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1. Proofs of main theorems

This section contains proofs of our main results.

Supplementary I: Proof of Theorem 1

For model (1.1), a semiparametric efficient score for 3(7) at any 7* € (0, 1)
is derived by the least favorable submodel method (Begun et al., 1983,
Bickel et al., 1993). Without loss of generality, we calculate the efficient
score for the j-th component of B(7) first. From van der Vaart (1998,

section 25.4), we begin with the construction of a parametric submodel of



model (1.1) with parameter 6 in a neighborhood of 0,
Q(r.01X) = X 'B(r:0), (A1)

where B(7;0) = B,(7) + 0d(7) and d(7) has a continuous derivative.
Let n(t|X) be an inverse function in 7 satisfying X "3(7;0) = t. When

0 =0, let n(t|X) = no(t|X). From t = X " 3(7;0), again, it follows that

or XTd(r)
90 XTBy(r)+0XTd(r)

It follows from model ((A.1)) that the density function

1

(0] X)] - o) = - —.
f( ‘ )’t XTB(r:0) XTﬁD(T)+9XTd(T)

By Taylor expansion, we have

fl (t7 G‘X) |t:XTﬁ(T;9)
1

~XE +0g(t]X) +0(10g(X " By(1)|X)]),

=m0 (t|X) t=XTP(7)

where

_ XTd(T)XTB()(T) - XTd(T)XTﬁO(T)'

X -
AL S (X7 By(7))?

Observe that
1

J(XTBo(7)|X) = m



Then,

f(t;0)X) li=xT 8(r:0)

=1, -+ 0(1X)] +0((89(X T By(m) )],

t=X t=X"TBy(7)

Denoted by G(¢|X) = [*__ g(u|X)du. Then we have

XTd(r)

G(XTBy(7)]X) = —m‘

(A.2)

To guarantee f (¢;0|X) being a density function of ¢ for all 6, we need

condition for G(t|X),
lim G(X " B, (7)|X) = lim G(X " By(7)|X) =0,

that is,

oy dr) L XTd(r) (A.3)
70 XTBO(T) Tl XTBO(T) . .

As d(7) is independent of X, equation (A.3)) holds for all X. Then, d(7)
can be obtained by solving a second-order differential equations. Without

loss of generality, let
d(0) =d(1) =0. (A.4)

Consider the parametric submodel (A.1]) subject to constraint (A.4)). It

is well-known that Var(5;(7*; 0)) can be generally expressed as d; (7%)2Var(6),



where d;(7*) and §;(7*; ) are the j-th components of d(7*) and B(*; ) re-
spectively, and 6 is an estimator of §. When d; (7*) equals to 1, Var(8;(1*; )
can be approximated by Var(é). Thus, we set d;(7*) = 1.

It follows from ({A.2)) that

o(X () X)X T Bu(r) = — 2 2 ADY

or XTﬁo(T)
X Bo(n) X)X Td()}
— 5 )
Then,
dlog f(HOIX)| gt]X) 9 T T _
| = = e U BN e
The semiparametric efficient score is of 3;(7),
50, X:7) = = L HXTBIX)X Td(r)} (A5)
AR ~ or T=n(Y|X)’ '
where d is a minimizer of
2
0
I(d) = E | |21 f(XTB(7)| X)X Td(7) ]
37{ ' i } r=n(Y]X)

over d(-) = (di(+),...,d,(+)) " subject to d;(7*) = 1 and d(0) = d(1) = 0.
Since ¢ is the score function of the parameter 6 for the parametric

submodel (A.1), the Fisher information is Z(d) = E(£?), then the Cramér-

Rao lower bound is 1/Z(d). As a result, it provides the semiparametric

efficient score and the efficiency lower bound 1/Z(d) (Bickel et al., 1993).
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Existence of d(7) . One solution of d(7) can be obtained via minimizing
the objection function Z(d) subject to d;(7*) = 1 and d(0) = d(1) = 0.
For notational convenience, we consider model (1.1) with p = 2, where
X = (1,X)7 and By(7) = (Bio(7), Bao(7))T. Here, we assume that d(7) =
(d1(7),dy(7)) " has continuous derivatives up to the second order. Denoted

by Bx (1) = X7d(7)/(XTBy(7)). Then, we have

T(d) = E{(Bx(r)*r—mix)} = E1 / (Bx(r)?dr},  (AS)

where

_XTA)XT Bylr) = XTd(r)XTBy(7)
(XTIBO(T))2
_XTd(r)XBy(7) — X [ d(u)duX T By(7)
(X7 By(7))? ‘

