
Statistica Sinica: Supplement

1 Derivation of Semiparametric Efficiency Bound

From the result of Theorem 4.2 of Robins and Rotnitzky (1992) or Lemma

A.2 of Robins and Rotnitzky (1995), we know that the observed-data effi-

cient score Seff satisfies

Seff = Qeff +
m∑
k=1

(Rk − πkRk−1)π
−1
k {Qeff − E[Qeff |W k−1]}, (1)

where Qeff is the unique Q in Λfull,⊥ satisfying

Sfull
eff = Q+Π[ν(Q)|Λfull,⊥], (2)

with Sfull
eff to be the full-data efficient score and ν(Q) =

m∑
k=1

(1−πk)π
−1
k {Q−

E[Q|W k−1]}. It is easy to show that the orthocomplement of the nuisance

tangent space with full data under multivariate normal assumption is

Λfull,⊥ = {a(X,T )ε : E[a(X,T )|T ] = 0} . (3)

Since Qeff ∈ Λfull,⊥, there exist aQ(X,T ) such that Qeff = aQ(X,T )ϵ.

Substitute aQ(X,T )ε forQeff in (1), we obtain Seff = aQ(X,T )ε∗. Thus,

we remain to show that aQ(X,T ) = {X −φeff (t)}TΣ∗,−1, which satisfies

E[aQ(X,T )|T ] = 0 from (3).

Since Π[ν(Qeff )|Λfull,⊥] ∈ Λfull,⊥, there exist aν(X,T ) such that Π[ν(Qeff )|Λfull,⊥] =



aν(X,T )ϵ. It follows that ν(Qeff )− aν(X,T )ϵ ∈ Λfull and satisfies

E
[
{ν(Qeff )− aν(X,T )ϵ} εTa(X,T )T

]
= 0 (4)

for any a(X,T ). Recall that Qeff must satisfy the restriction (2), we

obtain that

aν(X,T )ϵ = aQ(X,T )ϵ− Sfull
eff . (5)

In fact, Wang et al. (2005) derived the full-data semiparametric efficient

score under the multivariate normal assumption,

Sfull
eff = {X −φeff (t)}TΣ−1ε, (6)

where Σ is the conditional variance of ε. Plugging (5) into (4) and after

some calculation, we obtain that

aQ(X,T )E

[
m∑
k=1

(1− πk)π
−1
k {ε− E[ε|W k−1]}εT + εεT

∣∣∣∣∣X,T

]
= {X −φeff (t)}T .

Define

M (t) =
t∑

k=1

(Rk − πkRk−1)π
−1
k {εT − E[ε|W k−1]}

and

K(X,T ) = E

[
m∑
k=1

(1− πk)π
−1
k {ε− E[ε|W k−1]}εT

∣∣∣∣∣X,T

]
.

Then, aQ(X,T ) = {X−φeff (t)}TΣ∗,−1 if and only ifK(X,T )+E[εεT |X,T ] =

Σ∗. From the fact (Robins et al., 1995) that M (t) is a discrete time mean



zero martingale process with respect to the filtration σ{W t−1, R1, . . . , Rt−1, ε},

we have E[εM(T )T ] = 0 and V ar[M (T )|X,T ] = K(X,T ) if (2.4) is true.

Thus,

Σ∗ = E
[
(M (T )− ε)(M(T )− ε)T |X,T

]
= K(X,T ) + E[εεT |X,T ].

2 Lemma

Lemma 1. If (2.1), (2.2), and (2.3) are true and either (2.4) or (2.8) is

true,

E

{
X̃T∆V −1

[
Rmπ

−1
m (τ ∗){Y − µ}

−
m∑
k=1

(Rk − πk(τ
∗)Rk−1)π

−1
k (τ ∗){ϕk(W k−1,η

∗)− µ}
]}

= 0.

Proof. We write

E

{
X̃T∆V −1

[
Rmπ

−1
m (τ ∗){Y − µ}

−
m∑
k=1

(Rk − πk(τ
∗)Rk−1)π

−1
k (τ ∗){ϕk(W k−1,η

∗)− µ}
]}

= C1 − C2.

Under assumption of (2.2), E[Rk|Rk−1 = 1,W k−1,Y ] = E[Rk|Rk−1 =

1,W k−1] = πk. After some simple calculation, we have E[Rk|W k−1] = πk.



