Statistica Sinica: Supplement

1 Derivation of Semiparametric Efficiency Bound

From the result of Theorem 4.2 of Robins and Rotnitzky (1992) or Lemma
A.2 of Robins and Rotnitzky (1995), we know that the observed-data effi-

cient score S,y satisfies

Serr = Qerr+ Y (R — mRe )7 {Qess — E[QepsWia]}, (1)

k=1
where Q. is the unique @ in A%+ satisfying
Sl = Q+Hn(@Q)|A"" ), (2)

with Sg;}l to be the full-data efficient score and v(Q) = ’;(1 — )T, {Q—
E[Q|W_1]}. Tt is easy to show that the orthocomplement of the nuisance

tangent space with full data under multivariate normal assumption is
AL — fa(X,T)e : Ela(X,T)|T] =0}. (3)

Since Q.r; € AL there exist ag(X,T) such that Q.rr = ag(X,T)e.
Substitute ag(X,T)e for Q.sfin (1), we obtain S.rr = aqg(X,T)e*. Thus,
we remain to show that ag(X,T) = {X — ¢.rr(t)}T X%, which satisfies
FElag(X,T)|T] =0 from (3).

Since [v(Q.s5)|AW4] € ATlL there exist a, (X, T') such that TI[v(Q.zs )| A =



a,(X,T)e. It follows that v(Q.ss) — a,(X,T)e € A/ and satisfies
E[{v(Qecy) — a,(X,T)ete"a(X,T)"]| =0 (4)

for any a(X,T). Recall that Q.;r must satisfy the restriction (2), we

obtain that

a,(X,T)e=aq(X,T)e— S/}, (5)

In fact, Wang et al. (2005) derived the full-data semiparametric efficient

score under the multivariate normal assumption,

SH = {X — @us(t)}2 e, (6)

where X is the conditional variance of €. Plugging (5) into (4) and after

some calculation, we obtain that

m

Z 1 — 7Tk 7Tk {6 — [€|Wk_1]}€T + E&'T X,T] = {X — goeff(t)}T.
k=1
Define
t —_—
M(t) = > (Ry — m,Re1)7; {e” — Ele|W1]}
k=1
and
E|> (1 -m)m {e - Ele[W,]}e"| X, T| .
k=1

Then, ag(X,T) = {X —@cs;(t)}' X ifand only if K(X,T)+FE[ee” | X, T| =

3*. From the fact (Robins et al., 1995) that M (t) is a discrete time mean



zero martingale process with respect to the filtration U{Wt_l, Ry,...,Ri_1, €},
we have E[eM (T)"] = 0 and Var[M(T)|X,T] = K(X,T) if (2.4) is true.

Thus,

S =E[(M(T)—e)(M(T)—¢)"|X,T]

= K(X,T) + E[ee”| X, T).

2 Lemma

Lemma 1. If (2.1), (2.2), and (2.3) are true and either (2.4) or (2.8) is

true,
E{XTAV - [Rmf;nl(r*){Y ~ p}
é (Rie = mi(77) Riet )T (TN P Wi, ™) — u}} } =
Proof. We write _
E{XTAvl [R T (Y — p)
i Ry — (") R )7, (T ) (Wi, m7) — u}} } =) — O,

Under assumption of (2.2), E[Ri|Rr_1 = 1,W_1,Y] = E[Rp|Rp_1 =

1,W ] = m. After some simple calculation, we have E[Ry|W_1] = 7}



Furthermore, if (2.4) is true, then m(7*) = m;. Thus, we have

C,=E {E [XTAV’lRmﬁ,;l(T*)(Y W)W, Y] }

—F [XTAv-l(Y — )

XTAV (R, — mi(r*) R )7 (TN o (Wi, m™) — p}

+FE [XTAV—lE[me; (T%) = R t|W o1, Rope1 = 1T (T) {0k (W1, m7) — )

XTAV YRy, — (7)) R )T (T (W1, 1) — 1}

If (2.8) is true, ¢p(W_1;1*) = E[Y|W_1]. Noting that we can rewrite

the target equations as
E{XTAV—l {{Y —p}

+ Z(Rk — Wk(T*)Rk_l)flzl(T*){Y — ¢k(Wk—1, 17*)}:| } = 01 + C’g.

k=1



Obviously, C; = 0. On the other hand,

C,=FE Z_ XTAV YRy, — m (7)) R )7 (TY — (Wi, "7*)}]

k=1

+ XTAV T {mum, (1) = 1} 7y (1) E [{Y = (W, ) [Wit}]

=L i XTAV YRy, — (7)) R )T (THY — (W, 77*)}]

k=1

3 Proof of Theorem 1

To simplify notation, we define y;; to be the function x(-) evaluated at the
(1)

true parameter value and we can similarly define p;;5.