Let Z'(d) = Z(d). Define a Hilbert space

Bx(T)

H=1{dc Ly0,1): T (d) < o0,d;(7*) = 1,d(0) = d(1) = 0},

with an inner product, for v, w € H,

! XT[5 v(u)du XT[5 w(u)du
0w s E{/O %(ﬁ)%( ){Tﬁo(f) >}’

where Ly(0, 1) is square integratable space of functions in (0,1). The inner
product induces a norm, for v € H,
o]l = (Z (v))"/2.

5



It follows from Banach-Alaoglu Theorem that the closed ball with 0 < ¢t <
o0,

Bi={veH:T(v)<t}

is weak compact. Thence, for any convergence sequence V = {v, € By, =
1,2,---} with Z'(v;) converging to a constant as [ — oo, there exists a
subsequence {w; € V,1 = 1,2,---} such that w,; converges in distribution

to d € B,. From the lower semicontinuity of Z'(d), we have

T'(d) < liminf . T ({w}),

/

which validates the existence of d(7) = d (7).

A special case with p = 1. When there is only an intercept term or one-

dimensional covariate X without intercept in model (1.1), that is X = 1 or

X, it shows
)
BX T) = —= R
=4
(0) = BB () mmivi} = B D o)

Considering the Fréchet derivative of Z(d) with respect to d, we obtain

Bx(t) =0 forall 7 # 7", (A7)



Since d(7*) = 1, it follows from (A.7) that

*

d(r mT +az, TS T
Bx (1) = .( ) = (A.8)

*

asT +ayg, T > T .

In view of d(0) = d(1) = 0, we have as = 0 and a3 = —ay4. In addition, due
to d(7*) = 1, it is not hard to check that a;7* = 1/fo(7*) = as(r* — 1),

which implies

As a result,

d(T) o BU(T*)T*J T S T 7

BO(T) _ 1—7 *
Bo(T*)(1=7%)’

and the lower bound is

YU TN *
01(7)—m—60(7')7'(1—7).

Supplementary I1

This section contains Lemmas 1, 2 and 3 and their proofs. More notations

are needed. Let U be a pL x pL matrix satisfying

v U = Z E{f(XTBo(r)|X)X "oy — (X7 Bo(m)| X)X v}

—1 T — Ti-1
for any v = (v],vy,...,v]), v; € R, i = 0,....,L + 1. Let W be

a diagonal matrix with diagonal components the same as 1/diag(U™1).
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Denote U* = U 'W. Let D} be a p x p matrix, [ =0,..., L+1, satisfying
D;=D; ,=0,(D;,Ds,....Dj}) = (U1, Upa, . .., Ukp) ", where uy; is the
{(k = 1)p + j}-th column of matrix U*. For a quantile level 7* of interest,

let 7, = 7* for some 1 < k < L.
Lemma 1. Under model (2.9), the semiparametric efficient score for B(1*)
18

T T Tp*x _ T T T y*
SHY. X7 = 41 JXT B )XOXT Dy IO B X)X T D

TI—Ti—1

I{XTﬁ(Tl_l) <Y < XTﬁ(Tl)} — (Tl — Tl—l) . (A9>

Moreover, for the estimator of the j-th component of B(7*), ils variance

has a lower bound

O'j2(’7' ):m, ]:1,2,...,p. (AlO)
kj J

Proof of Lemma 1. For model (2.9), a semiparametric efficient score for
B(7*) is calculated by the least favorable submodel. Firstly, the efficient
score for the j-th component of B(7*) is derived. Similar to proof of Theo-
rem 1, a parametric submodel of model (2.9) is constructed with parameter

f in a neighborhood of 0,

Q(n.0|1X)=X"B(r:60), 1=1,--- L, (A.11)



where B(m;0) = By(1) + 0d(7;), d;(7*) =1, and
G(X " Bo(n)|X) = —f(X"Bo(m)| X)X "d(n), [=1,---,L.  (A.12)