Furthermore, if (2.4) is true, then πk(τ
∗) = πk. Thus, we have

C1 = E
{
E
[
X̃T∆V −1Rmπ

−1
m (τ ∗)(Y − µ)|Wm−1,Y

]}
= E

[
X̃T∆V −1(Y − µ)

]
= 0

and

C2 = E

[
m−1∑
k=1

X̃T∆V −1(Rk − πk(τ
∗)Rk−1)π

−1
k (τ ∗){ϕk(W k−1,η

∗)− µ}

]

+ E
[
X̃T∆V −1E[Rmπ

−1
m (τ ∗)−Rm−1|Wm−1, Rm−1 = 1]π−1

m−1(τ
∗){ϕk(Wm−1,η

∗)− µ}
]

= E

[
m−1∑
k=1

X̃T∆V −1(Rk − πk(τ
∗)Rk−1)π

−1
k (τ ∗){ϕk(W k−1,η

∗)− µ}

]

· · ·

= 0.

If (2.8) is true, ϕk(W k−1;η
∗) = E[Y |W k−1]. Noting that we can rewrite

the target equations as

E

{
X̃T∆V −1

[
{Y − µ}

+
m∑
k=1

(Rk − πk(τ
∗)Rk−1)π

−1
k (τ ∗){Y − ϕk(W k−1,η

∗)}
]}

= C1 + C2.



Obviously, C1 = 0. On the other hand,

C2 = E

[
m−1∑
k=1

X̃T∆V −1(Rk − πk(τ
∗)Rk−1)π

−1
k (τ ∗){Y − ϕk(W k−1,η

∗)}

]

+ X̃T∆V −1
{
πmπ

−1
m (τ ∗)− 1

}
π−1
m−1(τ

∗)E
[
{Y − ϕm(Wm−1,η

∗)|W k−1}
]

= E

[
m−1∑
k=1

X̃T∆V −1(Rk − πk(τ
∗)Rk−1)π

−1
k (τ ∗){Y − ϕk(Wm−1,η

∗)}

]

· · ·

= 0.

3 Proof of Theorem 1

To simplify notation, we define µij to be the function µ(·) evaluated at the

true parameter value and we can similarly define µ
(1)
ij,t.

√
nh{θ̂(t, β̂)− θ0(t)} =

√
nh{θ̂(t, β̂)− θ̂(t,β0)}+

√
nh{θ̂(t,β0)− θ0(t)}

=
√
h

{
∂θ̂(t,β0)

∂β

}
√
n(β̂ − β0) +

√
nh{θ̂(t,β0)− θ0(t)}+ op(1).

The asymptotic property of θ̂(t, β̂) is equivalent to the asymptotic property

of θ̂(t,β0)} as long as β̂ is
√
n-consistent and θ̂(t, ·) is continuous differen-

tiable and its derivative is bounded in a neighborhood of β0. Let θ̂[k](t,β0)

be the estimator in the kth iteration. At initial, we ignore within-cluster

correlation. Then, by expanding the first component of equations (2.6), we



have

θ̂[0](t,β0)− θ0(t) =
1

2
b[0](t)h

2 +W−1
2 (t)n−1

n∑
i=1

m∑
j=1

Kh(Tij − t)µ
(1)
ij,tv

jj
i

×
[
Rimπ

∗,−1
im {Yij − µij} −

m∑
k=1

(Rik − π∗
ikRi(k−1))π

−1
ik {ϕ

∗
k(W i(k−1))− µij}

]
+ op(h

2 + {log(n)/nh}1/2 + n−1/2),

where b[0](t) = θ
(2)
0 (t).

At the kth iteration, where k ≥ 1, θ̃(·,β0) is replaced by θ̂[k−1](·,β0).

