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S1 Proof

S1.1 Proof sketch

The rigorous proof of Theorem [3.1] and Theorem [3.3 will be presented in this section. As
can be seen, the Gram-type of Spearman’s rank correlation matrix g, is formulated as the
sum of independent outer product matrices, which reveals similar structure with sample
covariance matrix. Therefore, our methodology is originated from the proof in |Bai and
Silverstein (2004) that establish the CLT of LSS of large dimensional sample covariance
matrices.

We denote s%o)(z) and §£10)(z) as the Stieltjes transforms of F;,, and F,, , respectively.

By Cauchy’s integral formula, we have

[ 1@6uw) = 5 [ £6) n (sule) = s0(2) (S1.1)
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where the contour of this integral is closed and enclose the extreme eigenvalues of g,.
It is noted that if the limit superior and limit inferior of extreme eigenvalues of g, are
contained in the support of F}, with probability 1, then for any function f analytic on
and closed contour enclosing , the formula holds for all sufficiently large
n with probability 1. However the concerntration of extreme eigenvalues are not trivial at

all, and a more stronger control is presented in the following lemma.

Lemma S1.1. Under the same assumptions in Theorem , for any m < (1 — \/9)?,
ny > (1+ /y)* and any m > 0,

P()‘l(pn) > 777“) = 0<nim): P ()\min{n,p}(pn) < 77l) = O(nim)' (81'2)
Remark S1.1. The boundness of the largest eigenvalue is a direct corollary of Proposition
2.3 in Bao (2019). Due to the strong local law, the rigidity on the left edge can be derived

with the same steps as right edge. Therefore, the boundness of the smallest eigenvalue

can also be concluded.

As has been discussed in the above, the focus of the problem is shifted to establishing

the asymptotic distribution of

My (2) = 1 (s0(2) = s0(2)) = p (s4(2) = s(2)) -
Since the CLT of LSS is obtained through a process of integration, we define a contour C

enclosing interval (3.8) as follows. Let 7, and 7, be any two numbers such that (3.8) C

(mi, 1), and choose vy > 0. The contour is described as a rectangle,

C={zxLtivg:xzemnl}U{e+iv:ze{mn}t,ve|—vovl}



S1. PROOF

For further analysis, we consider M\n(z) instead, a truncated version of M, (z), which is

defined as

M, (z), z € Cy,

M, (z) = M, (x +1in"te,), x € {m,n.} and v € [0,n te,],

M,(x —in"'e,), =€ {n,n.}and v e [-n"'e,, 0],

\

where C, = {z +ivy : x € [y, ]} U{z v :z € {mn},v e [n e, v0]} and {e,} is a
sequence decreasing to zero satisfying e,, > n~® for some a € (0,1). It follows that M\n(z)
pauses at x + in~'e, when z tends to the real line, which makes the imaginary gap a
natural bound to control the spectral norm or Euclidean distance of Stieltjes transforms.
Besides, this truncation step have no influence on the limiting behavior of since for

all sufficiently large n,

L1 (1) = T0,2)) ez

<Ce, (|(1+ v50)* V \i(gn) — 1y (S1.3)

+(yn > (L = v/50)* A Mp(8a) — mi])

which converges to zero. So now we have prepared all ingredients and the proof of Theorem

can be completed by the following lemma establishing the convergence of ]\/J\n(z) on C.

Lemma S1.2. Under the same assumptions in Theorem , {M\n()}, as a stochastic

process on C, converges weakly to a Gaussian process M (-) with mean function
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and covariance function
cov(M(z1), M(z2)) = 0(z1, 22),
where p(z) and o(z1, 22) are defined in Theorem [3.1]

Theorem is a corollary of Theorem with the application of Cauchy’s integral
formula. More specifically, if f(y-) is analytic on an open interval containing (3.8)), f(y,-)

converges to f(y-) uniformly and by the method of Stieltjes transform,

2m/f Yn?)

- 52 | F0A T () + on(1)

2m/f yz) M, (2)dz + op(1),

where the contour C encloses a neighborhoog of (3.8)). The second equality holds by the

same procedure of (S1.3]), and the last equality holds by

E

/C (F(gn2) — F(y2)) Vo (2)d2

<lel - sup £ (vnz) — £y SupE |1, (2)|

zeC

=o(1).

