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A.1 Theory under more general tail conditions

In addition to the common sub-Gaussian and moderately heavy tail conditions typically assumed

under high dimensions, we also consider a heavy-tailed setting (T3) exemplified by an infinite

variance and a kind of power law for the random error ε:

(T3) P(|ε| > t) � t−γ and P(|X(j) − EX(j)| > t) � t−2γ as t→∞, for some γ ∈ (1, 2).

The results provide fresh insights into the properties and applicability of nonconvex penalised

methods and their post-selection least squares estimators in a broader context. We shall generalise

our theory in the main text by including (T3). All technical proofs of the generalised version, which

covers also the tail conditions considered in the main text, are given in Appendix 2.

Recalling that εi = Yi −XXX>i βββ0, we redefine WWW = [W1, . . . ,Wp]
> = T−1/2

∑n
i=1 εiXXX i, where T

is a scaling factor depending on n and rendering WWW � 1. Under tail conditions (T1) or (T2), we
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have T = n, with Wj converging in distribution to a normal random variable by the Central Limit

Theorem. Under (T3), we have T = n2/γ and that Wj has an asymptotically stable distribution by

the Stable Central Limit Theorem (Hoffmann-Jrgensen, 1994, Section 5.25).

Remark A.1. We generalise (A2) by assuming lim
n→∞

λ

n(α− 1)κ
< 2C and

√
T ≺ λ ≺ n. Note

that for λ �
√
T , the signals captured by the index set A0 are not confounded with sampling noise.

Remark A.2. Assume the conditions (C1), (A1), (A3), (A4) and the generalised (A2). Lemma 1,

Proposition 1 and Theorem 2 also hold under (T3) and p ≺ λγ/n. Thus, the growth of the dimension

p cannot exceed a polynomial rate if (XXX,Y ) has heavy tails with index γ ∈ (1, 2).

After introducing the new notations T , WWW and the generalised conditions, we extend our theo-

rems and corollaries on the componentwise convergence rates and weak limits of sparse and consis-

tent local minima β̂ββ’s to accommodate the heavy tail condition (T3). In the main text, theoretical

statements and remarks not related to T carry over into the generalised version without change.

They are therefore omitted hereafter for brevity.

Theorem A.1. Suppose that |A0| � 1 and the generalised conditions of Proposition 1 hold. Then,

a consistent sparse local minimum β̂ββ exists with a componentwise convergence rate r0 � n/λ if and

only if ψ ≺ λ/n. In this case, we have r0 � (n/
√
T )∧ψ−1 and, with probability converging to one,

supp(β̂ββ) = A0 and
β̂ββ
Ac

0
= 000,

β̂ββ
A0

= βββA0
0 +

{
ĈA0A0 −

λ

2n(α− 1)κ
ΛA0A0

}−1(√T
n
WWWA0 + ĈA0Ac

0
βββ
Ac

0
0 −

φA0

r0

)
,

(A.1)

where

Λ = diag
(
1{|β(j)

0 | < ακ} : j = 1, . . . , p
)
,

φ =
r0λα

2n(α− 1)

[(
1− |β

(j)
0 |
ακ

)
+

sgn(β
(j)
0 ) : j = 1, . . . , p

]
.
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If, in addition, BU � λ/n, then the above local minima are the only consistent sparse local minima

selecting A0 with probability converging to one, while any other consistent sparse local minima

converge at a slower rate n/λ and are less sparse with supports ) A0 asymptotically.

If, in addition, limn→∞BU/(ακ) > 1, then the above minima yield an objective function (2.1)

strictly smaller than that yielded by any other consistent sparse local minima.

Remark A.3. Theorem A.1 suggests that if the group of strong signals is sufficiently distinct from

the group of weak signals such that ψ ≺ λ/n, then the set of consistent sparse local minima can be

classified into two subsets, having a fast convergence rate (n/
√
T ) ∧ ψ−1 and a slow convergence

rate n/λ, respectively, with the former being non-empty. With large probability, the fast converging

local minima select the strong signal set A0, while the slow converging local minima, if any, select

signal sets containing A0 \ {j : |β(j)
0 | � λ/n}.

Remark A.4. Similar to our Proposition 1, Loh and Wainwright (2015) establish a conservative

slow rate n/λ for the convergence of every local minimum as a statistical guarantee for the latter.

Our results in Theorem A.1 clarify the conditions for the existence of local minima converging at

a faster rate (n/
√
T ) ∧ ψ−1.

Remark A.5. If ακ � λ/n, which excludes the common SCAD and MCP methods, then ψ ≺ λ/n

implies BU � λ/n, and β̂ββ
A0

in (A.1) reduces to βββA0
0 + Ĉ−1A0A0

{
(
√
T/n)WWWA0 + ĈA0Ac

0
βββ
Ac

0
0 − r−10 φA0

}
.

Remark A.6. Theorem A.1 provides a more holistic picture of the selection and convergence

properties of consistent sparse local minima β̂ββ from a local asymptotic perspective, which covers as

a special case the weak oracle property introduced by Fan and Lv (2011), under weaker conditions

on B0, BU and the covariate design than those assumed by the said paper. In particular, we see

from (A.1) that even when β̂ββ selects A0 correctly and converges at a fast rate, it is not necessarily

asymptotically equivalent to an ordinary least squares (OLS) estimator derived from A0, casting

doubt on our conventional interpretation of oracle properties of nonconvex penalised estimators.
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Remark A.7. In the special case ακ = ∞, which holds for LASSO, the condition ψ ≺ λ/n fails.

A contraposition of Theorem A.1 shows that the active β̂j’s have a slow convergence rate n/λ. A

faster convergence rate may result under a fixed p if we set λ �
√
T , as is typically adopted by

LASSO. However, the latter condition fails to guarantee selection consistency in general, unless

we impose further constraints on C.

We may deduce from (A.1) a series of phase changes of the asymptotic behaviour of UA0 =

r0(β̂ββ−βββ0)
A0 , when signal patterns undergo the following transition phases over the local asymptotic

spectrum.

(a) If ψ = (λ/n)
(
1−BU/(ακ)

)
+
� B0, setting r0 = (n/

√
T )
{

1∧ (
√
T/λ)

(
1−BU/(ακ)

)−1
+

}
gives

UA0 =
{
CA0A0 −

λ

2n(α− 1)κ
ΛA0A0

}−1[{
1 ∧ (
√
T/λ)

(
1−BU/(ακ)

)−1
+

}
WWWA0 − φA0

]
+ op(1),

which has a non-random leading term

−
{
CA0A0 −

λ

2n(α− 1)κ
ΛA0A0

}−1
φA0

if and only if
(
1−BU/(ακ)

)
+
�
√
T/λ.

(b) If ψ = B0 � (λ/n) (1−BU/(ακ))+, setting r0 = (n/
√
T ) ∧B−10 gives

UA0 =
{
CA0A0 −

λ

2n(α− 1)κ
ΛA0A0

}−1(
1 ∧
√
T

nB0

){
WWWA0 + (n/

√
T )CA0Ac

0
βββ
Ac

0
0

}
+ op(1),

which has a non-random leading term

{
CA0A0 −

λ

2n(α− 1)κ
ΛA0A0

}−1
B−10 CA0Ac

0
βββ
Ac

0
0

if and only if B0 �
√
T/n, or reduces to

C−1A0A0

(
1 ∧
√
T

nB0

){
WWWA0 + (n/

√
T )CA0Ac

0
βββ
Ac

0
0

}
+ op(1)

if BU ≥ ακ.
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(c) If ψ ≺
√
T/n, setting r0 = n/

√
T gives

UA0 =
{
CA0A0 −

λ

2n(α− 1)κ
ΛA0A0

}−1
WWWA0 + op(1),

which has a random leading term.

Given its prominence in the literature, the conventional oracle property, generalised under our local

asymptotic framework, is given below as an immediate corollary to Theorem A.1, which is obtained

by intersecting the above phases (b) and (c) into a final oracle phase.

Corollary A.1. (Generalised oracle property) Assume the generalised conditions of Proposition 1,

|A0| � 1, ψ ≺
√
T/n, and that either λ/n ≺ ακ or BU ≥ ακ. Then a generalised oracle estimator

β̂ββgo exists with

P
(
β̂ββ
Ac

0

go = 0
)
→ 1 and nT−1/2(β̂ββgo − βββ0)

A0 = C−1A0A0
WWWA0 + op(1).

If, in addition, BU � λ/n, then β̂ββgo is the only consistent sparse local minimum selecting A0 with

probability converging to one. Any other consistent sparse local minima necessarily converge at a

slower rate n/λ and are less sparse with supports Â ) A0 asymptotically.

Remark A.8. The generalised oracle estimator β̂ββgo estimates the coefficients of weak signals (in

Ac0) to be zero and those of strong signals (in A0) by ordinary least squares. If (XXX,Y ) satisfies tail

conditions (T1) or (T2), then n1/2(β̂ββgo−βββ0)
A0 is asymptotically zero-mean Gaussian. On the other

hand, if the tail condition (T3) holds with tail index γ ∈ (1, 2), then an application of the Stable

Central Limit Theorem to WWWA0 implies that for each j ∈ A0, the j-th component of n1−1/γ(β̂ββgo−βββ0)

converges weakly to a linear combination of random variables distributed under a stable law.

Remark A.9. Loh and Wainwright (2017) show, under the tail condition (T1), a sparse Riesz

condition on C and a betamin condition B0 = 0, that β̂ββgo is the unique local, hence global, minimum.

Assuming a weaker bound |A0| � n/λ than ours, they establish a conservative convergence rate of

order n/λ for β̂ββgo, which is slower than the rate n/
√
T shown in Corollary 1.
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As in Section 2.4 of the main text, the above established theory can be illustrated using a

schematic diagram similar to Figure 1, with the order n−1/2 replaced by
√
T/n.

A.1.1 Post-selection OLS estimator

We first generalise the subgradient conditions (3.7, 3.8) to accommodate the heavy tail condition

(T3): 
(2n/λ)

∣∣n−1T 1/2Wj − Ĉ{j}Â(β̂ββ − βββ0)
Â + Ĉ{j}Âcβββ

Âc

0

∣∣ ≤ 1, j ∈ Âc

ĈÂÂ
(
β̂ββ − βββ0

)Â = n−1T 1/2WWW Â + B1 + B2,

(A.2)

(A.3)

where B1 = −(2n)−1λ
[
sgn(β̂j)q

′(|β̂j|/κ) : j ∈ Â
]

and B2 = ĈÂÂcβββÂ
c

0 . Recall that b̂bb(Â) =

n−1Ĉ−1ÂÂ
∑n

i=1 YiXXX
Â
i is the sparse OLS estimator restricted to the submodel containing only variables

in Â. That b̂bb(Â) satisfies

ĈÂÂ
{
b̂bb(Â)− βββ0

}Â
= n−1T 1/2WWW Â + B2 (A.4)

suggests that the bias term B1 is removed from (A.3) by post-selection OLS. We now detail the

convergence properties of b̂bb(Â) as an estimator of βββ0, under mild conditions on design and signal

strength and either one of the tail conditions (T1), (T2) or (T3).