Define

b[k](t) = b[0](t)−
m∑
j=1

m∑
l ̸=j

E[∆jjv
jl∆llb[k−1](Tl)|Tj = t]fj(t),

Q(t, s) =
m∑
j=1

m∑
l ̸=j

E[∆jjv
jl∆llW

−1
2 (Tl)|Tj = t, Tl = s]fjl(t, s),

Ä(B; t, s) = −
m∑
j=1

m∑
l ̸=j

E[∆jjv
jl∆llW

−1
2 (Tl)B(Tl, s)|Tj = t]fj(t),

Q1,[k](t, s) = −Q(t, s) + Ä(Q1,[k−1]; t, s),

and

Q2,[k](t, s) = Ä(Q2,[k−1]; t, s),

with Q1,[1](t, s) = 0 and Q2,[1](t, s) = −Q(t, s). After some calculation, we



have

θ̂[k](t,β0)− θ0(t) =
1

2
b[k](t)h

2 +W−1
2 (t)n−1

n∑
i=1

m∑
j=1

m∑
l=1

Kh(Tij − t)µ
(1)
ij,tv

jl
i

×
[
Rimπ

∗,−1
im {Yil − µil} −

m∑
k=1

(Rik − π∗
ikRi(k−1))π

∗,−1
ik {ϕ∗

kl(W i(k−1))− µil}
]

+W−1
2 (t)n−1

n∑
i=1

m∑
j=1

m∑
l=1

µ
(1)
ij,tv

jl
i Q1,[k](t, Tij)

×
[
Rimπ

∗,−1
im {Yil − µil} −

m∑
k=1

(Rik − π∗
ikRi(k−1))π

∗,−1
ik {ϕ∗

kl(W i(k−1))− µil}
]

−W−1
2 (t)n−1

n∑
i=1

m∑
j=1

µ
(1)
ij,tv

jj
i Q2,[k](t, Tij)

×
[
Rimπ

∗,−1
im {Yij − µij} −

m∑
k=1

(Rik − π∗
ikRi(k−1))π

∗,−1
ik {ϕ∗

kj(W i(k−1))− µij}
]

+ op(h
2 + {log(n)/nh}1/2 + n−1/2).

At the convergence, we can obtain the asymptotic expansion of θ̂(t,β0) −

θ0(t) by replacing b[k], Q1,[k], and Q2,[k] with b∗, Q∗
1, and Q∗

2, where b∗, Q∗
1,

and Q∗
2 satisfy the following equations

b∗(t) = b[0](t)−
m∑
j=1

m∑
l ̸=j

E[∆jjv
jl∆llb

∗(Tl)|Tj = t]fj(t),

Q∗
1(t, s) = −Q(t, s) + Ä(Q∗

1; t, s),

and

Q∗
2(t, s) = Ä(Q∗

2; t, s).



Noting that all terms except b∗(t)h2/2 are asymptotically 0 if either (2.4)

or (2.8) is true.

4 Proof of Lemma 1

At the convergence, the first component of equations (2.6) is

0 = n−1

n∑
i=1

m∑
j=1

Kh(Tij − t)µ
(1)
ij,t(α̂)

×
[
vjji Rimπ

∗,−1
im {Yij − µ[XT

ijβ + θ̂(t,β) + α̂1(t,β)(Tij − t)/h]}

+
m∑
l ̸=j

vjli Rimπ
∗,−1
im {Yil − µ[XT

ilβ + θ̂(Til,β)]}

−
m∑
k=1

vjji (Rik − π∗
ikRi(k−1))π

∗,−1
ik {ϕ∗

kj(W i(k−1))− µ[XT
ijβ + θ̂(t,β) + α̂1(t,β)(Tij − t)/h]}

−
m∑
l ̸=j

m∑
k=1

vjli (Rik − π∗
ikRi(k−1))π

∗,−1
ik {ϕ∗

kl(W i(k−1))− µ[XT
ilβ + θ̂(Til,β)]}

]
.



Taking derivative with respect to β and evaluated at β0 on both sides.

After some simple calculation, we obtain

0 = n−1

n∑
i=1

m∑
j=1

Kh(Tij − t)

{
∂µ

(1)
ij,t(α̂)

∂βT
0

}

×
[
vjji Rimπ

∗,−1
im {Yij − µ[XT

ijβ0 + θ̂(t,β0) + α̂1(t,β0)(Tij − t)/h]}

+
m∑
l ̸=j

vjli Rimπ
∗,−1
im {Yil − µ[XT

ilβ0 + θ̂(Til,β0)]}

−
m∑
k=1

vjji (Rik − π∗
ikRi(k−1))π

∗,−1
ik {ϕ∗

kj(W i(k−1))− µ[XT
ijβ0 + θ̂(t,β0) + α̂1(t,β0)(Tij − t)/h]}

−
m∑
l ̸=j

m∑
k=1

vjli (Rik − π∗
ikRi(k−1))π

∗,−1
ik {ϕ∗

kl(W i(k−1))− µ[XT
ilβ0 + θ̂(Til,β0)]}

]