Therefore, by the convergence of ]\/Jn(z) stated in Lemma , we obtain Theorem .
The proof of Theorem [3.3] basically follows the same approach as Lemma [S1.2 With
the help of Theorem we only need to figure out the difference of FP» and FP». By

Cauchy’s integral formula,

([ s - [ rware ) = =55 [ 16 pmen () = e )
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and we are supposed to find the limit of
L(2) = p(mpan (2) — mpen (2)) -

As has been discussed before, we consider zn(z), a truncated version of L, (z), defined
on C by the same way of ]\/Jn(z) By the rigidity of the edge of Kendall’s correlation
matrix, we are able to control the extreme eigenvalues of p, as in Lemma [S1.1, which
implies [ f(2)Ln(2)dz — [ f(2)Ln(2)dz — 0 almost surely. The following Lemma states

the convergence of En(z), which conclude Theorem .
Lemma S1.3. Under the same assumptions in Theorem , {L,(")}, as a stochastic
process on C, converges weakly to a non-random function

L(z) = i(z/y)/y,

where [i(z) is defined in Theorem [3.3]

S1.2 Proof of Lemma

We decompose J/\/[\n(z) into two parts as

—

M, (2) =n (su(2) — Es,(2)) + 1 (Es,(2) — si9(2))
EMY(2) + MP(2),

where Mél)(z) is the random part and MTEQ)(z) is the non-random part. For simplicity,

denote

1
D(z) =g, — 21,, Dj(z) =g, — 2L, — —sjs-T
b

7
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1 — 1 1
. g . — bn — ,
bi(2) 1+ s/ Dj'(2)s;’ Bi(=) 1+ 1rED7 ! (2) (=) 14 JEtrSD7(2)
1 1 1 1
£(2) :—SJ-TD;l(z)sj — —trED;l(z), d;i(2) = —szDf(z)sj — —EtrZDj’z(z).
p p p p

Note that 3;(z), 8,(z) and b,(z) are all bounded by , where (+) is the imaginary part.
And by some matrix identity, we have

1

D;l(z) =D '(2) + 5ﬁj(2)TD;1(z)SJ‘SjTD;1(Z), (S1.4)
5() == 5 YO BC) (515

Step 1. Finite-dimensional weak convergence of M\" ().

Let Ei(-) be the conditional expectation with respect to the o-field generated by

S1,- -+ ,S;. By martingale difference decomposition,
p
MT(LI) (Z) = Z (]Eth‘D_1<Z) — Ej_ltI'D_l(Z))
j=1

_ ]1) > (B~ E;) B(2)s] D ()s,
-, > () (Bi(2) = By(2)es2) + B (2)8,(2)3(2)) ] D (2)s,

:_ZE ( +ﬁ (2)e;(z )%trZDjz(z)) +op(1),

where the second-to-last equality holds by the identity §;(z) = Bj(z) — Bj(z)aj(z) -+

ﬁ (2)B;(2)e3(2), and the last equality holds by Lemma|S2.2l The dominant term denoted
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is still a martingale difference sequence. For some fixed r > 0, since

r

r p
Z%’M ZZO@Y} +op(1),
i=1 j=1

=1

by martingale CLT in Lemma it suffices to verify

p m 4
Z E Z a;Y;(%)
=1 |i=1

and find the limit of convergence in probability of

ZEj—ln(Zl)E‘(@)-

By Lemma [S2.2]

[2[*

1(2)
which implies (S1.6). As for (S1.7)), observe that

B < ¢ (LB + b Bl (e ) = o,

_ 9 1 s B d—
B;(2)d;(2) + Bj(z)gj(Z)I—?trEDj (2) = —-6;(2)e;(2),
So we have

aj&ﬁ“ [E; (B;(21)e5(21)) E; (B;(22)e;(22)) ] = Ej1Yj(21)Yj(22).

(S1.6)

(S1.7)

With similar arguments on Page 571 of |Bai and Silverstein| (2004), it suffices to determine

the limit of

ZEJ 1 [y 21)53(21)) E; (Bj(zQ)Ej(ZQ))] :

Since by (S1.4) and (S1.5), we have

E|B;(2) — ba(2)|” < %E |trSD; L (2) — EED; ()] = O(pY),

(S1.8)
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and
[bu(2) + 25(2)] < [bu(2) — EB1(2)] + [EB1(2) + 25(2)]
= o(1).
Therefore, we only need find the limit of

21228(21)8(22 ZEJ 1[Ejej(z1)Eje;(22)] - (S1.9)

7j=1

By Lemma and (S1.4)),

6 4 _
21228(21)5( 22 Z]E] 1Ejei(21)Ejej(22) = 21 — 5[2 — glg +O0p(p),
7=1
where
Il —21228 Zl Ztr E D 21 E D™ ( )) s
Iy =21298(21)s Ztr IE D! JoE,D~ Yz )) ,
I3 =21298(21)s Ztr (E;D~*(21))tr(E; D (29)).

For I, since that

|tr (E;D 7' (21)E;D ™ (22)) — tr (BE;D 7 (21)E;D " (22))]

1 1
= o 1131‘ (E D~ (Zl)EjD_l(ZQ)) + mlIEjD_l(Zl)EjD_l(Zg)ln
=0(1),

and similarly

|tr (ZE;D ™! (21)E;D ™ (22)) — tr (BE;D ' (21)ZE;D ' (22)) | = O(1),



S1. PROOF

the effect of the multiplying 3 is negligible and
Il = 2’1228 21 Ztl" E]E D Zl)E]EjD_l(ZQ)) + O(n_l).