Vnh{0(t, B) — 0o(t)} = Vnh{0(t, B) — 0(t. Bo)} + Vnh{0(t, Bo) — bo(t)}

B

The asymptotic property of é(t, ,é) is equivalent to the asymptotic property

i {M} V(B = B) + vk {0(t, Bo) — (1)} + 0p(1).

of O(t, Bo)} as long as f is \/n-consistent and (¢, -) is continuous differen-
tiable and its derivative is bounded in a neighborhood of By. Let é[k] (t, Bo)
be the estimator in the kth iteration. At initial, we ignore within-cluster

correlation. Then, by expanding the first component of equations (2.6), we



have

A 1
Oro1(¢, Bo) — bo(t) = Sbroi(t )R+ Wy ( Z Z Kn(Tyj — )P

11]1

X lmﬂ-zm {YZJ i} — Z ik — T Pik—1 )_;k {o (W i(k— 1)) s}
+ 0p(h* + {log(n) /nh}'/? +n~Y/2),

where by (1) = 0(()2) (1).

At the kth iteration, where k > 1, 0(-, By) is replaced by é[k,l](-,ﬁo).

Define
biry () = bpoy(t) — i g: E[A ;0" Aubye—y (T)|T; = 1] £5(1),
=1 1%
Qlt,5) = igm VANV (TDIT = 173 = sl fult, )
=1 12
ABit.s) = _igEmﬁmuW;%m (T )| T; = 1£5(0)

and

Qz,[k] (t,s) = A(Qz,[k—l};t7 s),

with Qq1(t,s) = 0 and Qo py(t,5) = —Q(t,s). After some calculation, we



have

n

1 m m
Oy (£, Bo) — Bo(t) = by (DA° + Wy ()n ™" SN KTy — el
7j=1 [=1

=1

o i = ) - ZRM i) O W) — |

1(t>n71 Zzlu’zj tU Ql [k] t EJ)

i=1 j=1 I=1

x{ T Y i) — Z s T R )T G (W) — M}]

Lty Z Z 0B Q g (8, Ty)

i=1 j=1

X [ imTom {Yij — Hij} — Z ik — TR {071, (Wige) —Mij}]
+ 0,(h? + {log(n)/nh}"/* + n=1/2).

At the convergence, we can obtain the asymptotic expansion of é(t, Bo) —
0o(t) by replacing by, Q1. and Qo with b*, Q7F, and Q3, where b*, Q7,

and @5 satisfy the following equations

m m

b (1) = by (t) — Y Y E[A; 07 Agb™(T)|T; = 1] f5(1),
=1 17

Qilt,s) = —Q(t,s) + A(Qi3t,5),

and

Qs(t,s) = A(Q3;t.5).



Noting that all terms except b*(t)h?/2 are asymptotically 0 if either (2.4)

or (2.8) is true.

4 Proof of Lemma 1

At the convergence, the first component of equations (2.6) is
_ 1)
0=n""3" 3" Ka(Ty — ) (&)
i=1 j=1

< [vszz-m:;f% — uXTB 4 8(t, B) + n(t, B)(Ty — t)/h)

+ Z V' Rim Ty {Ya — p[ X5 B+ 0(Tiy, B)]}
7]

= ol (R — m Rigey)7 {0, (Wigmn) — uXEB + 6(t, B) + éu(t, B)(Ty; — t)/h]}
k=1

= ) ol (R — 7 Rige—n)) T {0 (W) — u[ X 8 + 0(Ta, B)]} |-
145 k=1



Taking derivative with respect to B and evaluated at By on both sides.
After some simple calculation, we obtain

0=n""! Xn:iKh(Tij - t){aufgjl);é )}

i=1 j=1

X {U?Rzmﬁm Yy, - M[X@-:;ﬁo +0(t, By) + au(t, Bo)(Ty; — t)/h]}

+ Z Jlle’]T {Y;l [Xg;,@o + é(ﬂla /30)]}
I#j

=Y o (R — mh Rige—) T H{n; (Wigemn) — 1l X580 + 0(t, Bo) + da(t, Bo)(Ty; —
=1

=Y > (R — i Rige—) T {5 (Wigm1)) — 1 X5 Bo + 0(Th, Bo)]}

I#j k=1
— 7 YN S KTy — i)l i) (6) X
i=1 j—1 =1
- 0 (t, By)
0 303 Kt — ol { PP
=1 j=1
— 1 iq AN A
+n7 YN KTy — Oui (@) ulh (@)@ (t)
i=1 j 1
A~ ] 1 AN A
+n” ZZZM i — (@)l i) (6)@(T)
i=1 j=1 I#j