For the density function f'(¢|X), we can show

dlog f'(t|X) _g(t]X)
80 o—o  fX

~—

Letting d(79) = d(17+1) = 0 and by the Cauchy-Schwarz inequality, we

have
BE1X) 2 %U e
Write
E(¢*) =E(E(£°1X))
>L§ EACX Bo(n- 1)\X>XTd(T7_1>Tl1f<XTﬁo(n>!X)XTd(n)}2
—d'Ud,

where d = (d(m1)",d(r)7,...,d(r;)T)T, and the equality holds if and only
if

L+1

= {af?(tX) + b}{X Bo(rir) <t < X Bo(m)}.

=1

gt Xx)
JR(HX)

It follows from the constraint (A.12)) that for [ =1,---, L+ 1,

{f(XTBo(r1)|X)d(ri1) = f(X Bo(r)| X)d(m)} X

T — Ti-1

bl:(), [




Therefore, the semiparametric efficient score for 3;(7*) is

g(t]Xx)
FtX)

L+1

X oTllXXdTll XTOTZXXTdTl
_Zfﬁ )IX)X " d(ri-1) = f(X 7 Bo(m)| X)X d(7)

T — Ti-1

t=Y

x {I(XTBo(ria) <Y < X Bo(n) = (= m1) |,
where d = (d(r1)7,d(m)7,....d(r)7)7T such that E(£?) is minimized,
which is equivalent to minimizing the quadratic function d'Ud subject

to d;(7*) = 1. By the Lagrange multiplier method, we have
L(d,\) =d'Ud + Md;(7*) — 1}.

Setting OL(d, \)/dd = 0 and d;(7*) = 1 leads to

d:'u,kj?

where uy; is the {(k — 1)p + j}-th column of matrix U*. As a result, for

1 < j < p, the semiparametric efficient score for 3;(7*) is

Z FXTB(n-)| X)X Td(n1) — f(XTB(n)| X)X Td(n)

T — Ti-1

SV, X7

X [I{XTﬁ(Tl_l) <Y < XT,Q(TZ)} — (’7‘[ — Tl—l)];

with d = ;. Hence, the semiparametric efficient score for 3(7*) is

S*(Y,X; 1) =§ FXTB(n)|X)XTDi, - f(XTB(m)[ X)X D;

=1

X [H{X"B(n-1) <Y < X'B(n)} — (1 —7n)).

T — Ti-1
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The proof of Lemma 1 is complete.

Lemma 2. Under model (2.9), as L — oo and the mazimum of {7 —

1,0 =1,2,..., L+ 1} tends to 0, for j =1,...,p,
SHY, X;77) = S;(Y, X;7%)  in probability,

and
o (1) — JJZ(T*).

J

Proof of Lemma 2. The efficient score in (2.10) can be rewritten as

Li FXTB(m-)X)XTd(ny) — F(XTB(1)| X)X Td(n)

T — Ti—1

S;(Y,X;7) =

HX"B(n) <Y < X'B(n)},
(A.13)

where S5(Y, X;7%) is the j-th component of S*(Y, X;77), and

d=[d(n)",...,d(m;)"]" is a minimizer of the quadratic form
E[{S;(V,X;m)}]=d"Ud
subject to d;(7*) = 1. Thus, Lemma 2 can be proved in a straightforward

fashion by simple algebra.

Let ,éc(T) be the classical Koenker-Bassett regression quantile estimator
of By(7) at any given quantile level 7 and let h be the bandwidth for the
estimation of By(7), the derivative of By(7).
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Hereafter, mathematical operators of vectors or matrices A and B, such
as A+ B and A/B, stand for the operators of the corresponding elements
or components of A and B.

Next, we intend to show that the resulting estimator Bj (7*) achieves

the semiparametric efficiency lower bound.
Lemma 3. Under model (2.9), assume that assumptions (A1) — (As) hold.
Then, for j =1,2,...,p,

Vi { Bi(r) = Bus(r) } = N (0, o}%(r) (A14)

in distribution as n — oo, where By,;(T*) is the j-th component of Bo(T*).
Moreover, the asymptotic variance of Bj(T*) achieves the semiparametric

efficiency bound o7*(7*).

