspike ∈ {0, 5, 10}.

As the Uk’s are independent across different sources, we expect the covariates to be

more heterogeneous as λspike increases.

In Table 4, we report the experimental results under growing λspike with (n0 =

500, p = 1000, nk = 800 for k ̸= 0); we only report the case of sparse contrasts

here, as the results are almost identical for the dense contrasts. The performance

of the proposed one-round method remains stable. This is indeed foreseeable, as

alluded to in the Introduction of the main article: our method is able to handle both

model shift (slight differences in model parameters) and covariate shift (in this case,

different covariance structures of the covariates). As a quick reminder, no covariate

homogeneity condition is required for our method to converge theoretically.

In summary, the proposed one-step method adapts readily to higher dimensions

and more correlated covariates, demonstrating its algorithmic robustness and poten-
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Table 4: The means (standard deviations) of the simulation results for different methods under

different covariance spikes, where nk = 800, n0 = 500, and p = 1000. We only report the case of

sparse contrasts here, as the results are almost identical for the dense contrasts. For the column

Datasets, by “Target” we mean only the target dataset is used, “Oracle” means we only use the

useful datasets, and “All” means we use all the source datasets. In the case of using all datasets, if

the method has dataset selection capability, we report the (TPR,TNR) of dataset selection instead

of “All”.

Correlation Estimator ∥ · −θ∗
0∥2 ∥ ·⋆ −θ∗

0∥2 Datasets

λspike = 0

θ̂target 0.783(0.074) NA Target

θ̂P 0.762(0.022) 0.379(0.031) Oracle

θ̂P∪Ac 1.625(0.078) 1.380(0.092) All

θ̂TN 0.320(0.033) 0.296(0.034) (1.000,0.000)

λspike = 5

θ̂target 0.771(0.069) NA Target

θ̂P 0.760(0.020) 0.375(0.029) Oracle

θ̂P∪Ac 1.651(0.082) 1.403(0.076) All

θ̂TN 0.310(0.031) 0.290(0.032) (1.000,0.000)

λspike = 10

θ̂target 0.772(0.068) NA Target

θ̂P 0.764(0.021) 0.388(0.030) Oracle

θ̂P∪Ac 1.709(0.079) 1.469(0.083) All

θ̂TN 0.311(0.033) 0.293(0.032) (1.000,0.000)

tial practicality in real world applications.



S.3 Proofs of Theoretical Results

Finally, we present the proofs of our theoretical results.

S.3.1 Proof of Proposition 1

Recall that Θ̂(m+1) and δ̂(m+1) are the minimizers of S(m+1)(Θ, δ); then we obtain

0 ≤ S
(
Θ̂(m), δ̂(m)

)
= S(m+1)

(
Θ̂(m), δ̂(m)

)
≤ S(m)

(
Θ̂(m), δ̂(m)

)
≤ S(m)

(
Θ̂(m−1), δ̂(m−1)

)
= S

(
Θ̂(m−1), δ̂(m−1)

)
.

(S.3.3)

The remaining parts can be obtained by following arguments similar to those in Wu

et al. (2016); Liu et al. (2023).

S.3.2 Proof of Theorem 1

Note that the truncated norm penalty makes the problem (2.5) non-convex, so all

minima here are discussed in a local manner. It helps to decompose (2.5) into sub-

problems. First, for any θ′
0 in some set OP , we acquire the best response of θ̂k

as

θ̂k(θ
′
0) = argmin

θk∈Rp

L̂k(θk;θ
′
0)

= argmin
θk∈Rp

Lk (θk) + λPR (θk)︸ ︷︷ ︸
single-task(k)

+λQk
min [R (θk − θ′

0) , τ ]︸ ︷︷ ︸
TNP(k)

.
(S.3.4)
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We then plug-in the best responses and solve locally for θ̂0 by

θ̂0 = argmin
θ′
0∈OP

[n0

N
L0(θ

′
0) +

n0

N
λPR (θ′

0)
]
+
∑

1≤k≤K

nk

N
L̂k

(
θ̂k(θ

′
0);θ

′
0)
)
. (S.3.5)

