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Supplementary Material

Detailed proofs of Theorems 1-2 and Proposition 1 as well as the theoretical

results of Fisher consistency, excess risk bound and universal consistency of

the estimated treatment regimes.

S1 Proofs

S1.1 Proof of Theorem 1

By Cui and Tchetgen Tchetgen (2021), we have

argmax
d

E[Td(X)] = argmax
d

E
[
ZAT1{A = d(X)}
δ(X) Pr(Z|X)

]
.
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Furthermore, we have

E
[

∆Y

SC(Y |X,A,Z)

ZA1{A = d(X)}
δ(X) Pr(Z|X)

]
=E

[
E
[

∆Y

SC(Y |X,A,Z)
|Z,A,X

]
ZA1{A = d(X)}
δ(X) Pr(Z|X)

]
=E

[
E[T |Z,A,X]

ZA1{A = d(X)}
δ(X) Pr(Z|X)

]
=E

[
E
[
TZA1{A = d(X)}
δ(X) Pr(Z|X)

|Z,A,X
]]

=E
[
TZA1{A = d(X)}
δ(X) Pr(Z|X)

]
.

Therefore, we have

argmax
d∈D

E[Td(X)] = argmax
d∈D

E
[

ZA∆Y 1{A = d(X)}
SC(Y |X,A,Z)δ(X) Pr(Z|X)

]
.

S1.2 Proof of Theorem 2

Note that we have

E
[
Q(X, Z, A, Y, ∆, SC , ST )

ZA1{A = d(X)}
δ(X) Pr(Z|X)

]
=E

[
E [Q(X, Z, A, Y, ∆, SC , ST )|Z,A,X]

ZA1{A = d(X)}
δ(X) Pr(Z|X)

]
=E

[
E[T |Z,A,X]

ZA1{A = d(X)}
δ(X) Pr(Z|X)

]
=E

[
E
[
TZA1{A = d(X)}
δ(X) Pr(Z|X)

|Z,A,X
]]

=E
[
TZA1{A = d(X)}
δ(X) Pr(Z|X)

]
,
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where the second equality holds because

E[Q(X, Z, A, Y, ∆, SC , ST )|X,A,Z] = E[T |X,A,Z],

following the proof as shown in Van der Laan and Robins (2003); Rubin

and van der Laan (2012). Therefore, we have

argmax
d∈D

E[Td(X)] = argmax
d∈D

E
[
Q(X,A,Z,∆, Y, SC , ST )

ZA1{A = d(X)}
δ(X) Pr(Z|X)

]
.

S1.3 Proof of Proposition 1

Under Assumptions 2-9, by Equation (1), d̃ is the regime which maximizes

E[Td(X)] over the policy class D. Then E[Td̃(X)] ≥ E[TdITT (X)] follows by the

definition of dITT .

S2 Asymptotic Properties of The Proposed OTR

In this section, we provide asymptotic properties of estimated treatment

regime with W = W IW . A similar result holds for W = WDR.

We define the following risk

R(g) ≜ E[W1{A ̸= sign(g(X))}],

The optimal decision function associated with the OTR d̄ is defined as

g∗ ≜ argming∈G R(g) and corresponding Bayes risk is R∗ ≜ R(g∗), where G
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is the class of all measurable functions. We also define the ϕ-risk

Rϕ(g) ≜ E[|W |ϕ(sign(W )Ag(X))],

where ϕ is the hinge loss function. The minimal ϕ-risk is R∗
ϕ ≜ infg∈G Rϕ(g),

and g∗ϕ ≜ argming∈G Rϕ(g). The following Proposition 2 on Fisher consis-

tency and Proposition 3 on upper bound of the excess risk under 0-1 loss

follows from Theorems 2.1-2.2 of Zhou and Kosorok (2017).

Proposition 2. Under Assumptions 2-9, R∗ = R(g∗ϕ).

Proposition 3. Under Assumptions 2-9, for any measurable decision func-

tion g, we have

R(g)−R∗ ≤ Rϕ(g)−R∗
ϕ.

It is worth noting that Proposition 3 implies that the regret of the regime

associated with the decision function g can be bounded by the corresponding

regret under the hinge loss. This excess bound also serves as an intermediate

step for the universal consistency of the estimated treatment regime given

below.

Before establishing the consistency of the estimated treatment regime

with a universal kernel (e.g., Gaussian kernel), we introduce the concept of

universal kernels (Steinwart and Christmann, 2008). A continuous kernelK

on a compact metric space X is called universal if its associated reproducing
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kernel Hilbert space (RKHS) HK is dense in C(X ), where C(X ) is the space

of all continuous functions on the compact metric space X endowed with

the usual supremum norm. Let K be a universal kernel, and HK be the

associated RKHS. We assume the following assumptions about λn, g
∗
ϕ, and

the weight W .

Assumption 10. Consider a sequence of tuning parameters λn → 0 and

nλn → ∞ as n → ∞. Suppose that g∗ϕ is measurable and bounded, |g∗ϕ| ≤

Mg, and |
√
λnbn| ≤ Mb almost surely for some constants Mg and Mb.

Assumption 11. Mδ < |δ(X)|, Mz < Pr(Z = 1|X) < 1 − Mz for some

0 < Mδ < 1, 0 < Mz < 1/2 almost surely.

Assumption 12.

sup
x∈X

|δ̂(x)− δ(x)| p→ 0, sup
x∈X

|P̂r(Z = 1|x)− Pr(Z = 1|x)| p→ 0,

sup
t≤h,x∈X

|ŜC(t|x)− SC(t|x)|
p→ 0 as n → ∞.

Then, we have the following result.

Proposition 4. Under Assumptions 2-12, we have

lim
n→∞

R(ĝ) = R∗,

where ĝ = ĥ+ b̂ is the estimated decision function from

min
g=h+b∈HK+{1}

1

n

n∑
i=1

|ŵi|ϕ(sign(ŵi)aig(xi)) +
λ

2
||h||2K .
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The proof of the above theorems is akin to Zhao et al. (2012) and Zhou and

Kosorok (2017), so we omit it here.
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