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Supplementary Material

The supplementary material is organized as the follows. In Section S1, we provide some examples about efficient influence

functions and the challenge in two-phase sampling design with multi-dimensional parameters. Section S2 contains the reg-

ularity conditions and proofs. Estimation under two-phase designs is discussed in Section S3. Some additional simulation

results are reported in Section S4.

S1 Examples

S1.1 Examples of full data efficient influence functions

We introduce some examples of full data efficient influence functions for illustration.

Example S1. Let Y be a vector of outcomes which is hard to obtain. Suppose the parameter of interest is the outcome

mean θ0 = E[Y ]. Let Z be a vector of inexpensive covariates that is predictive to Y and hence useful in estimating θ0.

In two-phase studies, one can collect V = Z in the first phase and measure U = Y for a subset of subjects in the second

∗ Corresponding author

1



S1.1 Examples of full data efficient influence functions

phase. In this example, the full data efficient influence function is ψ = Y − θ0.

Example S2. Let Y be a scalar outcome which is easy to obtain, Z a vector of inexpensive covariates, and X a vector of

expensive covariates. Suppose the parameter of interest is the least squares regression coefficient θ0 of X in the regression

of Y on Z,X , which is determined by the estimating equation E[(XT, ZT)T(Y − XTθ0 − ZTβ0)] = 0 where β0 is

the nuisance parameter. In two-phase studies, V = (Y,Z) is collected in the first phase and U = X is measured for a

subset of subjects in the second phase. In this case, the full data efficient influence function is ψ = (E[(X − α0Z)(X −

α0Z)
T])−1(X − α0Z)(Y − XTθ0 − ZTβ0) where α0 = E[XZT](E[ZZT])−1 is the population linear regression

coefficient of X on Z.

Example S3. Let T ∈ {0, 1} be a binary treatment indicator, and Y the outcome. Suppose the parameter of interest is the

average treatment effect, i.e., θ0 = E[Y1 −Y0], where Y1 and Y0 are the potential outcomes under treatments “1” and “0”,

respectively. In observational studies, one needs to properly adjust for confounders to estimate θ0 consistently. In practice,

some confounders X may be hard to measure, while Y , T , and other confounders Z can be easily accessible. Then, a

two-phase study can be conducted, where V = (Y, T, Z) is collected in the first phase, and U = X is measured for a

subset of subjects in the second phase. Under the unconfoundness condition (Y1, Y0) ‚ T | (X,Z), the full data efficient

influence function is

ψ =
TY

π(X,Z)
− (1− T )Y

1− π(X,Z)
−
{

T

π(X,Z)
− 1

}
m1(X,Z)

+

{
1− T

1− π(X,Z)
− 1

}
m0(X,Z)− θ0,

where π(x, z) = P (T = 1 | X = x, Z = z) is the propensity score, and mt(x, z) = E[Y | X = x, Z = z, T = t] is the

outcome regression function for t = 0, 1.

The outcome mean estimation in Example S1 is an important problem in survey sampling (Cochran, 2007) and

epidemiological studies (McNamee, 2002; Gilbert et al., 2014). Regression problems with expensive covariates in Example

S2 are of great interest in modern epidemiological and clinical studies (Zeng and Lin, 2014; Zhou et al., 2014; Tao et al.,

2017), because the determination of a disease’s risk factor can often boil down to such a regression problem. Example S3

is of practical importance in observational studies (Yang and Ding, 2019). Previous works, e.g., Lin and Chen (2014) and

Yang and Ding (2019), focus on the estimation in Example S3 without exploring the sampling rule design. We contribute

by establishing the optimal sampling rule for a wide range of problems including Example S3.
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S1.2 Example for the issue with a multi-dimensional parameter

S1.2 Example for the issue with a multi-dimensional parameter

Example S4. Suppose Y ∈ {0, 1} is an indicator of some disease status and X ∈ {0, 1} is the test result of some fallible

test for disease status. Suppose V = X and U = Y . The prevalence of the disease θ01 = P (Y = 1), sensitivity

θ02 = P (X = 1 | Y = 1) and specificity θ03 = P (X = 0 | Y = 0) of the test are often of primary interest in

epidemiological studies. Let θ0 = (θ01, θ02, θ03)
T be the parameter of interest. It is not hard to show the efficient influence

functions of θ01, θ02 and θ03 are Y − θ01, θ−1
01 (X − θ02)Y and (1 − θ01)

−1(1 − X − θ03)(1 − Y ), respectively. Let

P (X) = P (Y = 1 | X). The conditional variances σ2
1(V ), σ2

2(V ) and σ2
3(V ) are P (X)(1 − P (X)), θ−2

01 P (X)(1 −

P (X))(X − θ02)
2 and (1 − θ01)

−2P (X)(1 − P (X))(1 − X − θ03)
2, which are different from each other. According

to Theorem 1, the optimal sampling rule for θ0j is determined by σ2
j (·). This implies that the optimal sampling rules for

different parameters are different from each other. Hence, there is no sampling rule that minimizes the semiparametric

efficiency bound for different parameters simultaneously in general.

Suppose θ01 = 0.2, θ02 = 0.8, θ03 = 0.6 and ϖ = 0.3. Then some numerical calculations can show that the

semiparametric efficiency bound for θ03 under ρsum(·; τsum) and the optimal sampling rule for θ01 are approximately 0.35

and 0.43, which are both larger than that under the uniform rule (≈ 0.30).

S2 Technical Details

S2.1 Regularity Conditions

Let F0 be the distribution of (V,U). We consider the case where the parameter of interest is a general functional of F0.

Throughout this paper, we assume ρ(·) is bounded away from zero and E[∥ψ∥2] < ∞ where ∥ · ∥ denotes the Euclidean

norm.

As in Newey (1994), we consider inference of a pathwise differentiable parameter within a locally nonparametric

distribution class. Here we briefly review the definitions of “pathwise differentiable” and “locally nonparametric”. See

Bickel (1982); van der Laan and Robins (2012); Tsiatis (2007) for more background on semiparametric theory. Let F be

a set of joint distributions of (V,U) whose specific definition depends on the problem we consider. Suppose F0 ∈ F . A

class of distributions {Ft : t ∈ [−1, 1]} is called a submodel of F if it is contained in F and the distribution Ft equals to

3



S2.2 Proof of Lemma 1

F0 when t = 0. Suppose Ft has a density ft(v, u) and let S(v, u) = d log ft(v, u)/dt
∣∣
t=0

be the score function under

the submodel. Suppose the parameter θ0 = θ(F0) is a functional of F0 where θ(·) is a functional defined on F . Then

the parameter is pathwise differentiable if there is some function ϕ(V,U) with zero mean and finite variance such that

dθ(Ft)/dt
∣∣
t=0

= E[ϕ(V,U)S(V,U)] for any regular submodel.

