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1. Heavy-tailed bandits

To get a logarithmic regret for the UCB (i.e., RT/log(T ) → C), it is usually

assumed that the distributions Pi are sub-Gaussian. This can be weakened

to require the distributions to have finite moment generating function, see

Agrawal (1995). To overcome this limitation, instead of just estimating

the mean at each step t of the UCB, in Bubeck, Cesa-Bianchi and Lugosi

(2013) it is proposed to use a robust estimator, µ̂i,t, of E(Pi), that fulfills

the following assumption:
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Assumption 1 Let ϵ ∈ (0, 1] be a positive parameter, and let c, v be

a positive constant. Let X1, . . . , Xn be i.i.d. random variables with finite

mean µ. Suppose that for all δ ∈ (0, 1) there exists an estimator µ̂ = µ̂(n, δ)

such that, with probability at least 1− δ,

µ̂ ≤ µ+ v1/(1+ϵ)

(
c log(1/δ)

n

)ϵ/(1+ϵ)

(1)

and also, with probability at least 1− δ,

µ ≤ µ̂+ v1/(1+ϵ)

(
c log(1/δ)

n

)ϵ/(1+ϵ)

. (2)

In that case we say that µ̂ fulfills Assumption 1.

Remark 1. From

P
(
d(µ∗, µ) > 4

√
Ed2(µ1, µ)

)
≤ δ. (3)

our robust proposal µ∗, applied on each arm, and based on K =

⌈8 log(1/δ)⌉ groups, fulfills Assumption 1, for ϵ = 1, v = V(Pi), (V(Pi)

being the variance of the distribution Pi), and c = 16. In that case, for an

arm i = 1, . . . , L, n = Nt,i/K.

Bubeck, Cesa-Bianchi and Lugosi (2013) proposes the following robust

variant of the UCB: given ϵ ∈ (0, 1], for arm i, define µ̂i,s,t as the estimator

µ̂(s, t−2) based on the first s observed values Xi,1, . . . , Xi,s of the reward of
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arm i. Define the index

Bi,s,t = µ̂i,s,t + v1/(1+ϵ)

(
c log(t2)

s

)ϵ/(1+ϵ)

for s, t ≥ 1 and Bi,0,t = +∞. Then, at time t draw an arm maximizing

Bi,Ni,t−1,t.

We propose the following algorithm. First we choose the arms at ran-

dom from t = 1, . . . , t0, where t0 guarantees that for all i = 1, . . . , L,

Nt0,i/⌈8 log(t20)⌉ ≥ 1. We compute, for each arm, the estimator given by

Equation (1), denoted by µ∗
t0,i

, where we split the Nt0,i observations into

K = ⌈8 log(t20)⌉ groups, and compute the mean of each group. Define the

index

Bi,Nt0,i
,t0 = µ∗

t0,i
+ 4

√
V̂(Pi)

(
log(t20)

Nt0,i

)1/2

,

where V̂(Pi) is any consistent estimation of V(Pi), or an upper bound. At

time t0 + 1, we choose the arm that maximize Bi,Nt0,i
,t0 , at time t0 + 2 we

choose the arm that maximize Bi,Nt0+1,i,t0+1, and so on.

Proposition 1 in Bubeck, Cesa-Bianchi and Lugosi (2013) proves that

this algorithm attains logaritmic regret. More precisely,

RT ≤
∑

i:∆i>0

(
32

(
V(Pi)

∆i

)
log(T ) + 5∆i

)
,

where ∆i = E(Pi∗)− E(Pi).
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1.0.1 Simulations

As a toy example, let us consider the classical two-armed bandit problem

and rewards given by Xt|At = j ∼ µj + S(3), for j = 1, 2, where S(3) is a

random variable following Student’s distribution with 3 degrees of freedom,

µ1 = 7, and µ2 = 8. In our algorithm, indicated by RUCB in Figure 1, the

first t0 = 40 arms are chosen at random.

The results are shown in Figure 1, where the red dotted horizontal line

(y = 8) is the maximum expected gain. The dashed lines corresponds to

the mean rewards of the UCB (orange) and the RUCB (blue) respectively.

As can be seen, it takes the RUCB algorithm about 120 steps to outperform

the UCB algorithm, and the difference grows larger as the number of steps

increases.
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Figure 1: Cumulative gains over 500 replications, for t = 1, . . . , 750. The

red dotted horizontal line (y = 8) is the maximum expected gain. The black

dotted vertical line (x = 40) indicates the number of random warm-up runs

in the RUCB algorithm. The dashed lines depict the mean reward of the

UCB (orange) and RUCB (blue) algorithms.

2. Robust regression

A current topic of interest in statistics is that of regression models in the

presence of noise. It is known that a small fraction of outliers can cause

severe biases in classical regression estimators. These classical models gen-
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erally assume additive residuals in the model with finite second moment

(e.g., Gaussian). An extensive review of robust outlier estimation methods

for nonparametric regression models is provided in Salibian-Barrera (2023).

We tackle the problem of estimating the function m : X → R, from an

i.i.d. sample of a random element (X, Y ) ∈ X ×R, that satisfies the model

Y = m(X) + ϵ

where ϵ is a noise term such that E [ϵ|X] = 0. To keep the following

discussion fairly simple, we will only cover the case X = R. In the context

where very little information is known about m, a general estimator is often

given by the kernel estimator

m̂(x) =

∑n
i=1 Kh(Xi − x)Yi∑n
i=1Kh(Xi − x)

, (4)

where Kh(x) = h−1ϕ(h−1x) and h > 0 is some bandwidth parameter. The

function ϕ is non-negative and such that
∫
R ϕ(x)dx = 1. In general, the

continuity of the function m is enough to get the consistency of the kernel

estimator m̂ and a light tailed behavior for ϵ gives sub-exponential deviation

bounds for the estimator around its mean value m. Nevertheless, in various

concrete settings, one can face heavy tailed distributions for ϵ in such a way

that the estimator proposed in (4) becomes highly unstable. Indeed, the
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presence of (virtually) one outlier is enough to drive the estimator towards

values very distant from m. One natural way to measure the quality of the

estimator m̂ is to consider the L2 distance

d2(m̂,m) = E
[
|m̂(X)−m(X)|2

]1/2
.