− n−1

n∑
i=1

m∑
j=1

m∑
l=1

Kh(Tij − t)µ
(1)
ij,t(α̂)vjli µ

(1)
il,t(α̂)Xil

− n−1

n∑
i=1

m∑
j=1

Kh(Tij − t)µ
(1)
ij,t(α̂)vjji µ

(1)
ij,t

{
∂α̂1(t,β0)

∂βT

}
(Tij − t)/h

+ n−1

n∑
i=1

m∑
j=1

Kh(Tij − t)µ
(1)
ij,t(α̂)vjji µ

(1)
ij,t(α̂)φ̂(t)

+ n−1

n∑
i=1

m∑
j=1

m∑
l ̸=j

Kh(Tij − t)µ
(1)
ij,t(α̂)vjli µ

(1)
il,t(α̂)φ̂(Til)

= C1n − C2n − C3n + C4n + C5n.

When either (2.4) or (2.8) is true, C1n is asymptotically 0. In addition, if

θ̂(·) is consistent, we will have



C2n =
m∑
j=1

m∑
l=1

E[∆jjv
jl∆llXl|Tj = t]fj(t) + op(1),

C3n = op(1),

C4n =
m∑
j=1

E[∆jjv
jj∆jj|Tj = t]fj(t)φ̂(t) + op(1),

and

C5n =
m∑
j=1

m∑
l ̸=j

∫
E[∆jjv

jl∆ll|Tj = t]φ̂(Tl)flj(Tl, t)dTl + op(1).

Thus, we have

m∑
j=1

E[∆jjv
jj∆jj|Tj = t]fj(t)φ̂(t)−

m∑
j=1

m∑
l=1

E[∆jjv
jl∆llXl|Tj = t]fj(t)

+
m∑
j=1

m∑
l ̸=j

∫
E[∆jjv

jl∆ll|Tj = t]φ̂(Tl)flj(Tl, t)dTl = op(1).

Since φ̂(t) uniformly converge to φ(t), we can show that these equations is

equivalent to

m∑
j=1

m∑
l=1

E
[
∆jjv

jl∆ll{Xl −φ(Tl)}|Tj = t
]
fj(t) = 0,

5 Proof of Theorem 2

It is easy to show that

n−1/2

n∑
i=1

Di(β̂, ζ̂)ε
∗
ϕ,i(τ̂ , η̂, β̂, θ̂) = n−1/2

n∑
i=1

Di(β̂, ζ
∗)ε∗ϕ,i(τ̂ , η̂, β̂, θ̂) + op(1).



Thus, at the convergence, equations (2.7) are equivalent to

n−1/2

n∑
i=1

Di(β̂, ζ
∗)[ε∗ϕ,i(τ̂ , η̂, β̂, θ0) + ε∗ϕ,i(τ̂ , η̂, β̂, θ̂)− ε∗ϕ,i(τ̂ , η̂, β̂, θ0)] + op(1) = 0.

We make Taylor expansion on the first term in the square bracket,

0 = n−1/2

n∑
i=1

Di(β0, ζ
∗)ε∗ϕ,i(τ

∗,η∗,β0, θ0)

+
∂

∂β

{
n−1

n∑
i=1

Di(β0, ζ
∗)ε∗ϕ,i(τ

∗,η∗,β0, θ0)

}√
n(β̂ − β0)

+
∂

∂τ

{
n−1

n∑
i=1

Di(β0, ζ
∗)ε∗ϕ,i(τ

∗,η∗,β0, θ0)

}√
n(τ̂ − τ ∗)

+
∂

∂η

{
n−1

n∑
i=1

Di(β0, ζ
∗)ε∗ϕ,i(τ

∗,η∗,β0, θ0)

}√
n(η̂ − η∗)

+ n−1/2

n∑
i=1

Di(β̂, ζ
∗)[ε∗ϕ,i(τ̂ , η̂, β̂, θ̂)− ε∗ϕ,i(τ̂ , η̂, β̂, θ0)] + op(1).