Pathwise differentiability is a commonly used regularity condition in semiparametric theory (Bickel, 1982). Here,

a regular submodel is a submodel that satisfies certain regularity conditions. See Bickel (1982) for more discussions and

the formal definition of a regular submodel. Typical examples of pathwise differentiable parameters including the mean or

quantile of a variable, the solution of many commonly used estimating equations among lots of other parameters.

“Locally nonparametric” is a property of the distribution class F . Because all the submodels are required to belong

to F , the fewer the restrictions on F , the more submodels, and hence the larger the set of score functions. Here, “locally

nonparametric” requires F to be “general” or “unrestricted” in the sense that the set of score functions can approximate any

function of (V,U) with zero mean and finite variance. In a locally nonparametric distribution class, general misspecification

is allowed and few restrictions are imposed except for regularity conditions (Newey, 1994). For example, the distribution

class which consists of all the distributions with a finite second moment is a locally nonparametric distribution class.

For a missing data problem, all the observation distributions with response missing at random also consists of a locally

nonparametric class.

S2.2 Proof of Lemma 1

This lemma can be obtained utilizing the techniques in the semiparametric theory for missing data problems (Tsiatis, 2007).

To be self-contained, we provide its proof here.

Proof. We show the efficient influence function is

h =
Rψ

ρ(V )
−
(

R

ρ(V )
− 1

)
Π(V )

and the semiparametric efficiency bound follows by straightforward calculation. The observed likelihood of (U, V,R) is

f(u | v)rf(v)ρ(v)r(1− ρ(v))1−r,
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S2.3 Proof of Theorem 1

where f(v) is the density of V and f(u | v) is the distribution of U conditional on V = v. For any regular submodel

ft(u | v)ft(v)ρ(v)r(1− ρ(v))1−r whose distribution is denoted by Ft, the score function is

rS(u | v) + S(v), (S1)

where

S(u | v) = d

dt
log ft(u | v),

and

S(v) =
d

dt
log ft(v).

We do not consider a submodel for ρ(v) since the sampling rule is determined by the researcher and hence is known in this

problem. Because ψ is the full data influence function and E[S(U | V ) | V ] = 0, we have

dθ(Ft)

dt
= E[ψS(U | V )] + E[ψS(V ))]

= E [hRS(U | V )] + E [hS(V )]

= E [h{RS(U | V ) + S(V )}] .

(S2)

According to (S1), the tangent space under the two-phase design consists of all functions of the form rS(u | v) + S(v),

where S(u | v) and S(v) are the score function of f(u | v) and f(v) under some full data submodel. Since the full data

model is locally nonparametric, the closure of the tangent space under the two-phase design consists of all score functions

of the form (S1), which is

T = {rs(u, v) + s(v) : E[s(U, V ) | V ] = 0, E[s(V )] = 0}.

It is easy to verify that h belongs to T . This and (S2) implies h is the efficient influence function according to the

characterization of the efficient influence function which can be found behind Lemma 25.14 in van der Vaart (1998).

S2.3 Proof of Theorem 1

Proof. Recall that ρS(·) = ρ(·;σ, τS). By the definition of τS , the sampling rule ρS(·) satisfies the constraintE[ρS(V )] =

E[ρ(V ;σ, τS)] ≤ ϖ. Because the second term in the efficiency bound (3.2) is irrelevant to the sampling rule, to show

ρ(·;σ, τS) is the optimal sampling rule, it suffices to prove

E

[
σ2(V )

ρ⋆(V )

]
≥ E

[
σ2(V )

ρ(V ;σ, τS)

]
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S2.4 Proof of Theorem 2

for any sampling rule ρ⋆(·) satisfying E[ρ⋆(V )] ≤ ϖ. Note that

E

[
σ2(V )

ρ⋆(V )

]
− E

[
σ2(V )

ρ(V ;σ, τS)

]
≥ E

[
σ2(V )

ρ2(V ;σ, τS)
(ρ(V ;σ, τS)− ρ⋆(V ))

]
= E

[
σ2(V ) (ρ(V ;σ, τS)− ρ⋆(V )) 1{σ(V ) > τS}

]
+ τ2SE [(ρ(V ;σ, τS)− ρ⋆(V )) 1{σ(V ) ≤ τS}]

≥ τ2SE [ρ(V ;σ, τS)− ρ⋆(V )]

= τ2S(ϖ − E [ρ⋆(V )]) ≥ 0,

where the first inequality is because 1/z1 − 1/z2 ≥ (z2 − z1)/z
2
2 for any z1, z2 > 0. This completes the proof.

S2.4 Proof of Theorem 2

Proof. Recall that problem (3.6) is

max
ρ∈PG

min
j=1,...,d

{
b−1
j

(
ξj − E

[
σ2
j (V )

ρ(V )

])}
.

By Lemma 1.15 in Rigollet and Hütter (2015), for any ρ(·), we have

min
j=1,...,d

{
b−1
j

(
ξj − E

[
σ2
j (V )

ρ(V )

])}
= min

w∈W†

{
d∑

j=1

wjb
−1
j ξj − E

[∑d
j=1 wjb

−1
j σ2

j (V )

ρ(V )

]}
,

where W† = {w = (w1, . . . , wd) :
∑d

j=1 wj = 1, 0 ≤ wj ≤ 1, for j = 1, . . . , d}. Hence (3.6) is equivalent to

max
ρ∈PG

min
w∈W†

{
d∑

j=1

wjb
−1
j ξj − E

[∑d
j=1 wjb

−1
j σ2

j (V )

ρ(V )

]}
. (S3)

Recall that PG := {ρ(·) : 0 ≤ ρ(·) ≤ 1, E[ρ(V )] ≤ ϖ} and W† = {w = (w1, . . . , wd) :
∑d

j=1 wj = 1, 0 ≤

wj ≤ 1, for j = 1, . . . , d}. Let

h(ρ,w) =

d∑
j=1

wjb
−1
j ξj − E

[∑d
j=1 wjb

−1
j σ2

j (V )

ρ(V )

]
.

Take the L2 norm and the Euclidean norm as the norm in P and W†, respectively. Then, P , W† are compact and h(ρ,w)

is continuous with respect to ρ and q. Moreover, h(ρ,w) is convex with respect to ρ and linear (hence concave) w.r.t. w.
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S2.5 Proof of Theorem 3

Thus, the solution of the optimization problem does not change if we change the order of max and min in (3.6) according

to Theorem 3.4 in Sion (1958). Thus, the dual problem

min
w∈W†

max
ρ∈PG

{
d∑

j=1

wjb
−1
j ξj − E

[∑d
j=1 wjb

−1
j σ2

j (V )

ρ(V )

]}
(S4)

shares the same solution as (S3), which also leads to an equivalent problem of (3.6).