In this context, it is possible to introduce the robust version of the esti-

mator by considering GROS with the distance d2. In practice, the distance

d2 is actually intractable. To overcome this difficulty, it is common to use

a discretization on a mesh for the space X and approximate the integral by

a Riemann sum.

This estimator verifies a bound as in Theorem 2 for the associated dis-

tance. The estimator m∗ is, in the sense of Equation (1), the best candidate

in the class of the estimator m1, . . . ,mK constructed on the disjoint groups

G1, . . . , GK of data points. These estimators m1, . . . ,mK are defined by

mj(x) =

∑
i∈Gj

Kh(Xi − x)Yi∑
i∈Gj

Kh(Xi − x)
,

so that these estimators are independent. Following subsection 2.1, the

following estimator for m̂ can be proposed:

m̂ = argmin
m∈M̃

min
I:|I|>K

2

max
j∈I

d2(mj,m),

where the (mj)
K
j=1 are the kernel estimates of m on each of the K groups,

and the set M̃ denotes the set of functions that are piece-wise equal to
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one of the mi. The difference from the naive definition is that the set of

minimization does not end with an estimator of the form mi∗ , which allows

avoiding choosing a function that may be a good fit in some regions of the

space but sensitive to outliers in other parts.

In order to fully use the result of Equation (4), we cite a result that

gives an upper bound for the mean squared error for any of the estimators

mj previously defined. In chapter 5 of (Györfi, Kohler, Krzyzak and Walk,

2002, Theorem 5.2), we get that if m is λ-Lipschitz, and that Var(Y |X =

x) ≤ σ2 for all x ∈ X , then

E
[
∥m1 −m∥2

]
≤ c

(
σ2 + supx∈X m(x)2

(n/K)hd

)
+ λ2h2.

This induces a choice of h of the form

h = c′
(
K

n

) 1
d+2

.

The upper bound then takes the form of

E
[
∥m1 −m∥2

]
≤ c′′

(
σ2 + sup

x∈X
m(x)2

)2/d+2

×
( n

K

)−2/d+2

,

which can be directly plugged into the main bound of the theorem.

2.0.1 Simulations

We compare, by means of simulations, the performance of GROS with some

classical and robust regression alternatives proposed in the literature.
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In this example we consider a sample X1, . . . , X1000 with uniform dis-

tribution on [0, 5]. Let m(x) = 4 sin(3x) and suppose that the centered

noise follow the skew-normal Student distribution, see Fernández and Steel

(1998); Azzalini (2013), whose density is defined as follows: denote by

t(x, κ, ν) the density of the non-standardized Student’s distribution with

location κ and and ν degrees of freedom, and with cumulative distribution

function T (x, κ, ν). Then, the density of the skew-normal Student is

f(x;κ, ν, σ, ξ) =
1

σ
t(x/σ, κ, ν)T

(
ξx

σ
, κ, ν

)
,

where σ > 0 denotes the scale parameter. The slant (or skewness parame-

ter) is ξ.

We will write NW for the non-parametric Nadaraya–Watson kernel re-

gression estimator (4), see Nadaraya (1964); Watson (1964). As robust esti-

mators, we consider the proposals developed in Oh, Nychka and Lee (2007)

(ONL estimator) and Boente, Mart́ınez and Salibián-Barrera (2017) (SBMB

estimator). Both estimators are implemented in theR language: the first in

the fields library and the other in the RBF library. Our estimator in this

context will be called RANW (Robust Aggregation for Naradaya–Watson).

For the latter, K = 12 was considered. Figure 3 shows the estimated re-

gressions in each scenario and in red the true function f . It is clear that

the NW estimator performs poorly in all cases.
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The performance of each estimator is measured by the average distance

d2(m̂,m) over 1000 replicates, considering κ = 0, ν = 3 (note that the noises

have heavy tails) and varying the parameters σ and ξ. For the bandwidth

parameter h, we choose 0.2 in all cases.

Figure 2 shows box plots of the errors for four choices of the param-

eters. As can be seen, when the noise is asymmetric (i.e., ξ ̸= 1), the

best-performing estimators are RANW and ONL, depending on the value

of the scale parameter. Note that when the distribution of the noise is

symmetric (i.e., ξ = 1), SBMB and RANW perform the best.
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(a) σ = 9, ν = 3, ξ = 1 (b) σ = 9, ν = 3, ξ = 9

(c) σ = 16, ν = 3, ξ = 1 (d) σ = 16, ν = 3, ξ = 9

Figure 2: Box plot of classification errors (according to L2 distance) in 1000

replicates. The different scenarios are obtained in the skew-normal Student

distribution with σ ∈ {9, 16} and ξ ∈ {1, 9}, fixed ν = 3 and κ = 0.

11



(a) σ = 9, ν = 3, ξ = 1 (b) σ = 9, ν = 3, ξ = 9

(c) σ = 16, ν = 3, ξ = 1 (d) σ = 16, ν = 3, ξ = 9

Figure 3: Regression functions estimated with the RANW (orange), NW

(black), ONL (light blue) and SBMB (blue) in one replicate. The true

function is shown in red. The different scenarios are obtained in the skew-

normal Student distribution with σ ∈ {9, 16} and ξ ∈ {1, 9}, fixed µ = 0

and ν = 3.
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