For the informative datasets k ∈ A, recalling the variance-bias decomposition in

(3.10), we have R∗ (∇LP(θ
∗
0)) ≲ vP + h since ∥∇2Lk(θ

∗
k)∥Bk→R∗ ≤ M for k ∈ A and

h → 0. According to Proposition 2, for λP ≳ vP + h, we have R(θ̂P − θ0) ≲ λP

for the oracle pooling estimator θ̂P . Let lP ≍ vP + h be sufficiently large, so that

the open set OP = {θ|R(θ − θ∗
0) < lP} contains θ̂P . Now, for any θ′

0 ∈ OP , define

δ̂′
k(θ

′
0) = θ′

0 − θ̂k(θ
′
0); we rewrite (S.3.4) in the open set R(δ̂′

k) < τ as

δ̂′
k(θ

′
0) = argmin

R(δk)<τ

Lk (θ
′
0 − δk) + λPR (θ′

0 − δk) + λQk
R (δk) .

By the convexity of Lk and the triangular inequality, we have

Lk (θ
′
0 − δk) + λPR (θ′

0 − δk) + λQk
R (δk)

≥ Lk (θ
′
0)−R∗ (∇Lk(θ

′
0))R(δk) + λPR(θ′

0)− λPR(δk) + λQk
R(δk)

≥ Lk (θ
′
0) + λPR (θ′

0) ,

(S.3.6)

as long as λQk
≥ λP +R∗ (∇Lk(θ

′
0)). For vk = R∗(∇Lk(θ

∗
k)), we have

R∗ (∇Lk(θ
′
0)) = R∗ (∇Lk(θ

∗
k + θ′

0 − θ∗
k))

≲ vk +R∗ (∇2Lk(θ
∗
k)(θ

′
0 − θ∗

k)
)

≤ vk +R∗ (∇2Lk(θ
∗
k)(θ

′
0 − θ∗

0)
)
+R∗ (∇2Lk(θ

∗
k)(θ

∗
0 − θ∗

k)
)

≲ vk + h,



since max(∥∇2Lk(θ
∗
k)∥R→R∗ , ∥∇2Lk(θ

∗
k)∥Bk→R∗) ≤ M , R(θ′

0 − θ∗
0) ≲ vp + h → 0,

B(θ∗
0 − θ∗

k) ≤ h, and vP ≲ vk. That is to say, for λQk
≳ vk + h, we have δ̂′

k(θ
′
0) = 0

for all θ′
0 ∈ OP according to (S.3.6).

Then, for non-informative datasets k ∈ Ac, the first part of the problem (S.3.4)

is essentially the single-task estimation using the k-th dataset only, whose minimizer

is denoted by θ̂′
k = argminθk∈Rp Lk (θk) + λPR (θk). For the non-informative study

k, since R(θ̂′
k − θ∗

0) > 2τ by assumption, we have R(θ̂′
k − θ′

0) > τ for θ′
0 ∈ OP . The

second part of (S.3.4) is then fixed as λQk
τ in an open neighborhood of θ̂′

k, so that

θ̂′
k is indeed a local minimum of (S.3.4) and θ̂k(θ

′
0) = θ̂′

k for all θ′
0 ∈ OP .

In the end, plug the best responses into the problem (S.3.5); the resulting problem

is then equivalent to oracle pooling by (2.4), and the solution is θ̂0 = θ̂P . The proof

is complete.

S.3.3 Proof of Corollary 1

First, for the restricted strong convexity (RSC) condition, we take the following

result from Raskutti et al. (2010), such that there are positive constants (κk,1, κk,2),

depending only on Σk, for Σ̂k = X⊤
k Xk/nk,

〈
∆, Σ̂k∆

〉
≥ κk,1∥∆∥2 − κk,2

log p

nk

∥∆∥21, for all ∆ ∈ Rp. (S.3.7)

with a probability greater than 1− ck,1 exp (−ck,2nk). We then focus on the Hessian

matrix of LP , which is
∑

k∈P nkΣ̂k/nP .
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Lemma 1 (RSC Conditions). Under the settings of Corollary 1, let ∆s (or ∆sc) be

the projection of ∆ onto the s-sparse support (or its complement). There exists a

positive constant κP such that for all ∥∆sc∥1 ≤ 3∥∆s∥1,

1

nP

〈
∆,
∑
k∈P

nkΣ̂k∆

〉
≥

[
κP −

∑
k∈P

16sκk,2
log p

nk

]
∥∆∥2, (S.3.8)

with a probability greater than 1−
∑

k∈P ck,1 exp (−ck,2nk).