According to the above derivations, we can focus on the problem (S4). Notice that the inner optimization problem of

(S4)

max
ρ∈PG

{
d∑

j=1

wjb
−1
j ξj − E

[∑d
j=1 wjb

−1
j σ2

j (V )

ρ(V )

]}

=

d∑
j=1

wjb
−1
j ξj − min

ρ∈PG
E

[∑d
j=1 wjb

−1
j σ2

j (V )

ρ(V )

]
.

Similar arguments to those in the proof of Theorem 1 can show that ρ(·;σw, τw) minimizes the functionalE
[∑d

j=1 wjb
−1
j σ2

j (V )/ρ(V )
]

over PG and the minimum value is

min
ρ∈PG

E

[∑d
j=1 wjb

−1
j σ2

j (V )

ρ(V )

]
= E [σw(V )max{σw(V ), τw}] ,

where σw(V ) =
√∑d

j=1 wjb
−1
j σ2

j (V ) and τw is the unique solution of E[ρ(V ;σw, τ)] = ϖ with respect to τ . This

completes the proof of Theorem 2.

S2.5 Proof of Theorem 3

Proof. We prove the result for ρ̃j(·) for j = 1, . . . , d. The result for ρ̃C(·) and ρ̃G(·) can be established similarly. For

i = 1, . . . , n, the expectation ofR2i is (1−R1i)ρ̃j(Vi) conditional on (R11, V1), . . . , (R1n, Vn) and Uj for j withR1j =

1. Thus conditional on the same variables, the expectation of
∑n

i=1(R1i + R2i) is
∑n

i=1R1i +
∑n

i=1(1 − R1i)ρ̃j(Vi).

Because τ̃j is the solution of (4.11), we have
∑n

i=1(1 − R1i)ρ̃j(Vi) = (ϖ − κn)n. According to the law of iterated

conditional expectation, we have E
[∑n

i=1(R1i +R2i)
]
= κnn+ (ϖ − κn)n = ϖn which proves Theorem 3.

S2.6 Proof of Theorem 4

In this and the following proofs, we use M to denote generic positive constants whose values may be different in different

places. We first get down to the required regularity conditions. Recall that τj is the solution of E[ρ(V ;σj , τ)] = ϖ for

j = 1, . . . , d.
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S2.6 Proof of Theorem 4

Condition S1. There is some constants rj , Lj > 0 such that rj < τj and |E[ρ(V ;σj , τ1)]−E[ρ(V ;σj , τ2)]| > Lj |τ1−τ2|

for any τ1, τ2 ∈ [τj − rj , τj + rj ] and j = 1, . . . , d, where ρ(·;σj , τ) = 1{σj(V ) > τ}+ σj(V )/τ1{σj(V ) ≤ τ}.

Condition S2. supv Πj(v) <∞ and 0 < infv σj(v) ≤ supv σj(v) <∞ for j = 1, . . . , d.

Condition S1 requires that the budgets under different thresholds are different in a neighborhood of τj . Condition S2

is a mild regularity condition. Next, we give the proof of Theorem 4.

Proof. We prove the results for ρ̃j(·) for j = 1, . . . , d. The result for ρ̃S(·) is a special case of d = 1.

We first show τ̃j converges to τj for j = 1, . . . , d, where τ̃j is the solution of Equation (4.11) in the main text. Let

τj,n be the solution of E[ρ(V ;σj , τ)] = (ϖ − κn)/(1 − κn). Note that (ϖ − κn)/(1 − κn) − ϖ = O(κn). Under

Condition S1, we have |τj,n − τj | = O(κn). Next, we show that |τ̃j − τj,n| converges to zero. For τ ∈ [τj − rj , τj + rj ],

define

hj,n(τ) =
1

n

n∑
i=1

(1−R1i)

(
1{σ(Vi) ≥ τ}+ σj(Vi)

τ
1{σj(Vi) < τ}

)
and

h̃j,n(τ) =
1

n

n∑
i=1

(1−R1i)

(
1{σ̃j(Vi) ≥ τ}+ σ̃j(Vi)

τ
1{σ̃j(Vi) < τ}

)
.

By calculating the mean and variance, we have

|hj,n(τ)− E[hj,n(τ)]| = OP

(
1√
n

)
(S5)

uniformly in τ ∈ [τj−rj , τj+rj ]. Moreover, we haveE[hj,n(τ)] = (1−κn)E[ρ(V ;σj , τ)] which impliesE[hj,n(τ)] =

ϖ − κn. By Condition 1, it is not hard to verify

|h̃j,n(τ)− hj,n(τ)| ≤
1

τj − r
∥σ̃ − σ∥∞ = OP

{
(nκn)

−δ
}

(S6)

uniformly in τ ∈ [τj −rj , τj +rj ], where δ is a constant determined by the convergence rate of ∥σ̃j −σj∥∞ which appears

in Condition 1 . Combining (S5) and (S6), we have

|h̃j,n(τ)− E[hj,n(τ)]| = OP

{
(nκn)

−δ
}
.

Thus for any ϵ > 0, there is some constant M > 0 such that

P
(
|h̃j,n(τ)− E[hj,n(τ)]| ≥M(nκn)

−δ
)
≤ ϵ

2
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S2.6 Proof of Theorem 4

for any τ ∈ [τj −rj , τj +rj ]. Define τj,n,1 = τj,n−M(nκn)
−δ/(Lj(1−κn)) and τj,n,2 = τj,n+M(nκn)

−δ/(Lj(1−

κn)). Because |τj,n − τj | = O(κn), κn → 0 and nκn → ∞, we have τj,n, τj,n,1, τj,n,2 ∈ [τj − rj , τj + rj ] for

sufficiently large n. Hence

P
(
h̃j,n(τj,n,1)− E[hj,n(τj,n,1)] < M(nκn)

−δ, h̃j,n(τj,n,2)− E[hj,n(τj,n,2)] > −M(nκn)
−δ
)

≥ 1− P
(
h̃j,n(τj,n,1)− E[hj,n(τj,n,1)] ≥M(nκn)

−δ
)

− P
(
h̃j,n(τj,n,2)− E[hj,n(τj,n,2)] ≤ −M(nκn)

−δ
)

≥ 1− ϵ

(S7)

for sufficiently large n. According to Condition S1 and the monotonicity of E[hj,n(τ)] = (1 − κn)E[ρ(V ;σj , τ)], we

have

E[hj,n(τj,n,1)] ≤ ϖ − κn −M(nκn)
−δ

and

E[hj,n(τj,n,2)] ≥ ϖ − κn +M(nκn)
−δ.