Theorem A.2. Suppose that |A0| � 1 and the generalised conditions of Proposition 1 hold. If

ψ ≺ λ/n, then there exists a consistent sparse post-selection OLS estimator b̂bb(Â) which is supported

on A0 with probability converging to one and converges at a rate B−10 ∧ (n/
√
T ).

If, in addition, BU � λ/n, then any consistent sparse post-selection OLS estimator b̂bb(Â) is

supported on Â ⊇ A0 with probability converging to one and converges at a rate within the range[
B−10 ∧ (n/

√
T ), n/

√
T
]
.

Remark A.10. As has been discussed in Remark A.3, under the condition ψ ≺ λ/n ≺ BU , a

consistent sparse local minimum β̂ββ converges either at a fast rate (n/
√
T ) ∧ ψ−1 with selected set
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A0 or at a slow rate n/λ with selected set ) A0. Under the same signal pattern, any post-selection

OLS estimator b̂bb(Â) has a convergence rate � B−10 ∧ (n/
√
T ), which is at least as fast as that of

any fast-converging β̂ββ and strictly faster than the rate of any slowly-converging β̂ββ. If, in addition,

B0 ∨ (
√
T/n) ≺ (λ/n)

{
1 − BU/(ακ)

}
+

, then any post-selection OLS estimator converges strictly

faster than any local minimum β̂ββ, provided they are consistent and sparse.

Remark A.11. In general, if |A0| � 1, BU � λ/n and B0 ≺
√
T/n, we have, for any Â ∈ K̂ and

A ∈ lim supn→∞Kn with P(Â = A) → 1, that A ⊇ A0 and that the corresponding post-selection

OLS estimator b̂bb(Â) converges at the fastest possible rate n/
√
T and satisfies nT−1/2

{
b̂bb(Â)−βββ0

}A
=

C−1AAWWWA + op(1).

Corollary A.2. (Generalised oracle property) Assume the generalised conditions of Proposition 1,

|A0| � 1, {1− BU/(ακ)
}
+
≺ 1 and B0 ≺

√
T/n. Then, a sequence of selected sets Â ∈ K̂ exists

such that

P(Â = A0)→ 1 and nT−1/2
{
b̂bb(Â)− βββ0

}A0 = C−1A0A0
WWWA0 + op(1).

Remark A.12. As has been shown in Corollary A.1, existence of a generalised oracle β̂ββgo requires

more restrictive conditions on BU , namely {1 − BU/(ακ)
}
+
≺
√
T/λ if ακ � λ/n or BU ≥ ακ

if ακ � λ/n, compared to those required by Corollary A.2. If, in addition, BU � λ/n, then all

the post-selection OLS estimators converge at the fastest rate n/
√
T , while the corresponding local

minima β̂ββ except β̂ββgo all converge at the slowest rate n/λ.

By removing the bias term B1, the post-selection OLS estimators b̂bb(Â) acquire convergence

properties more desirable than the local minima β̂ββ and, in the case of multiple solutions to the

nonconvex optimisation program (2.2), ratewise more robust against the choice of strong signal

sets Â.
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A.2 Estimation of adjusted effects

From a predictive perspective, it may be of interest to draw inference about the effects of strong sig-

nals after adjusting for the omission of weak signals under a weakly sparse model. More specifically,

define an “oracle” target to be

θθθ0 = argmin
θθθ∈Rp

{
E(Y −XXX>θθθ)2 : θθθA

c
0 = 000

}
,

so that θθθ
Ac

0
0 = 000 and θθθA0

0 = βββA0
0 + C−1A0A0

CA0Ac
0
βββ
Ac

0
0 , which can be interpreted as the effects of strong

signals in A0 adjusted for the omission of weak signals in Ac0. In a similar vein, Bühlmann and

Van De Geer (2011, sections 6.2.3–4) define an “oracle” active set S0 that depends on the design

matrix and λ, and set as their target for estimation the coefficients which provide the best linear

fit using only variables in S0. An empirical version of the above framework under a fixed design is

also considered by Van de Geer et al. (2011). Compared to S0, which may trade off some strong

signals against a desired design condition, our choice of oracle active set A0 consists of all, and only,

strong signals � λ/n and appears more natural. In particular, if the strong signals are sufficiently

sparse such that
∣∣{j : |β(j)

0 | �
√
T/n}

∣∣ � 1, then setting λ close to
√
T ensures that the sparse

oracle target θθθ0 approximates βββ0 well and provides reliable assessments of the effects of all strong

signals which are not confounded with sampling noise.

Noting that the bias term B2 is asymptotically equivalent to CA0Ac
0
βββ
Ac

0
0 if Â = A0, it follows

from (A.3) that switching βββ0 to the oracle target θθθ0 may help offset the bias due to B2. The

following two theorems state the generalised oracle properties of β̂ββ and b̂bb(Â) as estimators of θθθ0,

respectively.

Theorem A.3. Assume the generalised conditions of Proposition 1, |A0| � 1, B0 ≺ λ/n, and that

either
√
T/(nακ) ∨ {1− BU/(ακ)}+ ≺

√
T/λ or BU ≥ ακ. Then, there exists a consistent sparse
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local minimum β̂ββ satisfying P
(
β̂ββ
Ac

0
= 000
)
→ 1 and

nT−1/2(β̂ββ − θθθ0)A0 = C−1A0A0
WWWA0 + op(1).

Theorem A.4. Assume the generalised conditions of Proposition 1, |A0| � 1 and ψ ≺ λ/n. Then,

there exists a sequence of selected sets Â ∈ K̂ with P(Â = A0)→ 1 such that

nT−1/2
{
b̂bb(Â)− θθθ0

}A0 = C−1A0A0
WWWA0 + op(1).

Remark A.13. If the local minimum β̂ββ or the post-selection OLS estimator b̂bb(Â) is taken to

estimate θθθ0 rather than βββ0, then the condition on B0 for the generalised oracle properties stated in

Corollaries A.1 and A.2 can be weakened from B0 ≺
√
T/n to B0 ≺ λ/n.

Remark A.14. If the signals in the inactive set Ac0 are sufficiently weak such that B0 ≺
√
T/n,

then inference drawn about θθθ0, based on either β̂ββ or b̂bb(Â), is equivalent to inference drawn about

βββ0 to the first order.

Remark A.15. If we assume further that BU � λ/n, then we can deduce from Theorem A.1

and (A.4) that any consistent sparse local minimum β̂ββ with P(Â = A) → 1 gives rise to a post-

selection OLS estimator b̂bb(Â) which, with probability converging to one, has support containing A0

and satisfies b̂bb(Â)A
c

= θθθA
c

0 = 000 and

b̂bb(Â)A = θθθA0 + n−1T 1/2Ĉ−1AAWWW
A + Ĉ−1AAĈAAcβββA

c

0 −

C−1A0A0
CA0Ac

0
βββ
Ac

0
0

−βββA\A0

0

 .
We see from the above expansion that the estimation error {b̂bb(Â) − θθθ0}A converges to 000 at a rate

(n/
√
T ) ∧

(
111{A0 6= A}B0

)−1
in general. It follows that the fastest rate n/

√
T is achieved by the

generalised oracle b̂bb(Â) supported on A0 or, if B0 ≺
√
T/n, by any b̂bb(Â).
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A.3 Simulation study

A.3.1 Setting

We select SCAD, a popular nonconvex penalisation method, for investigation in our simulation

studies, under both Gaussian and heavy-tailed settings. When SCAD performs well in both se-

lection and estimation, as would have been expected under pattern 5 in Figure 1, the bias would

be small and the post-SCAD OLS method may not make a significant improvement. To better

illustrate the effects of post-selection OLS, we focus in our studies on cases where SCAD estimators

are likely to succumb to large or moderate biases, which are by no means uncommon.

Since our assumptions allow all regression coefficients to be nonzero, hence B0 > 0, and the

oracle active set A0 is defined in terms of asymptotic orders, there does not exist a definitive demar-

cation between A0 and Ac0 based on numerical values of the β
(j)
0 ’s. As a finite-sample benchmark for

evaluating empirical performance of different estimators, we fix in our simulations A0 = supp(βββ∗),

where βββ∗ is a solution for the penalised parameter satisfying (2.3), obtained by the optim function

using the “BFGS” method in the R package stats. The number of simulated replications in each

example is denoted by m. The focus of this study is on not so much the choice of optimal tuning

parameters as the changes in performances of SCAD and post-SCAD OLS across different signal

patterns. We fix the tuning parameters at values consistent with the conditions set in our theoret-

ical investigation. In particular, we set in the R package ncvreg α = 3.7, the default value advised

by Fan and Li (2001), and the SCAD penalty weight λR = λ/(2n) to be a fixed value by reference

to cross-validation outcomes of a few trial runs. The tail conditions (T1)–(T3) on (XXX,Y ) cover both

the regular sub-Gaussian case and the heavy-tailed power law. The conditions of Lemma 1 imply

log p ≺ n, p ≺ n and p ≺ nγ−1 (1 < γ < 2) under (T1), (T2) and (T3), respectively, which inform

our settings of (n, p) in the simulation study.
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A.3.2 Measures of estimation accuracy

As a benchmark for SCAD and post-SCAD OLS, an oracle OLS estimator is calculated to be

b̂bb(A0), assuming prior knowledge of the correct model. It is denoted as Oracle in the tables of

results reported in Section A.3.3.

Denote by β̃ββ a generic estimator of βββ0. We now describe the indicators used for evaluating the

performance of β̃ββ. The estimation error β̃ββ − βββ0 for the entire signal vector is summarised into the

total bias, Bias =
∥∥m−1∑m

i=1 β̃ββ
∗i
−βββ0

∥∥
2
, and the total mean squared error, MSE = m−1

∑m
i=1 ‖β̃ββ

∗i
−

βββ0‖22, where β̃ββ
∗i

denotes the replicate of β̃ββ obtained in the ith simulation. Under the heavy-tailed

settings, we report in lieu of MSE the total mean absolute deviation, MAD = m−1
∑m

i=1 ‖β̃ββ
∗i
−βββ0‖1,

which is more robust against outliers. Replacing βββ0 by the “oracle” target θθθ0 (Section A.2), we also

calculate the adjusted total bias PBias =
∥∥m−1∑m

i=1 β̃ββ
∗i
− θθθ0

∥∥
2

for SCAD and post-SCAD OLS.

To save space we do not report PBias for Oracle, which has zero bias against θθθ0 by definition.

Similarly, we do not report the MSE figures with respect to θθθ0, for the change of target from βββ0 to

θθθ0 does not affect the variance of β̃ββ.