Then, we give the following result concerning the rate of R∗ (∇LP(θ
∗
0)).

Lemma 2 (Convergence Rates). Under the settings of Corollary 1, we have as

mink∈P nk → ∞, p → ∞, and h → 0,

R∗ (∇LP(θ
∗
0)) = Op(

√
log p

nP︸ ︷︷ ︸
vP

+ h︸︷︷︸
bP

). (S.3.9)

With the help of Lemma 1 and Lemma 2, while maxk∈P log p/nk → 0 and h → 0,

Corollary 1 holds according to Proposition 2. Then we give the proofs of Lemma 1

and Lemma 2.

Proof of Lemma 1

It is the straightforward consequence of (S.3.7). For ∥∆sc∥1 ≤ 3∥∆s∥1, we have

∥∆∥1 = ∥∆s∥1 + ∥∆sc∥1 ≤ 4∥∆s∥1 ≤ 4
√
s∥∆∥; then (S.3.8) holds with κP :=∑

k∈P nkκk,1/nP by the union bound of probability.



Proof of Lemma 2

Controlling R∗(∇Lk(θ
∗
k)) ≍ ∥X⊤

k ϵk∥∞/nk is straightforward by noticing that the

maximum of a p-dimensional vector with zero mean sub-Gaussian elements, with

variance proxies of order nk, is controlled by (nk log p)
1/2 using standard union bound

arguments. As for R∗ (∇LP(θ
∗
0)), for h sufficiently small, it suffices to bound vP =

R∗ (∑
k∈P nk∇Lk(θ

∗
k)
)
/nP and bP =

∑
k∈P nkR∗ (∇2Lk(θ

∗
k)δ

∗
k) /nP . First, vP ≍

∥
∑

k∈P X⊤
k ϵk∥∞/nP = Op(

√
log p/nP) by noticing that each element of

∑
k∈P X⊤

k ϵk

is the sum of nP independent centered random variables and is of order n
1/2
P , we

obtain the result through similar union bound arguments. In the end, for bP =∑
k∈P nkR∗ (∇2Lk(θ

∗
k)δ

∗
k) /nP , we proceed by controlling each term ∥X⊤

k Xkδ
∗
k∥∞/nP .

Recall that for them×nmatrixA = (aij) and its transposeA⊤ =
(
(A⊤)1, · · · , (A⊤)m

)
,

we have

∥A∥1→∞ = sup
∥v∥1≤1

∥Av∥∞ = max
(i,j)∈{1,...,m}×{1,...,n}

|aij| ,

∥A∥2→∞ = sup
∥v∥2≤1

∥Av∥∞ = max
i=1,...,m

∥∥(A⊤)i
∥∥
2
,

so ∥X⊤
k XkXkδ

∗
k∥∞ ≤ ∥X⊤

k Xk∥1→∞∥δ∗
k∥1 or ∥X⊤

k Xkδ
∗
k∥∞ ≤ ∥X⊤

k Xk∥2→∞∥δ∗
k∥2. Note

that, by the Cauchy-Schwarz inequality, the maximum of |(X⊤
k Xk)ij| is obtained on

the diagonal, where (X⊤
k Xk)ii = nk(Σk)i,i + Op(n

1/2
k ) occurs, so that ∥X⊤

k Xkδ
∗
k∥∞ ≲

nkh has a probability tending to 1 using the union bound again, as maxk∈P log p/nk →

0 and ∥δ∗
k∥1 ≤ h. On the other hand, ∥X⊤

k Xk∥2→∞ ≤ λmax(X⊤
k Xk) ≤ M3nk almost

surely if p/nk → ck as nk, p → ∞ according to Yin et al. (1988); Bai and Silverstein
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(1998, 2010) for ∥δ∗
k∥2 ≤ h. The proof is complete.

S.3.4 Proof of Corollary 2

We first verify the RSC conditions under the settings of Corollary 2. Since ∥vec(Xk,i)∥Ψ2 ≤

M1 and λmin [Hk(θ
∗
k)] ≥ κk for k ∈ P , according to (6.11) of Fan et al. (2019), with

probability 1− exp(−ckd),

〈
vec(∆), Ĥk(θ

∗
k)vec(∆)

〉
≥ κk,1∥∆∥2F − κk,2

√
d

nk

∥∆∥2N , for all ∆ ∈ Rd×d.