With similar arguments on Pages 572-578, by Lemma [52.2]

5(z1) — 5(22)
s(z1)8(22) (21 — 22)

I =log +op(1). (S1.10)

For I, following similar steps on Pages 1247-1249 of|Pan and Zhou! (2008) with applications

of Lemma [S2.2 we have

[2 —231228 Zl Ztr ED OED ( )) + OP(l) (8111)

piz s(21)E+1,) "o (s(22)Z + L)) 4+ op(1).

Denote e, € R™ as the unit vector with k-th element being one and the rest being zero.

Since that
lef (s()Z + 1) e — (s(2) +1)7]
= [5(2)(s(2) + )7 "ef (s(x) T+ L) 7" (I, — ) e
< (il lef (s(2)Z +1,) ey + ngl lef (3(2)Z+1,) " 1,1 e

tr ((s(2)Z + 1) 0 (s(z) +1,) )

= Ze,j@(zl)ﬁ + 1) rere) (s(22) +1,) ey
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=n (s(z1) + 1) (s(22) + 1) + O(1).

Thus, we obtain

Yos(z1)s(22)
I = 4+ op(1). S1.12
>~ ) + D ) 7 1) P 112
I3 can be simplified by the following approximation steps,

trD Y (2) = tr (—28(2)% — 2I) " 4 0p(1) = n (25 + 2) " + 0p(1),

which implies

Yos(z1)s(22) +op(1). (S1.13)

Collecting (S1.10)), (S1.12)) and (S1.13)), we have

— 2
(S1.9) — 2log s(z1) — 5(2) — Yos(21)s(z) in probability,
S

(z1)8(22)(21 — 22)  (s(21) + 1) (s(22) + 1)

which conclude by taking derivatives
(S1.7) — o(z1,22), in probability. (S1.14)

Step 2. Tightness of M,gl)(z).
Combined with finite-dimensional weak convergence of MT(Ll)(z) and tightness on z €
C,, we are able to prove the weak convergence of stochastic process Mél)(-). To prove its

tightness, by Theorem 12.3 of Billingsley| (2013)), it suffices to verify

E| MM (21) — MY (25)]2
wp BV ) - MO
n;21,226Cn |Zl - 22|
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By Lemma [ST.7]
EID ()} < G+ v P(IG] > 5y or Aia(G) <) <C, (SLI5)

for sufficiently large . We emphasize that the moments bound here are uniform in n and
z € C,, that is, the constant C' is independent of n and z € C,. By the same way in
(S1.15), one can prove that the moments of [|D; ()| is also bounded uniformly in n and

z € C,,. Therefore, we extend Lemma slightly as

q

Ea(w) [ (SlTBl(v)sl _ %nm@))

=1

< Cn73te, (S1.16)

where B;(v) is independent of s; and a(v) is some product of factors of the form S;(z) or

s; By(v)s;. Following similar procedures on Pages 581-583 of Bai and Silverstein| (2004)

and applying (S1.16|), we have

2
MY (21) = MY ()

21 — %9

2

E =E|t:D ! (21)D " (22) — ErD ' (21)D ()| < C,

uniformly in 21, 2o € C,.

Step 3. Uniform convergence of M,SQ)(Z).

Before proceeding, we collect some necessary results as follows, whose proofs are omit-
ted since one can verify them in the same approaches on Pages 584-586 of |Bai and Silver-

stein| (2004):

sup |Es,(2) — s(z)| — 0, (S1.17)
ZGCn
1 -1
sup (—Egn(z)ln + In> < 00, (S1.18)
n;z€Cx Yn
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2
sup Es,(2) <&<, (S1.19)
2
e (1 + yinE%(Z))
E|trD~! ()M — EtrD ! (2)M[* < C||M]]?, (S1.20)

where M is a non-random n X n matrix.

Next, we decompose M,gQ)(z) further into two parts as

MP(2) = p (Es,(2) — s0(2)) +p (s (2) — s(2))

where si(z) € C* is the unique solution to the following equation

1 1
p= gt — / %dFE(t). (S1.21)
sn'(2) Ynd 14tsy’(2)

It is noted that ([S1.21f) is a particular case of generalized MP equation formulated as

S ' dH(t
+y°/1+t

By the fact that C lies outside (3.8]), one can verify that

sup|s (2) —s(z)| =0, sup|s z) — s(z)| — 0.
zeC zeC

Throughout the rest proof, all bounds and convergence statements hold uniformly in
z € Cp, so we omit the argument z for simplicity of writing.