Proof of Lemma 3. We prove this lemma in four steps.

Step 1. To prove

) og(n)}3/2
sap |76 - 160|010

—M<t<M.

+ h2) . (A.15)

where f(t|X) = 1/{XTB(7')} with t = X TB3(7) for any fixed e <7 < 1—F¢,

iy = BN Bl

and M, is certain constant large enough depending on ¢ and M. To this
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end, first, standard approximation by the Taylor expansion gives

60(7’ + h) - ,60(7' - h)

5 = Bo(1) + O(h?).

From Portnoy(2012, page 1733), condition (A2) and the boundedness of X

in assumption (A1), we have

1 1
sup <

e<t<l—e¢ XT,Q(T) Bl XT,B()(T)

1 (logn)*/? 2
=0 h
p < /nh2 + nh + )

which implies that (A.15) holds.

Step 2. Let Dy be the estimator of D} by replacing 8(7) and f with 3°(7)

and f for 1 <[ < L, respectively. Similar to the proof of Step 1, it can be

shown that
- 1 {log(n)}*/* 2)
D —D/| =0 + +h*), A.16
S | D z p ( s o (A.16)
and
D; D; 1 1 3/2
sup d! _ 5—1 -0, ( i {log(n)} i h2> ‘
2<i<i+1 | X TBo(m)  XT(n) Vnh? nh

(A.17)

Step 3. To evaluate the estimated score function S*(Y, X;7*) in Lemma 1

by plugging in the estimates f(-|X), lA)l* and B°(1), l = 1,...,L. To be
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concise, we define

L41 A
ag — R .
S*(Y;, X5 7%) Z X Br) < Vi < X[ B5(m)}
—1 — Ti—1
—(n—m7-1)],
where a;; = X"TD* and ay = —i . By the monotonicity implied by the
i — X;I—IB(Tl) i — XT,B ( y y p y

quantile regression model, we have

%ié*m,xi;m

i=1

53 ail DB (X Bolmn) < Yi < X[ Bulm)} = (7= o)

=1 =1
A
N = Ti-1
1 2 (a G — agi - -
4= ZZ (-1 — l_l)l) ( i lz) % (A;,l o A;)
N34 Tt = Ti—1
T LA, (dz 1) — Q- 1)1) (dli_ali)
[ =Tt

x [I{X, Bo(r-1) < Y; < X;' Bo(m)} — (1 — 71-1)]

1
=Y SV, Xy 1) + 10 + 10, + 113,
n
=1

where Al = I{XBy(n) < Y; < X B°(n)}. Clearly, E(Ai_,) # 0. Hence,

we can show

A 1 (logn)*/ 2)
Al =0 + +h),
1S§111£L| ! P (\/ nh? nh
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which indicates that

n

L+1 . AL
Z CLh AZ —A’ZL)
T — T

T4 b=l

:q(qﬁ#+w§y”+ﬂy

uniformly in ¢. Similarly, it can be shown that, uniformly in i,

o= (1 [ L),

and

Iy = O, (% [\/% + {1og$3}3/2 + h2D .

Combining (A-18), (A19) and (E:20), we have

su S* (Y, X 7%) — — SO (Y, X ™
S, Z Z )

=0, (L [\/% + {1ogf;)}3/2 + h2D :

n

(A.18)

(A.19)

(A.20)

(A.21)

. . . . *2 * _ T . .
For the variance estimation, since 0;%(7*) = 1/{u,;Uwy;}, we estimate

it by the plug-in method. In view of (A.16)), we have

L flogm)}”
vVnh? nh

swp  |6%(n) — 02X(m)| = O, (

1<I<L1<j<p

+h2>.

Step 4.  Recall the proposed one-step efficient estimation in Section 2,

which is, for j =1,2,...,p

Zz 1S*(K?X177— )

n




For ease of presentation, we define

L+1
A1—1); — Q4
SO, X, B() =Y % [1{X]B(r1) < Yi < X[ B(n)}
=1 -

—(Tl — Tlfl)] .

According to the above definition, S°(Y;, X;; 7*) = S*0(Y;, Xi; 7%, Bo(7*)).