(S.3.10)

As for the rate of convergence, given ∥vec(Xk,i)∥Ψ2 ≤ M1 and |b′′(ηk,i)| ≤ M2

almost surely, according to Lemma 1 of Fan et al. (2019), for d ≲ nk, as d → ∞,

∥∥∥∥∥ 1

nk

∑
i≤nk

[b′ (⟨θ∗
k,Xk,i⟩)− yk,i]Xk,i

∥∥∥∥∥
op

= Op(

√
d

nk

). (S.3.11)

Then, we establish Lemma 3 and Lemma 4 based on (S.3.10) and (S.3.11).

Lemma 3 (RSC Conditions). Under the settings of Corollary 2, for δ∗
k = θ∗

0 − θ∗
k,

let ∆M (or ∆M⊥) be the projection of ∆ onto M (or M⊥
). Denote ĤP = ∇2LP =∑

k∈P nkĤk/nP . There exists a positive constant κP . as mink∈P nk → ∞, d → ∞,

and h → 0 with (d/nP)
1/2 + h → 0, we have

〈
vec(∆), ĤP(θ

∗
0)vec(∆)

〉
≥ κP∥∆∥2F , for all ∥∆M⊥∥N ≤ 3∥∆M∥N . (S.3.12)

with a probability tending to 1.



Lemma 4 (Convergence Rates). Under the settings of Corollary 2, as mink∈P nk →

∞, d → ∞, and h → 0 with d ≲ mink∈P nk, we have

R∗ (∇LP(θ
∗
0)) = Op


√

d

nP︸ ︷︷ ︸
vP

+ h︸︷︷︸
bP

 .

As the proofs in Negahban et al. (2012) clarify, we require the RSC condition only

on the intersection of C with a local ball {∥∆∥ ≤ R}, where R ≍ (d/nP)
1/2 + h →

0 is the error radius according to Lemma 4. Given sufficiently small R, we have

δLP(∆;θ∗
0) ≳

〈
vec(∆), ĤP(θ

∗
0)vec(∆)

〉
, so that the RSC conditions hold according

to Lemma 3, and Theorem 2 follows naturally from Proposition 2. Finally, we give

the proofs of Lemma 3 and Lemma 4.

Proof of Lemma 3

It is the straightforward consequence of (S.3.10). For (S.3.12), we first focus on each

term, for ηk,i = ⟨θ∗
k,Xk,i⟩,

nk

〈
vec(∆), Ĥk(θ

∗
0)vec(∆)

〉
=
∑
i≤nk

b′′ (⟨θ∗
0,Xk,i⟩) (⟨Xk,i,∆⟩)2

=
∑
i≤nk

b′′ (⟨θ∗
k + δ∗

k,Xk,i⟩) (⟨Xk,i,∆⟩)2

=
∑
i≤nk

[
b′′ (ηk,i) (⟨Xk,i,∆⟩)2 + b′′′(ηk,i)⟨Xk,i, δ

∗
k⟩(⟨Xk,i,∆⟩)2

+rk,i(⟨Xk,i, δ
∗
k⟩)(⟨Xk,i,∆⟩)2

]
.

(S.3.13)

First, notice that both ∥δ∗
k∥N ≤ h and ∥vec(δ∗

k)∥1 ≤ h imply that ∥δ∗
k∥F ≤ h.



S.3. PROOFS OF THEORETICAL RESULTS

We have ∥ ⟨Xk,i, δ
∗
k⟩ ∥Ψ2 ≤ M1h by the definition of sub-Gaussian random vectors, so

that ⟨Xk,i, δ
∗
k⟩ = op(1) as h → 0. The third term in the last line of (S.3.13) hence

vanishes, and it suffices to control the first two terms. We then control the first

term directly by (S.3.10), for ∥∆M⊥∥N ≤ 3∥∆M∥N , with a probability greater than

1− exp(−ckd) we have

∑
i≤nk

b′′ (ηk,i) (⟨Xk,i,∆⟩)2 ≥ nkκk,1∥∆∥2F − κk,2

√
nkd∥∆∥2N

≥
[
nkκk,1 − 32rκk,2

√
nkd
]
∥∆∥2F

≥
[
nkκk,1 − 32rκk,2

√
nPd

]
∥∆∥2F ,

due to the fact that ∥∆∥N ≤ 4∥∆M∥N ≤ 4
√
2r∥∆∥F . Then, to control the second

term of (S.3.13), we have |b′′′(ηk,i)| ≤ M3 almost surely by assumption, |⟨Xk,i, δ
∗
k⟩| =

