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Supplementary Material

In the supplementary material, we first provide extensional theoretical arguments concerning the two
specific statistical models and remark on the optional fine-tuning step. Then, we present additional numerical

details that further support our arguments. Finally, we provide the proofs of the theoretical results.

S.1 Extensional Theoretical Arguments

In this section, we present some extensional theoretical arguments. The preceding
deterministic arguments are discussed under two specific statistical models, namely
sparse linear regression and generalized low-rank trace regression, respectively. Thanks
to Theorem which guaranties an oracle local minimum of , it suffices to discuss

the oracle pooling estimator é\’p thoroughly in these two specific cases.



S.1.1 Oracle pooling estimator under specific models

We first discuss the oracle pooling estimator under two specific statistical models,
namely sparse linear regression and generalized low-rank trace regression, from a
theoretical perspective, while providing some intuition on enlarging the regularization

strength.

Sparse linear regression

We assume that the k-th dataset consists of ny 7.i.d. samples from the linear model
Yki = (05, Xki) +epiand k =0,..., K. Let 6 be s-sparse with s < co. To cope
with the sparsity structure of 6, we take the decomposable regularizer R = || - ||;.
We follow Raskutti et al.| (2010) and (a) assume that the nj; X p design matrices
X = (Xga,--- ,Xk,nk)T are formed by independently sampling ny identical Xy ; ~
N(0,X;) with the covariance matrices 3y, satisfying M; " < Apin(Zr) < Amax(Zk) <
My, which is often referred to as the X;-Gaussian ensembles; (b) assume that ¢ ;
are independently drawn from the same centered sub-Gaussian distribution; and (c)
for k =1,..., K, we assume either [|0;||y < h or ||0;]|2 < h (if ||6f]|2 < h, we further

assume that p/ng; — ¢ holds for some positive constant c) for &; = 6; — 65.

Corollary 1 (Sparse linear regression). Given the above settings, we can solve the

problem with A\p < [(logp/np)1/2+h]. As mingepn, — 00, p — o0 with



S.1. EXTENSIONAL THEORETICAL ARGUMENTS

maxyep log p/ng, — 0 and h — 0, the oracle pooling estimator satisfies
o [S °ep +sh2] : Hep —o:| =0, [S ( ng> + sh
1 np

np
In|Li et al. (2022), the authors introduce the population oracle pooling parameter

o

as 05 = argmin ), » " E[Li(Zy; 0)]/np, where Ly, is the least squared error loss. In
the first step, they acquire the estimator of 83 as 573. In the second step, they plug-in
57) and estimate 85 — 0% by solving a fine-tuning optimization problem. When there
is no model shift, namely h = 0, we have 8% = 6, and we shall solve with the
tuning parameter A\p =< (log p/np)'/2. We also call it the default rate of regularization,
corresponding to the pooled variance term. In fact, in the pooling step of the classical
two-step procedures (Bastani, [2021} |Li et al., 2022; Tian and Fengj, 2023)), when h # 0,

/2. However, the second

the typical rate for regularization is also Ap < (logp/np)
fine-tuning step of |Li et al. (2022)) relies heavily on the sparsity of 8 — 6, which,
in turn, requires sparse contrast vectors and homogeneous Hessian matrices of the
population loss functions. In the case of linear regression, the Hessian matrices are the
population covariance matrices of the covariates, namely ¥y := E[X} ;X ,I ;]. Hence,
these two-step methods are quite sensitive to covariate shift, as remarked in He et al.

(2024)). In fact, we now provide a toy example where the procedures might fail under

nearly homogeneous covariates.

Example 1 (Almost homogeneous covariates). For independent X, ; such that EX, ; =

0, X = EXk,iX]Ii, and independent noise ex; ~ N(0,1,), let yp; = (05, Xki) + ki,



k =0,1,2. In addition, assume that ny = n; = ny and 6 is s-sparse. It is shown in

Li et al. (2022) that for 6; = 6; — 05, we have

9 -1
0; — 05 = <Z zk> (210; + ady) .

k=0

As for homogeneous covariates, such that the covariance matrices are set as 3y =
3, = 3, we have 05—6}, < (6;+462), which should be well-bounded by ||-||; according
to the triangular inequality, once we assume ||6;||; < h. However, consider the nearly

homogeneous covariates such that
20 = Ip, 21 = Ip + CZp, 22 = Ip — CZp,

where Z,, is a fixed realization from the standard Gaussian orthogonal ensemble
(GOE), which is the symmetric random matrix with the diagonal elements taken
independently from N(0,2p~') and the off-diagonal elements taken independently
from N(0,p~'). As p — oo, the spectrum of Z, is bounded within [—2,2] with high
probability, so 3; and ¥, are positive definite with high probability for sufficiently
small ¢ > 0. Notably, |[vec(Z1) — vec(s) oo < [[vec(Z,)|loo < (logp/p)/? — 0 as
p — oo. In this case, we have 65 — 05 =< (8, + 02) + ¢Z,(8; — 82). Let §; = —d2 =

(h,0,---,0)", Z, = (21,29, , 2,); we have
105 — Oplly = chl|zi[ly 2 chy/p — oo,

by observing that ||z1||; approximately equals the sum of p independent absolute

values of N(0,p™1).
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That is to say, the population pooling parameter 8% could be significantly dif-
ferent from 6 even if all 8; are close in terms of ¢; norm, under heterogeneous
covariates. On the other hand, if we instead impose the slightly stronger regulariza-
tion Ap =< (logp/np)/? + h, which could be viewed as the combination of bias and
variance, we shall have 573 close to 6§, as ensured by Corollary |1| above.