The performance of post-SCAD OLS in estimation is necessarily intertwined with that of SCAD

in variable selection, which may vary considerably across different signal patterns and correlation

structures of XXX under the same λR. For more insights into the effects of post-SCAD OLS, we also

calculate a second group of indicators, denoted respectively by CS Bias, CS MSE (or CS MAD

under heavy-tailed settings) and CS PBias, which compare the errors between SCAD and post-

SCAD OLS estimators calculated only over simulation runs where the method correctly selected

the oracle active set A0. Specifically, we have CS Bias =
∥∥|S|−1∑i∈S β̃ββ

∗i
− βββ0

∥∥
2
, where S = {i :

supp(β̃ββ
∗i

) = A0}, and CS MSE, CS MAD and CS PBias are similarly defined.

A comparison between the scaled errors (3.8) and (3.9) of the nonzero estimators β̂ββ
Â

and b̂bb(Â)Â

shows that post-selection OLS estimation helps eliminate a bias term B1 arising from the nonconvex
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penalty, which mainly affects estimators of strong signals. It would therefore be interesting to

investigate the performance of these estimators on the oracle active set A0 alone, leaving aside

the errors attributed to the inactive group Ac0. To this end we report the total bias restricted to

A0, namely OS Bias =
∥∥m−1∑m

i=1(β̃ββ
∗i
− βββ0)

A0
∥∥
2

and, conditional on {Â = A0}, OS-CS Bias =∥∥|S|−1∑i∈S(β̃ββ
∗i
− βββ0)

A0
∥∥
2
. Likewise we report also the other indicators restricted to A0: OS

MSE (or OS MAD), OS-CS MSE (or OS-CS MAD) and OS PBias, noting that OS-CS PBias =

OS PBias.

All figures shown in the tables of results are rounded to an appropriate number of decimal

places such that any comparison between the figures would not be swamped by Monte Carlo error.

A.3.3 Examples and results

Example A.1. (Gaussian setting with exact sparsity) To address the question of how the methods

perform in a traditional sparse setting, we consider a model where most coefficients are exactly

zero

E[Y |XXX] = 0.5X(1) + 0.6X(2) + 0.7X(3) + 5X(4) + 10X(5).

There are p = 500 potential covariates, but only the first five have non-zero coefficients. For each

simulation run, we set the sample size to n = 139. The covariates X(1), . . . , X(500) and the error

term ε are generated from a standard normal distribution, N(0, 1). The entire simulation process

is repeated 1000 times. The SCAD-penalized regression is fitted using the ncvreg R package with

the tuning parameter λR = 0.3. We obtain multiple sparse solutions by changing the initial guesses,

and choose the sparse solution which yields the minimum empirical loss.

We investigate the performance of the various methods under three different correlation struc-

tures for the covariates: (1) the independent case (ρ = 0), where all covariates are independent;

(2) the mildly correlated case (ρ12 = 0.5), where the correlation between X(1) and X(2) is set to

0.5, while all other pairs remain independent; (3) the highly correlated case (ρ = 0.5), where each
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pairwise correlation is set to 0.5.

The performance is assessed in terms of variable selection accuracy and estimation precision in

Table A.1. In the independent and mildly correlated cases, the SCAD-based methods demonstrate

superior performance in variable selection. They achieve a high rate of correct selection and select

models of size close to the true value 5. In terms of estimation, post-SCAD OLS proves highly

effective in reducing bias, yielding the lowest bias and MSE. Standard SCAD exhibits considerable

bias, which is effectively corrected by the post-selection refitting step.

When strong multicollinearity exists among all covariates, the performance of all methods

deteriorates, as expected. The correct selection rate of SCAD drops to 22.9%. In this challenging

setting, post-selection OLS remains beneficial to SCAD, significantly reducing both bias and MSE.

Table A.1: The average selected number of variables (N), percentages (%) of correct selection

(CS), false positives only (FP), false negatives only (FN), both false positives and negatives (FPN),

variance (Var) and mean squared error (MSE).

variable selection estimation

ρ Method N CS FP FN FPN Bias Var MSE

0

SCAD

5.466 59.9 36.5 2.2 1.4

0.8656 0.0743 0.8236

post-SCAD 0.1311 0.0938 0.1110

Oracle 5 – – – – 0.0165 0.0453 0.0456

ρ12

=0.5

SCAD

5.332 64.1 29.3 4.5 2.1

0.6161 0.1373 0.5170

post-SCAD 0.1161 0.1069 0.1204

Oracle 5 – – – – 0.0168 0.0508 0.0511

0.5

SCAD

6.819 22.9 54.3 10.5 12.3

1.47 0.231 2.39

post-SCAD 0.787 0.254 0.872

Oracle 5 – – – – 0.00159 0.0701 0.0703
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Figure A.1 displays heat maps of componentwise absolute errors of the SCAD and post-SCAD

OLS estimates. They provide compelling visual evidence in support of the stronger theoretical

guarantee our theory confers on post-SCAD OLS, in the sense that the second-stage OLS refitting

step has the effect of removing the shrinkage bias of strong signals introduced by SCAD.

Figure A.1: Example A.1 — heat maps of componentwise absolute errors |β̃j−β(j)
0 |, j ∈ {1, . . . , 50},

for SCAD and post-SCAD estimators across 1000 replications under ρ = 0.5.

A comparison of the empirical cumulative distribution functions (ecdf) plotted in Figure A.2

consistently shows that the SCAD estimator has a distribution shifted to the left of the oracle. The

shifts are pronounced for the first 3 coefficients and become significantly less conspicuous for β
(4)
0

and β
(5)
0 . For each of the 5 coefficients, the post-SCAD OLS ecdf is nearly indistinguishable from the

oracle, both of which are centred around zero and exhibit nearly identical shapes and dispersions.

The results show that SCAD-based variable selection is sufficiently accurate and the subsequent

step of OLS refitting effectively eliminates the shrinkage bias of SCAD estimates, leading to a

feasible data-driven estimator whose finite-sample distribution almost perfectly matches that of

the infeasible oracle.
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Figure A.2: Example A.1 — empirical cumulative distribution functions of β̃j−β(j)
0 (j = 1, . . . , 5)

in the independent case.
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Figure A.3: Example A.1 — empirical cumulative distribution functions of β̃j−β(j)
0 (j = 1, . . . , 5)

in the high-correlation case.

Figure A.3 presents the most challenging scenario, where all covariates have a uniform pairwise

correlation of ρ = 0.5. Unlike the independent case, a clear gap now emerges between the post-

SCAD and oracle ecdf’s. While the two curves no longer coincide perfectly, the post-SCAD OLS

ecdf remains much closer to the oracle than does the SCAD ecdf. Both SCAD and post-SCAD

OLS ecdf’s are visibly flatter, more spread out and more prone to an atomic lower bound than

those displayed in Figure A.2, indicating an increase in the variance of the estimates and a decrease

in stability of model selection across the simulation runs.
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Broadly speaking, as covariates become more strongly correlated, variances of the SCAD and

post-SCAD OLS estimators increase and bias correction becomes less effective. In a sparse setting

with inactive covariates associated with exact zero coefficients, the post-selection OLS method

provides a viable strategy for improving estimation accuracy, even when reliability of variable

selection in the first step has been plagued by multicollinearity.

Example A.2. (Gaussian setting with weak sparsity) Consider a regression model

E[Y |XXX] = 20 + β
(2)
0 X(2) +X(3) + 1.5X(4) + 3X(5) + 10X(6) +

501∑
j=7

β
(j)
0 X(j).

We set the sample size n = 140, dimension p = 501 and the number of replications m = 1000. We

generate β
(7)
0 , . . . , β

(501)
0 independently from N(0, 0.01), reflecting a presence of many weak signals,

and the random error ε from N(0, 1). The covariate vector [X(2), . . . , X(501)]> is generated from

a 500-variate normal distribution N(000,Σ). The 500 × 500 covariance matrix Σ is constructed in

line with the assumption (A1), with its (i, j)-th entry given by Σij = MMM>
i MMM j‖MMM i‖−12 ‖MMM j‖−12 , for

i 6= j, where MMM1, . . . ,MMM500 denote 500 independent random vectors in [0, 1]500, each consisting

of 500 random components independently generated from the beta (0.5, 10) distribution. In this

example, the Σij values range from about 0.224 to 0.517, about half of which lie between 0.345 and

0.388. We set Σii = Var(X(i)) ∈ {1, 2} and β
(2)
0 ∈ {0.5, 0.73}. Note that changing Σii from 1 to 2

reduces all correlations by 50% between each pair of covariates. The choices β
(2)
0 ∈ {0.5, 0.73} can

be identified with a moderate signal close in magnitude to the sampling noise, with respect to the

sample size 140 under a Gaussian setting. The optimisation program (2.3) yields an oracle active

set A0 = {1, . . . , 6} for all four cases.

The performance of SCAD in variable selection under the four cases is summarised in Table A.2.

With λR fixed at 0.3, the average numbers of selected variables (N) are all around 6. In general,

a bigger value of BU = β
(2)
0 or a weaker correlation between covariates gives rise to a higher

percentage of correct selection.
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Table A.2: Example A.2 — average number of selected variables (N), percentages (%) of correct

selection (CS), false positives only (FP), false negatives only (FN), both false positives and negatives

(FPN), over 1000 replications.

Variable Selection

Var(X(i)) β
(2)
0 N CS FP FN FPN

1
0.50 6.106 64.2 16.9 15.8 3.1

0.73 6.208 84.7 15.0 0.3 0.0

2
0.50 6.322 76.3 23.6 0.1 0.0

0.73 6.165 85.8 14.2 0.0 0.0

Table A.3: Example A.2 — different measures of total bias and total mean squared error.