Op(h) as shown earlier, and (⟨Xk,i,∆⟩)2 = Op(∥∆∥2F ). Combining these results, as

nP → ∞, d → ∞ with d/nP → 0, we have, by the union bound of probability, that

〈
vec(∆), ĤP(θ

∗
0)vec(∆)

〉
≥ κP∥∆∥2F , for all ∥∆M⊥∥N ≤ 3∥∆M∥N ,

with probability tending to 1, where κP = c1
∑

k∈P nkκk,1/nP for some constant c1.

Proof of Lemma 4

We recall thatR∗(∇Lk(θ
∗
k)) = ∥

∑
i≤nk

[b′ (⟨θ∗
k,Xk,i⟩)− yk,i]Xk,i/nk∥op = Op(

√
d/nk)

directly from (S.3.11). We focus on R∗ (∇LP(θ
∗
0)) for h sufficiently small. Again, it



suffices to bound vP = R∗ (∑
k∈P nk∇Lk(θ

∗
k)
)
/nP and bP =

∑
k∈P nkR∗ (∇2Lk(θ

∗
k)δ

∗
k) /nP .

We could use the standard ε-net argument to control vP as in Lemma 1 of Fan et al.

(2019), which gives vP = Op(
√

d/nP). As for bP , we control each term

R∗ (∇2Lk(θ
∗
k)δ

∗
k

)
=

1

nk

∥∥∥∥∥∑
i≤nk

b′′ (⟨θ∗
k,Xk,i⟩) ⟨Xk,i, δ

∗
k⟩Xk,i

∥∥∥∥∥
op

.

By the definition of ∥ · ∥op and the standard ϵ-net arguments as in (S.3.11), we have

∥∥∥∥∥∑
i≤nk

b′′ (⟨θ∗
k,Xk,i⟩) ⟨Xk,i, δ

∗
k⟩Xk,i

∥∥∥∥∥
op

= sup
u∈Sd−1,v∈Sd−1

∣∣∣∣∣∑
i≤nk

b′′ (⟨θ∗
k,Xk,i⟩) ⟨Xk,i, δ

∗
k⟩u⊤Xk,iv

∣∣∣∣∣
≤ 16

7
max

u∈N d,v∈N d

∣∣∣∣∣∑
i≤nk

b′′ (⟨θ∗
k,Xk,i⟩) ⟨Xk,i, δ

∗
k⟩u⊤Xk,iv

∣∣∣∣∣ ,
where Sd−1 is the (d − 1)-dimensional sphere and N d is a 1/4-net on Sd−1. Then,

notice that |b′′ (⟨θ∗
k,Xk,i⟩) | ≤ M2 by definition, while ∥ ⟨Xk,i, δ

∗
k⟩ ∥Ψ2 ≤ M1h and

∥u⊤Xk,iv∥Ψ2 ≤ M1 are due to the fact that ∥vec(Xk,i)∥Ψ2 ≤ M1. Since the product

of two sub-Gaussian random variables is sub-exponential, we have for all u ∈ N d and

v ∈ N d,

∥ ⟨Xk,i, δ
∗
k⟩u⊤Xk,iv∥Ψ1 ≤ ∥ ⟨Xk,i, δ

∗
k⟩ ∥Ψ2∥u⊤Xk,iv∥Ψ2 ≤ M2

1h,

for the sub-exponential norm ∥ ·∥Ψ1 . Hence, we are facing the sum of nk independent

sub-exponential random variables, with the sub-exponential norm (controlling both

both mean and standard error of the random variables) bounded above by h. Then,
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by the union bound over all points on N d ×N d following (6.9) of Fan et al. (2019),

we obtain bP = Op[h + hmaxk∈P(d/nk)
1/2]. The proof is then complete by noticing

that d ≲ mink∈P nk, by assumption.
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