Combining this with (S7), we have

P
(
h̃j,n(τj,n,1) < ϖ − κn < h̃j,n(τj,n,2)

)
≥ 1− ϵ.

Recall that τ̃j is the solution of h̃j,n(τ) = ϖ − κn. We have P (τ̃j ∈ [τj,n,1, τj,n,2]) ≥ 1 − ϵ by the monotonicity of

h̃j,n(τ). This implies |τ̃j − τj,n| = OP {(nκn)
−δ} and hence

|τ̃j − τj | = OP {(nκn)
−δ + κn}. (S8)

Under Condition S2, we have

|ρ̃j(v)− ρj(v)|

=

∣∣∣∣1{σ̃j(v) > τ̃j}+
σ̃j(v)

τ̃j
1{σ̃j(v) ≤ τ̃j} − 1{σj(v) > τj} −

σj(v)

τj
1{σj(v) ≤ τj}

∣∣∣∣
≤
∣∣∣∣1{σ̃j(v) > τ̃j}+

σ̃j(v)

τ̃j
1{σ̃j(v) ≤ τ̃j} − 1{σj(v) > τ̃j} −

σj(v)

τ̃j
1{σj(v) ≤ τ̃j}

∣∣∣∣
+

∣∣∣∣1{σj(v) > τ̃j}+
σj(v)

τ̃j
1{σj(v) ≤ τ̃j} − 1{σj(v) > τj} −

σj(v)

τj
1{σj(v) ≤ τj}

∣∣∣∣
≤M(∥σ̃j − σj∥∞ + |τ̃j − τj |)

9



S2.7 Proof of Theorem 5

for some constant M with probability approaching one. Combining this with Condition 1 and Equation (S8), we have

∥ρ̃j − ρj∥∞ = OP

{
(nκn)

−δ + κn

}
,

which completes the proof.

S2.7 Proof of Theorem 5

In this subsection, we turn to the convergence result of the estimated sampling rule in the multi-dimensional parameter

case. For w ∈ W , define

Hj(w) = −b−1
j

(
ξj − E

[
σ2
j (V )

ρ0(V ) +
∑d

j=1 wj(ρj(V )− ρ0(Vi))

])

and

HC(w) = max
j=1,...,d

Hj(w),

where ξj = E[σ2
j (V )/ρ0(V )] and bj = E

[
σ2
j (V )/ρ0(V )

]
+Var[Πj(V)] for j = 1, . . . , d. Similarly, for w ∈ W⋆, let

HG(w) =

d∑
j=1

wjb
−1
j ξj − E [σw(V )max{σw(V ), τw}] .

Then, wC = argminw∈W HC(w) and wG = argminw∈W† HG(w). The following condition is required to establish the

convergence rate of ρ̃C(·) and ρ̃G(·).

Condition S3. The benchmark sampling rule ρ0(·) is bounded away from zero and satisfies E[ρ0(V )] = ϖ.

Condition S4. (i)HC(w) has the unique minimum point wC ; (ii) for some constants rC, LC > 0 and any w ∈ W such that

∥w − wC∥ ≤ rC , we have HC(w)−HC(wC) ≥ LC∥w − wC∥2.

Condition S5. (i) HG(w) has the unique minimum point wG ; (ii) for some constants rG , LG > 0 and any w ∈ W† such

that ∥w − wG∥ ≤ rG , we have HG(w)−HG(wG) ≥ LG∥w − wG∥2.

Condition S3 is a regularity condition on the benchmark sampling rule ρ0(·). Condition S4 is a mild regularity

condition, which can be satisfied if HC(w) has a continuous Hessian matrix in a neighborhood of rC and the Hessian

matrix at rC is positive definite. Condition S5 is similar to Condition S4 with HC(w) replaced by HG(w). Now, we are

ready to prove Theorem 5.
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S2.7 Proof of Theorem 5

Proof. We only prove the result for ρ̃C(·). The result for ρ̃G(·) can be established similarly.

Recall that ρC(·) = ρ0(·) +
∑d

j=1 wC,j{ρj(·) − ρ0(·)} and ρ̃C(·) = ρ0(·) +
∑d

j=1 w̃C,j(ρ̃j(·) − ρ0(·)), where

wC,j and w̃C,j are the jth component of wC and w̃C , respectively, for j = 1, . . . , d. Recall that ρj(v) = 1{σj(v) >

τj}+ σj(v)1{σj(v) ≤ τj}/τj for j = 1, . . . , d. By Condition S2, we have

1

M
≤ inf

v
ρj(v) ≤ sup

v
ρj(v) ≤M (S9)

for some M > 1. Hence

∥ρ̃C − ρC∥∞ ≤
d∑

j=1

∥ρ̃j − ρj∥∞ +M∥w̃C − wC∥.

Theorem 4 has established the convergence rate of ∥ρ̃j − ρj∥∞. Thus, in order to establish the convergence rate of

∥ρ̃C − ρC∥∞, it suffices to establish the convergence rate of ∥w̃C − wC∥ . Define

H̃j(w) = −b̃−1
j

(
ξ̃j −

1

n

n∑
i=1

σ̃2
j (V )

ρ0(V ) +
∑d

j=1 wj(ρ̃j(V )− ρ0(Vi))

)

and

H̃C(w) = max
j=1,...,d

H̃j(w),

where, for j = 1, . . . , d, b̃j = n−1∑n
i=1 σ̃

2
j (Vi)/ρ0(Vi) + n−1∑n

i=1{Π̃j(Vi) − n−1∑n
i=1 Π̃j(Vi)}2 and ξ̃j =

n−1∑n
i=1 σ̃

2
j (Vi)/ρ0(Vi). Then w̃C = argminw∈W H̃C(w). Define b̄j and H̄j(w) similarly to b̃j and H̃j(w) with Π̃j(·),

σ̃j(·) and ρ̃j(·) in b̃j and H̃j(w) replaced by Πj(·), σj(·) and ρj(·). Let H̄C(w) = maxj=1,...,d H̄j(w). According to Con-

dition 1, Theorem 4, and inequality (S9), there is some constant M > 1 such that 1/M ≤ infv ρ̃j(v) ≤ supv ρ̃j(v) ≤ M

with probability approaching one. Conditions S2, S3 imply that maxj=1,...,d |b̃j− b̄j | ≤M(∥Π̃j−Πj∥∞+∥σ̃j−σj∥∞+