Var(X(i))Var(X(i))Var(X(i)) β
(2)
0β
(2)
0β
(2)
0 Method Bias MSE PBias CS Bias CS MSE CS PBias OS Bias OS MSE OS PBias OS-CS Bias OS-CS MSE

1

0.5

SCAD 0.471 0.321 0.403 0.45 0.295 0.379 0.412 0.269 0.403 0.388 0.243

Post-SCAD 0.248 0.196 0.086 0.231 0.109 0.032 0.099 0.116 0.086 0.035 0.057

Oracle 0.23 0.113 0 0.23 0.113 0 0.03 0.061 0 0.03 0.061

0.73

SCAD 0.428 0.315 0.354 0.421 0.301 0.345 0.363 0.263 0.354 0.354 0.249

Post-SCAD 0.231 0.142 0.023 0.23 0.113 0.011 0.043 0.069 0.022 0.03 0.061

Oracle 0.23 0.113 0 0.23 0.113 0 0.03 0.061 0 0.03 0.061

2

0.5

SCAD 0.313 0.137 0.21 0.31 0.135 0.205 0.214 0.085 0.21 0.209 0.083

Post-SCAD 0.228 0.1 0.015 0.228 0.083 0.005 0.023 0.034 0.014 0.012 0.031

Oracle 0.229 0.083 0 0.229 0.083 0 0.015 0.031 0 0.015 0.031

0.73

SCAD 0.236 0.095 0.058 0.237 0.095 0.058 0.063 0.043 0.058 0.063 0.043

Post-SCAD 0.228 0.094 0.007 0.228 0.083 0.005 0.015 0.032 0.006 0.014 0.031

Oracle 0.229 0.083 0 0.229 0.083 0 0.015 0.031 0 0.015 0.031
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Table A.3 reports a variety of measures of estimation errors of SCAD, post-SCAD OLS and

Oracle. In all four settings of
(
Var(X(i)), β

(2)
0

)
, post-SCAD OLS consistently outperforms SCAD

in yielding smaller total bias and smaller total mean squared error calculated by any measure. A

comparison between Bias and CS Bias shows that the performance of either estimator does not

change much if the bias is evaluated conditional on successful selection of A0. Remarkably, SCAD

still experiences a substantial bias even when the correct oracle set A0 has been selected. The

improvement made by post-SCAD OLS over SCAD is most noticeable in OS Bias and OS-CS Bias,

in comparison with that made in Bias and CS Bias, implying that a significant reduction in bias is

achieved by post-SCAD OLS for the estimation of the active coefficients βββA0
0 . The results can be

attributed to the fact that a significant bias term B1 in the scaled error (3.8) of the active SCAD

estimator is removed by post-SCAD OLS (3.9), thus pushing the latter much closer to the oracle

estimator. It can be derived from the bias and MSE figures that the SCAD estimator has a total

variance smaller than that of the post-SCAD OLS estimator, due possibly to the shrinking effect

of the penalty. After adjusting βββ0 to the oracle target θθθ0, the measures PBias, CS PBias and OS

PBias show a trend similar to, but are in magnitude smaller than, Bias, CS Bias and OS Bias,

respectively, which agrees with the theory given in Section A.2. The distinction between Bias and

OS Bias is more appreciable than that between PBias and OS PBias.

Under the same Var(X(i)) = 1 or 2, if we increase BU = β
(2)
0 from 0.5 to 0.73, the biases of

SCAD decrease, which conforms with an increase in convergence rate induced by a progression to

the generalised oracle phase (Corollary 1) under a sufficiently small ψ. The biases of post-SCAD

OLS exhibit a much steadier change as BU increases and B0 remains fixed, corroborating its robust

convergence rate stipulated in Theorem 3 and Corollary 2. The selection performance of SCAD is

in line with the phase changes from patterns 2 to 5 shown in Figure 1.

A comparison between the cases Var(X(i)) = 1 and 2 suggests that the performances of SCAD

in both selection and estimation are sensitive to the correlations between covariates, resulting in
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a bigger bias under the case Var(X(i)) = 1 where covariate correlations are stronger. By contrast,

the results on Bias, CS Bias, OS Bias and OS-CS Bias of post-SCAD OLS appear more robust and

stable against changes to covariate correlations. Such difference in the trend of bias between the

two approaches can be accounted for by the shrinking effect of the SCAD penalty. Consider for

illustration a simple scenario where A0 = {1, 2} = Â is correctly selected, Σ12 is fixed and B0 = 0.

Then the absolute bias of SCAD can be shown to decrease with Var(X(i)), or equivalently, increase

with the correlations between covariates, while the post-SCAD OLS estimator remains unbiased.

The three heat maps in Figure A.4 show in more detail the selection results of SCAD (top panel)

and componentwise estimation errors of SCAD and post-SCAD OLS (bottom panel) with respect

to the first 50 signals, for each of the 1000 replications under the case (Var(X(i)), β
(2)
0 ) = (1, 0.5),

where SCAD shows the lowest rate of correct selection (Â = A0). We see that the variables in the

oracle active set A0 except X(2) had been selected in all 1000 replications, while X(2), associated

with the small β
(2)
0 = 0.5, had been selected only 811 times. Variables outside A0 were rarely

selected. The heat maps of absolute errors show that post-SCAD OLS outperforms SCAD slightly

in estimating {β(j)
0 : j = 1, 3, 4, 5, 6} and is notably more accurate in estimating β

(2)
0 . On the other

hand, there exist a few cases where SCAD is found to be more accurate than post-SCAD OLS in

estimating β
(7)
0 , . . . , β

(50)
0 , when their corresponding, inactive, variables have been wrongly selected

by SCAD. Here the SCAD penalty has played a role in shrinking the SCAD estimates towards the

inactive β
(j)
0 ’s, hence a smaller estimation error compared to that given by the non-penalised OLS

estimates.

Figure A.5 plots the marginal ecdf’s of β̃j − β(j)
0 , j = 1, . . . , 6, for SCAD, post-SCAD OLS and

Oracle under the case (Var(X(i)), β
(2)
0 ) = (1, 0.5). Except for the intercept β

(1)
0 , which has a large

value 20, distributions of SCAD estimates of β
(2)
0 , . . . , β

(6)
0 are markedly different from the oracle

with either a location shift (cases j = 2, 4, 5, 6) or a scale shift (case j = 3). Such discrepancy

is noted even for the SCAD estimate of a large coefficient like β
(6)
0 = 10, attesting to the adverse
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impact on the oracle property of SCAD exerted by the presence of a moderate signal X(2) which is

correlated with the strong ones. The problem is resolved successfully by post-SCAD OLS, resulting

in ecdf’s almost indistinguishable from the oracle. For the case j = 2, a high false negative rate

15.8% gives rise to a conspicuous atom at −β(2)
0 = −0.5 in the ecdf’s of both SCAD and post-SCAD

OLS.

Figure A.4: Example A.2 — heat maps of SCAD selection results and componentwise abso-

lute errors of SCAD and post-SCAD OLS estimates, across 1000 replications under the setting

(Var(X(i)), β
(2)
0 ) = (1, 0.5).
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Figure A.5: Example A.2 — empirical cumulative distribution functions of β̃j−β(j)
0 (j = 1, . . . , 6)

under the setting (Var(X(i)), β
(2)
0 ) = (1, 0.5).

Example A.3. (Heavy-tailed setting) Consider a regression model

E[Y |XXX] = 20 + β
(2)
0 X(2) + 4X(3) + 5X(4) + 6X(5) + 12X(6) +

51∑
j=7

β
(j)
0 X(j).

We set n = 200, p = 51 and m = 105. The variables {X(j) : j = 2, . . . , 51} and the coefficients

{β(j)
0 : j = 7, . . . , 51} are generated in the same way as in Example A.2. The random error ε has a

density function with Pareto tails, given by

fε(t) = (1/6)111{|t| < 1}+ (1/2)|t|−5/2111{|t| ≥ 1},
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so that ε has zero mean and an infinite variance, and falls within the intervals (−1, 1), (−∞,−1]

and [1,∞) with equal probabilities. It satisfies the heavy-tailed condition (T3) with tail index

γ = 3/2. Lemma 1 holds in this case under a more stringent condition on the dimension, p ≺ n1/2,

with the penalty weight λ satisfying (np)2/3 ≺ λ ≺ n. Such consideration leads us to set p to be

smaller than n in this example, as opposed to the large p attempted in Example A.2. The SCAD

penalty weight λR is fixed at 2.3.

We set Var(X(i)) ∈ {2, 3} and β
(2)
0 ∈ {3, 4}. These choices differ slightly from those considered

in Example A.2 and coordinate better with the heavy-tailed setting to reveal the effects of moderate

signals. Again, the oracle active set is found to be A0 = {1, . . . , 6} in all four cases. The error

indicator MSE is changed to MAD for a more robust measure under heavy tails.

Table A.4: Example A.3 — average number of selected variables (N), percentages (%) of correct

selection (CS), false positives only (FP), false negatives only (FN), both false positives and negatives

(FPN), over 1000 replications.

Variable Selection

Var(X(i)) β
(2)
0 N CS FP FN FPN

2
3 5.467 93.1 5.1 0.2 1.7

4 5.465 93.6 5.3 0.0 1.2

3
3 5.483 94.0 5.1 0.0 0.9

4 5.479 94.3 5.1 0.0 0.6

Tables A.4 and A.5 report the results on selection and estimation, respectively. They reveal

patterns quite similar to those obtained in Example A.2, so that our comments on the latter

example carry over here in general. Note that the total magnitude of weak signals, ‖βββA
c
0

0 ‖2 ≈ 0.077,
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is much smaller than the magnitude 0.228 found in Example A.2, as a result of a reduction in the

dimension p. Thus, different bias measures yield similar results within each method. Despite a

larger degree of disturbance caused by the heavy-tailed noise than its Gaussian counterpart in

Example A.2, post-SCAD OLS makes a more remarkable improvement over SCAD in both bias

and MAD. Compared to the regular order n−1/2 in the Gaussian case, the tail condition (T3) entails

a noise level of a higher order
√
T/n = n−1/3. This necessitates a heavier SCAD penalty weight

� n−1/3 for consistent selection of strong signals, which in turn amplifies the penalty-driven bias

term B1. Bias reduction made by post-SCAD OLS, effected mainly through elimination of B1, is

therefore much more remarkable under a heavy-tailed setting than that achieved in Example A.2,

as can be seen by comparing Tables A.3 and A.5.

Table A.5: Example A.3 — different measures of total bias and total mean absolute deviation.

Var(X(i))Var(X(i))Var(X(i)) β
(2)
0β
(2)
0β
(2)
0 Method Bias MAD PBias CS Bias CS MAD CS PBias OS Bias OS MAD OS PBias OS-CS Bias OS-CS MAD

2

3

SCAD 2.153 7.7 2.153 2.167 5.08 2.167 2.151 5.21 2.153 2.165 4.66

Post-SCAD 0.098 5.0 0.061 0.077 1.62 0.003 0.047 1.86 0.048 0.007 1.20

Oracle 0.078 2.2 0 0.078 2.16 0 0.014 1.73 0 0.014 1.73

4

SCAD 1.816 7.2 1.817 1.819 4.56 1.820 1.814 4.70 1.816 1.818 4.13

Post-SCAD 0.093 5.0 0.055 0.077 1.63 0.003 0.038 1.85 0.040 0.007 1.21

Oracle 0.078 2.2 0 0.078 2.15 0 0.011 1.73 0 0.011 1.73

3

3

SCAD 1.353 5.3 1.352 1.358 3.24 1.356 1.351 3.28 1.352 1.356 2.82

Post-SCAD 0.082 4.1 0.034 0.077 1.45 0.002 0.021 1.53 0.022 0.004 1.03

Oracle 0.077 1.9 0 0.077 1.88 0 0.008 1.46 0 0.008 1.46

4

SCAD 0.826 4.6 0.824 0.818 2.51 0.816 0.823 2.58 0.824 0.814 2.09

Post-SCAD 0.080 4.1 0.030 0.077 1.45 0.002 0.016 1.53 0.017 0.004 1.03

Oracle 0.077 1.9 0 0.077 1.88 0 0.008 1.46 0 0.008 1.46
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Example A.4. (Gaussian setting, highly-correlated covariates) Consider a regression model

E[Y |XXX] = 20 + β
(2)
0 X(2) + 1.8X(3) + 2X(4) + 3X(5) + 10X(6) +

501∑
j=7

β
(j)
0 X(j).