On the one hand, since ¥ has one eigenvalue of 0 and n — 1 of n/(n — 1), (S1.21) can

be expressed as

(S1.22)
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Considering
s — s 1 I ™ m
P T D TP e
we have
L0t [%@9) — §%0)}

1 O () (1) ((0) 140 (D)
_ yn 2N 2N 2n n n 1 . yn 2N
() () T () (1)
which implies
2 -1
1 (0) (1)
ngl s <§n > yln§1(10)§$ll)

_ _ (S1.23)

On the other hand, we consider

1 2sVE
p(Es, —s))=—|1-— / T dFE(t) | psVEs,R., (S1.24)
bo ) (14 1s) (14 1Es,)

where

1 )
I O
Bo=gg +2 /1—|—ﬂEs dF=(2).

Therefore, it suffices to analyze the limit of ngq(@l)E%Rn. Denote
K(z) =Es,(2)X + 1,.

We have

1 1 t b
Es, Ry =pEs, [ — +2— — | —dF>(
pEs, R, =pEs,, <ES + 2 yn/1+tE§n ()>

—n
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=pEs D'K™'s; + 2Es,EtrD 'K ™!

Applying and , s/D7! = 31s/ D! and 2Es, = —ES;, which implies
pEs, R, =pEfS;s| DT'K™'s; — EgEtrD 'K ™!
=pEfis{ DT 'K™'s; — EBiEtrD'SK ™' + EB,Etr (D7 = D™') =K ™!
Considering respectively the following two terms,

pEBs DT 'K !s; — EfEtrD ' SK ™, (S1.25)

EBEtr (D' — D) ZK ™. (S1.26)

By identity 8y = b, — b2y1 + B1b2~7, (S1.25)) can be split into three parts. For the first

part,
pb,Es| DT'K™'s; — b, EtrD'SK ™ = 0.

For the second part, by (S1.16)) and Lemma [S2.1}
— pb’Eys] DK 's; + 02Evy EtrD ' SK ™
1 1
= — pb’E (SIDl—ls1 - —trzD;l) (slTDl_lK_lsl - —trEDl_lK_l) +0(1)
p p
2 4
= — 2*s°E <—trD12K1 LI (Di'oD{'K ™) — —trDlltrD11K1> + 0(1).
D op onp

(S1.27)

For the third part, by (51.16)),

[pb2EB1vs] DY 'K 's; — b2 EB 1 EtrD; ' SK ™!
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=pbj, [cov (Bini,s) Dy 'K 's1)|

<pb?\JE |17y /var (s] D K- 1s,)

—0.

(S1.26) can be expressed by (S1.4]) as

2.2
EBEt (D' — D) SK ' = ZZEuSD;'SK'D; + o(1), (S1.28)
p

Collecting (S1.27)) and (S1.28)), by (S1.4) and (S1.16[), we obtain

6 4
pEs, R, = —Jy + =Jo + =J3 + 0o(1),

5727 5
where
2282
Ji =22 (2EnD 2K ! — EnED 'K D),
P
2282
Jy == 2 Etr (D~ o DK,
P
2.2
Jy =22 EuD DKL
np

As has been discussed in Step 1, multiplying 3 has no influence on J;, which implies

2252
J = "= EtrED 'K D! 4 o(1).
p

Following the same procedures on Pages 589-592 of Bai and Silverstein| (2004) and applying

(S1.16|), we have

_ Yos®
Ji = ((1 +§)2 ~ y0§2) 1+3) + o(1). (S1.29)
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With similar arguments in (S1.11))-(S1.13)) and applying (S1.16)), we have

2?s?
Jy ===tr (ED"' o ED'K') + 0(1)
p
2?s?
="=tr ((—2sX — 21,) "o (—2s% — 2L,) ' (sZ + L,) ") + o(1)
p
2
Yos
= +o(1). 51.30

and

22s?
J3 =—=EtrED "rED 'K + o(1)
np

2?52

=22 tr (=282 — 2L,) M tr (=283 — 2L,) T (sZ 4+ 1,) 7 + o(1)
np
2
Yos
= +o(1). S1.31

Collecting (S1.29)-(S1.31]), we obtain

yo§2 X 290§2
(1+5)° —yos?) (1+5)  (1+5s)

Together with (S1.23]), (S1.24) and (S1.32)),

pEs, R, = — 5 +o(1). (51.32)

P (Es,(2) = 5)(2)) = u(2).

S1.3 Proof of Lemma

The main process is similar with the proof of Lemma[S1.2] First we prove the convergence
of Zn(z) in probability for each z € C, then we show its tightness on C, which leads to the
convergence of stochastic process.

Step 1. Convergence of Zn(z)
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Since that

we have

3 -1 -1
. 1tr (Pn — 21,) " K, (pn — 21)
3 ~ 1 ~ -1
. 1t1" (Pn = 2Lp) " pn(pn— 21p) .