Here, we slightly enlarge the regularization strength from the default rate to
Ap = (logp/np)'/? 4+ h to address any potential covariate shift. We would like
to provide some intuitions on such enlarging regularization. It is well-known that
R = - |1 is able to element-wise shrink the estimator towards 0. Recall that 6§ is
supported on some subset S C {0, 1,...,p} with cardinality s. However, given the
potential model shift of sources, it is likely that we will have non-zero estimates in
S¢, the magnitude of which is bounded above by h. By enlarging the regularization
by h, we are likely to penalize those estimates in S¢ to zero, as desired. The price
we pay is that additional regularization is simultaneously enforced on each element
in S, which also shrinks more towards 0 by h, resulting in the additional sh? term
in Corollary [l The very same intuition applies to the generalized low-rank trace
regression below; except there, we use the matrix nuclear norm R = || - ||y to shrink
all the singular values.

In|Li et al.| (2022, 2024)), for their oracle transfer learning estimators to be prefer-

able, they need h < (log p/n)*/?, which results in the rate of slogp/np + h%. Hence,



if s is finite, then the direct oracle pooling estimator is no worse than the minimax
optimal oracle transfer learning estimators. This is also in the spirit of |Chen et al.
(2021)), where the authors suggest that either the target estimator or the oracle pool-
ing estimator is minimax optimal in low-dimensional knowledge transfer problems
under certain distance similarities. If s is able to diverge as well, the uniform over-
shrinkage discussed above might be sub-optimal, and we suggest considering more
sophisticated methods to overcome the covariate shift (Li et al., 2024; He et al., 2024]).
Meanwhile, in many practical cases when s is not too large, we can consider using
the more user-friendly é\'p after simply enlarging the regularization from the default

rate.

Generalized low-rank trace regression

Then, we present the case for generalized low-rank trace regression; the results are
analogous to those of the sparse regression case. Let the k-th dataset consist of
ny i.i.d. samples of Zy; = (Xy;,yr,), where P(yp;| Xy,;) o< exp {yrinni — br(nr,i)}
for n; = (05, Xy,i). Assume 6 is of rank r with r < oco. Recall the subspaces
defined in equations and (1.2)), and we take R = || - ||y as the decomposable
regularizer. We follow Fan et al.| (2019) and assume 6; to be d x d square matrices.
All analyzes could be readily extended to rectangular cases of dimensions d; X do,

with the rate replaced by d = max(d;,ds). In addition, assume all datasets share
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the same bg(-) = b(-), where b’ (ng;) = E (yx;| X.) is called the inverse link function
and b” (ny;) = Var (y:|Xy:). As also pointed out in Tian and Feng| (2023), using
different by, is allowed; however, it is less practical.

We take Li(0) = >, [~Yri(0, Xii) + ({0, Xk:))] /nx, whose gradient and
Hessian matrices at @ are, respectively, VL (0) = >, [0'((0, Xy.i)) — Yri| X.i/70k
and I/LI\k(O) = D icn, V'((0, X)) vee( Xy i) vee(Xy;) " /. We make the following
assumptions under the guidance of Fan et al.| (2019)): (a) for each k € P, the vec-
torized version of X}, is taken independently from a sub-Gaussian random vector
with bounded Wy-norm, namely |[vec(Xy,)|lw, < Miy; (b) we assume |[b"(ng;)] <
My and |V (nr;)] < Ms almost surely; (c) let Hg(0;) = IEI/LI\k(O,’;), assume that
Amin [Hi(0%)] > ki; (d) we assume either ||0;||r < h, ||6;||n < h, or [[vec(d;)]1 < h
for 8¢ = @ — 0; and (e) assume that ||@%|» > av/d for some constant o. We claim

the following rates of convergence.

Corollary 2 (Generalized low-rank trace regression). Given the above settings, if
we solve the problem with Ap =< (d/np)"/? + h, as mingep ny — 00, d — o0,
and h — 0 with d < mingep ny and (d/np)/? +h — 0, the oracle pooling estimator

satisfies

oo

) R g\ 2
=0, {ﬁwfﬂ], Hep—eg —0, r(—) +rhl.
F np N np




S.1.2 Optional fine-tuning

Recall that given the oracle pooling estimator ép (or §0 from the non-oracle method),
we can choose to fine-tune the primal estimator using the target dataset by solving

the following problem:

~ 1 ~
6 = argmin — Y _ Lo(Zo,:0p + 8) + AR(D). (S.1.1)
serr TN i<no
To some extent, the resulting fine-tuned estimator, denoted as 9\7*; = é\p + g,

could be viewed as an interpolation between the oracle pooling estimator and the
target estimator, which places a greater emphasis on the personalized aspect of the
target dataset.

When the sources are sufficiently informative, the fine-tuning step is, in fact, not
statistically necessary; hence, the term is optional. For instance, in the extreme case
that h = 0, any interpolation towards the target estimator only introduces addi-
tional variance to the oracle pooling estimator, leading to statistically sub-optimal
performance. This is particularly likely to happen when the target sample size ng
is also relatively small, which is common in practical transfer learning applications.
Meanwhile, in certain cases when 6 has a low-dimensional model shift from the
sources, as will be shown by numerical simulation and real data analysis in the ap-
pendix, the fine-tuning step is able to alleviate such influence in the same way as in

Li et al.| (2022); Tian and Feng (2023)) and serves as the final assurance for satisfying
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knowledge transfer performance.

