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A.1 Theory under more general tail conditions

In addition to the common sub-Gaussian and moderately heavy tail conditions typically assumed
under high dimensions, we also consider a heavy-tailed setting (73) exemplified by an infinite

variance and a kind of power law for the random error e:
(T3) P(le| > t) <t and P(|X0) —EXW| > ¢) <t~ as t — oo, for some v € (1,2).

The results provide fresh insights into the properties and applicability of nonconvex penalised
methods and their post-selection least squares estimators in a broader context. We shall generalise
our theory in the main text by including (73). All technical proofs of the generalised version, which
covers also the tail conditions considered in the main text, are given in Appendix 2.

Recalling that ¢; = V; — X[ By, we redefine W = [Wy,..., W,|T = T-V2¥"" ¢X,;, where T
is a scaling factor depending on n and rendering W < 1. Under tail conditions (77) or (73), we
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have T' = n, with W; converging in distribution to a normal random variable by the Central Limit
Theorem. Under (73), we have T = n*" and that W; has an asymptotically stable distribution by

the Stable Central Limit Theorem (Hoffmann-Jrgensen, 1994, Section 5.25).

A
Remark A.1. We generalise (A2) by assuming lim o= 1n < 2C and VT < X\ < n. Note
n—oo n(a — 1)k

that for X = /T, the signals captured by the index set Ay are not confounded with sampling noise.
Remark A.2. Assume the conditions (C'1), (Al), (A3), (A4) and the generalised (A2). Lemma 1,
Proposition 1 and Theorem 2 also hold under (T3) andp < X\ /n. Thus, the growth of the dimension

p cannot exceed a polynomial rate if (X,Y') has heavy tails with index v € (1,2).

After introducing the new notations 7', W and the generalised conditions, we extend our theo-
rems and corollaries on the componentwise convergence rates and weak limits of sparse and consis-
tent local minima B’s to accommodate the heavy tail condition (73). In the main text, theoretical
statements and remarks not related to T' carry over into the generalised version without change.

They are therefore omitted hereafter for brevity.

Theorem A.1. Suppose that |Ag| < 1 and the generalised conditions of Proposition 1 hold. Then,
a consistent sparse local minimum B exists with a componentwise convergence rate ro = n/\ if and
only if v < X\/n. In this case, we have o =< (n//T) Ap~ and, with probability converging to one,

A

supp(B) = Ao and

B o,

JT B (A1)
R P A VT a Ay 970
B =5 +{CAOA° 2n(a—1)/§AAOA°} ( n W7+ CanasBo To )’

where

A= diag(l{\ﬂéj)\ <ar}:j=1,...,p),

5= xe [(1—M

_ () =1
Zn(a—l) ak >+Sgn(0)'j yere D |-



If, in addition, By > \/n, then the above local minima are the only consistent sparse local minima
selecting Ao with probability converging to one, while any other consistent sparse local minima
converge at a slower rate n/\ and are less sparse with supports 2 Ao asymptotically.

If, in addition, lim, . By /(ak) > 1, then the above minima yield an objective function (2.1)

strictly smaller than that yielded by any other consistent sparse local minima.

Remark A.3. Theorem A.1 suggests that if the group of strong signals is sufficiently distinct from
the group of weak signals such that v < \/n, then the set of consistent sparse local minima can be
classified into two subsets, having a fast convergence rate (n/\/T) A=t and a slow convergence
rate n/\, respectively, with the former being non-empty. With large probability, the fast converging
local minima select the strong signal set Agy, while the slow converging local minima, if any, select

signal sets containing Ay \ {Jj : \Béj)| = A/n}.

Remark A.4. Similar to our Proposition 1, Loh and Wainwright (2015) establish a conservative
slow rate n/\ for the convergence of every local minimum as a statistical guarantee for the latter.

Our results in Theorem A.1 clarify the conditions for the existence of local minima converging at

a faster rate (n/v/T) A1p~L.

Remark A.5. If ak = A\/n, which excludes the common SCAD and MCP methods, then ) < \/n

implies By = A\/n, and BAO in (A.1) reduces to B° + C’j&AO{(\/T/n)WAO + C’AOAg,BEfg —rg ot}

Remark A.6. Theorem A.1 provides a more holistic picture of the selection and convergence
properties of consistent sparse local minima B from a local asymptotic perspective, which covers as
a special case the weak oracle property introduced by Fan and Lv (2011), under weaker conditions
on By, By and the covariate design than those assumed by the said paper. In particular, we see
from (A.1) that even when,B selects Ay correctly and converges at a fast rate, it is not necessarily
asymptotically equivalent to an ordinary least squares (OLS) estimator derived from Ag, casting

doubt on our conventional interpretation of oracle properties of nonconvex penalised estimators.



Remark A.7. In the special case ak = oo, which holds for LASSO, the condition v < \/n fails.
A contraposition of Theorem A.1 shows that the active Bj ’s have a slow convergence rate n/\. A
faster convergence rate may result under a fized p if we set A < T, as is typically adopted by
LASSO. However, the latter condition fails to guarantee selection consistency in general, unless

we impose further constraints on C.

We may deduce from (A.1) a series of phase changes of the asymptotic behaviour of U4 =
To (B —Bo)™, when signal patterns undergo the following transition phases over the local asymptotic

spectrum.
(a) Ity = (\/n)(1 —BU/(CW{))+ >~ By, setting ro = (n/ﬁ){l/\(\/T/)\)(l—BU/(cm));l} gives

U4 = {Capay — 5 )KAAOAO}‘l[{lAW/A)(l—BU/<an>)f}wA°—¢A0] +o,(1).

2n(a —1
which has a non-random leading term

)\ -1 -AO
—_1MAA0AO} ¢

B {CAOAO B 2n(«

if and only if (1 — BU/(om))+ = VT/\.

(b) If ¢ = By = (A/n) (1 — By/(ak)),, setting 7o = (n/V'T) A By gives

A I{AAUAO}_l (1 A @> {WAO + (n/ﬁ>CA0A8:BE)48} + Op(1>’

Ao A —
o= {CAOAO 2n(a — 1) nBy

which has a non-random leading term

A -1 As
e Ty Mot By CaosiB’

{CAOAO "~ 2n(a —

if and only if By > \/T/n, or reduces to

Coao o (1 A n_\/BTo> (WA 4 (0/VT)CayasB } + 0,(1)

if By > ak.



(¢) If o < /T /n, setting ro = n/v/T gives

A -1
K,AAOAO} WAO + Op(l),

Ao _ B
u {CAOAO 2n(a —1)

which has a random leading term.

Given its prominence in the literature, the conventional oracle property, generalised under our local
asymptotic framework, is given below as an immediate corollary to Theorem A.1, which is obtained

by intersecting the above phases (b) and (c) into a final oracle phase.

Corollary A.1. (Generalised oracle property) Assume the generalised conditions of Proposition 1,
|Ao| < 1, ¢ < /T /n, and that either \/n < ak or By > ak. Then a generalised oracle estimator

A

B, exists with

A [

P(8,, =0) =1 and nT_1/2(,BgO — Bo) = C;;AOWAO + 0,(1).

go

If, in addition, By >~ A/n, then Bgo is the only consistent sparse local minimum selecting Ag with
probability converging to one. Any other consistent sparse local minima necessarily converge at a

slower rate n/\ and are less sparse with supports A 2 Ay asymptotically.

Remark A.8. The generalised oracle estimator ,Bgo estimates the coefficients of weak signals (in

&) to be zero and those of strong signals (in Ag) by ordinary least squares. If (X,Y) satisfies tail
conditions (T,) or (T3), then nl/z(ﬁgo — Bo)? is asymptotically zero-mean Gaussian. On the other
hand, if the tail condition (T3) holds with tail index v € (1,2), then an application of the Stable
Central Limit Theorem to W implies that for each j € Ay, the j-th component ofnl_l/w(,[;ga—ﬂo)

converges weakly to a linear combination of random variables distributed under a stable law.

Remark A.9. Loh and Wainwright (2017) show, under the tail condition (T1), a sparse Riesz
condition on C and a betamin condition By = 0, that B go 18 the unique local, hence global, minimum.
Assuming a weaker bound |Ag| = n/\ than ours, they establish a conservative convergence rate of

order n/\ forﬁ which is slower than the rate n//T shown in Corollary 1.

go’
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As in Section 2.4 of the main text, the above established theory can be illustrated using a

schematic diagram similar to Figure 1, with the order n=/2 replaced by vT /n.