We further expand (p,, — 2I,) ",

tr (pn — ZIp)il K, (pn — ZIp)il — tr (pn — ZIp)il K, (pn — ZIp)il

3 _ _ _ _ _
=t (Pn — 2L) 'K, (pn — 21,) ' K, (o — 21,)

-1

tr (ﬁn - ZIp)_l Kn (ﬁn - ZIp>_1 ﬁn (pn - ZIp)

n+1

By the rigidity of the edge of Kendall’s rank correlation matrix, || K, is uniformly bounded
almost surely, and then subsequently p, = (n + 1)p,/(n — 2) — 3K,,/(n — 2) also has

uniformly bounded spectral norm. So we have

3

~ “1 -1
n 1tr (on —2L,) " Ky (pn — 21p)

3 ~ ~1 ~ -1
= 1tr (pn — 2L,) K, (pp, — 2L,) " +0p(1),

and similarly,

3
n+1

tr (B — 21,) " P (P — 2T,)
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3 _ 1~ i~ _
:n+1tr(pﬂ_ZIp) lpn (pn_ZIp) 1+0P<1)7

which implies

La(2) n tr (pn — ZIp)_l K., (pn — ZIp)_l

tr (pn — ZIp)il P (Pn — zIp)il +op(1).

Denote by A,; the conditional expectation of A;; given X;, A; = E[A;;|X;]. By the
Hoeffding’s decomposition of A;; illustrated in Bandeira et al.| (2017), Wu and Wang

(2022) and |Li et al.| (2023)),
Aij = AZ + Aj + 52’3’7
where €;; is uncorrelated with A; and A;. So we naturally approximate p,, and K,, by
U = 3 i AAT
n n — 1 7

and

1

SIp

2 n
V, = ﬁ;AzAI+

respectively. The error of this approximation can be well controlled as follows.

Lemma S1.4. Suppose Xy, -+, X, i.i.d. from a poplulation X € RP, whose entries are

independent and absolutely continuous respect to the Lebesgue measure. Then we have
E Hﬁn - Un”?«“ = 0(]7), (8133)
and

E K, - V.| = op). (S1.34)
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To replace p,, and K,, with U,, and V,,, we consider

3 N _ _ _ 3 _ _ _
gt (Pn — 2L) 'K, (P — 21,) " — gt (pn — 2L,) 'K, (U, — 2L,)""
:n i 1tr (Pn — ZIp)_l K, (pn — zIp)_l (U — pn) (U, — ZIP)_I .

By Cauchy’s inequality and Lemma [ST.4]

E|tr (5, — 21,) " K (B — 2L,) " (U, — p) (U, — 21,) |
<8 (5 1B = 1) 0 = 1) 11 0, 5,
<p* (Btr (U, — 5,)°)
=o(p),

which conclude by Markov’s inequality that

~ -1 ~ -1
— 1tr (pn — 2L) K, (pn, — 21,)

-l 1tr (Pn — 2L) " K, (U, — 2L) " 4 0p(1).

Following similar steps above, we obtain

3
n+1

tr (P, — ZIp)il K, (pn — ZIp)il

tr (U, — 21,) "' V,, (U, — L)~ 4 0p(1).

n+1

And similarly,

tr (P, — ZIp)_l P (Pn — ZIp)_l

n+1
3

= tr (U, — 21,) "' U, (U, — 2I,) " + 0p(1).
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Observing that

tr (U, — zL,) 'V, (U, — zL) " =tr (U, — 21,) >V,

d _
=t (U, = 21, 'v,,

so it suffices to find the limit of

tr (U, — 21,)"' V,, (S1.35)

n+1

and

tr (U, — 21,) ' U,. (S1.36)

n+1

For simplicity of writing, we denote
3 T
ti=1¢/—-A;, H(z)=U,—:zL,, H;(z)=U,—z[,—t;t;.
n

As for the first term,

trH(2).

n—+1

2 _
7=1

By the leave-one-out method,

1y 3-1 H ' (2)tt) H ' (2)
H () =H;7(:) - 14+ tTH(2)t,
J g J

Y

and then

Since that

t]THj_l(z) i — 2trH 1 (2)
1+t H ' (2)t;
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1 1
<E |t; H; ' (2)t; — ﬁtrHj*l(z) + EE |trH ' (2) — trH™'(2))]

= (n_§>,
and
B 1 1
1+t H ' (2)t; 14 2trH
. t/H (2)t; — LrH ™ (2)
(L+tJH, ' (2)t;) (1+ ttrH-Y(2))
_ _ 1 _ _
<E t]THj Y(2)t; — trH; )|+ EE ‘trHj '(2) — trH ' (2)]
=0(n"2),
we have
2 LiyH!
8135 = " 0t (Z) tI‘Hil(Z) + Op(l).

: +
n+1 14+ittH-'(z) n+1

By Theorem 2 of [Wu and Wang| (2022)),

1 1—y— Tty —_2)2—4
“trH '(2) = m(2) = y—z+ \/2( ty=2) y, almost surely.
p Yz

Therefore,

2ym(2)

S1.35) —
‘ ) 1+ ym(z)

+ym(z), in probability.