∥ρ̃j − ρj∥∞) for some constant M . Then, Conditions S2, S3 and the mean value theorem implies that

sup
w∈W

|H̃j(w)− H̄j(w)| ≤M(∥Π̃j −Πj∥∞ + ∥σ̃j − σj∥∞ + ∥ρ̃j − ρj∥∞)

with probability approaching one for some constant M . This implies

sup
w∈W

|H̃C(w)− H̄C(w)| ≤

M

(
max

j=1,...,d
∥Π̃j −Πj∥∞ + max

j=1,...,d
∥σ̃j − σj∥∞ + max

j=1,...,d
∥ρ̃j − ρj∥∞

)

11



S2.7 Proof of Theorem 5

with probability approaching one. Then, according to Condition 1 and Theorem 4, we have

sup
w∈W

|H̃C(w)− H̄C(w)| = OP

{
(nκn)

−δ + κn

}
. (S10)

Recall that

b̄j =

(
1

n

n∑
i=1

[
σ2
j (Vi)

ρ0(Vi)
+

{
Πj(Vi)−

1

n

n∑
i=1

Πj(Vi)

}2])

H̄j(w) = b̄−1
j

1

n

n∑
i=1

{
σ2
j (Vi)

ρ0(Vi)
−

σ2
j (Vi)

ρ0(Vi) +
∑d

j=1 wj(ρj(Vi)− ρ0(Vi))

}

for any w ∈ W . According to Condition S2, we have bj ≥ 1/M for some constant M and j = 1, . . . , d. Notice that the

function σj(v)/ρ0(v) + σj(v)/[ρ0(v) +
∑d

j=1 wj(ρj(v) − ρ0(v))] is bounded and Lipschitz continuous with respect to

w due to (S9), Condition S2, and Condition S3. Then, similar concentration arguments as in the proof of Lemma C.1 in He

et al. (2021) can show that

sup
w∈W

|H̄j(w)−Hj(w)| = OP

(
1√
n

)
. (S11)

Combining (S10) with (S11), we have

sup
w∈W

|H̃j(w)−Hj(w)| = OP

{
(nκn)

−δ + κn

}
.

Thus, for any ϵ > 0, there is some M > 0 such that P (supw∈W |H̃j(w)−Hj(w)| ≥M{(nκn)
−δ + κn}) ≤ ϵ. Because

w̃C is the minimum point of H̃C(w), we have H̃C(w̃C) ≤ H̃C(wC) and hence

HC(w̃C)−HC(wC) ≤ H̃C(w̃C)− H̃C(wC) + 2 sup
w∈W

|H̃j(w)−Hj(w)|

≤ 2 sup
w∈W

|H̃j(w)−Hj(w)|.

Thus

HC(w̃C)−HC(wC) ≤ 2M{(nκn)
−δ + κn} (S12)

with probability at least 1−ϵ. BecauseHC(w) is continuous with respect tow, W is a compact set andwC is the unique min-

imum point ofHC(w), we have infw∈W,∥w−wC∥≥rC{HC(w)−HC(wC)} > 0 for rC in Condition S4. For sufficiently large

n such that 2M{(nκn)
−δ+κn} < infw∈W,∥w−wC∥≥rC{HC(w)−HC(wC)}, we have ∥w̃C −wC∥ ≤ rC with probability

at least 1−ϵ according to (S12). Then inequality (S12) and Condition S4 imply ∥w̃C−wC∥ ≤
√

2M{(nκn)−δ + κn}/LC

with probability at least 1 − ϵ. Because ϵ is arbitrary, we have ∥w̃C − wC∥ = OP (
√

(nκn)−δ + κn). Combin-

ing this with Condition S2 and the fact that ∥ρ̃j − ρj∥∞ = OP {(nκn)
−δ + κn}, we conclude that ∥ρ̃C − ρC∥∞ =

OP (
√

(nκn)−δ + κn).

12



S3 Estimation

S3.1 Estimate the Conditional Mean and Variance of the Efficient In-

fluence Function

The full data efficient influence function depends on θ0 and may also depend on some unknown nuisance parameters, e.g.,

α0 and β0 in Example S2 and m1(·), m0(·) and π(·) in Example S3. Thus, we need to estimate these unknown quantities.

We write the efficient influence function as ψ(V,U ; θ0, η0) where η0 is the nuisance parameter. The nuisance parameter η0

can be estimated using the pilot sample. Denote the resulting estimator by η̃. Then θ0 can be estimated by θ̃ which is the

solution of the estimating equation
n∑

i=1

R1iψ(Vi, Ui; θ, η̃) = 0,

where R1i is the inclusion indicator for the pilot sample. Then we obtain the estimates ψ̃i = ψ(Vi, Ui; θ̃, η̃) (i : R1i = 1)

for the full data efficient influence function of observations in the pilot sample.

In order to estimate the optimal sampling rule and construct efficient estimator according to the efficient influence

function in Lemma 1, one needs to estimate the conditional mean Πj(·) and the standard deviation σj(·) for j = 1, . . . , d.

These quantities can be estimated by fitting a heteroscedastic parametric regression model using the pilot sample and

the estimated ψ̃i’s. In practice, it may be hard to model Πj(·) and σj(·) for j = 1, . . . , d. If plausible parametric

models are not available, we recommend to estimate them nonparametrically. Many methods are available for this task,

including kernel smoothing (Fan and Yao, 1998; Fan and Gijbels, 2018), sieve methods (Huang, 1998, 2001; Chen, 2007)

and kernel ridge regression (Mendelson, 2002). A sieve method that can estimate the conditional mean and standard

deviation simultaneously is proposed in the next section. The proposed method is computationally efficient and performs

well even when the dimension of the first-phase variable is moderately high.
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S3.2 New Nonparametric Estimators for the Conditional Mean and Variance

S3.2 New Nonparametric Estimators for the Conditional Mean and

Variance

If a plausible model for the conditional mean function Πj(v) is unavailable for j = 1, . . . , d, we can approximate it with

a linear combination of some basis functions such as polynomials, wavelets, or splines. Let p(v) = (p1(v), . . . , pK(v))T

be a vector of basis functions which can change with n. One can increase K with n to make the approximation more and

more accurate as the sample size increases. Then, we approximate Πj(v) by γT
1 p(v) for some γ1. The conditional standard

deviation σj(v) can be approximate similarly by γT
2 p(v) for some γ2. However, this approximation is not guaranteed to be

non-negative. An infeasible negative sampling rule is obtained if we plug the negative approximation into the expression of

the optimal sampling rule in Theorem 1. Using the truncated version max{γT
2 p(v), 0} can avoid this problem but leads the

function not differentiable with respect to γ2 which makes optimization difficult. Hence we propose to use a transformation

function Λ(v) = log(1+exp(v)) and use Λ(γT
2 p(v)) to approximate σj(v). The function Λ(v) is a smooth approximation

of the truncation function max{v, 0}. Moreover, it is convex, Lipchitz continuous, differentiable, and non-negative. These

nice properties benefit the optimization.