A.1.1 Post-selection OLS estimator

We first generalise the subgradient conditions (3.7, 3.8) to accommodate the heavy tail condition

(Ts);
2/ V)| TV =y 4(B = Boy* + Cppp | <1, j € A (A4.2)
Caa (B — ,BO)A =0\ TV*WA + B, + B, (A.3)

~ ~

where %, = —(2n) \\[sen(B))d(16;|/x) : j € A] and B, = C ;.8 . Recall that b(A) =
nilCA’E}l Yo VX ZA is the sparse OLS estimator restricted to the submodel containing only variables

in A. That b(A) satisfies
Cialb(A) — B} = n ' TPWA 4 8, (A.4)

suggests that the bias term % is removed from (A.3) by post-selection OLS. We now detail the
convergence properties of I;(A) as an estimator of By, under mild conditions on design and signal

strength and either one of the tail conditions (7;), (72) or (7).

Theorem A.2. Suppose that |Ag| <X 1 and the generalised conditions of Proposition 1 hold. If
1 < A/n, then there ezists a consistent sparse post-selection OLS estimator 5(./[1) which is supported
on Ag with probability converging to one and converges at a rate By* A (n/\/T)

If, in addition, By > A\/n, then any consistent sparse post-selection OLS estimator I;(A) 18

supported on A D Ay with probability converging to one and converges at a rate within the range

By A (n/VT), n/VT].

Remark A.10. As has been discussed in Remark A.3, under the condition 1 < A/n < By, a

consistent sparse local minimum B converges either at a fast rate (n/ VT ) AL with selected set



Ay or at a slow rate n/\ with selected set D Ag. Under the same signal pattern, any post-selection
OLS estimator b(A) has a convergence rate = By' A (n//T), which is at least as fast as that of
any fast-converging B and strictly faster than the rate of any slowly-converging ,3 If, in addition,
ByV (VT /n) < (A/n){1 — BU/(om)}Jr, then any post-selection OLS estimator converges strictly

faster than any local minimum B, provided they are consistent and sparse.

Remark A.11. In general, if |Ay| = 1, By = A/n and By < /T /n, we have, for any A € A and
A € limsup, . #, with P(A = A) — 1, that A D Ay and that the corresponding post-selection
OLS estimatori)(fl) converges at the fastest possible rate n/v/T and satisfies nT /> {IS(A)—,BO}A =

CLuWA +0,(1).

Corollary A.2. (Generalised oracle property) Assume the generalised conditions of Proposition 1,
Aol <1, {1 — BU/(om)}Jr <1 and By < VT /n. Then, a sequence of selected sets A € A eists
such that

P(A=Ay) =1 and nT V2{b(A) — Bo}™ = CoL W™ +0,(1).

Remark A.12. As has been shown in Corollary A.1, existence of a generalised oracle ,Bgo requires
more restrictive conditions on By, namely {1 — BU/(om)}+ < VT/X\ if ak = \/n or By > ak
if ak < A/n, compared to those required by Corollary A.2. If, in addition, By > \/n, then all
the post-selection OLS estimators converge at the fastest rate n/ VT, while the corresponding local

minima ,B except ,Bgo all converge at the slowest rate n/\.

By removing the bias term Z;, the post-selection OLS estimators 5(/1) acquire convergence
properties more desirable than the local minima ,3 and, in the case of multiple solutions to the
nonconvex optimisation program (2.2), ratewise more robust against the choice of strong signal

sets fi



A.2 Estimation of adjusted effects

From a predictive perspective, it may be of interest to draw inference about the effects of strong sig-
nals after adjusting for the omission of weak signals under a weakly sparse model. More specifically,

define an “oracle” target to be

0, = argmin{E(Y ~-X76)%:6% = 0},

OcRr

so that 0648 =0 and 0640 = 640 + C;g 4,C A0 AS,BBAB, which can be interpreted as the effects of strong
signals in Ay adjusted for the omission of weak signals in Aj. In a similar vein, Biihlmann and
Van De Geer (2011, sections 6.2.3-4) define an “oracle” active set Sy that depends on the design
matrix and A, and set as their target for estimation the coefficients which provide the best linear
fit using only variables in Sy. An empirical version of the above framework under a fixed design is
also considered by Van de Geer et al. (2011). Compared to Sy, which may trade off some strong
signals against a desired design condition, our choice of oracle active set Ay consists of all, and only,
strong signals = A/n and appears more natural. In particular, if the strong signals are sufficiently
sparse such that |{j : |ﬁéj )] = T /n}| = 1, then setting A close to VT ensures that the sparse
oracle target 8y approximates By well and provides reliable assessments of the effects of all strong
signals which are not confounded with sampling noise.

Noting that the bias term %, is asymptotically equivalent to Cy4, ,48,3648 if A= Ay, it follows
from (A.3) that switching By to the oracle target 6y may help offset the bias due to %,. The
following two theorems state the generalised oracle properties of B and IA)(A) as estimators of 6,

respectively.

Theorem A.3. Assume the generalised conditions of Proposition 1, |Ag| = 1, By < A\/n, and that

either /T /(nak) V {1 — By /(ar)}s < VT /X or By > ak. Then, there exists a consistent sparse



c

local minimum B satisfying IP(BAO = 0) — 1 and
nT~ (B — 0p)4 = C3L, WA + 0,(1).

Theorem A.4. Assume the generalised conditions of Proposition 1, |Ao| < 1 and ¢» < \/n. Then,

there exists a sequence of selected sets A € & with IP’(A =Ay) — 1 such that
nT 2 {b(A) — 0} = C;L W + 0,(1).

Remark A.13. If the local minimum B or the post-selection OLS estimator 3(/1) is taken to
estimate @y rather than Bq, then the condition on By for the generalised oracle properties stated in

Corollaries A.1 and A.2 can be weakened from By < /T /n to By < \/n.

Remark A.14. If the signals in the inactive set A§ are sufficiently weak such that By < \/T/n,
then inference drawn about @y, based on either B or B(.fl), 15 equivalent to inference drawn about

Bo to the first order.

Remark A.15. If we assume further that By = \/n, then we can deduce from Theorem A.1
and (A.4) that any consistent sparse local minimum B with IP’(/I = A) — 1 gives rise to a post-
selection OLS estimator g(fl) which, with probability converging to one, has support containing Ao

and satisfies b(A)A = 024 =0 and

Coala, Coaoac B
A A A A Ja c 0
b(AA =03 +n ' TVPO WA+ O CanBt — | 777 A\AO
0

Mo

We see from the above expansion that the estimation error {I;(A) — 00} converges to 0 at a rate
(n/VT) A (1{Ay # .A}Bo)_1 in general. It follows that the fastest rate n/\/T is achieved by the

generalised oracle b(A) supported on Ay or, if By < VT /n, by any b(A).



A.3 Simulation study

A.3.1 Setting

We select SCAD, a popular nonconvex penalisation method, for investigation in our simulation
studies, under both Gaussian and heavy-tailed settings. When SCAD performs well in both se-
lection and estimation, as would have been expected under pattern 5 in Figure 1, the bias would
be small and the post-SCAD OLS method may not make a significant improvement. To better
illustrate the effects of post-selection OLS, we focus in our studies on cases where SCAD estimators
are likely to succumb to large or moderate biases, which are by no means uncommon.

Since our assumptions allow all regression coefficients to be nonzero, hence By > 0, and the
oracle active set Ay is defined in terms of asymptotic orders, there does not exist a definitive demar-
cation between Ay and A§ based on numerical values of the B(gj Vs, Asa finite-sample benchmark for
evaluating empirical performance of different estimators, we fix in our simulations .4y = supp(8*),
where B* is a solution for the penalised parameter satisfying (2.3), obtained by the optim function
using the “BFGS” method in the R package stats. The number of simulated replications in each
example is denoted by m. The focus of this study is on not so much the choice of optimal tuning
parameters as the changes in performances of SCAD and post-SCAD OLS across different signal
patterns. We fix the tuning parameters at values consistent with the conditions set in our theoret-
ical investigation. In particular, we set in the R package ncvreg o = 3.7, the default value advised
by Fan and Li (2001), and the SCAD penalty weight Ag = A/(2n) to be a fixed value by reference
to cross-validation outcomes of a few trial runs. The tail conditions (77)—(73) on (X,Y) cover both
the regular sub-Gaussian case and the heavy-tailed power law. The conditions of Lemma 1 imply
logp <n,p<nand p<n'"t (1 <+ < 2)under (77), (72) and (73), respectively, which inform

our settings of (n,p) in the simulation study.
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A.3.2 Measures of estimation accuracy

As a benchmark for SCAD and post-SCAD OLS, an oracle OLS estimator is calculated to be
I;(AO), assuming prior knowledge of the correct model. It is denoted as Oracle in the tables of
results reported in Section A.3.3.