And similarly,

3 - 3 3ym(z) . .
S1.36) = —— t H '(2)t; - ————_ in probability.
ST H G o T pobabit

To sum up,

~ 3 _
LA}):nﬁ%lu([M-—zh)2(V@—¥Un)+opﬂ)
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3 d 1
— —tr(U,, — 21 n— U, 1
(U, 1) (Ve U o)
/
—ym/(z) — ym'(2) in probability.

(L+ym(2))*

Since
s(o) = Lty —etVty -2 -4y
= 22 )
we have
=14y —yoz + /(1 +yo — y02)? — dyo
Z/0§(y02) = 202
— 1— 1—2)2—-4
Yyt y+1-2) -4y — ().
2z
Therefore,
/ ym,(z> / y0§/(y02> ~
ym (Z) - 32 — Yos (3/02) -, 2= yOM(?/OZ)-
(1+ym(z))” (1+ s(y02))?

Step 2. Tightness of En(z)

Similar with the step 2 of the proof of Lemma [S1.2| it suffices to verify

E|L,(21) — Ln(2)|2
wp BLC)
n;21,22€CH |Zl - Z2|

Since

E|Ln(21) = Ln(2)]?
|Zl - Zz|2

- 1~ _ _ 12
=E |tr (pn — 211,) ! (Pn — 221}) f—tr (Pn — 21L}) ' (pn — 221,) 1‘
? 1 & 1 ’

i=1 (Xz - 21)(Xz — %) ; (Ai = 21)(Ni — 22)
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Y

2 N4+ X — 21 — 22) (N — \)
; (N — 20) (N — 2z2) (N — 21) (N — 22)

where \; > --- > A, and Xl >0 > Xp are the eigenvalues of p,, and p, respectively. By

Weyl’s inequality,

- 3 -
< “pn - pn” =7 HKn + an .

Xi = i
n+1

By the rigidity of edge of K,, and p,, and the truncation of Zn(z),

2 p
2
E <Cip) E < Oy,
=1

Ai = i

2 N4+ X — 21 — 2) (A — \)
; N — 2N — ) (A — 21) (A — 22)

uniformly in z1, 2o € C,,.

S2 Auxiliary lemmas

Lemma S2.1. For non-random n X n symmetric matrices A and B, we have
Es'As =trXA;
4
cov(s' As,s'Bs) =2tr(AB) — gtr(A oB) — 5—tr(A)tr(B) +O()|AlIBIl.
n

Proof. Noting

1
Es =0, cov(s) =X = i (In - _1n12) ;
n—1 n

we have Es" As = trX A. Furthermore, we calculate the covariance of the interaction term
cov(siS;, Sksi)-

By Faulhaber’s formula,

var(s) = E(s] — 1)* =

144 a ( n+1)4 4 12
Z_ _ —
_ 2 2
n(n—1)*(n +1)* < 2

i=
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Noting s; + ...+ s, = 0, we have

0 =cov (s7,s1(81 + ...+ 8,)) = var(s}) + (n — 1)cov(s7, s152),

which yields

1
n—1

cov(si, 8189) = — var(s?).
Similarly, since s3 + ...+ s2 = n,
0=rcov (7,57 +...+s5)) = var(s]) + (n — 1)cov(si, s3),

n

which yields

1
2 2y _ _ 2
cov(sy, s5) = — 1V&r(51).
By exploiting this trick, we can get
cov(s?, s983) = 2 var(s?),
(n—1)(n—2)
—2 1
var(sy$2) :7(17(1”_ 1)3 o 1var(s%),
n 2 9
cov(sy8g,8183) = — 1) + T 2)Val"(81),
2 6
cov(s152, S354) = - — var(s?).

(n—12n-3) (m—1)(n—-2)(n—23)
Now, we are ready to derive the covariance
cov(s' As,s'Bs) = cov (Z aiiss + 2 Z @;j5;5;, Z bripss + 2 Z bklsksl>
i=1 1<J k=1 k<l

2 2 2
= g a;ibrreov(s:, si) + 2 g ag;bricov(sy, spsi)
i,k ik<l
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+2 Z aijbircov(s;s;, su) + 4 Z a;;bricov(s;s;, Sgsi)

i<jk i<j k<l
n *
2 2 2
=var(sy) g a;;by; + cov(sy, s5) g ;b
i=1 ik
* *
2 2
+ 2cov(s7, 5152) E agrbr + cov(sy, s253) E @ik
k.l ikl
* *
2 2
+ 2cov(sy, s152) g a;jbi; + cov(sy, S253) E a;;bi
i,j 5,5,k
* * *
+ 2var(s;$2) E a;;bi; + 4cov(sy 82, 5153) E a;;bjk + cov(sysa, 5354) E a;;bi
i?j i7j7k ,L‘?j?k?l