Then, the remaining problem is to determine γ1 and γ2. The discussion behind Theorem 1 can show that σj(·)

minimizesE[(ψj−Πj(V ))2/f2(V )] over all positive f2(·) such thatE[f2(V )] ≤ E[σj(V )]. This motivates us to consider

the penalized objective formulation of the constrained optimization problem E[(ψj −Πj(V ))2/f2(V )] +E[f2(V )]. One

can verify that this objective function is minimized if f2(·) = σj(·). On the other hand, it is straightforward to show,

for any given positive function f2(·), the conditional mean function Πj(·) minimizes the weighted least squares objective

functionE[(ψj−f1(V ))2/f2(V )]+E[f2(V )] over all f1(·). This inspires us to recover the conditional mean and variance

simultaneously by minimizing E[(ψj − f1(V ))2/f2(V )] + E[f2(V )] with respect to f1(·) and f2(·). By replacing the

expectation with sample mean and plugging in the estimates and approximations, we obtain the objective function

Lnj(γ1, γ2) =
1

nκn

n∑
i=1

R1i

{
(ψ̃ij − γT

1 p(Vi))
2

Λ(γT
2 p(Vi))

+ Λ(γT
2 p(Vi))

}
, (S13)

where ψ̃ij is the jth component of ψ̃i for j = 1, . . . , d and i = 1, . . . , n. Let γ̃1j , γ̃2j be the minimum point of (S13).

Then Πj(V ) and σj(V ) can be estimated by Π̃j(V ) = γ̃T
1jp(V ) and σ̃j(V ) = Λ(γ̃T

2jp(V )), respectively. The proposed

objective function has the following block-wise convex property.
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S3.2 New Nonparametric Estimators for the Conditional Mean and Variance

Proposition S1. For j = 1, . . . , d and any give γ1, Lnj(γ1, γ2) is convex with respect to γ2; for j = 1, . . . , d and any

give γ2, Lnj(γ1, γ2) is convex with respect to γ1.

Proof. For any given γ1, the Hessian of Lnj(γ1, γ2) with respect to γ2 is

1

nκn

n∑
i=1

R1ip(Vi)p(Vi)
T
{
(ψ̃i − γT

1 p(Vi))
2×

[
2Λ(γT

2 p(Vi))
−3Λ(1)(Vi)

2 − Λ(γT
2 p(Vi))

−2Λ(2)(Vi)
2
]
+ Λ(2)(γT

2 p(Vi))
}

where Λ(1)(v) = exp(v)/{1 + exp(v)} and Λ(2)(v) = exp(v)/{1 + exp(v)}2. This matrix is positive semi-definite

because Λ(2)(v) > 0 and 2Λ(v)−3Λ(1)(v)2 − Λ(v)−2Λ(2)(v) > 0. Thus Lnj(γ1, γ2) is convex with respect to γ2. For

any given γ2, the Hessian of Lnj(γ1, γ2) with respect to γ1 is

1

nκn

n∑
i=1

R1ip(Vi)p(Vi)
T 2

Λ(γT
2 p(Vi))

,

which is also positive semi-definite. This completes the proof.

Proposition S1 shows Lnj(γ1, γ2) is block-wise convex with respect to γ1 and γ2 for j = 1, . . . , d and hence

the optimization problem (S13) can be solved efficiently by routine optimization algorithms. So far we have defined a

nonparametric estimator for Πj(V ), σj(V ) based on the sieve method (Chen, 2007). For our numerical experiments, the

estimators Π̃j and σ̃j are employed. In the simulation, we introduce a small regularization 0.1(dV +1)(∥γ1∥2+∥γ2∥2) into

the loss function (S13) to further enhance the stability of the solution, where dV is the dimension of the first-phase variable

V . In the simulation studies and real data analysis, we normalize all first-phase variables to the range [0, 1] using min-max

normalization and then use a second-order polynomial with full interactions between variables as the basis functions. This

simple choice performs well in our numerical experiments, and we recommend it for practical use. However, we do not

claim that this choice of basis functions is optimal in any sense. Identifying the optimal basis functions for the problem

considered here remains an interesting direction for future research.

The idea to recover the mean and variance simultaneously also appears in parametric heterogeneous regression lit-

erature and is shown to perform well in finite sample (Daye et al., 2012; Spady and Stouli, 2018). Our estimator is an

extension of the idea to the nonparametric literature. The proposed method has several nice properties compared to other

nonparametric conditional mean and variance estimators, such as kernel smoothing, sieve least squares, and kernel ridge

regression. First, it is computationally efficient as the conditional mean and variance can be estimated simultaneously by
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S3.3 Estimate the Parameters of Interest

solving the optimization problem (S13). Second, heteroscedasticity is considered in fitting the conditional mean model,

which can deliver efficiency gains when fitting a model with many parameters and limited observations (Daye et al., 2012).

Third, the conditional variance estimator is always positive. This is also a desirable property (Yu and Jones, 2004) which

is not possessed by some classic existing methods, e.g., local linear kernel smoothing, sieve least squares, and kernel ridge

regression.

S3.3 Estimate the Parameters of Interest

Define R2i = 0 for subjects with R1i = 1. With some abuse of notation, let Ri = R1i + R2i be the overall sampling

indicator for the second phase sampling. Under the sampling procedure proposed in Section S3, Vi is measured for all the

n subjects, and Ui is measured for subjects withRi = 1. If a nonrandom sampling rule ρ(·) is used to select the subsequent

sample in the second phase, we have the inclusion probability P (Ri = 1 | Vi) = κn + (1 − κn)ρ(Vi) for i = 1, . . . , n.

Denote the sampling rule adopted in the second phase by ρ̃(·), where ρ̃(·) depends on the pilot sample and hence is random.

However, it converges to some nonrandom sampling rule according to Theorem 5. Thus the inclusion probability can be

approximated by ρn(Vi) = κn +(1− κn)ρ̃(Vi). Let the inverse probability weighted estimator θ̂ipw be the solution of the

estimating equation
n∑

i=1

Riψ(Vi, Ui; θ, η̃)

ρn(Vi)
= 0.