Denote by B a generic estimator of By. We now describe the indicators used for evaluating the
performance of ,B . The estimation error ,B — By for the entire signal vector is summarised into the

total bias, Bias = Hm_lz:?ll B —Bo||., and the total mean squared error, MSE = m ™! o H,BM—

I
Bol|3, where B*Z denotes the replicate of B obtained in the i simulation. Under the heavy-tailed
settings, we report in lieu of MSE the total mean absolute deviation, MAD =m~ 3" ||,BM —Boll1,
which is more robust against outliers. Replacing By by the “oracle” target 8 (Section A.2), we also
calculate the adjusted total bias PBias = Hm_lzglﬁ*i — 90H2 for SCAD and post-SCAD OLS.
To save space we do not report PBias for Oracle, which has zero bias against 6, by definition.
Similarly, we do not report the MSE figures with respect to 8, for the change of target from By to
0, does not affect the variance of B )

The performance of post-SCAD OLS in estimation is necessarily intertwined with that of SCAD
in variable selection, which may vary considerably across different signal patterns and correlation
structures of X under the same Ag. For more insights into the effects of post-SCAD OLS, we also
calculate a second group of indicators, denoted respectively by CS Bias, CS MSE (or CS MAD
under heavy-tailed settings) and CS PBias, which compare the errors between SCAD and post-
SCAD OLS estimators calculated only over simulation runs where the method correctly selected
the oracle active set Ay. Specifically, we have CS Bias = H’S‘_lzz'es ,BM — ,30”2, where S = {i :
supp(B*i) = Ap}, and CS MSE, CS MAD and CS PBias are similarly defined.

A A
A comparison between the scaled errors (3.8) and (3.9) of the nonzero estimators 8 and b(A)A

shows that post-selection OLS estimation helps eliminate a bias term %, arising from the nonconvex
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penalty, which mainly affects estimators of strong signals. It would therefore be interesting to
investigate the performance of these estimators on the oracle active set Ay alone, leaving aside
the errors attributed to the inactive group Af§. To this end we report the total bias restricted to
Ay, namely OS Bias = ||m™! Z?;(B*Z — Bo)™||, and, conditional on {A = Ay}, OS-CS Bias =
S~ ZieS(B*i - ﬂo)AOHQ. Likewise we report also the other indicators restricted to Ay: OS
MSE (or OS MAD), OS-CS MSE (or OS-CS MAD) and OS PBias, noting that OS-CS PBias =
OS PBias.

All figures shown in the tables of results are rounded to an appropriate number of decimal

places such that any comparison between the figures would not be swamped by Monte Carlo error.

A.3.3 Examples and results

Example A.1. (Gaussian setting with exact sparsity) To address the question of how the methods
perform in a traditional sparse setting, we consider a model where most coefficients are exactly
7Z€ero

E[Y[X] = 05X +0.6X® +0.7X® 45X +10x6).

There are p = 500 potential covariates, but only the first five have non-zero coefficients. For each

500) and the error

simulation run, we set the sample size to n = 139. The covariates X1 ... X(
term € are generated from a standard normal distribution, N(0,1). The entire simulation process
is repeated 1000 times. The SCAD-penalized regression is fitted using the ncvreg R package with
the tuning parameter Ag = 0.3. We obtain multiple sparse solutions by changing the initial guesses,
and choose the sparse solution which yields the minimum empirical loss.

We investigate the performance of the various methods under three different correlation struc-
tures for the covariates: (1) the independent case (p = 0), where all covariates are independent;

(2) the mildly correlated case (p1» = 0.5), where the correlation between XV and X® is set to

0.5, while all other pairs remain independent; (3) the highly correlated case (p = 0.5), where each
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pairwise correlation is set to 0.5.

The performance is assessed in terms of variable selection accuracy and estimation precision in
Table A.1. In the independent and mildly correlated cases, the SCAD-based methods demonstrate
superior performance in variable selection. They achieve a high rate of correct selection and select
models of size close to the true value 5. In terms of estimation, post-SCAD OLS proves highly
effective in reducing bias, yielding the lowest bias and MSE. Standard SCAD exhibits considerable
bias, which is effectively corrected by the post-selection refitting step.

When strong multicollinearity exists among all covariates, the performance of all methods
deteriorates, as expected. The correct selection rate of SCAD drops to 22.9%. In this challenging

setting, post-selection OLS remains beneficial to SCAD, significantly reducing both bias and MSE.

Table A.1: The average selected number of variables (N), percentages (%) of correct selection
(CS), false positives only (FP), false negatives only (FN), both false positives and negatives (FPN),

variance (Var) and mean squared error (MSE).

variable selection estimation
P Method N cs FP FN FPN Bias Var MSE
SCAD 0.8656 0.0743 0.8236
0 5.466 59.9 36.5 2.2 1.4
post-SCAD 0.1311 0.0938 0.1110
Oracle 5 _ _ _ _ 0.0165 0.0453 0.0456
0 SCAD 0.6161 0.1373 0.5170
12
5.332 64.1 29.3 4.5 2.1
=0.5
post-SCAD 0.1161 0.1069 0.1204
Oracle 5 _ _ _ _ 0.0168 0.0508 0.0511
SCAD 1.47 0.231 2.39
0.5 6.819 22.9 54.3 10.5 12.3
post-SCAD 0.787 0.254 0.872
Oracle 5 _ _ _ _ 0.00159 0.0701 0.0703

13



Figure A.1 displays heat maps of componentwise absolute errors of the SCAD and post-SCAD
OLS estimates. They provide compelling visual evidence in support of the stronger theoretical
guarantee our theory confers on post-SCAD OLS, in the sense that the second-stage OLS refitting
step has the effect of removing the shrinkage bias of strong signals introduced by SCAD.

SCAD Post-SCAD

1000 -

750

Absolute Error Absolute Error
o 0.6 o 0.6
g_ g 500 -
] 04 S - 0.4
() 9]
02 0.2
0.0 = 0.0

250-

SERIIEBBILBBL

Variable Variable

Figure A.1: Example A.1— heat maps of componentwise absolute errors | Bj_ ﬂéj )|, je{l,...,50},

for SCAD and post-SCAD estimators across 1000 replications under p = 0.5.

A comparison of the empirical cumulative distribution functions (ecdf) plotted in Figure A.2
consistently shows that the SCAD estimator has a distribution shifted to the left of the oracle. The
shifts are pronounced for the first 3 coefficients and become significantly less conspicuous for 654)
and ﬁé"”. For each of the 5 coefficients, the post-SCAD OLS ecdf is nearly indistinguishable from the
oracle, both of which are centred around zero and exhibit nearly identical shapes and dispersions.
The results show that SCAD-based variable selection is sufficiently accurate and the subsequent
step of OLS refitting effectively eliminates the shrinkage bias of SCAD estimates, leading to a
feasible data-driven estimator whose finite-sample distribution almost perfectly matches that of

the infeasible oracle.
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Figure A.2: Example A.1 — empirical cumulative distribution functions of Bj — (()j ) (j=1,...

in the independent case.
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Figure A.3: Example A.1 — empirical cumulative distribution functions of Bj — Béj ) (j=1,...
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in the high-correlation case.
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Figure A.3 presents the most challenging scenario, where all covariates have a uniform pairwise

correlation of p = 0.5. Unlike the independent case, a clear gap now emerges between the post-

SCAD and oracle ecdf’s. While the two curves no longer coincide perfectly, the post-SCAD OLS

ecdf remains much closer to the oracle than does the SCAD ecdf. Both SCAD and post-SCAD

OLS ecdf’s are visibly flatter, more spread out and more prone to an atomic lower bound than

those displayed in Figure A.2, indicating an increase in the variance of the estimates and a decrease

in stability of model selection across the simulation runs.
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Broadly speaking, as covariates become more strongly correlated, variances of the SCAD and
post-SCAD OLS estimators increase and bias correction becomes less effective. In a sparse setting
with inactive covariates associated with exact zero coefficients, the post-selection OLS method
provides a viable strategy for improving estimation accuracy, even when reliability of variable

selection in the first step has been plagued by multicollinearity.

Example A.2. (Gaussian setting with weak sparsity) Consider a regression model

501
E[Y|X] =20+ 8P X® + X® + 15X 4+ 3xXO 1+ 10X© + 3 P x 0.
=T

We set the sample size n = 140, dimension p = 501 and the number of replications m = 1000. We
generate b’é?), ey Béwl) independently from N(0,0.01), reflecting a presence of many weak signals,
and the random error € from N(0,1). The covariate vector [X® ... XG]T is generated from
a b00-variate normal distribution N(0,3). The 500 x 500 covariance matrix ¥ is constructed in
line with the assumption (A1), with its (i,)-th entry given by X;; = MM, || M,||5"||M;|5", for
i # j, where My, ..., M5y denote 500 independent random vectors in [0, 1]°% each consisting
of 500 random components independently generated from the beta (0.5,10) distribution. In this
example, the X;; values range from about 0.224 to 0.517, about half of which lie between 0.345 and
0.388. We set ¥;; = Var(X®) € {1,2} and 5(()2) € {0.5,0.73}. Note that changing ¥;; from 1 to 2
reduces all correlations by 50% between each pair of covariates. The choices 6(()2) € {0.5,0.73} can
be identified with a moderate signal close in magnitude to the sampling noise, with respect to the
sample size 140 under a Gaussian setting. The optimisation program (2.3) yields an oracle active
set Ag = {1,...,6} for all four cases.