= (var(s}) — cov(s], s3) — dcov(s], sas3) + 4cov(sy, s253) — 2var(sys2) + 8cov(sy sz, 5153)

—6cov(s5152, $354)) tr(A 0 B) + (cov(si, s3) — 2(s7, s283) + cov(s152, 5354)) tr(A)tr(B)
+ (2var(sysg) — 4cov(syse, $153) + 2cov(sySe, s354)) tr(AB)

+ (2cov(s], s182) — 2cov(s], sa83) — dcov(s15a, 5183) + 4cov(s15a, 5354)) 1, Bdiag(A)
+ (2cov(si, s182) — 2cov(s}, sa83) — 4dcov(s15a, 5183) + 4cov(s1Sa, 5354)) 1, Adiag(B)
+ (4cov(syse, s1583) — 4cov(sySa, S354)) IZABln + cov(syse, 5334)1;A1n12B1n

_2tr(AB) — gtr(A oB) — ;tr(A)tr(B) +o)|AllIB],

n

where we use the facts

Z aiibkk - Z aiibjj - Z Clnbn = tr(A)tr(B) — tr(A e} B)7
i,k i, i=1

Z akkbkl = Z aiibij — Z aubm = IZBdlag(A) — tI‘(A @) B),
k,l 0,7 i=1

n

Z aiibp = Z @i (Z by + 2bs; — 2 Z by — Z bkk)
k.l k=1 k=1

ikl i=1
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=tr(A)1,B1, + 2tr(A o B) — 21, Bdiag(A) — tr(A)tr(B);

Z aiibii =1, Adiag(B) — tr(A o B);
i,
Z ;b Ztr(B)leln +2tr(AoB) — 21;Adiag(B) — tr(A)tr(B);

i7j7k

Z*: aijbij = Z aijbij — Zn: a;ibi; = tr(AB) — tr(A o B);
J i, i=1

Z aijbjk = Z (Z aijbjk - aubzk - azkbkk>

ijk ik \j=1

=1 AB1, — tr(AB) — 1] Bdiag(A) — 1, Adiag(B) + 2tr(A o B)

Z ;b = Z a;j <Z bt — bri — bij — bk:k)
1

ikl ik I=
= Z Qi <Z b — Z bi — Z bjl) - Z a;j (bri + brj + i)
i k.l 1=1 =1 igk

=1'A1,1)B1, — 21 AB1,, — tr(A)1, B1, + 21, Bdiag(A)
—2(1,AB1, — tr(AB) — 1, Bdiag(A) — 1, Adiag(B) + 2tr(A o B))
— (tr(B)1, A1, + 2tr(A o B) — 21, Adiag(B) — tr(A)tr(B))

=1'A1,1)B1, — 41] AB1,, + 41 Adiag(B) + 41, Bdiag(A)

—tr(A)1)B1, — tr(B)1] A1, — 6tr(A o B) + 2tr(AB) + tr(A)tr(B)
and the bounds

tr(A oB) = O(n)[A[[|B], tr(A)tx(B) = O(n*) | A[|[B]], tr(AB) = O(n) | A[|||B]]

1, Bdiag(A) = O(n)[|A][[|B|, 1, Adiag(B) = O(n) || A ||BJ|.



S2. AUXILIARY LEMMAS

1,A1,1,B1, = O(n*)[|A[l|B]1, AB1, = O(n)||A[||B].

The proof is completed. n
Lemma S2.2. For non-random n x n matrices Ay, k=1,--- ;rand B;, [ =1,--- ,q, we
have

q

L 1
Ells A.s (JB s; — —trXB )
II 1 k 1II 1 DSl D l

k=1 =1

T q
<cn P TTIAMTTIB (S2.37)
k=1 =1

for arbitrarily small § > 0.

Proof. For non-random n x n matrix B, by Proposition 2.1 of |Bao| (2019),

q

E < Cn~30|BJ|Y, (S2.38)

1
s Bs, — —tr¥B
p

for arbitrarily small § > 0. When r = 0, ¢ > 1, (52.37) is a consequence of ((52.38)) and

Holder’s inequality. If » > 0, by induction on r we have

r q

1

El s Ass (STBlS — —trEB)

g 1 k 1E 1 1 D l
r—1

1 1
< E[ESIAksl(SIArsl — Z;trZAr) E (SIBlsl — ];trEBl>
n r—1 q 1
+ _HATH E H SIAksl H (SIBlsl — —tI‘EBl) ‘
p k=1 =1 p
r q
<Cn 2P TTIA T IB
k=1 =1
which conclude the result. O

Lemma S2.3 (Theorem 35.12 of Billingsley|[2017). Suppose for each n, Y,1,- -+, Yy, is

a real martingale difference sequence with respect to o-field {F, ;} having finite second
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moments. If

> E (Y| Fujo1) — 0, in probability,

j=1
and for each € > 0,

Tn

ST (V2 1Yo 2 ) >0,
j=1
then

Tn
Z Y,.; — N(o,0%), in distribution.