Using interpolation between the knowledge transfer estimator and the target es-
timator for robustness against negative transfer is, in fact, common practice. Please
refer to | Duan and Wang] (2023), where the authors use a similar procedure to (S.1.1])
to avoid the negative impact caused by misusing the data pooling strategy. In the
same spirit, Li et al.| (2024)) proposes splitting the samples to learn the best linear
combination of the knowledge transfer estimator and the individual estimator using
target data only, which has been proven to be no worse than the single-task estima-
tor with high probability. Cross validation is suggested when choosing the tuning

parameter for the fine-tuning step in practice.

S.2 Additional Numerical Details

Here, we provide additional numerical details that further support our arguments.

S.2.1 Implement details in Section

We first provide the implementation details of the competitors in Section [4]of the main
article. Specifically, for éTF, we apply the proposed truncated norm optimization on
the datasets P with sufficiently large 7 to obtain ((/9\0, e ,§K). Then §TF is defined
as the weighted average of é\k, ie., §TF = rep nké\k /np. For éagg, we first randomly

divide the target data into two groups, 7; and 75, of equal size. We then obtain



the ), estimator 0"

gz DY truncated norm optimization on the datasets 7; U [K] with

sufficiently large 7. We can also obtain é\igg using the lasso estimator on the dataset

7:. Then, for © = (8 62 ), the aggregation estimator is defined as éagg = On

agg’ ~agg

where

n= argmin Lo(Z5,0n), Zz, are samples from Ts.

meEpositive simplex

For é\cv, we first estimate ,Zl\, which is used to obtain the oracle pooling estimator
écv. We randomly divide the target data into three groups of equal size, denoted as
T, and r < 3. Next, for each r, we obtain the lasso estimator é\%‘arget on the 7_,, where
T_, is the target data without 7,. Then we obtain é\z by truncated norm optimization
on the datasets kUT_,. with sufficiently large 7. Accordingly, we can calculate the loss

function Lo(Zr., 5};) for each k and 7. Finally, we calculate £§ = 32°_, Lo(Zr., 5};)/3,

L0 = S Lo(Zy,85)/3, and & = \/3° (Lo(Zr, ) — £3)?/2. Then we have

A= {k£0,L — L) < Cy(av0.01)}. We set Cy =1 in the experiments.

DC-ADMM details

To solve the problem (2.6)), the scaled augmented Lagrangian function is set as

K
£,(0,8) = S™(@,8) + g S 118k + 0 — 6 + vl —
k=1

N

K
> Il
k=1
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Then, the standard ADMM procedure can be implemented as

Lt = argmin axl|yx — XeOk )%+ midp||0klly + 21|8L + 6, — 6} + DL12,

0 cRP 2
0 K
05" = argmin aollyo — XoBo3 + noApBolly + 5 >_ 1195 + 6" — 6 + DL,
0 k=1
sa_ ) OO - if 6, [h > 7,
L _
ProX,,, g, /p(—OF + 667 = D), if 8] <7,

= B+ 54 B - B
where the superscript [ denotes the [-th step of the ADMM iteration, v is the
scaled dual variable, and the parameter p affects the speed of convergence The
proximal operator under ¢; penalty could be defined element-wise as prox,(b); =
(|bs| — a), sign(b;) (Parikh et al|, 2014). To acquire Oﬁk“, we construct artificial
observations (X}, y;.) and solve standard lasso problems @kﬂ = argming, gy ||y, —

X/ 0:||3 + ngAp||6k]|1 via the cyclic coordinate descent (Friedman et al., [2010)). Let

\/040)(0 v @Yo
Vel /2 (55 4O+ a{)

(Xolv y(,)) = )

VLo /5 (8 + 05 + 0 )
while for k € [K], let

Vi VOkYrk
~V/BLy /B (3 — 0+ 1)

(X%, yi) =



For empirical realizations, we set 4/9\2 as the lasso solution for the k-th dataset,
and we also set 5,20) = 9\2, ) =0 for k € {0,1,--- , K}, and 3,5;0) = 3,2 = 5((]0) — é\,(co)

for k€ {1,2,--- K}

S.2.2 Generalized low-rank trace regression

For generalized low-rank trace regression, we generate datasets for £k = 0, ..., 4 using
both both identity link ¥'(x) = z (corresponding to the linear model) and the logit link
b'(x) = 1/(1+ e~ *) (corresponding to the logistic model), with r = 3, p; = ps = 20,
ng = 400 for k € {0,--- ,4}. Similarly, & = 0 is the target, k = 1,2 are the useful
sources, while £ = 3,4 are the non-informative sources.

We report the results in Table [1| based on 100 replications. We draw the con-
clusion that the truncated-penalized algorithm still performs well in terms of si-
multaneously identifying the informative auxiliary datasets and recovering low-rank

parameters under the current setting.