Therefore,
√
n(β̂ − β0) = A−1(V )[C1n + C2n + C3n + C4n], where

C1n = n−1/2

n∑
i=1

Di(β0, ζ
∗)ε∗ϕ,i(τ

∗,η∗,β0, θ0)

C2n = E

[
D(β0, ζ

∗)
∂

∂τ
ε∗ϕ,i(τ

∗,η∗,β0, θ0)

]
E

[
∂

∂τ
S(R,Wobs; τ

∗)

]−1

n−1/2

n∑
i=1

S(Ri,Wobs,i; τ
∗)

C3n = E

[
D(β0, ζ

∗)
∂

∂η
ε∗ϕ,i(τ

∗,η∗,β0, θ0)

]
E

[
∂

∂η
l(Wobs;η

∗)

]−1

n−1/2

n∑
i=1

l(Wobs,i;η
∗)

C4n = n−1/2

n∑
i=1

Di(β̂, ζ
∗)[µ{Xiβ̂ + θ0(Ti)} − µ{Xiβ̂ + θ̂(Ti, β̂)}]

By Lemma 1, if either (2.4) or (2.8) is true, E[C1n] = 0. E[C2n] = E[C3n] =

0 follows from the fact that E[S(R,Wobs; τ
∗) = E[l(Wobs;η

∗)] = 0.

We remains to show that C4n is order of op(1). From the result of



Theorem 1, after some calculation, we can write C4n = −C41n − C42n −



C43n − C44n + op(1), where

C41n =
1

2
(n1/2h2)n−1

n∑
i=1

m∑
j=1

m∑
l=1

X̃ijµ
(1)
ij v

jl
i µ

(1)
il b

∗(Til) +Op(n
1/2h4),

C42n = n−1/2

n∑
i=1

m∑
j=1

m∑
l=1

X̃ijµ
(1)
ij v

jl
i µ

(1)
il

×
{
W−1

2 (Til)n
−1

n∑
i′=1

m∑
j′=1

m∑
l′=1

Kh(Ti′j′ − Til)µ
(1)
i′j′,Til

vj
′l′

i′ ε∗i′l′(τ̂ , η̂, β̂, θ0)

}

= n−1/2

n∑
i′=1

m∑
j′=1

m∑
l′=1

µ
(1)
i′j′,tv

j′l′

i′ vj
′l′

i′ ε∗i′l′(τ̂ , η̂, β̂, θ0)

×

{
m∑
j=1

m∑
l=1

E[X̃j∆jjv
jl
i ∆llW

−1
2 (Tl)|Tl = t]fl(t)|t=Ti′j′

}

C43n = n−1/2

n∑
i=1

m∑
j=1

m∑
l=1

X̃ijµ
(1)
ij v

jl
i µ

(1)
il

×
{
W−1

2 (Til)n
−1

n∑
i′=1

m∑
j′=1

m∑
l′=1

µ
(1)
i′j′,Til

vj
′l′

i′ Q∗
1(Til, Ti′j′)ε

∗
i′l′(τ̂ , η̂, β̂, θ0)

}

= n−1/2

n∑
i′=1

m∑
j′=1

m∑
l′=1

µ
(1)
i′j′,tv

j′l′

i′ vj
′l′

i′ ε∗i′l′(τ̂ , η̂, β̂, θ0)

×

{
m∑
j=1

m∑
l=1

E[X̃j∆jjv
jl
i ∆llW

−1
2 (Tl)Q

∗
1(Tl, t)]|t=Ti′j′

}
fl(t)

C44n = n−1/2

n∑
i=1

m∑
j=1

m∑
l=1

X̃ijµ
(1)
ij v

jl
i µ

(1)
il

×
{
W−1

2 (Til)n
−1

n∑
i′=1

m∑
j′=1

µ
(1)
i′j′,Til

vj
′j′

i′ Q∗
2(Til, Ti′j′)ε

∗
i′j′(τ̂ , η̂, β̂, θ0)

}

= n−1/2

n∑
i′=1

m∑
j′=1

µ
(1)
i′j′,tv

j′j′

i′ vj
′l′

i′ ε∗i′j′(τ̂ , η̂, β̂, θ0)

×

{
m∑
j=1

m∑
l=1

E[X̃j∆jjv
jl
i ∆llW

−1
2 (Tl)Q

∗
2(Tl, t)]|t=Ti′j′

}
fl(t)



As long as θ̂ is consistent and nh8 → 0, we will have C41n → 0. In

addition, from the result of Lemma 1, it is easy to show that C42n − C44n

are all order of op(1).