Observe that, for j =1,2,...,p,

Bi(7*) = Bos(17)
={B5(7") = Bos(T")} + (632(7) — 0;2(7*))% > LS (Y, Xy m) = S)(Yi, Xy 7))

=1

* * 1 - G * *
—i—ajz(r )ﬁ Z{Sj (Y5, X3 77) — Sﬁ')(Y;?Xi?T )}
=1
]. u * A~k * * *
=D S X ) (67 (r) — 03 ())
=1
1 n
*2 * 0 P
—I—Uj (7’ )E;S](K’X“T )

Since S]"-‘O is the efficient score, one can show that uniformly for ||3(7) —
Bo(n)|| < B,and 1 <[ <L,
S0, SOV X7, BL)) = Y, SOV, Xii ) + nA{B(r) = Bo(r)}
v +n|B(r%) = Bo(7) [0
= 0p(1), (A.22)

where A, = (1/n) Y0 {9/(98(r")S,2(Yi, Xis 7, B())}, 0 < & < 1, and
B, -+ 0asn — oo.
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Second, by the central limit theorem,

1 . * * * —
%ZS]O(}/wXZaT ) _>N(O> {JjQ(T )} 1)7 (A23)
i—1
in distribution as n — oco.
Third, by the law of large numbers, —A,, — {¢}*(7*)} ! in probability
as n — 0o. Recall that 67*(7*) — 03*(7*) = 0,(1). Moreover, using (A.21)
and (A.22)), we have
() = Bol(r") + o (P A{B(T) = Bol(7)} = 0y (n 7).

Finally,

A

1 n
* * *2 * 0 e
ﬁj(T ) = BOJ(T ) + 0 (T )ﬁ lej (}/ZWX%T ) + T,
where 7, = O,(L/(nh*) + Lh*) for n sufficiently large. In view of (A.23)

and Assumption (Ajz), we have shown
V{Bi(77) = Boi(T%)} = N(0,07(1"))
in distribution as n — oo. The proof of Lemma 3 is complete.

Remark. Note that we need r,, = 0,(1/4/n) to ensure the asymptotic

normality, which requires
Vnh* = oo, and vnh* = 0

as n — oo. It implies that we need to assume that h = o(n~°) with

1/8 <6 <1/4.
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Supplementary III

Proof of Theorem 2. The first part of Theorem 2 has been shown in Lemma
2, and the proofs of the second part are analogous to those of Lemma 3,
with L satisfying log(n)/c < L < clog(n) for a positive constant ¢ > 1. We

omit the details.

Supplementary IV

Proof of Theorem 3.
According to the proofs of Lemma 3 and Theorem 2, we have a Bahadur

representation of 3;(7) for 7 € (e, 1 —e),

A

l & .
Bi(1) = Bo,(7) +012-(T)ﬁ > SNV XiT) e, G=1....p.
=1

For any set w = (uy,...,ux)' with different values uy € (¢, 1 —€),k =
1., K, let B;(u) = (Bj(w), . ... B;(ux))T and Boj(w) = (Bo(w), .- ., Boj(ux)) -
Since the data (Y;, X;),i = 1,...,n are independent and identically copies

of (X,Y) from model (1), it can be easily shown that

Vi{B;(w) = Bo(w)} — N(0,%) (A.24)

in distribution as n — oo, where ¥ = (g(u;, u)) kxx and g(u, v) = o?(u)o?(v)

E{S)(Y, X;u)S}(Y, X;v)} for u,v € (¢, 1 —e).
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Next, we intend to show {S;(Y,X;7) : B8 € ©,7 € (¢, 1 —¢)} isa
P-Donsker class, where © is the space of 3 satisfying Assumption (A,).
For ease of presentation, we let one quantile grid point 7, = 7 vary across
(e, 1 —¢€), and the rest L — 1 quantile grid points, denoted by A. For
any quantile level 7, let S5(Y, X;7) be the semiparametric efficient score
for B;(7) given in (2.10) by combining the information across the quantile

levels in A and 7. It follows from (2.10) that

S (Y. X:7) = (S (Y. X:7), o SV, X3 7))
_§2 FXT B X)X DL, = FXTA(m) X)X D;
2 = T
x [[{XTB(TH) <Yi-(1- TH)}
- f(XTB(n)| X)X Dy, — f(XTB(n)| X)X Dy

2
=1

><R1—n)—ILXU%n)<}?]