The performance of SCAD in variable selection under the four cases is summarised in Table A.2.
With Ag fixed at 0.3, the average numbers of selected variables (N) are all around 6. In general,

a bigger value of By = 682) or a weaker correlation between covariates gives rise to a higher

percentage of correct selection.
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Table A.2: Example A.2 — average number of selected variables (N), percentages (%) of correct

selection (CS), false positives only (FP), false negatives only (FN), both false positives and negatives

(FPN), over 1000 replications.

Variable Selection
Var(X®) | 82 | N ¢S FP FN FPN
1 0.50 | 6.106 64.2 169 158 3.1
0.73 16208 84.7 150 03 0.0
, 0.50 | 6322 76.3 236 01 0.0
0.73 1 6.165 85.8 14.2 0.0 0.0

Table A.3: Example A.2 — different measures of total bias and total mean squared error.

Var(x () ﬂ((f) Method | Bias MSE PBias |CSBias CS MSE CS PBias|OS Bias OS MSE OS PBias|0S-CS Bias 0S-CS MSE

SCAD 0471 0321 0403 | 045 0.295 0.379 0.412 0.269 0.403 0.388 0.243
0.5 |Post-SCAD| 0.248 0.196 0.086 | 0.231  0.109 0.032 | 0.099 0.116 0.086 0.035 0.057
Oracle 023 0113 0 0.23 0.113 0 0.03 0.061 0 0.03 0.061

1
SCAD 0428 0315 0354 | 0421 0.301 0.345 0.363 0.263 0.354 0.354 0.249
0.73|Post-SCAD| 0.231 0.142 0.023 | 0.23  0.113 0.011 | 0.043  0.069 0.022 0.03 0.061
Oracle 023 0113 0 0.23 0.113 0 0.03 0.061 0 0.03 0.061
SCAD 0313 0137 021 0.31 0.135 0.205 0.214 0.085 0.21 0.209 0.083
0.5 |Post-SCAD| 0.228 0.1  0.015 | 0.228  0.083 0.005 | 0.023  0.034 0.014 0.012 0.031
2 Oracle 0229  0.083 0 0.229 0.083 0 0.015 0.031 0 0.015 0.031
SCAD 0236 0095 0.058 | 0237 0.095 0.058 0.063 0.043 0.058 0.063 0.043
0.73|Post-SCAD| 0.228 0.094 0.007 | 0.228  0.083 0.005 0.015  0.032 0.006 0.014 0.031
Oracle 0229  0.083 0 0.229 0.083 0 0.015 0.031 0 0.015 0.031
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Table A.3 reports a variety of measures of estimation errors of SCAD, post-SCAD OLS and
Oracle. In all four settings of (Var(X @), 5(()2)), post-SCAD OLS consistently outperforms SCAD
in yielding smaller total bias and smaller total mean squared error calculated by any measure. A
comparison between Bias and CS Bias shows that the performance of either estimator does not
change much if the bias is evaluated conditional on successful selection of Ay. Remarkably, SCAD
still experiences a substantial bias even when the correct oracle set Ay has been selected. The
improvement made by post-SCAD OLS over SCAD is most noticeable in OS Bias and OS-CS Bias,
in comparison with that made in Bias and CS Bias, implying that a significant reduction in bias is
achieved by post-SCAD OLS for the estimation of the active coefficients B3°. The results can be
attributed to the fact that a significant bias term %, in the scaled error (3.8) of the active SCAD
estimator is removed by post-SCAD OLS (3.9), thus pushing the latter much closer to the oracle
estimator. It can be derived from the bias and MSE figures that the SCAD estimator has a total
variance smaller than that of the post-SCAD OLS estimator, due possibly to the shrinking effect
of the penalty. After adjusting B¢ to the oracle target 8y, the measures PBias, CS PBias and OS
PBias show a trend similar to, but are in magnitude smaller than, Bias, CS Bias and OS Bias,
respectively, which agrees with the theory given in Section A.2. The distinction between Bias and
OS Bias is more appreciable than that between PBias and OS PBias.

Under the same Var(X®) = 1 or 2, if we increase By = 682) from 0.5 to 0.73, the biases of
SCAD decrease, which conforms with an increase in convergence rate induced by a progression to
the generalised oracle phase (Corollary 1) under a sufficiently small ). The biases of post-SCAD
OLS exhibit a much steadier change as By increases and By remains fixed, corroborating its robust
convergence rate stipulated in Theorem 3 and Corollary 2. The selection performance of SCAD is
in line with the phase changes from patterns 2 to 5 shown in Figure 1.

A comparison between the cases Var(X®) = 1 and 2 suggests that the performances of SCAD

in both selection and estimation are sensitive to the correlations between covariates, resulting in
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a bigger bias under the case Var(X(®) = 1 where covariate correlations are stronger. By contrast,
the results on Bias, CS Bias, OS Bias and OS-CS Bias of post-SCAD OLS appear more robust and
stable against changes to covariate correlations. Such difference in the trend of bias between the
two approaches can be accounted for by the shrinking effect of the SCAD penalty. Consider for
illustration a simple scenario where Ay = {1,2} = A is correctly selected, ¥ is fixed and By = 0.
Then the absolute bias of SCAD can be shown to decrease with Var(X®), or equivalently, increase
with the correlations between covariates, while the post-SCAD OLS estimator remains unbiased.

The three heat maps in Figure A.4 show in more detail the selection results of SCAD (top panel)
and componentwise estimation errors of SCAD and post-SCAD OLS (bottom panel) with respect
to the first 50 signals, for each of the 1000 replications under the case (Var(X®), ﬁ(()Q)) = (1,0.5),
where SCAD shows the lowest rate of correct selection (A = Ay). We see that the variables in the
oracle active set Ay except X® had been selected in all 1000 replications, while X®, associated
with the small 5(()2) = 0.5, had been selected only 811 times. Variables outside A, were rarely
selected. The heat maps of absolute errors show that post-SCAD OLS outperforms SCAD slightly
in estimating {B((]j) :7=1,3,4,5,6} and is notably more accurate in estimating ﬂ(g?). On the other
hand, there exist a few cases where SCAD is found to be more accurate than post-SCAD OLS in
estimating 587), cee 850), when their corresponding, inactive, variables have been wrongly selected
by SCAD. Here the SCAD penalty has played a role in shrinking the SCAD estimates towards the
inactive Béj )’s, hence a smaller estimation error compared to that given by the non-penalised OLS
estimates.

Figure A.5 plots the marginal ecdf’s of Bj — ﬁ(()j), j=1,...,6, for SCAD, post-SCAD OLS and
Oracle under the case (Var(X®), 682)) = (1,0.5). Except for the intercept Bél), which has a large
value 20, distributions of SCAD estimates of 562), e ,6((]6) are markedly different from the oracle
with either a location shift (cases j = 2,4,5,6) or a scale shift (case j = 3). Such discrepancy

is noted even for the SCAD estimate of a large coefficient like Béﬁ) = 10, attesting to the adverse
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impact on the oracle property of SCAD exerted by the presence of a moderate signal X? which is
correlated with the strong ones. The problem is resolved successfully by post-SCAD OLS, resulting
in ecdf’s almost indistinguishable from the oracle. For the case j = 2, a high false negative rate

15.8% gives rise to a conspicuous atom at —ﬁéz) = —0.5 in the ecdf’s of both SCAD and post-SCAD

OLS.
Selection
1000 = i
< 750- §
9 E
é 500 - % 7 o 0
£ = 1
(7)) 250 - g . .
0- = . .
Variable index
SCAD Post-SCAD
' % B-Bol = B~ Bo
o it_:77 ;7 :,
== 0.6 = 06
_:E g 04 % 0.4
S : 0.2 3 = = 02
E 0.0 = . 0.0
Vairiable inaex V:;riable inaex
Figure A.4: Example A.2 — heat maps of SCAD selection results and componentwise abso-

lute errors of SCAD and post-SCAD OLS estimates, across 1000 replications under the setting

(Var(X®), g% = (1,0.5).
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Figure A.5: Example A.2 — empirical cumulative distribution functions of Bj — (()j ) (j=1,...,6)

under the setting (Var(X®), 38%) = (1,0.5).

Example A.3. (Heavy-tailed setting) Consider a regression model

51
E[Y|X] =20+ A0X® +4X® 4+ 5X@ 46X 4+ 12X + 3 a0 x 0,
G=T7

We set n = 200, p = 51 and m = 10°. The variables {X©) : j = 2,... 51} and the coefficients

{ﬁéj ) j=171,...,51} are generated in the same way as in Example A.2. The random error € has a

density function with Pareto tails, given by

felt) = (1/6)1{Jt] < 1} + (1/2) 1t ~**1{t] > 13,
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so that e has zero mean and an infinite variance, and falls within the intervals (—1,1), (—oo, —1]
and [1,00) with equal probabilities. It satisfies the heavy-tailed condition (73) with tail index
v = 3/2. Lemma 1 holds in this case under a more stringent condition on the dimension, p < n'/2,
with the penalty weight A satisfying (np)*® < A < n. Such consideration leads us to set p to be
smaller than n in this example, as opposed to the large p attempted in Example A.2. The SCAD
penalty weight A\g is fixed at 2.3.