= Cln - CZn - C3n + C4n + 05n~

When either (2.4) or (2.8) is true, C, is asymptotically 0. In addition, if

~

0(-) is consistent, we will have

t)/hl}



m

Con =Y > E[D;0" MaXi|T; = 1]5(t) + 0,(1),

j=1 1=1

C3n - OP(1)7

Cin =) E[Dj07 Ag|T; = 1] f5(H) (1) + 0,(1),
j=1

and

Con=>_>" / Bl ;0" Al Ty = (T3 iy (Th, )T + 0,(1).

=1 1#j

Thus, we have

D BN ATy = f(0)@(t) = Y > B[N0 Ay X Ty = 1) f;(t)
j=1 j=1 =1
£30 [ BA AT, = (T i Ti 0T; = o,(1)

J=1 I#j

Since ¢(t) uniformly converge to ¢(t), we can show that these equations is

equivalent to

mm

YOS E[A 0" A X — @(M)}T; = t] f3(t) =0,

j=1 i=1
5 Proof of Theorem 2

It is easy to show that

n n

023" DB, el (7,10, 8,0) = 72 Di(B. el (7.1, B,0) + 0,(1).

=1 i=1



Thus, at the convergence, equations (2.7) are equivalent to
1S DB, € (7. Bu00) + (.1 B) — (1. B0 0y (1) =
We make Taylor expansion on the first term in the square bracket,
_I/QZD (Bo, ¢Vl (71" Bo, bo)
{ ‘IZD Bo, ¢ (771", Bo, bo) }\/ﬁﬂ Bo)
{ 712D (Bo, € )egi(T7.m" ,30,90}
{ 7121) (Bo, ¢ ey (T, 17, 50,90}

VY DB, ¢ (71 B0) — € (B b)) + 0y(1).

=1

Therefore, \/n(B — Bo) = A~ (V)[Cip + Cop + Csp + Cin), where

Chp = n~ /2 Z D;(Bo, C*>5j¢>,i<7*v n", Bo, bo)
i=1

0

Con = B[ Do, ¢ 55" 00| |

—1 n
8TS<R’ Wobs; T*)] n~/? Z S(Ri, Wops i;T°)

=1
C?m = E|:D</807C*)%ez,i(7*7n*aﬁ0700):|E|: obsan :| 1/2Zl obswn
Cin =07 Di(B,¢)[{XiB + 60(T})} — u{X:B+ 6(T;, B)}]

i=1

By Lemma 1, if either (2.4) or (2.8) is true, E[C},| = 0. E[Cy,] = E[Cs,] =
0 follows from the fact that E[S(R, Wes; ) = E[l(Was;m*)] = 0.

We remains to show that Cy, is order of 0,(1). From the result of



Theorem 1, after some calculation, we can write Cy, = —Cy1p, — Cyop —



Cyzn — Cuan + 0,(1), where

C41n - 1/2h2 - Z ZZXZJM'E] U /“Lzl b*( 11) + O ( 1/2h4)7

i=1 j=1 [=1

Cun =355 ol
. {W2 Tt Z Z Z Ko(Toy = a2t (7,1, B 90>}
=n1/? Z i PN AR A MR

> BIX Al MWy (D) T = t]fl(t”tTi/j/}
l
Cyzn =n"1/? Z Z ZX”[LJ vl l%l

m

=1

=1 j=1 I=1
n

m m

X { Tzl nilzZZuZ]’Tl i ElaT’ ’)5:/1’(7:77?7B700)}

i'=1j'=11U=1

n m m
_ —1/2 (1) j/l/ j/l/ * A
=n" ZZZM'J'/,M vy e (T, M, B, 60)

i'=1j'=11=1

X {Z > BIX A0 AgWi (1) Q3 (T, 1) -1, } fi(t)
j=1 1=1

CY44n = nil/Q Z Z Z XZ]M@] U :uzl

i=1 j=1 =1
n

W T S S o QT Ty . B |
i'=1j'=1
=n 1/2ZZ,U /tvjlj U]’ 6 (+7ﬁ76790)
i'=1j5'=1

X {Z > EIXGA 0l MWy () Q5 (T, )] =1, } fi(t)

j=1 =1



As long as 0 is consistent and nh® — 0, we will have Cy1,, — 0. In
addition, from the result of Lemma 1, it is easy to show that Cys, — Cysp

are all order of 0,(1).