The parameters n, p,m, λR and the distributions of ε, β
(7)
0 , . . . , β

(501)
0 are the same as those set

in Example A.2. The covariates [X(2), . . . , X(501)]> are also generated in the same way as in

Example A.2, except that Var(X(i)) is fixed at 1 and the parameters of the beta distribution are

changed from (0.5, 10) to (2, 5). The latter change gives rise to a covariance matrix Σ with Σij

ranging from 0.704 to 0.815 for i 6= j ∈ {2, . . . 501}, implying strong correlations between the

covariates X(2), . . . , X(501). We set β
(2)
0 ∈ {1.3, 1.7}, under which the oracle active set is found by

(2.3) to be A0 = {1, . . . , 6}, with BU identified with β
(2)
0 .

In general, SCAD shows a good performance in selection, yielding a rate of correct selection

90.4% in the case β
(2)
0 = 1.3 and 99.8% in the case β

(2)
0 = 1.7. The results on estimation accuracy

are qualitatively very similar to those obtained in Example A.2 and are therefore omitted here.

Figures A.6 and A.7 show the ecdf’s of β̃j−β(j)
0 , j ∈ A0, under the two cases of β

(2)
0 , respectively.

Apparently, for the case β
(2)
0 = 1.7 (Figure A.7), both SCAD and post-SCAD OLS perform almost

as well as the oracle in selection and estimation, echoing an oracle phase exemplified by pattern

5 on the local asymptotic spectrum shown in Figure 1. However, when we switch BU = β
(2)
0 to a

smaller value 1.3 (Figure A.6), all the SCAD estimates except β̂1 yield ecdf’s markedly different

from the oracle, suggesting a move into non-oracle phases exemplified by patterns 1 to 3 in Figure 1,

where the SCAD estimates suffer from a slower rate of convergence. The problem is resolved to

some extent by post-SCAD OLS, which reduces the bias of SCAD and helps achieve a distribution

closer to the oracle. Similar comments also hold for the previous examples, albeit to a lesser extent.
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Figure A.6: Example A.4 — empirical cumulative distribution functions of β̃j−β(j)
0 (j = 1, . . . , 6)

under the setting β
(2)
0 = 1.3.
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Figure A.7: Example A.4 — empirical cumulative distribution functions of β̃j−β(j)
0 (j = 1, . . . , 6)

under the setting β
(2)
0 = 1.7.

A.4 Concluding remarks

In summary, we show under all three types of tail conditions that phase changes in the asymptotics

of β̂ββ are determined critically by (B0, BU), and provide a necessary and sufficient condition, namely

ψ ≡ B0 ∨
{

(λ/n)(1 − BU/(ακ)
)}

+
≺ λ/n, for the existence of a consistent sparse local minimum

β̂ββ which selects A0 consistently and has a fast componentwise convergence rate (n/
√
T ) ∧ ψ−1.
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It follows that when BU is not large enough or B0 is not small enough, the generalised oracle

property fails to hold for any consistent sparse local minimum β̂ββ. By removing the bias term B1,

the post-selection OLS estimators b̂bb(Â) acquire convergence properties more desirable than the

local minima β̂ββ and, in the case of multiple solutions to the nonconvex optimisation program (2.2),

ratewise more robust against the choice of strong signal sets Â. If BU � λ/n, our Corollary A.2

shows that the fastest rate n/
√
T is achieved by all choices of b̂bb(Â), while the corresponding local

minima β̂ββ except β̂ββgo converge only at the slowest rate n/λ.

We have argued that from a predictive perspective, adjusting βββ0 for the omission of weak signals

makes for a practically more relevant target θθθ0 under a weakly sparse model. With this change of

target, we may weaken the condition on B0 from B0 ≺
√
T/n to B0 ≺ λ/n for β̂ββ or b̂bb(Â) to satisfy

the generalised oracle property.

We have conducted elaborate simulation studies to compare SCAD with post-SCAD OLS by

a variety of numerical and graphical measures. The numerical findings corroborate our theory

in general, suggesting that post-SCAD OLS successfully reduces the bias of SCAD and displays

a more robust performance. The improvement made by post-SCAD OLS is especially significant

under a heavy-tailed setting, which calls for a heavier SCAD penalty weight for consistent selection.
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Appendix 2: Technical Proofs

September 24, 2025

I Proof of Lemma 1

We first show that n−1T 1/2∥WWW∥∞ and max1≤j,j′≤p |Ĉjj′−Cjj′ | are uniformly bounded by a negligibly

small sequence in probability, under different tail conditions. Then we establish two sub-lemmas.

Lemma S.1 shows that P(Kn = K̂n) → 1. Under λ ≻
√
T , Lemma S.2 establishes asymptotic

“noiselessness” of Ân, in the sense that Ân is not affected, to first order, by the noise term WWW Ân .

The two lemmas are employed to build a one-to-one correspondence between Ân ∈ K̂n andAn ∈ Kn

when n is large enough. Finally, the above results are combined to prove Lemma 1. For brevity

we write Â = Ân and K̂ = K̂n when there is no confusion, and denote by c a positive constant

which may assume different values in different expressions.

Let {an} be a positive sequence depending on n. Define events E1 = {n−1T 1/2∥WWW∥∞ ≤ an}

and E2 =
{
max1≤j,j′≤p |Ĉjj′ − Cjj′| ≤ an

}
. We shall show that there exists some {an} such that

1



P(E1 ∩ E2) → 1 under tail conditions (T1)–(T3).

Suppose that (T1) holds. Denote the survival function of a random variable Z by F̄Z(t) =

P(Z > t), so that F̄|ϵ|(t) = P(|ϵ| > t) ≤ ke−ct2 and F̄|X|(t) = P(|X(j)| > t). Note, for j = 1, . . . , p

and sufficiently large t > 0, that

P(|ϵX(j)| > t) = EF̄|ϵ|(t/|X(j)|)111{0≤|X(j)|≤
√
t} + EF̄|ϵ|(t/|X(j)|)111{|X(j)|>

√
t}

≤ F̄|ϵ|(
√
t) + P

(
|X(j) − EX(j)| >

√
t− |EX(j)|

)
≤ ke−ct,

for some constants c, k > 0. Letting T = n and {an} satisfy
√
n−1 log p ≺ an ≺ λ/n, it follows from

Lemmas 2.2.11 (Bernstein Inequality) and 2.2.10 of Van Der Vaart et al. (1996) that, as n→ ∞,

P(E1 ∩ E2) ≥ 1− P
(
n−1/2∥WWW∥∞ > an

)
− P

(
max

1≤j,j′≤p
|Ĉjj′ − Cjj′ | > an

)
≥ 1−

{
exp

( nan

k1log(1 + p) + k2
√
n log(1 + p)

)
− 1

}−1

−
{
exp

( nan

k3 log(1 + p2) + k4
√
n log(1 + p2)

)
− 1

}−1

→ 1, (S.1)

for some positive constants k1, . . . , k4.

Under tail conditions (T2) or (T3), it follows by Theorem 4 of Sarantsev (2011) that P(|ϵX(j)| >

x) ≍ x−γ as x→ ∞. Denote by Z1, Z2, . . . a generic sequence of i.i.d. random variables with mean

zero and satisfying P(|Zi| > x) ≤ cx−γ for all x > 0. Consider first the case (T3). Let T = n2/γ

and {an} satisfy n−1+1/γp1/γ ≺ an ≺ λ/n. Then, by Theorem 3.1.1 of Borovkov (2008), we have,

for x > 0 and as v → 0,

(nc)−1xγP
( n∑

i=1

Zi > x
)
≤ sup

{
(nc)−1xγP

(
max
k≤n

k∑
i=1

Zi ≥ x
)
: ncx−γ ≤ v

}
≤ 1 + o(1).

It follows, for sufficiently large n and x ≻ n1/γ, that P(|
∑n

i=1 Zi| > x) ≤ 4cnx−γ. Substituting

Zi = ϵiX
(j)
i and Zi = X

(j)
i X

(j′)
i − Cjj′ , respectively, we have, under (T3), that

P(E1 ∩ E2) ≥ 1−
p∑

j=1

P(n−1+1/γ|Wj| > an)−
p∑

j,j′=1

P
(
|Ĉjj′ − Cjj′| > an

)
≥ 1− 8cn1−γpa−γ

n → 1. (S.2)
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For the case (T2), set T = n and {an} to satisfy (p/n)1/2 ≺ an ≺ λ/n. It follows by Lemma 4

of Sarantsev (2011) that var(Zi) < ∞, and by Markov inequality that P(|
∑n

i=1 Zi| > x) ≤

nx−2var(Zi) ≤ cnx−2. Thus, by the same arguments as given above,

P(E1 ∩ E2) ≥ 1− 2cpn−1a−2
n → 1. (S.3)

Lemma S.1. Assume the conditions of Lemma 1. Then we have, under the event E1 ∩ E2, that

Kn = K̂n for sufficiently large n.

Proof of Lemma S.1 . We first prove Kn ⊂ K̂n. Fix a population penalised parameter βββ∗ with

support An ∈ Kn. Define, for βββ = [β1, . . . , βp]
⊤ ∈ Rp,

τ(βββ) =
λ

2n

[
sgn(βj)

(
1{0 < |βj| ≤ κ}+ α

α− 1
1{κ < |βj| < ακ}

)
− βj

(α− 1)κ
1{κ < |βj| < ακ} : j = 1, . . . , p

]
,

D(βββ) = diag
(
1{κ < |βj| < ακ} : j ∈ supp(βββ)

)
.

Writing B = supp(βββ), let Ĉ ′(βββ) = ĈBB − {2n(α − 1)κ}−1λD(βββ) and C ′(βββ) = EĈ ′(βββ). The latter

is invertible for sufficiently large n under (A1). Let {µi}, {νi} and {ρi} be decreasing sequences

of eigenvalues of the matrices Ĉ ′(βββ), C ′(βββ) and Ĉ ′(βββ)− C ′(βββ) = ĈBB − CBB, respectively. We have

by Weyl’s and Jensen’s inequalities that νi + ρn ≤ µi ≤ νi + ρ1 and |ρi| ≤ |B| maxi,j∈B |Ĉij − Cij|,

respectively. It follows, under the event E2 and the condition |B| = O(1) that Ĉ ′(βββ) is invertible

for sufficiently large n. This enables us to define, with B = supp(βββ),

g∗(βββ) = (βββ − βββ0)
B + C ′(βββ)−1

{
τ(βββ)B − CBBcβββBc

0

}
,

ĝ(βββ) = (βββ − βββ0)
B + Ĉ ′(βββ)−1

{
τ(βββ)B − ĈBBcβββBc

0 − n−1T 1/2WWWB}.
Note that the second equality of (2.3) is equivalent to g∗(βββ∗) = 000. To prove Kn ⊂ K̂n, it remains

to show that there exists a β̂ββ satisfying (A.2) and ĝ(β̂ββ) = 000 with Ân = An.