We set Var(X®) € {2,3} and 5(()2) € {3,4}. These choices differ slightly from those considered
in Example A.2 and coordinate better with the heavy-tailed setting to reveal the effects of moderate
signals. Again, the oracle active set is found to be Ay = {1,...,6} in all four cases. The error

indicator MSE is changed to MAD for a more robust measure under heavy tails.

Table A.4: Example A.3 — average number of selected variables (N), percentages (%) of correct
selection (CS), false positives only (FP), false negatives only (FN), both false positives and negatives

(FPN), over 1000 replications.

Variable Selection

Var(X®) | 657 | N S TP TFN FPN

3 | 5467 93.1 51 02 1.7

4 15465 93.6 53 00 1.2

3 | 5483 940 51 00 09

4 15479 94.3 51 00 06

Tables A.4 and A.5 report the results on selection and estimation, respectively. They reveal
patterns quite similar to those obtained in Example A.2, so that our comments on the latter

example carry over here in general. Note that the total magnitude of weak signals, || ,3648 ll2 = 0.077,
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is much smaller than the magnitude 0.228 found in Example A.2, as a result of a reduction in the
dimension p. Thus, different bias measures yield similar results within each method. Despite a
larger degree of disturbance caused by the heavy-tailed noise than its Gaussian counterpart in
Example A.2, post-SCAD OLS makes a more remarkable improvement over SCAD in both bias
and MAD. Compared to the regular order n~'/2 in the Gaussian case, the tail condition (73) entails
a noise level of a higher order vT' /n = n~'/3. This necessitates a heavier SCAD penalty weight
>~ n~1/3 for consistent selection of strong signals, which in turn amplifies the penalty-driven bias
term ;. Bias reduction made by post-SCAD OLS, effected mainly through elimination of %4, is
therefore much more remarkable under a heavy-tailed setting than that achieved in Example A.2,

as can be seen by comparing Tables A.3 and A.5.

Table A.5: Example A.3 — different measures of total bias and total mean absolute deviation.

Va.r(X(i)) ﬂ(()2) Method Bias MAD PBias |CSBias CSMAD CSPBias|OS Bias OS MAD OS PBias|OS-CS Bias OS-CS MAD

SCAD 2163 7.7 2153 | 2167 5.08 2.167 2.151 5.21 2.153 2.165 4.66
3 |Post-SCAD| 0.098 5.0 0.061 | 0.077 1.62 0.003 0.047 1.86 0.048 0.007 1.20
Oracle 0.078 2.2 0 0.078 2.16 0 0.014 1.73 0 0.014 1.73

2
SCAD 1.816 7.2 1.817 1.819 4.56 1.820 1.814 4.70 1.816 1.818 413
4 |Post-SCAD| 0.093 5.0 0.055 | 0.077 1.63 0.003 0.038 1.85 0.040 0.007 1.21
Oracle 0078 22 0 0.078 2.15 0 0.011 1.73 0 0.011 1.73
SCAD 1.353 53 1.352 1.358 3.24 1.356 1.351 3.28 1.352 1.356 2.82
3 |Post-SCAD| 0.082 4.1 0.034 | 0.077 1.45 0.002 0.021 1.53 0.022 0.004 1.03
3 Oracle 0077 1.9 0 0.077 1.88 0 0.008 1.46 0 0.008 1.46
SCAD 0.826 46 0824 | 0818 2.51 0.816 0.823 2.58 0.824 0.814 2.09
4 |Post-SCAD| 0.080 4.1 0.030 | 0.077 1.45 0.002 0.016 1.53 0.017 0.004 1.03
Oracle 0077 1.9 0 0.077 1.88 0 0.008 1.46 0 0.008 1.46
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Example A.4. (Gaussian setting, highly-correlated covariates) Consider a regression model

501
E[Y|X] =20+ A7 X® + 1.8X® + 2X@ 4+ 3X©) 4+ 10X© + 3~ g X0,

§=7
The parameters n,p, m, A\g and the distributions of 6,557), ey 68501) are the same as those set
in Example A.2. The covariates [X®, ... X are also generated in the same way as in
Example A.2, except that Var(X®) is fixed at 1 and the parameters of the beta distribution are
changed from (0.5,10) to (2,5). The latter change gives rise to a covariance matrix ¥ with ¥;;
ranging from 0.704 to 0.815 for i # j € {2,...501}, implying strong correlations between the
covariates X@, ..., X600 We set 632) € {1.3,1.7}, under which the oracle active set is found by
(2.3) to be Ag = {1,...,6}, with By identified with 8"

In general, SCAD shows a good performance in selection, yielding a rate of correct selection
90.4% in the case 562) = 1.3 and 99.8% in the case 582) = 1.7. The results on estimation accuracy
are qualitatively very similar to those obtained in Example A.2 and are therefore omitted here.

Figures A.6 and A.7 show the ecdf’s of Bj — 6éj ), j € Ag, under the two cases of Béz), respectively.
Apparently, for the case ﬁ(()2) = 1.7 (Figure A.7), both SCAD and post-SCAD OLS perform almost
as well as the oracle in selection and estimation, echoing an oracle phase exemplified by pattern
5 on the local asymptotic spectrum shown in Figure 1. However, when we switch By = 662) to a
smaller value 1.3 (Figure A.6), all the SCAD estimates except B yield ecdf’s markedly different
from the oracle, suggesting a move into non-oracle phases exemplified by patterns 1 to 3 in Figure 1,
where the SCAD estimates suffer from a slower rate of convergence. The problem is resolved to

some extent by post-SCAD OLS, which reduces the bias of SCAD and helps achieve a distribution

closer to the oracle. Similar comments also hold for the previous examples, albeit to a lesser extent.
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Figure A.6: Example A.4 — empirical cumulative distribution functions of Bj — (()j ) (j=1,...,6)

under the setting ﬁém =1.3.
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Figure A.7: Example A.4 — empirical cumulative distribution functions of Bj — ﬁéj ) (j=1,...,6)

under the setting BSQ) = 1.7.

A.4 Concluding remarks

In summary, we show under all three types of tail conditions that phase changes in the asymptotics
of B are determined critically by (By, By ), and provide a necessary and sufficient condition, namely
¢ = By V {(A\/n)(1 — By/(ar)) }+ < A/n, for the existence of a consistent sparse local minimum

A

B which selects Ay consistently and has a fast componentwise convergence rate (n/ VT YA YL
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It follows that when By is not large enough or By is not small enough, the generalised oracle
property fails to hold for any consistent sparse local minimum B . By removing the bias term %,
the post-selection OLS estimators i)(fl) acquire convergence properties more desirable than the
local minima ,B and, in the case of multiple solutions to the nonconvex optimisation program (2.2),
ratewise more robust against the choice of strong signal sets A. If By = A /n, our Corollary A.2
shows that the fastest rate n/+/T is achieved by all choices of I;(A), while the corresponding local
minima ,B except ,B g0 converge only at the slowest rate n/\.

We have argued that from a predictive perspective, adjusting B, for the omission of weak signals
makes for a practically more relevant target 8, under a weakly sparse model. With this change of
target, we may weaken the condition on By from By < v/T/n to By < A/n for B or b(A) to satisfy
the generalised oracle property.

We have conducted elaborate simulation studies to compare SCAD with post-SCAD OLS by
a variety of numerical and graphical measures. The numerical findings corroborate our theory
in general, suggesting that post-SCAD OLS successfully reduces the bias of SCAD and displays

a more robust performance. The improvement made by post-SCAD OLS is especially significant

under a heavy-tailed setting, which calls for a heavier SCAD penalty weight for consistent selection.
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Appendix 2: Technical Proofs

September 24, 2025

I Proof of Lemma 1

We first show that n~'T"/2[|[W || and max, ; v, |C,; —C,;| are uniformly bounded by a negligibly
small sequence in probability, under different tail conditions. Then we establish two sub-lemmas.
Lemma S.1 shows that P(.J%;, = Ji}n) — 1. Under A\ = VT, Lemma S.2 establishes asymptotic
“noiselessness” of fln, in the sense that A, is not affected, to first order, by the noise term WA,
The two lemmas are employed to build a one-to-one correspondence between fln € Ji}n and A, € %,
when n is large enough. Finally, the above results are combined to prove Lemma 1. For brevity
we write A = A, and A = Ji}n when there is no confusion, and denote by ¢ a positive constant
which may assume different values in different expressions.