DC-ADMM details

Here, we provide the numerical implementation details concerning the generalized
low-rank trace regression. We first present the standard ADMM procedure to solve
(2.7). Then, we also discuss the fine-tuning step under generalized low-rank trace

regression for the sake of completeness.
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Table 1: The mean and standard error of the simulation results for generalized low-rank trace
regression with unknown informative sources. For the column Datasets, by Target we mean only
the target dataset is used, Oracle means we only use the useful datasets, and All means we use
all the source datasets. In the case of using all datasets, if the method include dataset selection

capability, we report the (TPR,TNR) of dataset selection instead of AllL

Estimator — Link | *—65r Datasets  Estimator Link || *—65lr Datasets
Brarger 0.914 (0.073) All Brarger 1473 (0.087)  Target
Opuae 1.283 (0.085) All Opuae 1.429 (0.062) All

N linear R logit
op 0.889 (0.056)  Oracle op 1.282 (0.061)  Oracle
Orx 0.581 (0.043) (1.00,1.00) Orn 1.326 (0.074)  (1.00,0.94)

We first present the standard ADMM procedures that can solve ([2.7) with the

nuclear norm penalty. Under the generalized linear model setting, recall that

ng
VL(0) = > [V (ki) — Yri) X /1,
i=1
ng
V2L.(6;) = Z V' (ki) vec( Xy )vee (Xpi)/n-
i—1

We define the singular value shrinkage operator S)(Y') for Y of rank r. Let
Y =UXV" where ¥ = diag {(Uz’)lgigr}v U, and V are column orthogonal by the
singular value decomposition, then S\(Y) := UX, V', I, = diag {(oi — )\)+}.

the standard ADMM procedure could then be implemented as:



pitez \ P1+ P2 p1+ P2
K
1 ~
g+l — S . (37+é7+1_|_1/)l)_'_ <Al+0(m)+/\z) ’
0 #Afm —K,O1 ¥ P1 ; k k k P2\ Yo 0 Mo
il | i+l sl FAIFICONTINES
Sll:rl _ 0, + 6, Vi, if |6, ||x > 7, k=12 K.

Snk)\gk/m <_é7k+1 + é\lO—"—1 o ﬁ}c) ) if Hgl(cm)HN <T,

54 = argmin mox @ 87) + 2y~ 7+ B 4 A%, k=01 K,

Tk

Dl =pL+o 10 -0, k=12 K,

= AT -0 6, k=01 K,
where v and py are scaled dual variables, and p; and p, affect the speed of conver-
gence. By some simple algebra, the updating formula for %“ is
ny,
vec (Fp) = A {pgvec <(97k+1 — @(vm) — ﬁL) — agvec (Z [(b’(n,i?)) — y;“> X;“}> } ,
i=1
where A = [Ozk o b”(n,(;?))vec(Xk,i)vecT(X;m-) + ng} and 77,(;?) — (X, 0.
Naturally, we set 82 as the estimator by Fan et al. (2021), 8\ = 89, 19 = 3° = 0,
and ) = 0 for k € {0,1,--- , K} and set 3,(60) — 80 = OA((]O) — 5,(60) hereafter.
Indeed, the fine-tuning step of the generalized low-rank trace regression is also

not straightforward due to non-linearity. To fine-tune the generalized low-rank trace

regression with a given 673 € R4*% e rewrite the target problem 1} by omitting
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the subscript 0 as:

8 = argmin — Z L(Z;,0p + 8) + A\R(6), (S.2.2)
ScRd1 xd2
where 0p is known, R = || - ||, and L(8) = Yo L (Zi, Op + 5) /n. Analogously,

the local quadratic approximation of (S.2.2)) is:
(3(’”“),%) = argmin Q(7;8"™) + \y||6|ly subject to =& — 6™

5a'7€Rd1 Xdg

where for n{™ = (X, Op + S(m)>:

(2

Q(~: 3™ = vecT (7) V2L(8™ )vec () /2 + vecT () vec (VL(a )),
L(5™) Z V(™) = | Xifn.

L(6™) Zb” (nzm)> vec(X;)vee' (X;)/n.

Accordingly, we can apply the standard ADMM procedure:

5 =Sy (340 +91),

R ) Sim P ~ Stm N

F5 = argmin Q(y:80) + Ly — 541 + 50 + |2,
"/eRled2

s Ry ;)\,l-i-l . (’s\l-i-l + g(m)

where v is the scaled dual variable and p affects the speed of convergence. We have:

e (34) = A (e (80 ) e (S0 (547) - ) X)) ).

=1



where A = pI+>" V' <77§m)> vec(X;)vec' (X;)/n. Note that the ADMM algorithm
is not affected by the initial values since the problem is a convex optimization problem.

In practice, we could set " = 0, 80 =60 = 0,7 =0.

S.2.3 Enlarging regularization

Here, we numerically validate our claims about enlarging the regularization. For
numerical experiments, we generate useful datasets for k € P = {0,...5} in the
same way as in the main article on sparse linear regression, except that here we
do not deliberately set 8y = —0.4 for all k € [K]|. Note that 6y; = 0.4 and the
non-informative sources are not included.

We set p = 500, ng = 250, ny,--- ,ns = 400, and report the results in Table
based on 100 replications. We consider the following competitors (together with
their fine-tuned versions denoted by the additional superscript -*) and sketch how to
select tuning parameters for different methods:

(a) the target lasso estimator étargct using target data and Agarget Obtained through
cross validation;

(b) the oracle pooling estimator 579 that targets the population parameter 6%,
for which the tuning parameter A5 is naturally (and most commonly) chosen by cross

validation using all pooling samples;
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Table 2: The means (standard deviations) of losses under the same settings of Table 3 in the article,
except here we do not deliberately set 8;; = —0.4 for all k € [K]. Note that 6y; = 0.4. Here the
tuning parameter of 6 is acquired by cross validation whose validation set consists of the pooled
dataset (which is often the default choice). Meanwhile, the tuning parameter of 0 is acquired by cross

validation whose validation set consists of target data only (ending up in a larger A as expected).