3



Define, for bn satisfying an ≺ bn ≺ λ/n, G∗ = {βββ : ∥βββ − βββ∗∥∞ < bn, supp(βββ) = An}. Suppose

that 0 < |β∗
j | ⪯ bn for j ∈ An. With boundary cases excluded by (A1), we have β∗

j = β
(j)
0 −[

C ′(βββ∗)−1{τ(βββ∗)An −CAnAc
n
βββ
Ac

n
0 }

]{j} ≍ λ/n ≻ bn ⪰ |β∗
j |, a contradiction. It follows that for j ∈ An,

|β∗
j | ≻ bn and hence sgn(β∗

j ) = sgn(βj) for βββ = [β1, . . . , βp]
⊤ ∈ G∗. If κ ≺ λ/n, setting bn ⪰ κ

ensures that β∗
j ≻ κ, hence |β∗

j | ∧ |βj| > κ for all j ∈ An and βββ ∈ G∗. If κ ⪰ λ/n, then we have

1{0 < |β∗
j | ≤ κ} = 1{0 < |βj| ≤ κ} and 1{κ < |β∗

j | < ακ} = 1{κ < |βj| < ακ} for n sufficiently

large, using the fact that |βj − β∗
j | < bn ≺ λ/n ⪯ κ for βββ ∈ G∗ and |β∗

j | ≠ κ or ακ by (A1). The

above results together imply that D(βββ) = D(βββ∗) and τ(βββ) = τ(βββ∗) for βββ ∈ G∗ and n sufficiently

large.

Consider next ĝ(βββ) = ĝ(βββ)− g∗(βββ∗) = (βββ − βββ∗)An +R(ĝ), where

R(ĝ) = C ′(βββ∗)−1(CAnAc
n
− ĈAnAc

n
)βββ

Ac
n

0 − n−1T 1/2Ĉ ′(βββ)−1WWWAn

+
{
Ĉ ′(βββ)−1 − C ′(βββ∗)−1

}{
τ(βββ)An − ĈAnAc

n
βββ
Ac

n
0

}
.

Noting that ∥βββ0∥1 = O(1) under (A3), we may bound each term in R(ĝ) by a constant multiple of

∥WWW∥∞+ max
1≤j,j′≤p

|Ĉjj′−Cjj′ |, which implies ∥R(ĝ)∥∞ ⪯ an ≺ bn. Following Vrahatis (1989), we have,

for j ∈ An and n sufficiently large, ĝ(β̂ββ){j} ≥ bn − ∥R(ĝ)∥∞ > 0 or ĝ(β̂ββ){j} ≤ −bn + ∥R(ĝ)∥∞ < 0

according as βj − β∗
j = bn or −bn, respectively. It follows by applying Miranda’s existence theorem

to the continuous vector-valued function ĝ that ĝ(β̂ββ) = 000 for some β̂ββ ∈ G∗.

To show that (A.2) holds for β̂ββ, note first that the first inequality in (2.3) holds strictly by

(A1), for sufficiently large n. There thus exist constants k6 > 0 and k7 ∈ (0, 1) such that, for n

sufficiently large and j ∈ Ac
n,∣∣n−1T 1/2Wj − Ĉ{j}An(β̂ββ − βββ0)

An + Ĉ{j}Ac
n
βββ
Ac

n
0

∣∣
≤ n−1T 1/2|Wj|+

∣∣Ĉ{j}An(β̂ββ − βββ∗)An
∣∣+ ∣∣(Ĉ{j}An − C{j}An)(βββ

∗ − βββ0)
An

∣∣
+
∣∣(Ĉ{j}Ac

n
− C{j}Ac

n
)βββ

Ac
n

0

∣∣+ ∣∣C{j}An(βββ
∗ − βββ0)

An − C{j}Ac
n
βββ
Ac

n
0

∣∣
≤ k6an +

∣∣C{j}An(βββ
∗ − βββ0)

An − C{j}Ac
n
βββ
Ac

n
0

∣∣ < k6an + k7λ/(2n) < λ/(2n). (S.4)
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It follows that under the event E1 ∩ E2 and for n sufficiently large, β̂ββ is a local minimum of (2.1)

with supp(β̂ββ) = An, hence Kn ⊆ K̂n.

To complete our proof, we shall show K̂n ⊆ Kn under the event E1∩E2 for n sufficiently large.

Recalling the definition of f(C,B, ννν,βββ0, k0) introduced in Section 2.3, we have

∣∣f(C,B, ννν,βββ0, k0)
{j} − f(Ĉ,B, ννν,βββ0, k0)

{j}∣∣ ⪯ max
1≤i,i′≤p

|Ĉii′ − Cii′| ⪯ an, j ∈ B,

on E1 ∩ E2. It then follows by (A1) that

min
j∈B

{∣∣1− f(Ĉ,B, ννν,βββ0, k0)
{j}/β

(j)
0

∣∣
111{β(j)

0 ≍ λ/n}
,

∣∣1− |β(j)
0 − f(Ĉ,B, ννν,βββ0, k0)

{j}|/κ
∣∣

111{κ ⪰ λ/n}
,

∣∣1− |β(j)
0 − f(Ĉ,B, ννν,βββ0, k0)

{j}|/(ακ)
∣∣} > c (S.5)

on E1 ∩ E2, for sufficiently large n and some sufficiently small constant c > 0. Similarly, noting

that

(2n/λ)
∣∣n−1T 1/2Wj − (Ĉ{j}B − C{j}B)(β̂ββ − βββ0)

B + (Ĉ{j}Bc − C{j}Bc)βββBc

0

∣∣
⪯ (n/λ) max

1≤i,i′≤p
|Ĉii′ − Cii′| ⪯ nan/λ ≺ 1, j ∈ Bc,

and the last inequality under (A1), we have, for each j ∈ Bc,

∣∣∣(2n/λ)∣∣n−1T 1/2Wj − Ĉ{j}B(β̂ββ − βββ0)
B + Ĉ{j}BcβββBc

0

∣∣− 1
∣∣∣ > c (S.6)

on E1 ∩ E2, for sufficiently large n and some small constant c > 0. The conditions (S.5) and (S.6)

rule out boundary cases corresponding to the sample versions of those excluded by (A1). Noting

that n−1T 1/2Wj ≺ λ/n for j ∈ Ân and following similar arguments to those proving Kn ⊆ K̂n,

we obtain that for sufficiently large n and any local minimum β̂ββ with supp(β̂ββ) = Ân, a solution βββ∗

exists inside the hypercube Ĝ = {βββ : ∥βββ − β̂ββ∥∞ < bn, supp(βββ) = Ân}, so that K̂n ⊆ Kn.

Lemma S.2. Under the conditions (A1) and (A2), each Ân ∈ K̂n is asymptotically noiseless, in

the sense that Ân does not depend, to first order, on WWW .
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Proof of Lemma S.2. Define, for j = 1, . . . , p,

řj =
(∑

k ̸=j

r−1
k

)−1

, bj = min
{
n/

√
T , řj

}
, W̃j = − 2bj

{
n−1T 1/2Wj −

∑
k ̸=j

r−1
k ĈjkUk

}
.

Note that W̃j ≍ 1 and reduces to − 2Wj + op(1) or 2řj
∑

k ̸=j r
−1
k ĈjkUk + op(1) according as řj ≻

n/
√
T or ≺ n/

√
T , respectively. Using (A2) and the fact that v = Uj locally minimises the

univariate function

nr−2
j Ĉjjv

2 + n(bjrj)
−1W̃jv + λκ q

(
|β(j)

0 + r−1
j v|/κ

)
,

we have that the function

gj(v) ≜ v + (2nĈjj)
−1rjλq

′(|β(j)
0 + r−1

j v|/κ
)
sgn(β

(j)
0 + r−1

j v)

strictly increases in v and the equation gj(v) + (2Ĉjjbj)
−1rjW̃j = 0 admits a unique solution at

v = Uj, specified as follows for sufficiently large n.

(a) If
∣∣β(j)

0 − (2Ĉjjbj)
−1W̃j

∣∣ ≤ (2nĈjj)
−1λ, then β̂j = 0, hence Uj = −rjβ(j)

0 .

(b) If (2nĈjj)
−1λ <

∣∣β(j)
0 − (2Ĉjjbj)

−1W̃j

∣∣ ≤ (2nĈjj)
−1λ+ κ, then

Uj = −(2Ĉjj)
−1rj

{
b−1
j W̃j + (λ/n) sgn

(
β
(j)
0 − (2Ĉjjbj)

−1W̃j

)}
.

(c) If (2nĈjj)
−1λ+ κ <

∣∣β(j)
0 − (2Ĉjjbj)

−1W̃j

∣∣ < ακ, then

Uj = −(2Ĉjj)
−1rj

{
1− λ

2nĈjj(α− 1)κ

}−1

×
{
b−1
j W̃j −

λβ
(j)
0

n(α− 1)κ
+

λα

n(α− 1)
sgn

(
β
(j)
0 − (2Ĉjjbj)

−1W̃j

)}
.

(d) If
∣∣β(j)

0 − (2Ĉjjbj)
−1W̃j

∣∣ ≥ ακ, then Uj = −(2Ĉjjbj)
−1rjW̃j.

Case (a) corresponds to the subgradient condition (A.2), while cases (b)–(d) correspond to (A.3),

thus leading to Ân = {j : |β(j)
0 − (2Ĉjjbj)

−1W̃j| > (2nĈjj)
−1λ}. Recall that under either tail

condition (Ti), Wj converges weakly to a nondegenerate distribution, for each j = 1, . . . , p.

6



Suppose there exists a j′ such that the event {j′ ∈ Ân} depends to first order on WWW , so that

|β(j′)
0 − (2Ĉj′j′bj′)

−1W̃j′ | − (2nĈj′j′)
−1λ has an asymptotic leading term depending on WWW . Then

necessarily β
(j′)
0 ⪯ b−1

j′ ≍ λ/n, which implies, for j′ ∈ Ân, that rj′ ≍ bj′ ≍ n/λ and W̃j′ =

2bj′
∑

k ̸=j′ r
−1
k Ĉj′kUk + op(1). Thus, there must exist q ∈ Ân \ {j′} such that Uq has a leading term

depending onWWW , which implies řq ⪯ rj′ ≍ n/λ ≺ n/
√
T , so that W̃q = 2bq

∑
k ̸=q r

−1
k ĈqkUk + op(1).