Let {a,} be a positive sequence depending on n. Define events E; = {n™'TY2|W || < a,}

and Fy = {maxlSj’j/Sp |éjj/ —Cjj| < an}. We shall show that there exists some {a,} such that

1



P(E; N E3) — 1 under tail conditions (77)—(73).
Suppose that (77) holds. Denote the survival function of a random variable Z by Fy(t) =
P(Z > t), so that Fq(t) = P(le] > ¢) < ke~ and Fix|(t) = P(|XY| > ¢). Note, for j =1,...,p

and sufficiently large ¢ > 0, that
P(|eX W] > t) = EFq(t/|1X Y1 x012va + EFG(/1X )50 ve
< Fy(VH) +P(IXY —EXD)| > Vi — [EXD)]) < ke,

for some constants ¢,k > 0. Letting T = n and {a, } satisfy /n=tlogp < a, < A/n, it follows from

Lemmas 2.2.11 (Bernstein Inequality) and 2.2.10 of Van Der Vaart et al. (1996) that, as n — oo,

]P)(El N EQ) >1- P(n_1/2||W||OO > an) — ]P)( max |éjj’ — ij/| > an)

1<j,j'<p
na, -1
>1—<ex —1
N { P <k‘110g(1 +p) + koy/nlog(l +p)> }

na, -1
— {exp ( ) — 1} — 1,
kslog(1 + p?) + kyy/nlog(1 + p?)

(S.1)

for some positive constants ki, ..., ky.

Under tail conditions (73) or (73), it follows by Theorem 4 of Sarantsev (2011) that P(|eX )| >
x) <27 as x — oo. Denote by Zy, Z,, ... a generic sequence of i.i.d. random variables with mean
zero and satisfying P(|Z;| > x) < ca™ for all x > 0. Consider first the case (73). Let T = n*"
and {a,} satisfy n='*'/7p'/7 < a, < A/n. Then, by Theorem 3.1.1 of Borovkov (2008), we have,

for x > 0 and as v — 0,

n k
(nc)‘leIP(Z Zi > x) < sup {(”C)_1$W(max Zi > x) tnex”? < v} <1+ o0(1).
i=1

k<n 4
=1

It follows, for sufficiently large n and x = n'/7, that P(| Y., Zi| > x) < 4enxz™". Substituting

Z; = eiXi(j) and Z; = Xi(j)Xi(j,) — Cj;, respectively, we have, under (73), that

p p
P(E\NEy) > 1= Pn "Wy >a,) — Y P(ICiyr — Ciy| > an)
1

j=1 Jj'=

>1—8cn' "pa,” — 1. (5.2)



For the case (73), set T = n and {a,} to satisfy (p/n)*/? < a, < A/n. It follows by Lemma 4
of Sarantsev (2011) that var(Z;) < oo, and by Markov inequality that P(|>"" , Z;| > z) <

nx2var(Z;) < cnx=2. Thus, by the same arguments as given above,

P(E; N Ey) > 1—2cpn ta,” — 1. (S.3)

Lemma S.1. Assume the conditions of Lemma 1. Then we have, under the event E1 N Ey, that

= for sufficiently large n.

Proof of Lemma S.1 . We first prove %, C . Fix a population penalised parameter 8* with

support A, € J#,. Define, for 8 = [f,...,3,]" € RP,

r18) = o sen(3) (100 < 19, £ ) + —2 10 < 13 < an)

_(af—jl)ﬁl{f;<|5j|<am}:j=1,---,p},

D(B) = diag(1{r < |B;| < ax} : j € supp(B)).

Writing B = supp(8), let C'(8) = Cus — {2n(a — 1)x} " 'AD(B) and C'(B) = EC’(B). The latter
is invertible for sufficiently large n under (Al). Let {u;}, {v:} and {p;} be decreasing sequences
of eigenvalues of the matrices C'(8), C'(8) and C"(B) — C'(B) = Cpg — Cgs, respectively. We have
by Weyl’s and Jensen’s inequalities that v; + p, < p; < v; + p; and |p;| < |B| max; jep |éw — Cijl,
respectively. It follows, under the event F, and the condition |B| = O(1) that C’(B) is invertible

for sufficiently large n. This enables us to define, with B = supp(8),

g (B) = (B —Bo)° B){7(B)® — Css-B5 },
9(B) = (B—Bo)P+C'(B) H{r(B)® — Cup:Bs —n ' TV*WE).

Note that the second equality of (2.3) is equivalent to ¢g*(8*) = 0. To prove %, C it remains

to show that there exists a ,B satisfying (A.2) and Q(B) =0 with A, = A,.



Define, for b, satisfying a,, < b, < A/n, G* = {B : ||B — B*||oc < bn, supp(B) = A,}. Suppose
that 0 < [Bf] = b, for j € A,. With boundary cases excluded by (Al), we have (3} = ﬁéj) —
[C'(B*) {7 (B*)* —CAnA%ﬁE;‘%}} b A/n = b, = |Bj|, a contradiction. It follows that for j € A,,
185 > by and hence sgn(3;) = sgn(B;) for B = [B1,...,5,]" € G*. If K < A/n, setting b, = &
ensures that 35 = r, hence |B;| A [8;| > k for all j € A, and B € G*. If k = A\/n, then we have
{0 < [B;] < Kk} = {0 < |Bj] < k} and 1{r < [B}] < ar} = 1{x < [B;] < ar} for n sufficiently
large, using the fact that |8; — 85| < b, < A/n = k for B € G* and |B}| # K or ak by (Al). The
above results together imply that D(8) = D(8*) and 7(B8) = 7(B8*) for B € G* and n sufficiently

large.
Consider next §(8) = §(B) — g"(8") = (B — B*)*" + R(9), where
R(§) = C'(B") " (Capts, — Caas ) B — n ' T2C(B) 1WA
+{C'B) = C'(B) H{r (B = Caas By}

Noting that ||Bo|l1 = O(1) under (A3), we may bound each term in R(g) by a constant multiple of

||W||°°+1<H.1a,}i |C,; —C;jr|, which implies || R(§)||so = @n < bn. Following Vrahatis (1989), we have,
>0 =P
for j € A, and n sufficiently large, §(8) > b, — ||R(§)]s > 0 or g(,fi){j} < =b, + [|R(§)]|eo <O
according as [ — 87 = by, or —by, respectively. It follows by applying Miranda’s existence theorem
to the continuous vector-valued function g that f](ﬁ) = 0 for some ,B e G-

To show that (A.2) holds for B, note first that the first inequality in (2.3) holds strictly by
(A1), for sufficiently large n. There thus exist constants kg > 0 and k; € (0,1) such that, for n

sufficiently large and j € A,
In T TVRW, — Cjya, (B — Bo)*" + é{j}Ag,B64%|
< ' TV 4 | Cuyan (B = B+ ] (Cyan — Crna)(B* — Bo)™ |
+|(Cliyas — Cinag)Bo | + [Ciyan (B = Bo)™™ — Cijyas By
< kgan + |Crya, (B — Bo)™™ — CiyacBo™| < koan + keX/(20) < N/ (2n). (S.4)
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It follows that under the event E; N E5 and for n sufficiently large, B is a local minimum of (2.1)
with supp(,B) = A,, hence %, C .%,.
To complete our proof, we shall show jfn C J;, under the event F; N E, for n sufficiently large.

Recalling the definition of f(C, B,v, By, ko) introduced in Section 2.3, we have

|f(C787Va1307k0){j} - f(éaBaVaﬁOakO){j}} j max |ézz’ - CZZ’| j A, j € Bv

1<ii' <p

on £y N Es. It then follows by (A1) that

jeB

. {!1_f(é’787y71307k0>{]}/ﬁ(()3)‘ |1_|/8(()J)_f<CA'7BaV7ﬁ07kO>{]}|/’%|
min - 5 )
{8 =< A/n} Wk = A/n}

11— 185 — £(C,B,v, B, ko){ﬂ'}y/(m)]} > ¢ (S.5)

on E; N E,, for sufficiently large n and some sufficiently small constant ¢ > 0. Similarly, noting

that

2n/N)|n ' TYV2W; — (Cjys — Cie) (B — Bo)® + (Cryse — Ciyme)BE

< (n/A) max |C’ZZ/ —Cir| 2 na, /AN <1, je€B

1<i,i' <p

and the last inequality under (A1), we have, for each j € B¢,
‘(QH/A)‘R_lTl/QWj — Ciys(B — Bo)® + CripseBy | — 1’ >c (5.6)

on E) N E,, for sufficiently large n and some small constant ¢ > 0. The conditions (S.5) and (S.6)
rule out boundary cases corresponding to the sample versions of those excluded by (Al). Noting
that n=17" W, < M/n for j € A, and following similar arguments to those proving %, C Ji}n,
we obtain that for sufficiently large n and any local minimum B with Supp(,B) — A,, a solution 8*

exists inside the hypercube G = {8 : ||8 — ,BHOO < by, supp(B) = A,}, so that 7, C %, O