Setting Estimator |- =652 | =65l Selected A 105 — 65111 ||Osarget — O51l2

6p 0.320(0.026)  0.330(0.036)  0.038(0.003)
Ho, 1.038(0.000)  0.550(0.125)
0p 0.322(0.027)  0.332(0.037)  0.049(0.009)

0p 0.356(0.026)  0.363(0.033)  0.036(0.004)
He, 5.001(0.147)  0.650(0.197)
0p 0.351(0.026)  0.358(0.035)  0.047(0.007)

0p 0.365(0.035)  0.371(0.038)  0.038(0.004)
Hoy 6.565(0.000)  0.550(0.125)
0p 0.348(0.034)  0.355(0.036)  0.056(0.008)

0p 0.389(0.042)  0.398(0.049)  0.035(0.005)
Hey 8.618(0.196)  0.650(0.197)
6p 0.348(0.028)  0.359(0.040)  0.058(0.009)

(c) the oracle pooling estimator 05 with the tuning parameter A5 selected by
cross validation using target samples;

(d) the fine-tuned versions 57*; and 4/9\7*; (for the sake of fairness in comparisons,
recall that 57> is originally used in two-step methods), with the tuning parameters in
the second step selected by cross validation using only the target dataset.

While both oracle transfer learning estimators outperform the original target es-
timation, as 6 gets further away from 6; under the dense contrasts or heterogeneous
covariate cases, indicated by larger |05 — 6|1, the default estimator 6p becomes less

reliable. On the other hand, cross validation using only the target samples naturally
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same settings as Table 1 of the main article, based on 100 replications. The numerical stability of
the non-convex algorithm is guaranteed under different initializations.

gives us larger A\, namely stronger regularization strength. Moreover, it leads to a
more reliable estimator @p. In addition, the fine-tuning step seems unnecessary in

all these cases.

S.2.4 The shrinking 7 strategy

To avoid the vicious cycle caused by poor initializations, we suggest a shrinking 7
strategy that iteratively uses the output of our algorithm equipped with a larger 7
as the input for our algorithm equipped with a smaller 7. The rationale behind the
shrinking 7 strategy is that if we take a sufficiently large 7 and all sources are included

blindly, then the optimization problem can almost be viewed as a convex one, and
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the poor initialization does not matter much. The resulting output of this large 7
algorithm is numerically stable but also biased due to the inclusion of non-informative
sources. Then, we take this output to be the initialization of the algorithm with a
smaller 7 to filter out the useless sources. The procedure above can be carried out in
an iterative manner (as 7 shrinks), and the resulting estimator from the final round
(with a suitable 7) is more numerically stable.

In the following, we report the numerical performance of the shrinking 7 strategy.
We work under almost the same settings as those in Table 1 of the main article. The
only difference is that, instead of using the local lasso estimates as the initialization,
we artificially construct three types of initialization: (1) bad prior: all 8, = 6} (the
K-th dataset is useless) for k € {0} U [K]; (2) good prior: 8 = 65 for k € {0} U [K];
and (3) no prior: all 8, = 0 for & € {0} U[K]. We successively apply the proposed
algorithm with 7 = 60 (large), 7 = 30 (mid), and 7 = 15 (small). The initialization
of the large 7 is taken from the three priors above, and the inputs of the smaller 7
steps are the preceding outputs. We can see that the shrinking 7 strategy is able
to ensure the numerical stability of the non-convex algorithm, even with very poor

initializations (bad priors).



S.2.5 Further numerical results

In this section, we report further numerical results (under 100 replications) to reflect
the effects of high-dimensionality and the performance of different methods under
more correlated covariates. We shall see that the proposed one-step algorithm remains
numerically stable as the dimension increases or as the correlation grows.

For the effect of high-dimensionality, the settings in the main article (ny = 250,
p = 500, ny = 400 for k& # 0) are extended to (ng = 500, p = 1000, nr = 800
for kK # 0) and (ng = 750, p = 1500, n; = 1200 for k£ # 0). As the dimension p
increases, we accordingly enlarge the candidate grid size for the tuning parameter 7,
as the distance between the parameters of different datasets naturally increases with
the growth of dimensionality in our simulation settings. We only report the case of
sparse contrasts and heterogeneous covariates (He, in the main article), as the results
are almost identical in other settings. The results are collected in Table [3| where we
can see that the performance of the proposed algorithm is numerically stable as the
dimensions increase.

Meanwhile, to increase the correlation between the covariates, we adopt the fol-

lowing spiked covariance structure:

)\s ike 2
¥ = 2EGUT + Al A,
P 3p

where Ay is a matrix of 1.5p rows and p columns, and U}, is a matrix of p rows and
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Table 3: The means (standard deviations) of the simulation results for different methods with
the growing dimensionality and sample sizes. We only report the case of sparse contrasts and
heterogeneous covariates (Heg in the main article), as the results are almost identical in other
settings. For the column Datasets, by “Target” we mean only the target dataset is used, “Oracle”
means we only use the useful datasets, and “All” means we use all the source datasets. In the case

of using all datasets, if the method has dataset selection capability, we report the (TPR,TNR) of

dataset selection instead of “All”.