EHl + HQ.

Under assumptions (A;) and (Ay), f(X"B(7)|X) and X T D} are bounded
forl=1,...,L+1. Clearly, II; and II; are monotone in Y and bounded for
all 3 € © and 7 € (¢, 1 —¢€). Applying Lemma 4.1 in Kosorok (2006), we
can show that {II; : B €O, 7€ (¢, 1 —€)} and {Il,: B €O, 7 € (¢, 1 —¢)}

have bounded entropy (with bracketing) integral, which indicates that {II; :
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BeOTE ([, 1—¢€}and {Il: B € O,7€ (¢, 1 —e¢)} are P-Donsker
classes. As a result, {S}(Y,X;7): B € ©,7 € (¢, 1 —¢€)} is P-Donsker.
According to Theorem 2.1 in Kosorok (2006), Lemma 3 and Theorem 2,

the proof of Theorem 3 is complete.

Supplementary V

For the jth component of 3(7x), 7 = 1,...,p, it follows from (A.13) that
d can be solved by minimizing quadratic form d"Ud over d, subject to

d;(1) = 1. For | # k, letting the derivative of d' Ud on d(7;) be 0, we have

(7141 — ) E{f(X " B(m—)| X) £(X T B(7)| X)X X " }d(7i-1)
— (141 = ) E{F(X T Bm)X) frix (X TB(m)) X X T}d(7)

+ (11— 1) E{ fyix (X T B(7)) fyrix (X T B(1141)) X X " }d(7111) = 0.

Based on model (1.1) with p = 1, we have

1

X X)X == , 1=1,2,..., L.
FXBEINX = 5o
It follows that
d(7-1) d(m) d(7i41)
0= — - — —T_1)—= —T_1)—=
(Ti+1 Tl)ﬁ(ﬂ_ﬂ (Ti41 — 7 l)ﬁ(Tz) +(n—m l)ﬁ(TzH)

oy ) dm)y S d(n) d(m)\
= l){B(TZ—l) 5(71)} ( ){/6(77) 5(Tl+1)}
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Hence, the score (A.13)) becomes

S*(Y,X;Tk)
_ Z F(XB(ri1 !X)Xd(;z j)Tl_lf(XB(nﬂX)Xd(n)] (XBlr1) <V < XB(r))
_ { d(r)/B(r) — (741 /B(risr)  dlmir)/Blre ) — dm)/mm)}

{m. —I(Y < B(m)X)}.

Supplementary VI

For illustration, we consider the estimate of 31(71) when p > 2 and L = 2.
If we only consider single quantile level 7; and ignore the model information

at quantile level 7o, by (A.13) with L = 1, we have

1

E(S1(Y,X;n))=FE A=)

{f(XTBr)IX)PX Td(n)}? | = E(Qu).

On the other hand, by incorporating the model information at 75 (L = 2 in

(A.13))), we have

E(S{(Y,X;m)%)

B[ (OO () + 1 (S B() X)X d(m)
+ (ST BEOX T d(r) — (XA X)X d(r) ]
=F(Q2).
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Then,

Q2 — @1

= R T B X)X Td ()Y

To — Tq 1—7'1

AT X B X)X )

2

T —T1

FXTB(r) XX Td(m) L (X7 B(72)| X){X "d(m2)}

> 0. (A.25)

Notice that F(Qy) and E(Q;) are variances of the scores of B(m) with
and without the model information at quantile 75, respectively, and that
1/E(Q2) and 1/E(Q,) are the corresponding efficiency bounds of estimation
of B(m). Since implies 1/FE(Q,) < 1/E(Q,), it can be concluded
that combining information of a different quantile 7 leads to efficiency gain

in estimating B(7;). The proofs are complete.

Supplementary VII: more numerical results

We study the performance of the proposed method under different combi-
nations of 7s: (0.5, 0.7), (0.5, 0.7, 0.9), (0.5, 0.6, 0.7, 0.9) and (0.5, 0.6,
0.7, 0.8, 0.9), corresponding to L = 2, 3, 4, and 5, respectively. In Figure

1, we plot computation times and MSEs of regression coefficient estima-
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tion vs. different lengths of 7. As L increases, computation time becomes
large. MSEs for the proposed method with L = 4 and 5 are much larger
than those with L = 2 and 3. This is reasonable in our view, as density
estimation involved in our proposed procedure becomes more challenging
when the number of 7 increases.