The inverse probability weighted estimator θ̂ipw is
√
n-consistent under certain regularity conditions but may not be efficient

(Tsiatis, 2007). Based on θ̂ipw, an efficient estimator can be obtained through one-step estimation (Bickel, 1982). Let Π̃(·)

be an estimate of Π(·) based on the pilot sample. According to the efficient influence function given in Lemma 1, the

one-step estimator is defined by

θ̂ = θ̂ipw +

n∑
i=1

Riψ(Vi, Ui; θ̂ipw, η̃)

ρn(Vi)
−

n∑
i=1

(
Ri

ρn(Vi)
− 1

)
Π̃(Vi)

= θ̂ipw −
n∑

i=1

(
Ri

ρn(Vi)
− 1

)
Π̃(Vi),

The one-step estimator θ̂ is asymptotically normal and efficient under appropriate empirical process conditions (van der

Laan and Robins, 2012; van der Vaart and Wellner, 1996).

As noted by an anonymous reviewer, the use of the pilot sample breaks the i.i.d. structure across observations because

the distribution of the sampling indicator in the second phase depend on the pilot sample. This complicates the theoretical
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analysis of the proposed one-step estimator θ̂. However, we note that, conditional on the pilot sample, the remaining

observations are i.i.d., and the pilot sample typically constitutes only a small fraction of the total dataset. Intuitively,

this suggests that the overall data distribution does not deviate substantially from the i.i.d. setting. Although not able

to rigorously prove, we conjecture that this deviation does not cause serious issues. Our numerical results indicate that,

despite of the non-i.i.d. structure, the proposed estimator θ̂ performs well in practice, suggesting that the non-i.i.d. structure

and potential overfitting are not major concerns—at least in our numerical experiments. The simulations in Section S4.4

show that θ̂ has negligible bias and achieves higher finite-sample efficiency than several alternative estimators. Based on

these observations, we recommend the one-step estimator θ̂ for practical use, while leaving a rigorous investigation of its

theoretical properties to future research.

S4 Additional Simulations

S4.1 Response Mean

In this section, we consider the response mean estimation problem where covariates are inexpensive and the response is hard

to obtain. As in the main text, we set n = 5000. Let Z be a q-dimensional covariate vector with independent U [−2.5, 2.5]

components, where U [−2.5, 2.5] is the uniform distribution on [−2.5, 2.5]. Suppose the response

Y = θ0 + ζT
q Z + ν1(Z)ϵ,

where θ0 = 1, ζq = (0.5/
√
q, . . . , 0.5/

√
q)T, ν1(z) =

√
0.1 + (2ζT

q z)4, ϵ is the standard normal error. In this example,

we let V = Z be the vector of first-phase variables and U = Y be the second-phase variable. The parameter of interest is

the response mean θ0 = E[Y ]. We take κn = ϖ/{1 + log(ϖn/q)} in this simulation. Figure S1 is the boxplot based on

the results of 500 simulations.

[Insert Fig. S1 about here]

As can be seen in Fig. S1, the estimation efficiency is improved under ρ̃S compared to the uniform rule. The im-

provement is observed for different combinations of n and q, and is particularly pronounced when q = 5. The REs are

17



S4.2 Linear Regression Coefficient

1.5038, 1.7409, 1.5103, and 2.1777 when (n, q) = (2000, 1), (2000, 5), (5000, 1), and (5000, 5), which indicates that

the efficiency is significantly improved under the proposed optimal sampling rule compared to that under the uniform rule.

In the following, we consider the problem of multi-dimensional parameter estimation and evaluate the effectiveness

of the sampling rule ρ̃C and ρ̃G . We consider a two-dimensional response variable Y = (Y1, Y2)
T. Suppose

Y1 = θ01 − ζT
q Z + ν1(Z)ϵ1,

Y2 = θ02 + sin(ζT
q Z) + ν2(Z)ϵ2,

where θ01 = 1, θ02 = 0, ν1(z) is introduced in the scalar case, ν2(z) = exp(2ζT
q z), ϵ1 and ϵ2 are independent standard

normal errors, and Z is defined in the same way as in the scalar case. We consider the estimation of the two-dimensional

response mean θ0 = (θ01, θ02)
T = (E[Y1], E[Y2])

T under two-phase designs. Table S1 reports the bias and standard error

(SE) of the one-step estimator with different sampling rules based on 500 simulations, and the RE compared to the uniform

rule.

[Insert Table S1 about here]

In all cases, the SEs under the sampling rules ρ̃C and ρ̃G are smaller than that under the uniform rule. In some cases,

the improvement is very significant with a RE close to 3.

S4.2 Linear Regression Coefficient

In this subsection, we consider the problem of estimating linear regression coefficients when response variables and a part

of covariates are measured in the first phase and other covariates are measured in the second phase. Define Z in the same

way as in Section S4.1. Suppose

X = sin(ζT
q Z) + ν2(Z)ϵx,

Y = ζT
q Z + θ0X + ϵy,

where θ0 = 1, ν2(z) is defined in the last Section S4.1, and ϵx and ϵy are independent and follow a standard normal

distribution. Let V = (Y,ZT)T be the first-phase variable vector and U = X be the second-phase variable. The estimation
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S4.2 Linear Regression Coefficient

of the regression coefficient θ0 is considered in this simulation. We take κn = ϖ/[1+log{ϖn/(q+1)}] in this simulation.

Figure S2 contains boxplots of the estimator in 500 simulations across different combinations of n and q.

[Insert Fig. S2 about here]

As can be seen in Fig. S2, the accuracy of the estimator is improved under ρ̃S compared to that under the uniform

rule. The improvements are observed across different combinations of n and q, and is particularly pronounced when

(n, q) = (5000, 5). The REs are 2.1175, 2.4225, 2.3096, and 2.3206 when (n, q) = (2000, 1), (2000, 5), (5000, 1), and

(5000, 5).

Next, we consider the case with a two-dimensional regression coefficient of interest. The covariate vector Z is defined

in the same way as in Section S4.1. Let X = (X1, X2)
T be a two-dimensional covariate vector which satisfies

X1 = ζT
q Z + ν1(Z)ϵx1,

X2 = −ζT
q Z + ν2(Z)ϵx2,

where ν1(z) and ν2(z) are defined in Section S4.1, ϵx1, ϵx2 are independent standard normal variables. The response

variable Y satisfies

Y = ζT
q Z + θT0X + ϵy,

where θT0 = (θ01, θ02) = (0, 1) and ϵy follows a standard normal distribution.

Table S2 reports the bias, SE of the one-step estimator, and the RE compared to the uniform rule based on 500

simulations.

[Insert Table S2 about here]

As seen in Table S2, the SEs under under the sampling rules ρ̃C and ρ̃G are smaller than those under the uniform rule

in all cases. The REs are larger than two in some cases.