6 Proof of Corollary 1

Let D*, €, S, and S, be the shorts for D(B8y, ("), €5(T",m", Bo, ),
S(R, Wys; ), and U(Ws;m*). Proof of (b) and (d) are straightforward.
We only provide proof of (a) and (c).

(a) It is easy to show that if (2.4) is true, E[D*0e, /01| = —E[D*e}S,],

E[0S;/01] = —E[S;ST], and n(7*) = 7. Thus By(V') reduces to
By(V)=Var {D"e, — E[D*¢,,S;|E[S; S]] 'S, }.

Instead, if true m;; are known and are used in LAIPW method, the asymp-
totic variance of B is Qg(V) = A" (V)By(V)A (V) with Bg(V) =
Var{D*e},}. We conclude that By (V') < By (V) since D*e,—E|D*c},S,|E[S,ST]7'S,
is the residual from the population regression of D*ej, on S;.

(c¢) Noting that A(V') is not a function of ¢, minimizing Q4(V') is
equivalent to minimize By(V).

Since (2.4) is true, we rewrite

0 0 -
E|D(By, C*)a—TEZ(T*,??*jﬁoa 90)] E [ES(R’ Wos; ™) | S(R, Weps; T7)



7.1 Computational Time Comparison under n = 500

as E[D*e}S.]E[S,S1]~'S,, which is a projection of D*e}, on S,. Thus,

there exist a series of function aj(-) such that

E[D*e}S-|E(S,SY]7'S, = (R — miRi_1)aj(W_y).
k=1

Define

A= {Z(Rk — T Rp_1)ar(Wi_1) : ai(-) are a series of arbitrary functions} .

k=1
Then, we claim that
D'e}, = R,T,, D'c — 11 [R,T,, D"€|\]

because (i) D*e}y = — R,7,, D(B,¢*)e € A and (ii)

{D*%t}T {i(Rk _ kak_l)ak(Wk_l)}] ~0

k=1

E

for any ax(-). (i) can be verified by definition. From a martingale covariance

calculation, (i) will hold if ¢p(Wig—1;m) = E[YMWi(k_l)] is correctly
specified.

Since E[D*e},S,|E[S,SI]™'S; € A, we have

opt

Var{D'e},, } = Var {R,7, D' ~ 11 [Ry7,' D*e[A] }

<Var {D*e}, — E[D*¢},S;|E[S,S]]'S.}.



Table Al: Comparison of computational time (in seconds) among naive, LIPW-KPEE,

and LAIPW-KPEE estimators based on 100 replications of the simulation with n = 500.

Computational Time

Naive 55.13
LIPW-KPEE
True 7 21.26
Consistent 7 21.28
Wrong 7 21.85

LATPW-KPEE

True 7 and ¢ 25.79
Consistent # and ¢ 25.78
Wrong 7« 25.46
Wrong ¢ 24.83
Both wrong 25.28

7 Additional Results for Simulation

7.1 Computational Time Comparison under n = 500
7.2 Performance Evaluation under Small Sample Size n = 100

We further conduct a simulation in the setting of small sample size with
n = 100. As expected, a smaller sample size leads to increased variability,

particularly in the estimation of 6(-). Nevertheless, our proposed methods
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Figure Al: (a) Comparison of the true 6(¢) and point-wise empirical mean of the non-
parametric functions (t) with n = 100. (b) Comparison of point-wise empirical variance

of the nonparametric functions 6(t) with n = 100.

still demonstrate reasonable bias control and maintain robustness across
different model specifications. The results in Table A2, Figure Al, and
Table A3 confirm that, even with a small sample size, the overall patterns

observed remain consistent with the results for n = 500.