(nk,no, p) Estimator |- —65]2 I =652 Datasets
Brarget 0.782(0.097) NA Target
0p 0.750(0.034)  0.406(0.063) Oracle
(400, 250, 500) ~
Opuac 1.190(0.092)  0.966(0.115) All
Orn 0.397(0.105) 0.347(0.106)  (1.000,0.000)
Brarget 0.789(0.079) NA Target
6p 0.757(0.022)  0.374(0.035) Oracle
(800,500,1000)
Opuac 1.621(0.078)  1.375(0.087) All
Orn 0.314(0.034) 0.292(0.034) (1.000,0.000)
Brarget 0.775(0.059) NA Target
0p 0.764(0.016)  0.362(0.021) Oracle
(1200,750,1500)
Opuac 1.996(0.076)  1.704(0.077) All
Orn 0.293(0.023) 0.277(0.022) (1.000,0.000)




r columns. The elements in both Ay and Uy are drawn independently from N(0,1).
The spiked covariance model is commonly used to model stronger correlations among
the covariates (Paul, 2007; Baik and Silverstein, 2006; Bai et al., |2018), where the
spike parameter Agke reflects the correlation strength. Note that 2A/,IA;C /3p is an
unbiased estimator of I,,, resulting in a weakly correlated 3 if Agpike = 0 (which
degenerates to the default heterogeneous setting in the main article). For Agike > 0,
Y admits a spiked covariance structure: a larger Agke implies a stronger cross-
sectional correlation. For our experiments, we set 7 = 10 and let Agpike € {0, 5, 10}.
As the U,’s are independent across different sources, we expect the covariates to be
more heterogeneous as Agpike increases.

In Table , we report the experimental results under growing Agyipe with (ng =
500, p = 1000, n; = 800 for k # 0); we only report the case of sparse contrasts
here, as the results are almost identical for the dense contrasts. The performance
of the proposed one-round method remains stable. This is indeed foreseeable, as
alluded to in the Introduction of the main article: our method is able to handle both
model shift (slight differences in model parameters) and covariate shift (in this case,
different covariance structures of the covariates). As a quick reminder, no covariate
homogeneity condition is required for our method to converge theoretically.

In summary, the proposed one-step method adapts readily to higher dimensions

and more correlated covariates, demonstrating its algorithmic robustness and poten-
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Table 4: The means (standard deviations) of the simulation results for different methods under
different covariance spikes, where n; = 800, ng = 500, and p = 1000. We only report the case of
sparse contrasts here, as the results are almost identical for the dense contrasts. For the column
Datasets, by “Target” we mean only the target dataset is used, “Oracle” means we only use the
useful datasets, and “All” means we use all the source datasets. In the case of using all datasets, if

the method has dataset selection capability, we report the (TPR,TNR) of dataset selection instead

of “All”.
Correlation  Estimator |- —65]2 I =652 Datasets
Brarget 0.783(0.074) NA Target
0p 0.762(0.022)  0.379(0.031) Oracle
)\spike =0 R
Opoac  1.625(0.078)  1.380(0.092) All

~

Orn 0.320(0.033)  0.296(0.034)  (1.000,0.000)

Brarget 0.771(0.069) NA Target
0r 0.760(0.020)  0.375(0.029) Oracle
)\spike =5 R
Opuac 1.651(0.082)  1.403(0.076) All
Orx 0.310(0.031) 0.290(0.032)  (1.000,0.000)
Brarget 0.772(0.068) NA Target
0p 0.764(0.021)  0.388(0.030) Oracle
Aspike =10 R
Opuac 1.709(0.079)  1.469(0.083) All

o~

O1x 0.311(0.033)  0.293(0.032) (1.000,0.000)

tial practicality in real world applications.



S.3 Proofs of Theoretical Results

Finally, we present the proofs of our theoretical results.

S.3.1 Proof of Proposition

Recall that @™+ and 6™+ are the minimizers of S+ (@, §); then we obtain
0< S ((:)(m>, §<m>) _ glmt) (@m), g<m>)
< 50 (8,5 < 5t (@b, 5m-b) (5.3.3)
=S (@(m—n, g<m—1>> '

The remaining parts can be obtained by following arguments similar to those in [Wu

et al.| (2016); Liu et al.| (2023).

S.3.2 Proof of Theorem [1]

Note that the truncated norm penalty makes the problem (2.5) non-convex, so all
minima here are discussed in a local manner. It helps to decompose (2.5)) into sub-
problems. First, for any 6} in some set Op, we acquire the best response of é\k

as

6,(6}) = argmin L (6 0))
0. €RP
(5.3.4)
= argmin Lk (0k> + )\pR (Hk) + )\Qk min [R (Ok — 06) ,T] .
Orere single?trask(k) TN‘E(k)
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We then plug-in the best responses and solve locally for 50 by

8, = argmin [@Lo(eg) + 20 R (eg)] + Y M, (§k(eg);eg)). (S.3.5)
0 con LN N N
0€0P 1<k<K
For the informative datasets k € A, recalling the variance-bias decomposition in
(3.10), we have R* (VLp(0)) < vp + h since ||V2Li(0;) |5, —=+ < M for k € A and
h — 0. According to Proposition , for A\p 2 vp + h, we have R(é\p —6y) < Mp
for the oracle pooling estimator é\’p. Let Ip < vp + h be sufficiently large, so that

the open set Op = {0|R(0 — 6;) < lp} contains (9\73. Now, for any 6, € Op, define

32(06) =0, — é\k(O(’)); we rewrite 1) in the open set R(gjg) < T as

8.(6)) = argmin Ly, (8)) — 81,) + ApR (6, — 8,) + Ao, R (81,

R(tsk)<7'