Lemma S.2. Under the conditions (A1) and (A2), each A, € J, is asymptotically noiseless, in

the sense that A, does not depend, to first order, on W.
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Proof of Lemma S.2. Define, for j =1,...,p,

= () L b= min VT W= - (T, - 300,

k#j k#j
Note that W; < 1 and reduces to — 2W; + 0,(1) or 27; Dkt i CiUs + 0,(1) according as 7; >

n/VT or < n/VT, respectively. Using (A2) and the fact that v = U; locally minimises the

univariate function
24 2 =117, (4) -1
nr; “Cjjv +n(bjr;)” Wio+ Aeq |5y +7; v|/k ),
we have that the function

9;(v) £ v+ (20C3) " riAd (165" + 15 ol /m)sen(By + 7o)

N

strictly increases in v and the equation g;(v) + (2C;;b;)'7;W; = 0 admits a unique solution at

v = Uj, specified as follows for sufficiently large n.
) If |ﬁ — (2Cy;b;,)"'W;| < (2nCy;) 7', then f; = 0, hence U; = —r; G,
(b) If (2nC5;) "\ < |85 — (2C;;6;) " W] < (2nC;;)~"A + &, then

U, = —(2C;;) " \r {b W+ (A/n) sen(BY) — (2C;;b;)" 1147]-)}.

A -1
— -1, _
Ui =~(2C) 7“]{1 2nC;(a — 1)/1}
R A () A
x {bj-’le B n(ozﬂ—o )k + ’I”L(ozi 1) sgn(ﬁ( — (205b:)° W])}'

If |ﬁ 20”1) 1V~Vj‘ > aR, then Uj = —(Qijbj>_1Tjo.
Case (a) corresponds to the subgradient condition (A.2), while cases (b)—(d) correspond to (A.3),
thus leading to A, = {j : [8Y) — (2C;;6;,)"'W;| > (2nC;;)"*A}. Recall that under either tail
condition (7;), W; converges weakly to a nondegenerate distribution, for each j =1,...,p.
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Suppose there exists a j’ such that the event {j’ € fln} depends to first order on W, so that
187 — (2C, b)) "Wy | — (2nCyr;)~'A has an asymptotic leading term depending on W. Then
necessarily B(gj/) = bj71 = A/n, which implies, for j’ € A, that ry =< by < n/\ and Wj/ =
2b;/ Zk#, r;lé’j/kUk +0,(1). Thus, there must exist ¢ € A, \ {j'} such that U, has a leading term
depending on W, which implies 7, < r; < n/A < n/v/T, so that W, = 2b, > ktq o CorUs + 0p(1).
Repeating the above argument iteratively shows that the leading term of U; (j € fln) does not
depend on W, contradicting the assumption on the leading term of | ﬁéj/) — (QCA‘j/j/bj/)*lVT/ﬂ —

(Qnéj/j/)_l)\. This proves that A, is asymptotically noiseless. O

Lemma 1 then follows from (S5.3), Lemma S.1 and Lemma S.2.

II Proof of Proposition 1

The proofs given in this and subsequent sections are all conducted under the event A= A, which
occurs with probability converging to 1.

Define f,,4; = max; | ﬁéj )\, Bg = ?:1 7“]-_1, and denote by r;« the slowest rate. Then necessarily
7, < Bg' and by, < by = min{n/V/T, Bg'} < bj for any k # j*. Tt follows that b; >= by for all j.

For any k € A\ {j*}, we have Bg = r,' = b.! < b;' = Bg = rj_*l = 7. In this case, we may
assume w.l.o.g. that j* € A and r; < Bg' for all j € A. Tt also follows that |A| < 1.

If JA\ {57} < 1, then 73t < |B)] < M/n for all j # j*. Thus, bl < (VT/n) Vit =
(VT /n) Vv D it |ﬂ(§j)|. If j* € A, then By = r.' = b.! = (VT/n)V (Bg — ri2'), so that r;.' < Bg
necessarily.

Summarising the above results, we conclude that

rt = 1850 < A/, j e A

rol =17l =il < By = (WT/n) Ve 16], 5 € A,

J




if |[A] < 1, and that r; ' < ]Béj)| < Brmaz = 73 = A/n, for all j, if |A| < 1. This proves part (i).
To prove part (ii), suppose on the contrary that By = A/n. It follows by noting Bg =

2jen

we have

B9 + |A|Bs that |A| < 1, so that ZjeAgmAW(()j)| < A/n. For any j € A\ {j*} # 0,

M=t =bt = Bs = Y 1B =Bo+ S0 1871- Y0 188) = By = A/,
keAe ke A\ A§ ke AGNA

a contradiction. Thus f is inconsistent for By, which proves (ii).
If \ﬂéj)\ = A/n, then ]Béj) —(2C;;0;)""W;| = A/n, which violates the condition of case (a) of the
equation g;(v) + (2C;;0;)~'r; W, = 0 specified in the proof of Lemma S.2. It follows that j € A,

which proves part (iii).

IIT Proof of Theorem A.1

We follow hereafter the notations used in the proof of Proposition 1. Referring to cases (a)-
(d), specified in the proof of Lemma S.2, which characterise solutions to the equation g;(v) +
(205;b,)"'r;W; = 0, define %, . and #; to be subsets of {1,...,p} to which cases (b), (c)
and (d) apply respectively, so that A=4040U4 =Ac lim Sup,, ., #n. Define D =
diag(1{j € #.}:j=1,...,p) and

)\ . N ~ ~ . [0 .
T=g- [sgn<ﬁ(§]) + (VT /n)CH W, — O Zr,;lcijk) (1{1 €M+ —1{je %})
k#j
& o .
_ml{j SV ARY :1,...,p}.

Write U = [Uy,...,U,|". It follows from cases (a)-(d) and the proof of Proposition 1 that
U] = - r]ﬁ(()])a .] S AC7

A
2n(a— 1k

(S.7)

~ -1 ~
U4 = {C’AA — DAA} (TonflTl/QWA +10CanBy — T‘OTA).



Note, by Proposition 1(ii), that By < A\/n, so that By = A\/n > ¢ = B,.

We first consider the order of By = ?:1 rj_l. Suppose that Bg < By. For all 7 # 5%, we
have b;" < by' = max{VT/n, Bs} < A/n. It follows that A§\ {j*} C A° If j* & A5, then
Bg = ZjeAg ri' < By, a contradiction. If j* € Ag, then the fact b." < by' < A/n implies that
j* € A° leading again to Bg = By, a contradiction. Thus we must have Bg = By. Suppose that
Bgs < (M/n){1 —BU/(om)}Jr, so that there exists |6[ng)| = By < ak. Since By = A\/n = Bg =13,

we have jy € A. Note that fj_Ul =< Bg < A/n, so that bj_U1 < A/n. That By < akx suggests that

ju € UK. It jy € #, we have Bg = ’l“j:} = A/n, a contradiction. If jy € JZ, we have

A8V Ao Ao

(Gu)y _ (Jv)
o a0 = (1= o )sen (5 = Bs,

—1
BS trjU t -

a contradiction. Thus we must have Bg = (A/n){1 — BU/(om)}Jr. Suppose that Bg = A/n. For
Jj # 7%, we have bj_1 = by = Bs = A\/n, so that j € A, which contradicts sparsity of ,B The above
results together imply that (v/T/n) V¢ < Bg < A/n. It also follows that b;' < by' < Bs = A/n
for all j.

Let jy be such that \ﬂéjU)| = By. If jy € A°, then rj_Ul =< By < A\/n = Bs = rj_*l - rj_Ul. If
ju € A, then r;, = r;« = ro. It follows that r;, < r;« in all cases and we may assume without loss
of generality that j* = j; € A,.

For j € Ay N .A°, we have \/n =< ]B(()j)| = rj_l = Bg = A/n, which implies ]Béj)| = Bg =< \/n.
For j € AN A, we have Bs < A\/n = b;' < r;' < r;' < By, which implies Bg < A/n. Thus, if
Bs < A/n, or equivalently, g = n/\, then A = A,.

That 7o = n/X implies ¢ < A\/n follows immediately from the relation ¢ < Bg < ry* < \/n.

Conversely, suppose ¥ < A/n, so that By < A/n and nh_)rgo (ar)"'By > 1 necessarily. To show

that (5.7) admits a solution with ro > n/A and A = A, it suffices to show, with U; set to

—||ﬁéj)]|2’15(()j) for j € A, that HTAOH1 < A/n for ro = n/X and some partition Ay = £, U #. U .