6 Proof of Corollary 1

Let D∗, ε∗ϕ, Sτ , and Sη be the shorts for D(β0, ζ
∗), ε∗ϕ(τ

∗,η∗,β0, θ0),

S(R,Wobs; τ
∗), and l(Wobs;η

∗). Proof of (b) and (d) are straightforward.

We only provide proof of (a) and (c).

(a) It is easy to show that if (2.4) is true, E[D∗∂ε∗ϕ/∂τ ] = −E[D∗ε∗ϕSτ ],

E[∂Sτ/∂τ ] = −E[SτS
T
τ ], and π(τ ∗) = π. Thus Bϕ(V ) reduces to

Bϕ(V ) = V ar
{
D∗ε∗ϕ − E[D∗ε∗ϕSτ ]E[SτS

T
τ ]

−1Sτ

}
.

Instead, if true πij are known and are used in LAIPW method, the asymp-

totic variance of β̂ is Ω̃ϕ(V ) = A−1(V )B̃ϕ(V )A−1(V ) with B̃ϕ(V ) =

V ar{D∗ε∗ϕ}. We conclude thatBϕ(V ) ≤ B̃ϕ(V ) sinceD∗ε∗ϕ−E[D∗ε∗ϕSτ ]E[SτS
T
τ ]

−1Sτ

is the residual from the population regression of D∗ε∗ϕ on Sτ .

(c) Noting that A(V ) is not a function of ϕ, minimizing Ωϕ(V ) is

equivalent to minimize Bϕ(V ).

Since (2.4) is true, we rewrite

E

[
D(β0, ζ

∗)
∂

∂τ
ε∗ϕ(τ

∗,η∗,β0, θ0)

]
E

[
∂

∂τ
S(R,Wobs; τ

∗)

]−1

S(R,Wobs; τ
∗)



7.1 Computational Time Comparison under n = 500

as E[D∗ε∗ϕSτ ]E[SτS
T
τ ]

−1Sτ , which is a projection of D∗ε∗ϕ on Sτ . Thus,

there exist a series of function a∗
k(·) such that

E[D∗ε∗ϕSτ ]E[SτS
T
τ ]

−1Sτ =
m∑
k=1

(Rk − πkRk−1)a
∗
k(W k−1).

Define

Λ =

{
m∑
k=1

(Rk − πkRk−1)ak(W k−1) : ak(·) are a series of arbitrary functions

}
.

Then, we claim that

D∗ε∗ϕopt
= Rmπ

−1
m D∗ε− Π

[
Rmπ

−1
m D∗ε|Λ

]
because (i) D∗ε∗ϕopt

−Rmπ
−1
m D(β0, ζ

∗)ε ∈ Λ and (ii)

E

[{
D∗ε∗ϕopt

}T
{

m∑
k=1

(Rk − πkRk−1)ak(W k−1)

}]
= 0

for any ak(·). (i) can be verified by definition. From a martingale covariance

calculation, (ii) will hold if ϕkl(W i(k−1);η) = E[Yil|W i(k−1)] is correctly

specified.

Since E[D∗ε∗ϕSτ ]E[SτS
T
τ ]

−1Sτ ∈ Λ, we have

V ar
{
D∗ε∗ϕopt

}
= V ar

{
Rmπ

−1
m D∗ε− Π

[
Rmπ

−1
m D∗ε|Λ

]}
≤ V ar

{
D∗ε∗ϕ − E[D∗ε∗ϕSτ ]E[SτS

T
τ ]

−1Sτ

}
.



Table A1: Comparison of computational time (in seconds) among naive, LIPW-KPEE,

and LAIPW-KPEE estimators based on 100 replications of the simulation with n = 500.

Computational Time

Naive 55.13

LIPW-KPEE

True π 21.26

Consistent π̂ 21.28

Wrong π̂ 21.85

LAIPW-KPEE

True π and ϕ 25.79

Consistent π̂ and ϕ̂ 25.78

Wrong π̂ 25.46

Wrong ϕ̂ 24.83

Both wrong 25.28

7 Additional Results for Simulation

7.1 Computational Time Comparison under n = 500

7.2 Performance Evaluation under Small Sample Size n = 100

We further conduct a simulation in the setting of small sample size with

n = 100. As expected, a smaller sample size leads to increased variability,

particularly in the estimation of θ(·). Nevertheless, our proposed methods
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Figure A1: (a) Comparison of the true θ(t) and point-wise empirical mean of the non-

parametric functions θ̂(t) with n = 100. (b) Comparison of point-wise empirical variance

of the nonparametric functions θ̂(t) with n = 100.

still demonstrate reasonable bias control and maintain robustness across

different model specifications. The results in Table A2, Figure A1, and

Table A3 confirm that, even with a small sample size, the overall patterns

observed remain consistent with the results for n = 500.