By the convexity of L; and the triangular inequality, we have
L, (06 - 6k) + AR (96 - 6k> + )\QkR (5k)
> Ly, (0)) — R (VLi(6))) R(0k) + ApR(6)) — ApR(8x) + Ao, R(8;)  (8:3.0)

> L (6)) + 2R (6) ,

as long as Ao, > Ap + R*(VL(6))). For vy = R*(VL(6;)), we have
R* (VL(6;)) = R* (VL (6; + 6, — 0))
S ue+ R (V2L(6;)(6) - 67))
< v+ R (V2Li(67)(6, — 65)) +R* (VL (6;)(6; — 6;))

,Svk—l—h,



since max(||V2Ly(0;)|lr-r",

|V2L1.(07) |, —r+) < M, R(6, —63) < v, +h — 0,
B(6; — 6;) < h, and vp < vi,. That is to say, for Ao, 2 vk, + h, we have 3\1’{(06) =0
for all 8 € Op according to ({S.3.6).

Then, for non-informative datasets k € A, the first part of the problem (|S.3.4])
is essentially the single-task estimation using the k-th dataset only, whose minimizer
is denoted by é\; = argming, ., Ly, (0r) + ApR (0;). For the non-informative study
k, since R(é\; — 0}) > 27 by assumption, we have 73((93€ —0)) > 71 for 6 € Op. The
second part of is then fixed as Ao, 7 in an open neighborhood of 4/9\;, so that
é}c is indeed a local minimum of and ék(eg) = 5,; for all 6) € Op.

In the end, plug the best responses into the problem ; the resulting problem

is then equivalent to oracle pooling by 1' and the solution is 50 = §p. The proof

is complete.

S.3.3 Proof of Corollary

First, for the restricted strong convexity (RSC) condition, we take the following
result from Raskutti et al. (2010)), such that there are positive constants (kg 1, Kk2),
depending only on ¥, for f]k = XJXk/nk,

lo

prAHf, for all A € RP, (S.3.7)
k

(A,2A) = r AP - ki

with a probability greater than 1 — ¢ ; exp (—cx2ni). We then focus on the Hessian

matrix of Lp, which is ), Sk /np.
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Lemma 1 (RSC Conditions). Under the settings of Corollary[l], let Ay (or Aye) be

the projection of A onto the s-sparse support (or its complement). There erists a

positive constant kp such that for all ||Ase|l; < 3||As]l1,

1 = logp 2
— (A A ) > — 16 A S.3.8
np< > S >_ [“P > 165k AR, (5.3.8)

keP keP k

with a probability greater than 1 — 3", p ci1 eXp (—C2ny).
Then, we give the following result concerning the rate of R* (VLp(6;)).

Lemma 2 (Convergence Rates). Under the settings of Corollary we have as

mingep N — 00, p — 00, and h — 0,

) Y log p
R (VLp(8) = Oy = 2+ ) (S.3.9)
~—— bp
vp

With the help of Lemma and Lemma , while maxyep logp/ng — 0 and h — 0,
Corollary [1] holds according to Proposition [2 Then we give the proofs of Lemma

and Lemma 2

Proof of Lemma [1]

It is the straightforward consequence of (S.3.7)). For ||As|1 < 3||Ag|l1, we have

Al = Al + 1Al < 4]Adlh < 4Vs[|A]; then (5.3.8) holds with rp :=

> rep Nkkik,1/np by the union bound of probability.



Proof of Lemma [2]

Controlling R*(VL.(0;)) < ||X, €rlloo/ns is straightforward by noticing that the
maximum of a p-dimensional vector with zero mean sub-Gaussian elements, with

1/2 using standard union bound

variance proxies of order ng, is controlled by (ny log p)
arguments. As for R* (VLp(6f)), for h sufficiently small, it suffices to bound vp =
R* (X pep e VLL(0})) /np and bp = >, p R (V2L4(0;)0;) /np. First, vp <

| Y rep X €xlloo/np = Op(y/log p/np) by noticing that each element of >, » X, €

: . . . 1/2
is the sum of np independent centered random variables and is of order np/ , We

obtain the result through similar union bound arguments. In the end, for bp =

> wep e R* (V2L (0;)0;) /np, we proceed by controlling each term || X, X607 o /1p-

Recall that for the mxn matrix A = (a;;) and its transpose AT = ((A7)1,--+ , (A")n),
we have
Al1500 = sup [|AV||w = max ai;l,
A1~ Sup lAvloo = max - la]

1111

|4l = sup [|Avl = max [(AT),
vll2<1 T

0 1T X287 e < 16T el IO 1 01 167 Xe87loe < 167 Xellz s |67 . Note

that, by the Cauchy-Schwarz inequality, the maximum of |(X,] X);;| is obtained on

the diagonal, where (X, Xy)ii = ni(Zg)ii + Op(n,i,ﬂ) occurs, so that ||X Xdf|lee S

nih has a probability tending to 1 using the union bound again, as maxgep log p/ny —

0 and ||6;]l; < h. On the other hand, ||X,) Xxll200 < Amax(Xy Xk) < Msny, almost

surely if p/ny — ¢ as ny, p — oo according to |Yin et al.| (1988)); Bai and Silverstein
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(1998, 2010) for ||65]]2 < h. The proof is complete.

S.3.4 Proof of Corollary

We first verify the RSC conditions under the settings of Corollary[2 Since [|vec(Xj;)|lw, <
M, and Ay [H(65)] > ki, for k € P, according to (6.11) of [Fan et al.| (2019), with

probability 1 — exp(—cd),

= d
<vec(A),Hk(9;)vec(A)> > ra| Al = o/ Al forall A € R
k
(S.3.10)
As for the rate of convergence, given |[vec(Xy,;)|lw, < My and |V ()| < My

almost surely, according to Lemma 1 of [Fan et al| (2019)), for d < ng, as d — oo,

i Z [b, (0%, Xki)) — Y] X

n
k i<n.

