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Supplementary Material
Detailed proofs of Theorems 1-2 and Proposition 1 as well as the theoretical
results of Fisher consistency, excess risk bound and universal consistency of

the estimated treatment regimes.

S1 Proofs

S1.1 Proof of Theorem 1

By Cui and Tchetgen Tchetgen (2021), we have
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Furthermore, we have
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Therefore, we have
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S1.2 Proof of Theorem 2

Note that we have
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where the second equality holds because

E[Q(X, Z, A, Y, A, Se, Sp)|X, A, Z] = E[T|X, A, Z],

following the proof as shown in Van der Laan and Robins (2003); Rubin

and van der Laan (2012). Therefore, we have
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S1.3 Proof of Proposition 1

Under Assumptions 2-9, by Equation (1), d is the regime which maximizes
E[Tiy(x)] over the policy class D. Then E[Tj x| > E[Tyrr(x)] follows by the

definition of d'*7,

S2 Asymptotic Properties of The Proposed OTR

In this section, we provide asymptotic properties of estimated treatment
regime with W = W!W_ A similar result holds for W = WPE,

We define the following risk

R(g) £ E[W1{A # sign(g(X))}],

The optimal decision function associated with the OTR d is defined as

g* £ argmingcg R(g) and corresponding Bayes risk is R* £ R(g*), where G
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is the class of all measurable functions. We also define the ¢-risk
Ry(g) = E[[W]|o(sign(W)Ag(X))],

where ¢ is the hinge loss function. The minimal ¢-risk is /2, £ inf,eg Ry(9),
and g 2 arg mingeg R4(g). The following Proposition 2 on Fisher consis-
tency and Proposition 3 on upper bound of the excess risk under 0-1 loss

follows from Theorems 2.1-2.2 of Zhou and Kosorok (2017).
Proposition 2. Under Assumptions 2-9, R* = R(g}).

Proposition 3. Under Assumptions 2-9, for any measurable decision func-

tion g, we have
R(g) — R* < Ry(g9) — R,

It is worth noting that Proposition 3 implies that the regret of the regime
associated with the decision function g can be bounded by the corresponding
regret under the hinge loss. This excess bound also serves as an intermediate
step for the universal consistency of the estimated treatment regime given
below.

Before establishing the consistency of the estimated treatment regime
with a universal kernel (e.g., Gaussian kernel), we introduce the concept of
universal kernels (Steinwart and Christmann, 2008). A continuous kernel K

on a compact metric space X is called universal if its associated reproducing
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kernel Hilbert space (RKHS) H is dense in C(X), where C'(X) is the space
of all continuous functions on the compact metric space X endowed with
the usual supremum norm. Let K be a universal kernel, and Hx be the
associated RKHS. We assume the following assumptions about A, g3, and

the weight .

Assumption 10. Consider a sequence of tuning parameters A, — 0 and
nA, — 00 as n — oo. Suppose that g is measurable and bounded, | g;;| <

M,, and ]\/ann\ < M, almost surely for some constants M, and M.

Assumption 11. M; < |§(X)], M, < Pr(Z = 1|X) < 1 — M, for some

0< Ms<1,0< M, <1/2 almost surely.
Assumption 12.

sup [6(z) — 6(x)| &0, sup|Pr(Z =1lz) — Pr(Z = 1]z)| 2 0,

zeX zeX

sup |Sc(t|x) — Se(t|z)] & 0 as n — oco.
t<h,zeX

Then, we have the following result.
Proposition 4. Under Assumptions 2-12, we have

lim R(g) = R*,

where g = h + b is the estimated decision function from

n
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The proof of the above theorems is akin to Zhao et al. (2012) and Zhou and

Kosorok (2017), so we omit it here.
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