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1. Heavy-tailed bandits

To get a logarithmic regret for the UCB (i.e., Ry /log(T) — C), it is usually
assumed that the distributions P; are sub-Gaussian. This can be weakened
to require the distributions to have finite moment generating function, see
Agrawal (1995). To overcome this limitation, instead of just estimating
the mean at each step t of the UCB, in Bubeck, Cesa-Bianchi and Lugosi
(2013) it is proposed to use a robust estimator, fi;, of E(FP;), that fulfills

the following assumption:



Assumption 1 Let € € (0,1] be a positive parameter, and let ¢,v be
a positive constant. Let Xi,..., X, be i.i.d. random variables with finite
mean . Suppose that for all § € (0, 1) there exists an estimator i = i(n, d)

such that, with probability at least 1 — 9,
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and also, with probability at least 1 — ¢,
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In that case we say that @ fulfills Assumption 1.

Remark 1. From

P (d(u*,u) > 4\/]Ed2(u1,u)) <. (3)

our robust proposal p*, applied on each arm, and based on K =
[8log(1/d)] groups, fulfills Assumption 1, for ¢ = 1, v = V(B;), (V(F)
being the variance of the distribution P;), and ¢ = 16. In that case, for an

armi=1,...,L,n=Ny,;/K.

Bubeck, Cesa-Bianchi and Lugosi (2013) proposes the following robust
variant of the UCB: given € € (0, 1], for arm 4, define Ji; s ; as the estimator

7i(s,t72) based on the first s observed values X;1, ..., X; 4 of the reward of



arm 7. Define the index

Bist ://Zist+vl/(1+€) (
” 7 S

for s,t > 1 and B;p; = +00. Then, at time ¢ draw an arm maximizing

Bi7Ni,t717t‘

We propose the following algorithm. First we choose the arms at ran-
dom from t = 1,...,ty, where t, guarantees that for all ¢« = 1,... L,
Ny, .i/[8log(t3)] > 1. We compute, for each arm, the estimator given by
Equation (1), denoted by puj ;, where we split the N, ; observations into
K = [8log(t2)] groups, and compute the mean of each group. Define the

index

/ log(2)
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where @(PZ) is any consistent estimation of V(P;), or an upper bound. At
time ¢y + 1, we choose the arm that maximize B5;, Nig,irtor ab time tg + 2 we

choose the arm that maximize B; to+1, and so on.

Neg+1,is
Proposition 1 in Bubeck, Cesa-Bianchi and Lugosi (2013)) proves that
this algorithm attains logaritmic regret. More precisely,

Rr< > (32( ))10( )+5Ai>,
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where A; = E(P;x) — E(F).



1.0.1 Simulations

As a toy example, let us consider the classical two-armed bandit problem
and rewards given by X;|A; = j ~ p; + S(3), for j = 1,2, where S(3) is a
random variable following Student’s distribution with 3 degrees of freedom,
w1 =7, and py = 8. In our algorithm, indicated by RUCB in Figure [I} the
first g = 40 arms are chosen at random.

The results are shown in Figure[I] where the red dotted horizontal line
(y = 8) is the maximum expected gain. The dashed lines corresponds to
the mean rewards of the UCB (orange) and the RUCB (blue) respectively.
As can be seen, it takes the RUCB algorithm about 120 steps to outperform
the UCB algorithm, and the difference grows larger as the number of steps

mcreases.
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Figure 1: Cumulative gains over 500 replications, for t = 1,...,750. The
red dotted horizontal line (y = 8) is the maximum expected gain. The black
dotted vertical line (z = 40) indicates the number of random warm-up runs
in the RUCB algorithm. The dashed lines depict the mean reward of the

UCB (orange) and RUCB (blue) algorithms.

2. Robust regression

A current topic of interest in statistics is that of regression models in the
presence of noise. It is known that a small fraction of outliers can cause

severe biases in classical regression estimators. These classical models gen-



erally assume additive residuals in the model with finite second moment
(e.g., Gaussian). An extensive review of robust outlier estimation methods
for nonparametric regression models is provided in Salibian-Barrera| (2023).

We tackle the problem of estimating the function m : X — R, from an

i.i.d. sample of a random element (X,Y) € X x R, that satisfies the model

Y=m(X)+e

where € is a noise term such that E[¢|X] = 0. To keep the following
discussion fairly simple, we will only cover the case X = R. In the context
where very little information is known about m, a general estimator is often

given by the kernel estimator

_ Z?:l Kh(Xi —1)Y;
Z;L:l Kin(Xi — ) ’

m(x) (4)

where Kj,(x) = h™'¢(h~'z) and h > 0 is some bandwidth parameter. The
function ¢ is non-negative and such that [, ¢(z)dz = 1. In general, the
continuity of the function m is enough to get the consistency of the kernel
estimator m and a light tailed behavior for € gives sub-exponential deviation
bounds for the estimator around its mean value m. Nevertheless, in various
concrete settings, one can face heavy tailed distributions for € in such a way

that the estimator proposed in becomes highly unstable. Indeed, the



presence of (virtually) one outlier is enough to drive the estimator towards
values very distant from m. One natural way to measure the quality of the
estimator m is to consider the L, distance

1/2

dy(i,m) = E [|7i(X) — m(X)[’]

In this context, it is possible to introduce the robust version of the esti-
mator by considering GROS with the distance dy. In practice, the distance
dy is actually intractable. To overcome this difficulty, it is common to use
a discretization on a mesh for the space X and approximate the integral by
a Riemann sum.