We also compare the numerical performance of the three methods with
higher quantiles quantiles 0.8 and 0.9, which are shown in Table 1. Per-
formance of the proposed method with more covariates in model (3.17) are
shown in Table 2.

For the birth dataset, Figure 2 plots MSEs of median quantile estima-
tion from different lengths of 7: (0.5, 0.7), (0.5, 0.7, 0.9), (0.5, 0.6, 0.7, 0.9)
and (0.5, 0.6, 0.7, 0.8, 0.9). We observe that the combination with (0.5,

0.7, 0.9) has the smallest MSE.
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Table 1: Simulation results for five models with quantiles 0.8 and 0.9.

Model n B1(T) Ba(T) B1(7) Ba(T)

M1 True 2 1.8416 2 2.2816
1000 TQE 2.007(0.0603)* 1.8332(0.1072) 2.0117(0.0725) 2.2734(0.1296)
SEF 2.0098(0.0318) 1.8262(0.0642) 2.0158(0.0362) 2.2605(0.0784)
EFF 2.0033(0.0293) 1.834(0.0618) 2.004(0.0372) 2.2747(0.0769)
2000 TQE 2.0045(0.0412) 1.8361(0.0734) 2.009(0.0482) 2.2727(0.0877)
SEF 2.0054(0.0192) 1.8335(0.0414) 2.0088(0.0231) 2.2698(0.0543)
EFF 2.0014(0.0176) 1.8384(0.0411) 2.0029(0.0209) 2.2773(0.0515)
M2 True 2.8416 2.8416 3.2816 3.2816
1000 TQE 2.8459(0.1358) 2.8335(0.1365) 3.2885(0.1622) 3.2751(0.1648)
SEF 2.8438(0.0994) 2.8347(0.1022) 3.2818(0.1227) 3.2764(0.1237)
EFF  2.8443(0.099) 2.8346(0.1009) 3.2843(0.1191) 3.2782(0.1206)
2000 TQE 2.8454(0.0941) 2.8353(0.0936) 3.2861(0.1149) 3.275(0.1127)
SEF 2.8412(0.0686) 2.8401(0.0673) 3.2836(0.0851) 3.2784(0.0862)
EFF 2.8423(0.0678) 2.8394(0.0669) 3.2841(0.0821) 3.2802(0.0843)
M3 True 2 2.3863 2 3.1972
1000 TQE 2.013(0.1057) 2.3726(0.1876) 2.0246(0.141) 3.1834(0.2531)
SEF 2.0192(0.0572) 2.3572(0.1135) 2.0354(0.072) 3.153(0.1533)
EFF 2.0057(0.0548) 2.3733(0.1099) 2.0123(0.0668) 3.1796(0.1461)
2000 TQE 2.0084(0.0721) 2.3771(0.1284) 2.0186(0.0938) 3.1807(0.1708)
SEF 2.0108(0.0349) 2.3703(0.0732) 2.0201(0.0458) 3.1719(0.1061)
EFF 2.0035(0.0321) 2.3794(0.0725) 2.0083(0.0407) 3.1861(0.1002)
M4 True 2 2.3764 2 4.0777
1000 TQE 2.026(0.1548) 2.3654(0.2754) 2.1044(0.4091) 4.0791(0.7658)
SEF 2.0555(0.1174)  2.3(0.1921)  2.1874(0.2729) 3.9097(0.4643)
EFF 2.0225(0.1386) 2.3431(0.2045) 2.1088(0.245) 3.9753(0.4437)
2000 TQE 2.0168(0.104) 2.367(0.1876) 2.0754(0.2667) 4.0444(0.5028)
SEF 2.0298(0.0675) 2.3352(0.1179) 2.1081(0.155) 3.9713(0.3199)
EFF 2.0105(0.065) 2.3602(0.1124) 2.0615(0.1361) 4.0157(0.3069)
M5 True 2.3863 3.3764 3.1972 5.0777
1000 TQE 2.3961(0.2664) 3.3753(0.3228) 3.2258(0.4602) 5.127(0.8171)
SEF 2.3916(0.1973) 3.3608(0.238) 3.2108(0.3645) 5.1003(0.6241)
EFF 2.3877(0.1954) 3.3741(0.2349) 3.2078(0.3441) 5.1077(0.5728)
2000 TQE 2.3945(0.1843) 3.3708(0.2213) 3.2158(0.3218) 5.0801(0.5341)
SEF  2.3844(0.134) 3.3746(0.1568) 3.2074(0.2518) 5.0805(0.4226)