8 Additional Results for Application

The missing data model is constructed as follows:

logit{m;; } = XZT,



Table A2: Comparison of naive, LIPW-KPEE, and LAIPW-KPEE estimators in terms
of bias, estimated standard error (EST S.E.), empirical standard error (EMP S.E.), and
empirical mean squared error (EMP MSE) of ,é' and empirical mean integrated mean

squared error (EMP MISE) of (-) based on 100 replications of the simulation with

n = 100.
Br1=1 B2 =4 0(-)
Bias EST EMP EMP Bias EST EMP EMP EMP
of i SE. SE.  MSE  off SE SE MSE  MISE
Naive 0.046 0.037 0.055 0.003 0.414 0.234 0.290 0.237 0.153
LIPW-KPEE

True m 0.051 0.063 0.064 0.004 0.296 0.375 0.363 0.130 0.135
Consistent 7 0.050 0.052 0.063 0.004 0.284 0.337 0.355 0.125 0.119
Wrong 7 0.048 0.0564 0.058 0.003 0.475 0.339 0.328 0.302 0.215

LATPW-KPEE
True 7 and ¢ 0.035 0.043 0.045 0.002 0.241 0.284 0.304 0.092 0.064
Consistent 7 and qAS 0.051 0.056 0.065 0.004 0.246 0.297 0.306 0.092 0.072
Wrong 7 0.049 0.057 0.059 0.004 0.249 0.304 0.309 0.096 0.067
Wrong (]S 0.092 0.112 0.126 0.016 0.265 0.322 0.323 0.104 0.122
Both wrong 0.061 0.072 0.078 0.006 0.407 0.309 0.303 0.224 0.247




Table A3: Comparison of computational time (in seconds) among naive, LIPW-KPEE,

and LAIPW-KPEE estimators based on 100 replications of the simulation with n = 100.

Computational Time

Naive 2.46
LIPW-KPEE
True 7 1.03
Consistent 7 1.04
Wrong # 1.07

LATPW-KPEE

True 7 and ¢ 1.19
Consistent # and ¢ 1.19
Wrong 7 1.18
Wrong ¢ 1.16

Both wrong 1.17
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Figure A2: Average CD4 count with 95% confidence interval over time, adjusting for
other covaraites, in LEOPARD study derived from naive method, LIPW-KPEE method,

and LAIPW-KPEE method.

where X;; consist of the function of sex, mean-centered birth weight, preterm,
delivery mode, maternal prenatal ART history, mother’s CD4 count, and
breastfeeding status. For the conditional mean model, we adopt a similar
approach but utilize a quadratic form of age. The curve of f(age) with 95%
confidence interval is displayed in Figure A2.

In longitudinal studies, transforming the data during model diagnostics

is essential to eliminate within-cluster correlation in the standard residu-
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Figure A3: (a) Normal quantile plot of the transformed residuals. (b) Autocorrelation

plot of the transformed residuals.

als. We achieve this with Cholesky decomposition, V; = L;Li’. Denote
the residuals of the conditional mean model as r; = Y; — X;n. we apply
the transformation rf = L; 'r;. Figure A3 demonstrates that the residuals
closely approximate a normal distribution, with no autocorrelation. Ad-
ditionally, Figure 1 shows no obvious systematic trend, and the variance
remains homogeneous over time.

We assess the goodness of fit for the missing data model using the
le Cessie—van Houwelingen—Copas—Hosmer unweighted sum of squares test
(Hosmer et al., 1997). The p-value obtained from this test indicates that

the model fits the data well.



REFERENCES

. o . . P
2000- . = oS 55 2000-

Transformed Residual
Transformed Residual

.
-2000- 2 o = = 2000- &
.

0 1000 2000 3000 0 200 400 600
Transformed Predicted Value Transformed Time

(a) (b)

Figure A4: Scatterplot of (a) the transformed residuals versus transformed predicted

values, and (b) the transformed residuals versus transformed age.

References

Hosmer, D. W., T. Hosmer, S. Le Cessie, and S. Lemeshow (1997). A com-
parison of goodness-of-fit tests for the logistic regression model. Statistics

in medicine 16(9), 965-980.

Robins, J. M. and A. Rotnitzky (1992). Recovery of information and ad-
justment for dependent censoring using surrogate markers. In AIDS epi-

demiology, pp. 297-331. Springer.

Robins, J. M. and A. Rotnitzky (1995). Semiparametric efficiency in mul-
tivariate regression models with missing data. Journal of the American

Statistical Association 90(429), 122-129.

Robins, J. M., A. Rotnitzky, and L. P. Zhao (1995). Analysis of semipara-



REFERENCES

metric regression models for repeated outcomes in the presence of missing

data. Journal of the american statistical association 90(429), 106-121.

Wang, N.; R. J. Carroll, and X. Lin (2005). Efficient semiparametric
marginal estimation for longitudinal /clustered data. Journal of the Amer-

ican Statistical Association 100(469), 147-157.