=0,(y/--). (S.3.11)

op

Then, we establish Lemma [3[ and Lemma 4| based on (S.3.10)) and (/S.3.11J).

Lemma 3 (RSC Conditions). Under the settings of Corollary[d, for 8} = 65 — 65,
let Azg (or A1) be the projection of A onto M (or ML) Denote Hp = V2Lp =
Zkep nkﬁk/’np There exists a positive constant kp. as Mingep N — 00, d — 00,

and h — 0 with (d/np)Y? + h — 0, we have
<vec(A),ﬁp(9;)vec(A)> > kpl|Al%, for all |A |y < 3| Ay, (S.3.12)

with a probability tending to 1.



Lemma 4 (Convergence Rates). Under the settings of C’orollary@ as Mingep Ny —
00, d — 00, and h — 0 with d < mingep ng, we have

d
R (VLp(67) = Oy |/ -=+
NI

bp
vp

As the proofs in|Negahban et al.| (2012) clarify, we require the RSC condition only
on the intersection of C with a local ball {||A| < R}, where R < (d/np)"/? +h —
0 is the error radius according to Lemma [l Given sufficiently small R, we have
SLp(A;65) 2 <Vec(A), ﬁ’p(@é)VGC(A)>, so that the RSC conditions hold according
to Lemma [3] and Theorem [2| follows naturally from Proposition [2] Finally, we give

the proofs of Lemma [3] and Lemma [4]

Proof of Lemma [3]

It is the straightforward consequence of (S.3.10)). For ([S.3.12]), we first focus on each

term, for ny,; = (05, Xy.i),

i (veo(A), Hy(8;)vec(A) ) = 3~ 8" (65, X)) (X, A))?

i<ng

= D040+ 81 X)) (X, A))?
= (S.3.13)

=) [ () (X, A))? + 6" (1) Xk 53) (X, A))?

i<ng

A+, (X, 0)) (X, A>)2} :

First, notice that both ||d;||x < h and |vec(d;)|l1 < h imply that [|6;||r < h.
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We have || (X4, 0%) |lw, < Mih by the definition of sub-Gaussian random vectors, so
that (X ;,0;) = 0,(1) as h — 0. The third term in the last line of hence
vanishes, and it suffices to control the first two terms. We then control the first
term directly by , for A4+ lIn < 3[|Axzll v, with a probability greater than

1 — exp(—cd) we have

DV () (X A))? = mprigal| A7 — wrav/mid|| A%

1<ng

> [nkmm — 327’/£k,2\/n_kd} A%

> [nk/%l — 327”@,2\/@} HAH%,
due to the fact that |A|xy < 4]|Axglly < 4v2r||A|F. Then, to control the second
term of (S.3.13)), we have [b” (k)| < Ms almost surely by assumption, |(Xy;, 05)| =
O,(h) as shown earlier, and ((Xj;, A))? = O,(]|A]|%). Combining these results, as

np — 00, d — oo with d/np — 0, we have, by the union bound of probability, that

(vec(A), Hp(85)vec(A)) = wp A3, for all [|Ag |y < 3] Al

with probability tending to 1, where kp = ¢; ZkeP nkr,1/np for some constant c;.

Proof of Lemma [4]

We recall that R*(V Ly (65)) = [| 22i<p, [V (05 Xii)) = vkl X/ mllop = Op(v/d/18)

directly from (S.3.11). We focus on R* (VLp(6})) for h sufficiently small. Again, it



suffices to bound vp = R* (3, cp me VLi(0})) /np and bp = >, .p i R* (V2 Ly (05)67) /np.
We could use the standard e-net argument to control vp as in Lemma 1 of Fan et al.

(2019), which gives vp = O,(1/d/np). As for bp, we control each term

1
R* (V2Ly(6;)d;) = —

N

DV (85, X)) (X 67) X

i<np

op

By the definition of || - ||,, and the standard e-net arguments as in (S.3.11)), we have

> V(65 X)) (X O5) X

i<ny op
= sup D V(65 Xia)) (X, 67) w' X0
ueSi—1 peSd-1 <
16
<= b ({65, X)) (X, ) u” X 0|
< o omax Enk ({05, X)) (X 0) ' X0

where §%71 is the (d — 1)-dimensional sphere and N? is a 1/4-net on S¢~'. Then,
notice that |b” ((8}, X)) | < M, by definition, while || (X}, 6%) ||w, < Mih and
|lu" X} v|w, < M; are due to the fact that ||vec(Xy:)||w, < M. Since the product

of two sub-Gaussian random variables is sub-exponential, we have for all u € N'? and

ve N
1 {(Xni, 65) u' Xpavllw, < || (Xni, 65) v, lu’ Xy iv|lw, < MEA,

for the sub-exponential norm || - ||y,. Hence, we are facing the sum of n; independent
sub-exponential random variables, with the sub-exponential norm (controlling both

both mean and standard error of the random variables) bounded above by h. Then,
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by the union bound over all points on N4 x A'¢ following (6.9) of [Fan et al.| (2019),
we obtain bp = O,[h + hmaxyep(d/ng)'/?]. The proof is then complete by noticing

that d < mingep ng, by assumption.
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