Note, under (A2), that p £ lim,_,, M{2Cn(a — 1)k}~ < 1, so that, for n sufficiently large,
(am) N (@nCyy) + K} < pla— 1)+ 1/a+o(1) < (3+ p)/4,
For all j € Ay, we have b, ' < by' = (VT/n)Vryt < \/n, and either |B(()j)| > ak or
|5(()j)| <ak and 1-— |5(()j)|/(a/-c) <1-By/(ak) 2 np/\ < 1.
It follows that for sufficiently large n,
1867 > ar{1 —o(1)} > ar(3 + p)/4 > A/ (2nCy;) + &,

so that Ay C 7. U .y and

Ao |5(j)| A By B
Ao, — _ 1 — 20 ’—<—<1——> <1 < Bg=ry' < \/n.
Il > <2 X0 By=rgt <M

2n(a—1) e akK akK
ol l/c

Moreover, it follows by non-triviality of U4 and (S.7) that r;' < (VT/n) V¢ = Bg =< 15",
which implies 7o =< (n/v/T) A ¢~'. The solution (A.1) then follows by setting A = Ay and
o =< (n/v/T) A~ in (S.7) under the condition ¥ < \/n.

On the other hand, setting ry < n/\ in (S.7) reduces U* to

A

-1
- - A . A A
277,(04—1),‘€DAA} {TQCAA ,30 T }+Op(1),

{CAA -

which has a non-random leading term. If the above leading term < 1 and is therefore non-vanishing,
it gives rise to a consistent sparse local minimum having support A D {k : | Bék)| = A/n} and the
slowest possible componentwise convergence rates r; = ro < n/\, for j € A.

Suppose, in addition, that By = A/n, so that ¥ < A/n < By. Then we have A, C A,

TOOAAC,B()M =< (n/A)By <X (n/A)y < 1, and

1{j € A} + —=1{j € A2}, jeAn A,

L&
akK

U =<

1{j€%}+1{j€%}ail< ><1, je AN A.
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It follows that if A = Ay, then 74 = o0,(1), contradicting non-triviality of U4, and therefore
ro > n/\ necessarily.

To prove the last assertion of Theorem A.1, it suffices to compare two consistent sparse local
minima with selected sets Ay and A 2 Ay, respectively. Denote by V = [V4,...,V,]" and V=

Vi,..., ‘N/p]T their corresponding solutions for U, respectively, and by R = [Ry, ..., R,]" and R =

[Rl, ceey RP]T their corresponding vectors of convergence rates, respectively. Note that
Rj:Rox(n/\/T)/\w_l, J € Ay, Rj:]%xn/)\, JjeA,

and
R; (()j) =—=Vj J € AG, Rj (()j) - _‘73" J €A

Under the condition ) < A\/n < By, a comparison between the objective functions at the two local

minima gives

n P
> oY= X[ (B + diag(R) V)Y + Ak Y al85 + BV /x)
j=1

=1

n P
=3 V= XT (8o + diag(R)TV)} = Ae Y q(185 + BV /k)
i=1 j=1
o VAWANAT I o2 R ATY A 1 BT Oy 4By + nRy2VAT Oy a VA
— 2Ry By Cag aa VA + A - {18 + Ry 'Vj1/k) — (18 + Ry 'Vl /w)}
j€Ao

+ 2T1/2]:251WATVA — B CueacBy - nR52VATéAAVA

~— cT A ~ A ~ .~
+20R5 '8 TCueaV' = Ak Y a(Bg ' Vil/m){1 + 0p(1)}

JEANAS
= RV eV - > aBVI/R) {1+ 0p(1)} + Op(nt® + VT A /n + ABy)
JEANAS
_)‘ ) | p-1771\2 ) _1 2

— nRa2VATOAAVA{1 + 0p(1)}

IN

Z 1{ hm 189/ (ak) = =1}0,{\*/n’ + (18Y] = ar)? }

jeAo

= RV LV 140, (1)) + 1{lim By/(ar) = 1}{op(Aar) + Op(X*/(n*ar)) }.

a—l

If lim,, o By/(ak) > 1, then the second term in the last expression vanishes, so that the above
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difference between the two objective functions becomes strictly negative asymptotically, which

proves the last assertion.

IV  Proof of Theorem 2

Suppose that Ay = (), so that A5 = {1,...,p}, By = 00, ¥ = By and By = Bs < A\/n. Using the
same arguments as in Section III, if Bg < A\/n, then necessarily By < A\/n and A° = A§, which in
turn implies Bg < By < A/n. Thus we have By < A\/n and A° = Af if and only if Bg < A\/n.

For j € A°, we have, for sufficiently large n, Bj — B(()j) = —Béj) < A/n. If A # ), then we have,
for each j € A, r; < n/A, so that ﬁj — B(()j) = rj_l = A/n.

Assume now By < A\/n. To prove the existence of a zero local minimum, it suffices to show that
by < A/n for all j if we set r; =< |ﬁ(gj)]—1, for in this case we have }ﬁéj) - (ZOjjbj)_lﬁ/j‘ < A/n for
-1

all j, yielding a local minimum B = 0. This is accomplished by noting the fact that if r; < | ﬁéj )|

for all j, then Bs < ||Bol|1 = By, so that, for all j,
bt = (VT /n)Vi;' = (VT/n)V Bg < (VT /n)V By < A/n.

To prove the last assertion, consider a consistent sparse local minimum with selected set A # ().
Denote by V. = [Vi,...,V,]T and R = [Ry,...,R,]7 its corresponding solution for U and the
accompanying componentwise convergence rates, respectively. Noting that E’j = Ry = n/A for

j € A and Rj ((]j ) = —\7j for j € A°, a comparison between the objective function values at the

12



zero local minimum and the above nonzero local minimum gives

n

SOV =SV - XT (Bo + diag(R) V)Y — a3 q(18Y + B /)
i=1 i=1 Jj=1

— o2 AGDAT ﬂa‘lsﬂA n nﬂéaTéAgAg ﬁ648 1 oTl/2 RalwAT‘N/A CnBETC e a B
—nRaQVATC’AAVA + 2nRal,3646TC’AeAVA — AR Z q(RyY V5| /k){1 + 0,(1)}
jeA
= RV GV = A S a(B Vi /W1 + 0,(1)} + Op(VT A/ + ABy)
jeA
—HREQVATOAAVA{l + Op(l)},

IA

It follows that the zero local minimum has an objective function value strictly smaller than that

of any nonzero consistent sparse local minimum, which proves the last assertion.

V  Proofs of Theorem A.2 and Corollary A.2

Proof of Theorem A.2. For any selected set A given by a consistent sparse local minimum ,B, its
corresponding post-selection OLS estimator E(A) satisfies (A.4), with its nonzero components con-
verging at a rate ||B4°||7' A (n/vT) = n/VT. The first assertion then follows by noting that if
1) < A/n, then, by Theorem A.1, there exists a B(/l) selecting A = A, with probability converging
to one.

Furthermore, if ¥ < A/n < By, then, by Theorem A.l again, the support A of any consis-
tent sparse local minimum ,3 contains Ay with probability converging to one, thereby entailing a

convergence rate ||B4°|T1 A (n/vVT) = By' A (n/V/T), which proves the second assertion. O

Proof of Corollary A.2. Note that the conditions assumed on (By, By) imply ¢ < A/n. The corol-
lary then follows directly from Theorem A.2 and (A.4), where the convergence rate is given by

By' A (n/v/T) < n/vT and the bias term vanishes because (n/vT)%, =< (n/VT)By < 1. O

13



VI Proofs of Theorems A.3 and A.4

Proof of Theorem A.3. If By < A/n and either {1 — By/(ak)}y < VT/X or By > ak, then
1 < A\/n, so that, by Theorem A.1, a consistent sparse local minimum B exists with P(supp(,@) =
Ag) — 1. Note that |C;; — Ci;| < VT /n (i,j =1,...,p) under any tail condition (7;).

If {1 — By/(ar)}s < VT/X and ak = \/n, then we have nT—/2¢% /ry < 1 and, by (A.1),

that

nT Y2 (B — 89" = {Coly, + Op(n ' TY2) 4 o(1) J{WAo + 0T Y2C 4 43" + O,(Bo) + 0(1)}
— T2, Cagac By
= Cl W + 0,(n 7' T + By) + 0,(1) = ClL y W + 0,(1).

On the other hand, if By > ak, then Ay, 4, = diag(0) and ¢*° = 0, so that the above expansion

remains valid. ]

Proof of Theorem A.j. By Theorem A.1, if 1) < A\/n, selected sets A € # exist such that ]P’(fl =
Ag) — 1. Similar to the proof of Theorem A.3, it follows by (A.4) and the fact [Ci; — Ci;| =< VT/n

(i, =1,...,p) that, for sufficiently large n,

_ V) A A _ A A — AS
nT 1/2{b(./4) _00} 0 — CAOIAOWAO +nT 1/2<CA(}AOCA0A(C) — CA;AOC-AOAS)ﬁOO

= Coapa, W™ + Op(n T2 + Bo) = Cip 4 W + 0,(1).
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