EFF 2.3867(0.1321) 3.377(0.1546) 3.2074(0.2408) 5.0878(0.3947)

* Standard deviations are in parentheses.
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Table 2: Simulation results with more covariates.

Bi(7)

B2(T)

Bs(T)

Ba(T)

0.5 True

1000 TQE
SEF
EFF
2000 TQE
SEF
EFF
0.7 True
1000 TQE
SEF
EFF
2000 TQE
SEF

EFF

2
1.9921(0.3855)
2.0014(0.2638)
1.9939(0.2678)
1.9973(0.2703)
2.0054(0.1799)
2.0025(0.1817)
2
2.0172(0.4593)
2.0465(0.3056)
1.9994(0.3198)
1.9942(0.3091)
2.0196(0.2115)

2.0017(0.2174)

1
0.998(0.2032)
0.9981(0.1634)
1.0007(0.1662)
1.0057(0.141)
1.0011(0.1169)
1.0021(0.1154)
1.5244
1.5186(0.223)
1.5114(0.1896)
1.5193(0.1897)
1.5306(0.1611)
1.5219(0.1333)

1.5252(0.1341)

1
1.0071(0.2558)
0.9986(0.1965)
0.9991(0.196)
0.9978(0.1838)
1.0007(0.1407)
1.0009(0.1419)
1.8473
1.847(0.292)
1.8314(0.2246)
1.8457(0.2298)
1.8483(0.2088)
1.8448(0.1602)

1.8487(0.1621)

1
1.0072(0.2282)
1.0065(0.1825)
1.0078(0.1799)
0.9963(0.1623)
0.9907(0.1235)
0.9911(0.1216)
1.7265
1.7305(0.2884)
1.7175(0.2268)
1.7378(0.2303)
1.7321(0.2104)
1.7162(0.1547)

1.7257(0.1533)

* Standard deviations are in parentheses.
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Table 3: Parameter estimate results for birth data with male child.

7 model

Intercept Mage

Fage

Nprevist

Est Esd

P value Est Esd P value

Est Esd P value Est Esd P

value

0.5 TQE 8.1311 0.0453

SEF

EFF

0.7 TQE

SEF

EFF

0.9 TQE

SEF

EFF

8.1137 0.0465

8.1236 0.0497

8.1217 0.0395

8.1197 0.0395

8.1213 0.0452

8.1934 0.0549

8.1788 0.0559

8.1847 0.0607

< 0.0001* -0.0362 0.0139
< 0.0001 -0.0313 0.0146
< 0.0001 -0.0337 0.0149
< 0.0001 -0.0154 0.0121
< 0.0001 -0.0146 0.0121
< 0.0001 -0.015 0.014
< 0.0001 0.0106 0.0154
< 0.0001 0.015 0.0158

< 0.0001 0.014 0.0173

0.0047

0.0162

0.012

0.1026

0.1141

0.1418

0.2459

0.1707

0.2094

-0.0096 0.0044

-0.0092 0.0046

-0.0104 0.0046

-0.0039 0.004

-0.004 0.004

-0.0046 0.0043

-0.0091 0.0047

-0.0091 0.0047

-0.0099 0.0054

0.0145 0.0357 0.0048 <

0.0225 0.0359 0.0052 <

0.0118 0.0367 0.0049 <

0.1638 0.0357 0.0045 <

0.1573 0.0357 0.0045 <

0.1429 0.0365 0.0051 <

0.0269 0.0228 0.005 <

0.0272 0.023 0.0052 <

0.034 0.0232 0.006 <

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

*

means that p value is

less than 0.0001.
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