This estimator verifies a bound as in Theorem 2 for the associated dis-
tance. The estimator m* is, in the sense of Equation (1), the best candidate
in the class of the estimator my, ..., mg constructed on the disjoint groups

G4, ...,Gk of data points. These estimators my, ..., mg are defined by

ZieGj Kh(Xi - flf)Y;
ZieGj Kh(Xi - x) ’

so that these estimators are independent. Following subsection 2.1, the

mj(z) =

following estimator for m can be proposed:

m = argmin min max dy(m;, m),
mem LII>%5 J€l

where the (m;)i, are the kernel estimates of m on each of the K groups,

and the set M denotes the set of functions that are piece-wise equal to
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one of the m;. The difference from the naive definition is that the set of
minimization does not end with an estimator of the form m;«, which allows
avoiding choosing a function that may be a good fit in some regions of the
space but sensitive to outliers in other parts.

In order to fully use the result of Equation (4), we cite a result that
gives an upper bound for the mean squared error for any of the estimators
m; previously defined. In chapter 5 of (Gyorfi, Kohler, Krzyzak and Walk,
2002, Theorem 5.2), we get that if m is A-Lipschitz, and that Var(Y|X =

1) < o? for all x € X, then

2+ sup,ey m(z)?
E —ml2] < o TEX 2p2
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This induces a choice of h of the form

h’Kﬁ
=c|— | .
n

The upper bound then takes the form of

2/d+2 —2/d+2
Eflmi—m|?) < (0 +supm(@)?)  x (%)
TEX K

which can be directly plugged into the main bound of the theorem.

2.0.1 Simulations

We compare, by means of simulations, the performance of GROS with some

classical and robust regression alternatives proposed in the literature.
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In this example we consider a sample X1, ..., Xigg0 with uniform dis-
tribution on [0,5]. Let m(z) = 4sin(3z) and suppose that the centered
noise follow the skew-normal Student distribution, see Fernandez and Steel
(1998)); Azzalini (2013]), whose density is defined as follows: denote by
t(z, k,v) the density of the non-standardized Student’s distribution with
location k and and v degrees of freedom, and with cumulative distribution

function T'(z, k,v). Then, the density of the skew-normal Student is

flz;k,v,0,8) = %t(m/a,m, v)T (%,/@, y) ,

where o > 0 denotes the scale parameter. The slant (or skewness parame-
ter) is &.

We will write NW for the non-parametric Nadaraya—Watson kernel re-
gression estimator ([{4)), see Nadarayal (1964)); [Watson| (1964)). As robust esti-
mators, we consider the proposals developed in |Oh, Nychka and Lee, (2007))
(ONL estimator) and |Boente, Martinez and Salibian-Barrera (2017) (SBMB
estimator). Both estimators are implemented in the R language: the first in
the fields library and the other in the RBF library. Our estimator in this
context will be called RANW (Robust Aggregation for Naradaya—Watson).
For the latter, K = 12 was considered. Figure [3| shows the estimated re-
gressions in each scenario and in red the true function f. It is clear that

the NW estimator performs poorly in all cases.
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The performance of each estimator is measured by the average distance
dy(m,m) over 1000 replicates, considering k = 0, ¥ = 3 (note that the noises
have heavy tails) and varying the parameters o and £. For the bandwidth
parameter h, we choose 0.2 in all cases.

Figure [2| shows box plots of the errors for four choices of the param-
eters. As can be seen, when the noise is asymmetric (i.e., £ # 1), the
best-performing estimators are RANW and ONL, depending on the value
of the scale parameter. Note that when the distribution of the noise is

symmetric (i.e., £ = 1), SBMB and RANW perform the best.
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Figure 2: Box plot of classification errors (according to L2 distance) in 1000
replicates. The different scenarios are obtained in the skew-normal Student

distribution with o € {9,16} and £ € {1,9}, fixed v = 3 and k = 0.
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Figure 3: Regression functions estimated with the RANW (orange), NW
(black), ONL (light blue) and SBMB (blue) in one replicate. The true
function is shown in red. The different scenarios are obtained in the skew-
normal Student distribution with o € {9,16} and ¢ € {1,9}, fixed u = 0

and v = 3.
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