=1

Proof of Theorem [{.1] Letting f(z) = x*, the centering term is

[ramin =25 C) ()

The asymptotic mean and asymptotic variance can be derived with the same approach in

Theorem 1.4 of |Pan and Zhou (2008), In details, for any k£ > 1, we have

I

N}

[l )

Bl
M1
L
L[~
N\
ol
~~
VRS
™
p—

: _yo)ﬁﬂ?%l U —1—jy— 1\ (2 —1—jy+1
o k-1 k-1 :

Yo =
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k . k .
EN (2k— 7\, 1 —yo.; EN (2k+1—3\ 1—yo..
:k+1§: i k+1§: j
- (j k—l)( TR (y)( b-1 )T 0

L[ AR C4sk)
2mi ) (1 +5(2)) — yos2(2)

SO RSO

Jj=0 J

e

Il
=)

Then, the corresponding asymptotic mean and asymptotic variance can be obtained di-

rectly.

Next we consider the case of f(z) = log(z). By (3.6) of Bai et al. (2009), the centering

term is

[ 101, (5) = =L tog(1 — ) - 1.

n

For the asymptotic mean and variance, we note that

§/(Z) _ E) (Z) (1 + §(Z)) '

(1+5(2))" = yos?(2)

Since we consider the case of y < 1, then yo = 1/y > 1. when > (1 + \/40)?, we have

0> s(z) > —1, and when = < (1 — /yo)?, we have s(z) > 1/(yo — 1). Then we calculate

log(2)s'(z) , _ [ log(z(s)) ,
/ (1+s) dz_/(1+§)’“d_

for k > 2,
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1 [ (s+1)" —yes® 1 .
k—l/ (s+1)* §((yo—1)§—1)d_
2me Yo — 154
:k’—l{l_( Yo ’ }
and for k=1,
log(2)s'(z) , [ log(z(s))
/ 1+s dz_/ Tts
:/ ((s +1)* — yos*) log(1 +5) 1 s
s+1 s((yo—1)s—1) ~
, 1
= — 2milog(l — %)

As for pi0g and o, with similar rouine in Section 5 of Bai and Silverstein| (2004),

1 1 O+vI)® g 2
—— [ log(yz)p(2)dz =— Lorg (1- - 95@) 4
271 ot I 5

(1—v/¥0)2 (1+s(z))

1 O+I® g z—1—1
= — arctan dx
27 Ja—ymy @ )?

For other terms,

mi) (1 +s(2)
_Y [log(2(s)) . o [log(z(s))
7w ) (14 5)2 ds m’/ (14 s)? ds
_ 1
_yl),
—% / log(yz)ps(2)dz = 271m. / lofizfé(i)ﬁ)gz)dz

(
1 [log(z(s)) L [log(z(s))
:_%/ 1+s d—+ﬁ/(1+§)2d§
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=log(1 — i) + ia
Yo Yo
1 1 [log(2)s(2)s'(2) L [log(2)s(2)s'(2)
—5 [ los(y2)a(z)dz = — o— / T+s(z) 7 2mi / ArsG)
1 1 [ log(z(s))
=== log(z(s))ds + i) Utse2™
BEENY
_yo -1y

As for 015, and 0y,

1
N 4_7r2// log(yz1) log(yza)o1 (21, 22)dz1dzp

L [og(z)s () / IOg(Zl)i/(Z1>)>2dz1dzz

2m? (s(z1) — s(22
1 1 1
=—— [ log(z(sy)) | — — —— | ds,
i Sy Sy =
1
1 Sg — —— 1 1
- = 1Og(w) ———— )ds,
e 52 2 ST
1 1 1
+—,/10g(§2+1) — — —— | ds
mi Sy Sy = g
1
= —2log(1 — —),
g( yo)

and

1
- H// log(yz1) log(y22)oa(21, 22)dz1dz

_ Yo log(y21)§'(Z1)dZ1 log(yz2)§’(z2)d
27T2/ (14 s(z1))? / (1+ s8(22))°
2

B yo'

29

Collecting all the above terms, we complete our calculations. O
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Proof of Lemma [S1.7. For population X = (X1, -+, X,)", we write F; as the distribution
function of X;. Since X is absolutely continuous respect to the Lebesgue measure, F;(X;)
is uniformly distributed on [0, 1] and Y; = ® 1 (F;(X;)) is a standard Gaussian distribution.
Rank statistics are invariant under this monotonic transformation, that is r(X;) = r(Y;)
fori =1,--- ,n. Therefore, and are obtained in Wu and Wang (2022)) and

Li et al] (2023). 0
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