8 Additional Results for Application

The missing data model is constructed as follows:

logit{πij} = XT
ijτ ,



Table A2: Comparison of naive, LIPW-KPEE, and LAIPW-KPEE estimators in terms

of bias, estimated standard error (EST S.E.), empirical standard error (EMP S.E.), and

empirical mean squared error (EMP MSE) of β̂ and empirical mean integrated mean

squared error (EMP MISE) of θ̂(·) based on 100 replications of the simulation with

n = 100.

β1 = 1 β2 = 4 θ(·)

Bias EST EMP EMP Bias EST EMP EMP EMP

of β̂1 S.E. S.E. MSE of β̂2 S.E. S.E. MSE MISE

Naive 0.046 0.037 0.055 0.003 0.414 0.234 0.290 0.237 0.153

LIPW-KPEE

True π 0.051 0.053 0.064 0.004 0.296 0.375 0.363 0.130 0.135

Consistent π̂ 0.050 0.052 0.063 0.004 0.284 0.337 0.355 0.125 0.119

Wrong π̂ 0.048 0.054 0.058 0.003 0.475 0.339 0.328 0.302 0.215

LAIPW-KPEE

True π and ϕ 0.035 0.043 0.045 0.002 0.241 0.284 0.304 0.092 0.064

Consistent π̂ and ϕ̂ 0.051 0.056 0.065 0.004 0.246 0.297 0.306 0.092 0.072

Wrong π̂ 0.049 0.057 0.059 0.004 0.249 0.304 0.309 0.096 0.067

Wrong ϕ̂ 0.092 0.112 0.126 0.016 0.265 0.322 0.323 0.104 0.122

Both wrong 0.061 0.072 0.078 0.006 0.407 0.309 0.303 0.224 0.247



Table A3: Comparison of computational time (in seconds) among naive, LIPW-KPEE,

and LAIPW-KPEE estimators based on 100 replications of the simulation with n = 100.

Computational Time

Naive 2.46

LIPW-KPEE

True π 1.03

Consistent π̂ 1.04

Wrong π̂ 1.07

LAIPW-KPEE

True π and ϕ 1.19

Consistent π̂ and ϕ̂ 1.19

Wrong π̂ 1.18

Wrong ϕ̂ 1.16

Both wrong 1.17



Figure A2: Average CD4 count with 95% confidence interval over time, adjusting for

other covaraites, in LEOPARD study derived from naive method, LIPW-KPEE method,

and LAIPW-KPEE method.

whereXij consist of the function of sex, mean-centered birth weight, preterm,

delivery mode, maternal prenatal ART history, mother’s CD4 count, and

breastfeeding status. For the conditional mean model, we adopt a similar

approach but utilize a quadratic form of age. The curve of θ(age) with 95%

confidence interval is displayed in Figure A2.

In longitudinal studies, transforming the data during model diagnostics

is essential to eliminate within-cluster correlation in the standard residu-



(a) (b)

Figure A3: (a) Normal quantile plot of the transformed residuals. (b) Autocorrelation

plot of the transformed residuals.

als. We achieve this with Cholesky decomposition, Vi = LiLiT . Denote

the residuals of the conditional mean model as ri = Yi − Xiη̂. we apply

the transformation r∗
i = L−1

i ri. Figure A3 demonstrates that the residuals

closely approximate a normal distribution, with no autocorrelation. Ad-

ditionally, Figure 1 shows no obvious systematic trend, and the variance

remains homogeneous over time.

We assess the goodness of fit for the missing data model using the

le Cessie–van Houwelingen–Copas–Hosmer unweighted sum of squares test

(Hosmer et al., 1997). The p-value obtained from this test indicates that

the model fits the data well.
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(a) (b)

Figure A4: Scatterplot of (a) the transformed residuals versus transformed predicted

values, and (b) the transformed residuals versus transformed age.
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