Repeating the above argument iteratively shows that the leading term of Uj (j ∈ Ân) does not

depend on WWW , contradicting the assumption on the leading term of |β(j′)
0 − (2Ĉj′j′bj′)

−1W̃j′ | −

(2nĈj′j′)
−1λ. This proves that Ân is asymptotically noiseless.

Lemma 1 then follows from (S.3), Lemma S.1 and Lemma S.2.

II Proof of Proposition 1

The proofs given in this and subsequent sections are all conducted under the event Â = A, which

occurs with probability converging to 1.

Define βmax = maxj |β(j)
0 |, BS =

∑p
j=1 r

−1
j , and denote by rj∗ the slowest rate. Then necessarily

řk ≍ B−1
S and bk ≍ b0 ≡ min{n/

√
T ,B−1

S } ⪯ bj∗ for any k ̸= j∗. It follows that bj ⪰ b0 for all j.

For any k ∈ A \ {j∗}, we have BS ⪰ r−1
k ⪰ b−1

k ≍ b−1
0 ⪰ BS ⪰ r−1

j∗ ⪰ r−1
k . In this case, we may

assume w.l.o.g. that j∗ ∈ A and rj ≍ B−1
S for all j ∈ A. It also follows that |A| ≍ 1.

If |A \ {j∗}| ≺ 1, then r−1
j ≍ |β(j)

0 | ⪯ λ/n for all j ̸= j∗. Thus, b−1
j∗ ≍ (

√
T/n) ∨ ř−1

j∗ ≍

(
√
T/n) ∨

∑
j ̸=j∗ |β

(j)
0 |. If j∗ ∈ A, then BS ⪰ r−1

j∗ ⪰ b−1
j∗ ≍ (

√
T/n) ∨ (BS − r−1

j∗ ), so that r−1
j∗ ≍ BS

necessarily.

Summarising the above results, we conclude that
r−1
j ≍ |β(j)

0 | ⪯ λ/n, j ∈ Ac,

r−1
0 ≡ r−1

j = r−1
j∗ ≍ BS ⪰ (

√
T/n) ∨

∑
k∈Ac |β(k)

0 |, j ∈ A,
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if |A| ≍ 1, and that r−1
j ≍ |β(j)

0 | ≤ βmax ≍ r−1
j∗ ⪯ λ/n, for all j, if |A| ≺ 1. This proves part (i).

To prove part (ii), suppose on the contrary that B0 ≻ λ/n. It follows by noting BS ≍∑
j∈Ac |β(j)

0 | + |A|BS that |A| ⪯ 1, so that
∑

j∈Ac
0∩A

|β(j)
0 | ≺ λ/n. For any j ∈ A \ {j∗} ̸= ∅,

we have

λ/n ⪰ b−1
j ≍ b−1

0 ⪰ BS ⪰
∑
k∈Ac

|β(k)
0 | = B0 +

∑
k∈Ac\Ac

0

|β(k)
0 | −

∑
k∈Ac

0∩A

|β(k)
0 | ⪰ B0 ≻ λ/n,

a contradiction. Thus β̂ββ is inconsistent for βββ0, which proves (ii).

If |β(j)
0 | ≻ λ/n, then |β(j)

0 − (2Ĉjjbj)
−1W̃j| ≻ λ/n, which violates the condition of case (a) of the

equation gj(v) + (2Ĉjjbj)
−1rjW̃j = 0 specified in the proof of Lemma S.2. It follows that j ∈ Â,

which proves part (iii).

III Proof of Theorem A.1

We follow hereafter the notations used in the proof of Proposition 1. Referring to cases (a)–

(d), specified in the proof of Lemma S.2, which characterise solutions to the equation gj(v) +

(2Ĉjjbj)
−1rjW̃j = 0, define Kb, Kc and Kd to be subsets of {1, . . . , p} to which cases (b), (c)

and (d) apply respectively, so that Â = Kb ∪ Kc ∪ Kd = A ∈ lim supn→∞ Kn. Define D =

diag (1{j ∈ Kc} : j = 1, . . . , p) and

τ =
λ

2n

[
sgn

(
β
(j)
0 + (

√
T/n)Ĉ−1

jj Wj − Ĉ−1
jj

∑
k ̸=j

r−1
k ĈjkUk

)(
1{j ∈ Kb}+

α

α− 1
1{j ∈ Kc}

)
− β

(j)
0

(α− 1)κ
1{j ∈ Kc} : j = 1, . . . , p

]
.

Write UUU = [U1, . . . , Up]
⊤. It follows from cases (a)–(d) and the proof of Proposition 1 that


Uj = − rjβ

(j)
0 , j ∈ Ac,

UUUA =
{
ĈAA − λ

2n(α− 1)κ
DAA

}−1(
r0n

−1T 1/2WWWA + r0ĈAAcβββAc

0 − r0τ
A). (S.7)
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Note, by Proposition 1(ii), that B0 ⪯ λ/n, so that BU ⪰ λ/n ⪰ ψ ⪰ B0.

We first consider the order of BS =
∑p

j=1 r
−1
j . Suppose that BS ≺ B0. For all j ̸= j∗, we

have b−1
j ≍ b−1

0 = max{
√
T/n,BS} ≺ λ/n. It follows that Ac

0 \ {j∗} ⊂ Ac. If j∗ ̸∈ Ac
0, then

BS ⪰
∑

j∈Ac
0
r−1
j ≍ B0, a contradiction. If j∗ ∈ Ac

0, then the fact b−1
j∗ ⪯ b−1

0 ≺ λ/n implies that

j∗ ∈ Ac, leading again to BS ⪰ B0, a contradiction. Thus we must have BS ⪰ B0. Suppose that

BS ≺ (λ/n)
{
1−BU/(ακ)

}
+
, so that there exists |β(jU )

0 | = BU < ακ. Since BU ⪰ λ/n ≻ BS ⪰ r−1
jU
,

we have jU ∈ A. Note that ř−1
jU

⪯ BS ≺ λ/n, so that b−1
jU

≺ λ/n. That BU < ακ suggests that

jU ∈ Kb ∪ Kc. If jU ∈ Kb, we have BS ⪰ r−1
jU

⪰ λ/n, a contradiction. If jU ∈ Kc, we have

BS ⪰ r−1
jU

⪰ − λβ
(jU )
0

n(α− 1)κ
+

λα

n(α− 1)
sgn

(
β
(jU )
0

)
=

λα

n(α− 1)

(
1− BU

ακ

)
sgn

(
β
(jU )
0

)
≻ BS,

a contradiction. Thus we must have BS ⪰ (λ/n)
{
1 − BU/(ακ)

}
+
. Suppose that BS ≻ λ/n. For

j ̸= j∗, we have b−1
j ≍ b−1

0 ⪰ BS ≻ λ/n, so that j ∈ A, which contradicts sparsity of β̂ββ. The above

results together imply that (
√
T/n) ∨ ψ ⪯ BS ⪯ λ/n. It also follows that b−1

j ⪯ b−1
0 ≍ BS ⪯ λ/n

for all j.

Let jU be such that |β(jU )
0 | = BU . If jU ∈ Ac, then r−1

jU
≍ BU ≍ λ/n ⪰ BS ⪰ r−1

j∗ ⪰ r−1
jU
. If

jU ∈ A, then rjU = rj∗ = r0. It follows that rjU ≍ rj∗ in all cases and we may assume without loss

of generality that j∗ = jU ∈ A0.

For j ∈ A0 ∩ Ac, we have λ/n ⪯ |β(j)
0 | ≍ r−1

j ⪯ BS ⪯ λ/n, which implies |β(j)
0 | ≍ BS ≍ λ/n.

For j ∈ Ac
0 ∩ A, we have BS ⪯ λ/n ⪯ b−1

j ⪯ r−1
j ≍ r−1

0 ≍ BS, which implies BS ≍ λ/n. Thus, if

BS ≺ λ/n, or equivalently, r0 ≻ n/λ, then A = A0.

That r0 ≻ n/λ implies ψ ≺ λ/n follows immediately from the relation ψ ⪯ BS ≍ r−1
0 ≺ λ/n.

Conversely, suppose ψ ≺ λ/n, so that B0 ≺ λ/n and lim
n→∞

(ακ)−1BU ≥ 1 necessarily. To show

that (S.7) admits a solution with r0 ≻ n/λ and A = A0, it suffices to show, with Uj set to

−∥β(j)
0 ∥−1

2 β
(j)
0 for j ∈ Ac

0, that
∥∥τA0

∥∥
1
≺ λ/n for r0 ≻ n/λ and some partition A0 = Kb∪Kc∪Kd.
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Note, under (A2), that ρ ≜ limn→∞ λ{2 Cn(α− 1)κ}−1 < 1, so that, for n sufficiently large,

(ακ)−1
{
λ/(2nĈjj) + κ

}
≤ ρ(α− 1)/α + 1/α + o(1) < (3 + ρ)/4.

For all j ∈ A0, we have b−1
j ⪯ b−1

0 ≍ (
√
T/n) ∨ r−1

0 ≺ λ/n, and either |β(j)
0 | ≥ ακ or

|β(j)
0 | < ακ and 1− |β(j)

0 |/(ακ) ≤ 1−BU/(ακ) ⪯ nψ/λ ≺ 1.

It follows that for sufficiently large n,

|β(j)
0 | ≥ ακ

{
1− o(1)

}
> ακ(3 + ρ)/4 > λ/(2nĈjj) + κ,

so that A0 ⊂ Kc ∪ Kd and

∥τA0∥1 =
λα

2n(α− 1)

∑
j∈A0∩Kc

∣∣∣1− |β(j)
0 |
ακ

∣∣∣ ⪯ λ

n

(
1− BU

ακ

)
+
⪯ ψ ⪯ BS ≍ r−1

0 ≺ λ/n.

Moreover, it follows by non-triviality of UUUA0 and (S.7) that r−1
0 ⪯ (

√
T/n) ∨ ψ ⪯ BS ≍ r−1

0 ,

which implies r0 ≍ (n/
√
T ) ∧ ψ−1. The solution (A.1) then follows by setting A = A0 and

r0 ≍ (n/
√
T ) ∧ ψ−1 in (S.7) under the condition ψ ≺ λ/n.

On the other hand, setting r0 ≍ n/λ in (S.7) reduces UUUA to

{
ĈAA − λ

2n(α− 1)κ
DAA

}−1{
r0ĈAAcβββAc

0 − τA
}
+ op(1),

which has a non-random leading term. If the above leading term ≍ 1 and is therefore non-vanishing,

it gives rise to a consistent sparse local minimum having support A ⊃ {k : |β(k)
0 | ≻ λ/n} and the

slowest possible componentwise convergence rates rj = r0 ≍ n/λ, for j ∈ A.

Suppose, in addition, that BU ≻ λ/n, so that ψ ≺ λ/n ≺ BU . Then we have A0 ⊂ A,

r0ĈAAcβββAc

0 ⪯ (n/λ)B0 ⪯ (n/λ)ψ ≺ 1, and

τ {j} ≍


1{j ∈ Kb}+

α

α− 1
1{j ∈ Kc}, j ∈ A ∩Ac

0,

1{j ∈ Kb}+ 1{j ∈ Kc}
α

α− 1

(
1− |β(j)

0 |
ακ

)
≺ 1, j ∈ A ∩A0.
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It follows that if A = A0, then τA = op(1), contradicting non-triviality of UUUA, and therefore

r0 ≻ n/λ necessarily.

To prove the last assertion of Theorem A.1, it suffices to compare two consistent sparse local

minima with selected sets A0 and A ⊋ A0, respectively. Denote by VVV = [V1, . . . , Vp]
⊤ and ṼVV =

[Ṽ1, . . . , Ṽp]
⊤ their corresponding solutions for UUU , respectively, and by RRR = [R1, . . . , Rp]

⊤ and R̃RR =

[R̃1, . . . , R̃p]
⊤ their corresponding vectors of convergence rates, respectively. Note that
Rj = R0 ≍ (n/

√
T ) ∧ ψ−1, j ∈ A0,

Rjβ
(j)
0 = −Vj, j ∈ Ac

0,

and


R̃j = R̃0 ≍ n/λ, j ∈ A,

R̃jβ
(j)
0 = −Ṽj, j ∈ Ac.

Under the condition ψ ≺ λ/n ≺ BU , a comparison between the objective functions at the two local

minima gives

n∑
i=1

{
Yi −XXX⊤

i (β0 + diag(RRR)−1VVV )
}2

+ λκ

p∑
j=1

q(|β(j)
0 +R−1

j Vj|/κ)

−
n∑

i=1

{
Yi −XXX⊤

i (β0 + diag(R̃RR)−1ṼVV )
}2 − λκ

p∑
j=1

q(|β(j)
0 + R̃−1

j Ṽj|/κ)

= 2T 1/2WWWAc
0∩A⊤βββ

Ac
0∩A

0 − 2T 1/2R−1
0 WWWA0⊤VVV A0 + nβββ

Ac
0⊤

0 ĈAc
0Ac

0
βββ
Ac

0
0 + nR−2

0 VVV A0⊤ĈA0A0VVV
A0

− 2nR−1
0 βββ

Ac
0⊤

0 ĈAc
0A0VVV

A0 + λκ
∑
j∈A0

{
q(|β(j)

0 +R−1
0 Vj|/κ)− q(|β(j)

0 + R̃−1
0 Ṽj|/κ)

}
+2T 1/2R̃−1

0 WWWA⊤ṼVV
A − nβββAc⊤

0 ĈAcAcβββAc

0 − nR̃−2
0 ṼVV

A⊤
ĈAAṼVV

A

+2nR̃−1
0 βββAc⊤

0 ĈAcAṼVV
A − λκ

∑
j∈A∩Ac

0

q(R̃−1
0 |Ṽj|/κ){1 + op(1)}

= −nR̃−2
0 ṼVV

A⊤
ĈAAṼVV

A − λκ
∑

j∈A∩Ac
0

q(R̃−1
0 |Ṽj|/κ){1 + op(1)}+Op(nψ

2 +
√
Tλ/n+ λB0)

+
λ

2(α− 1)κ

∑
j∈A0

{(
ακ− |β(j)

0 + R̃−1
0 Ṽj|

)2
+
−
(
ακ− |β(j)

0 +R−1
0 Vj|

)2
+

}
≤ −nR̃−2

0 ṼVV
A⊤
ĈAAṼVV

A{1 + op(1)}

+
λ

2(α− 1)κ

∑
j∈A0

111
{
lim
n→∞

|β(j)
0 |/(ακ) = 1

}
Op

{
λ2/n2 + (|β(j)

0 | − ακ)2
}

= −nR̃−2
0 ṼVV

A⊤
ĈAAṼVV

A{1 + op(1)}+111{ lim
n→∞

BU/(ακ) = 1}
{
op(λακ) +Op(λ

3/(n2ακ))
}
.

If limn→∞BU/(ακ) > 1, then the second term in the last expression vanishes, so that the above
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difference between the two objective functions becomes strictly negative asymptotically, which

proves the last assertion.

IV Proof of Theorem 2

Suppose that A0 = ∅, so that Ac
0 = {1, . . . , p}, BU = ∞, ψ = B0 and B0 ⪯ BS ⪯ λ/n. Using the

same arguments as in Section III, if BS ≺ λ/n, then necessarily B0 ≺ λ/n and Ac = Ac
0, which in

turn implies BS ≍ B0 ≺ λ/n. Thus we have B0 ≺ λ/n and Ac = Ac
0 if and only if BS ≺ λ/n.

For j ∈ Ac, we have, for sufficiently large n, β̂j − β
(j)
0 = −β(j)

0 ≺ λ/n. If A ≠ ∅, then we have,

for each j ∈ A, rj ≍ n/λ, so that β̂j − β
(j)
0 ≍ r−1

j ≍ λ/n.

Assume now B0 ≺ λ/n. To prove the existence of a zero local minimum, it suffices to show that

b−1
j ≺ λ/n for all j if we set rj ≍ |β(j)

0 |−1, for in this case we have
∣∣β(j)

0 − (2Ĉjjbj)
−1W̃j

∣∣ ≺ λ/n for

all j, yielding a local minimum β̂ββ = 000. This is accomplished by noting the fact that if rj ≍ |β(j)
0 |−1

for all j, then BS ≍ ∥βββ0∥1 = B0, so that, for all j,

b−1
j = (

√
T/n) ∨ ř−1

j ⪯ (
√
T/n) ∨BS ≍ (

√
T/n) ∨B0 ≺ λ/n.

To prove the last assertion, consider a consistent sparse local minimum with selected set A ̸= ∅.

Denote by ṼVV = [Ṽ1, . . . , Ṽp]
⊤ and R̃RR = [R̃1, . . . , R̃p]

⊤ its corresponding solution for UUU and the

accompanying componentwise convergence rates, respectively. Noting that R̃j = R̃0 ≍ n/λ for

j ∈ A and R̃jβ
(j)
0 = −Ṽj for j ∈ Ac, a comparison between the objective function values at the

12



zero local minimum and the above nonzero local minimum gives

n∑
i=1

Y 2
i −

n∑
i=1

{
Yi −XXX⊤

i (βββ0 + diag(R̃RR)−1ṼVV )
}2 − λκ

p∑
j=1

q(|β(j)
0 + R̃−1

j Ṽj|/κ)

= 2T 1/2WWWAc
0∩A⊤βββ

Ac
0∩A

0 + nβββ
Ac

0⊤
0 ĈAc

0Ac
0
βββ
Ac

0
0 + 2T 1/2R̃−1

0 WWWA⊤ṼVV
A − nβββAc⊤

0 ĈAcAcβββAc

0

−nR̃−2
0 ṼVV

A⊤
ĈAAṼVV

A
+ 2nR̃−1

0 βββAc⊤
0 ĈAcAṼVV

A − λκ
∑
j∈A

q(R̃−1
0 |Ṽj|/κ){1 + op(1)}

= −nR̃−2
0 ṼVV

A⊤
ĈAAṼVV

A − λκ
∑
j∈A

q(R̃−1
0 |Ṽj|/κ){1 + op(1)}+Op(

√
Tλ/n+ λB0)

≤ −nR̃−2
0 ṼVV

A⊤
ĈAAṼVV

A{1 + op(1)},

It follows that the zero local minimum has an objective function value strictly smaller than that

of any nonzero consistent sparse local minimum, which proves the last assertion.

V Proofs of Theorem A.2 and Corollary A.2

Proof of Theorem A.2. For any selected set Â given by a consistent sparse local minimum β̂ββ, its

corresponding post-selection OLS estimator b̂bb(Â) satisfies (A.4), with its nonzero components con-

verging at a rate ∥βββÂc

0 ∥−1
1 ∧ (n/

√
T ) ⪯ n/

√
T . The first assertion then follows by noting that if

ψ ≺ λ/n, then, by Theorem A.1, there exists a b̂bb(Â) selecting Â = A0 with probability converging

to one.

Furthermore, if ψ ≺ λ/n ≺ BU , then, by Theorem A.1 again, the support Â of any consis-

tent sparse local minimum β̂ββ contains A0 with probability converging to one, thereby entailing a

convergence rate ∥βββÂc

0 ∥−1
1 ∧ (n/

√
T ) ⪰ B−1

0 ∧ (n/
√
T ), which proves the second assertion.

Proof of Corollary A.2. Note that the conditions assumed on (B0, BU) imply ψ ≺ λ/n. The corol-

lary then follows directly from Theorem A.2 and (A.4), where the convergence rate is given by

B−1
0 ∧ (n/

√
T ) ≍ n/

√
T and the bias term vanishes because (n/

√
T )B2 ≍ (n/

√
T )B0 ≺ 1.
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VI Proofs of Theorems A.3 and A.4

Proof of Theorem A.3. If B0 ≺ λ/n and either {1 − BU/(ακ)}+ ≺
√
T/λ or BU ≥ ακ, then

ψ ≺ λ/n, so that, by Theorem A.1, a consistent sparse local minimum β̂ββ exists with P(supp(β̂ββ) =

A0) → 1. Note that |Ĉij − Cij| ⪯
√
T/n (i, j = 1, . . . , p) under any tail condition (Tj).

If {1 − BU/(ακ)}+ ≺
√
T/λ and ακ ≻ λ/n, then we have nT−1/2ϕA0/r0 ≺ 1 and, by (A.1),

that

nT−1/2(β̂ββ − θθθ0)
A0 =

{
C−1
A0A0

+Op(n
−1T 1/2) + o(1)

}{
WWWA0 + nT−1/2CA0Ac

0
βββ
Ac

0
0 +Op(B0) + o(1)

}
− nT−1/2C−1

A0A0
CA0Ac

0
βββ
Ac

0
0

= C−1
A0A0

WWWA0 +Op(n
−1T 1/2 +B0) + op(1) = C−1

A0A0
WWWA0 + op(1).

On the other hand, if BU ≥ ακ, then ΛA0A0 = diag(000) and ϕA0 = 000, so that the above expansion

remains valid.

Proof of Theorem A.4. By Theorem A.1, if ψ ≺ λ/n, selected sets Â ∈ K̂ exist such that P(Â =

A0) → 1. Similar to the proof of Theorem A.3, it follows by (A.4) and the fact |Ĉij −Cij| ⪯
√
T/n

(i, j = 1, . . . , p) that, for sufficiently large n,

nT−1/2
{
b̂bb(Â)− θθθ0

}A0 = Ĉ−1
A0A0

WWWA0 + nT−1/2
(
Ĉ−1

A0A0
ĈA0Ac

0
− C−1

A0A0
CA0Ac

0

)
βββ
Ac

0
0

= C−1
A0A0

WWWA0 +Op(n
−1T 1/2 +B0) = C−1

A0A0
WWWA0 + op(1).
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