19



S4.3 Sampling Design with Different Priorities under the Multi-dimensional Setting in
Section 5

S4.3 Sampling Design with Different Priorities under the Multi-dimensional

Setting in Section 5

In this section, under the multi-dimensional setting in Section 5, we illustrate the numerical effect of the priority parameter

a = (a1, 1 − a1) discussed in Remark 1. We set (n, q) = (5000, 1). Table S3 presents the bias, SE of the estimator, and

the RE compared to the uniform rule, based on 500 simulations. We consider the one-step estimator under the estimated

optimal rule for θ01, θ02, and the G-opt rule with a1 = 0.05, 0.5 and 0.95. The results under the uniform sampling rule are

also reported for reference. Table S3 shows that biases of the estimator are small under all sampling rules. Notably, the SE

for estimating θ01 decreases as a1 increases, accompanied by a modest increase in the SE for estimating θ02. Notably, the

SEs for both parameter components are smaller than those obtained under the uniform sampling rule, no matter what value

a1 takes. This desirable property is not achieved for the estimated optimal rule for θ01 or θ02.

[Insert Table S3 about here]

S4.4 Comparison with Alternative Estimators

In this section, we further investigate the numerical performance of the proposed one-step estimator θ̂ and compare it

with several alternative estimators. There are multiple alternative ways to construct an efficient estimator in two-phase

studies. For example, one may construct an estimator, based on the efficient influence function and the one-step estimation

technique, using all observations except those in the pilot sample. Denote the resulting estimator by θ̂ex. Conditional

on the pilot sample, the remaining observations are i.i.d. Thus, the asymptotic properties of θ̂ex can be established using

standard arguments conditional on the pilot sample. In addition, the efficiency loss lead by excluding the pilot sample is

asymptotically negligible because κn → 0. Another reasonable approach is to perform an inverse-variance-weighted meta-

analysis combining the pilot sample estimator θ̃ and the estimator θ̂ex. Denote the resulting estimator by θ̂ivw. Figure S3

presents boxplots of different average treatment effect estimators under the optimal sampling rule for a scalar parameter ρ̃S

over 500 simulations with q = 1 and n = 2000, 5000, 20000, 50000. For reference, the results for the one-step estimator

under the uniform sampling rule are also included.
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[Insert Fig. S3 about here]

Figure S3 shows that, under ρ̃S , all three estimators have higher efficiency than the one-step estimator under the

uniform sampling rule. The performance of the three estimators under ρ̃S is similar when n = 50000. However, for smaller

sample sizes (n = 2000, 5000, 50000), the proposed one-step estimator θ̂ demonstrates better finite-sample efficiency than

both θ̂ex and θ̂ivw under ρ̃S . In addition, the confidence interval based on θ̂ and normal approximation performs well in the

simulation. Coverage rates of the confidence intervals constructed using θ̂ and the influence function-based standard error

estimator are 94.4%, 93.8%, 96.8%, and 96.8% when n = 2000, 5000, 20000, 50000, respectively.
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Table S1: Bias, SE, and RE in two-dimensional mean estimation

(n, q) Rule
Estimate of θ01 Estimate of θ02

Bias SE RE Bias SE RE

(2000, 1)

uni 0.0017 0.1224 1.0000 -0.0012 0.1601 1.0000

C-opt -0.0028 0.0897 1.8620 -0.0001 0.1201 1.777

G-opt 0.0007 0.0965 1.6088 0.0050 0.1240 1.667

(2000, 5)

uni 0.0068 0.1441 1.0000 0.0254 0.2305 1.0000

C-opt 0.0024 0.1031 1.9535 0.0053 0.1526 2.2816

G-opt 0.0060 0.1068 1.8205 0.0036 0.1522 2.2936

(5000, 1)

uni 0.0008 0.0719 1.0000 0.0047 0.0981 1.0000

C-opt -0.0038 0.0601 1.4312 0.0019 0.0754 1.6928

G-opt 0.0010 0.0599 1.4408 -0.0003 0.0722 1.8461

(5000, 5)

uni -0.0056 0.0889 1.0000 -0.0047 0.1639 1.0000

C-opt -0.0006 0.0665 1.7871 -0.0018 0.0947 2.9954

G-opt 0.0010 0.0620 2.0560 -0.0012 0.0962 2.9027
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Table S2: Bias, SE, and RE in two-dimension regression coefficient estimation

(n, q) Rule
Estimate of θ01 Estimate of θ02

Bias SE RE Bias SE RE

(2000, 1)

uni -0.0005 0.0145 1.0000 0.0010 0.0110 1.0000

C-opt -0.0012 0.0126 1.3243 4e-04 0.0092 1.4296

G-opt -0.0003 0.0133 1.1886 8e-04 0.0088 1.5625

(2000, 5)

uni 0.0000 0.0126 1.0000 0.0003 0.0076 1.0000

C-opt 0.0005 0.0105 1.4400 0.0004 0.0057 1.7778

G-opt 0.0000 0.0103 1.4965 0.0003 0.0057 1.7778

(5000, 1)

uni 0.0001 0.0094 1.0000 0.0009 0.0071 1.0000

C-opt -0.0003 0.0079 1.4158 0.0005 0.0055 1.6664

G-opt -0.0003 0.0078 1.4523 0.0003 0.0054 1.7287

(5000, 5)

uni 0.0008 0.0075 1.0000 0.0003 0.0047 1.0000

C-opt 0.0001 0.0062 1.4633 0.0001 0.0032 2.1572

G-opt 0.0003 0.0060 1.5625 0.0001 0.0032 2.1572
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Figure S2: Boxplots for linear regression coefficient estimation with different combinations

of n and q; dashed lines are the true values.

Table S3: Bias, SE, and RE in two-dimensional average treatment effect estimation with

(n, q) = (5000, 1)

Rule
Estimate of θ01 Estimate of θ02

Bias SE RE Bias SE RE

uni 0.0273 0.3113 1.0000 -0.0101 0.2787 1.0000

S-opt (θ01) 0.0206 0.2463 1.5975 -0.0024 0.2977 0.8764

S-opt (θ02) 0.0516 0.3639 0.7318 0.0009 0.1851 2.2671

G-opt (a1 = 0.05) 0.0427 0.2814 1.2238 0.0026 0.1982 1.9773

G-opt (a1 = 0.5) 0.0254 0.2585 1.4502 0.0058 0.2222 1.5732

G-opt (a1 = 0.95) 0.0262 0.2517 1.5296 -0.0053 0.2262 1.5181
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Figure S3: Boxplots for the average treatment effect estimation under q = 1 and n =

2000, 5000, 20000, 50000; OS-uni: θ̂ under the uniform sampling rule; OS: θ̂ under ρ̃S; EX:

θ̂ex under ρ̃S; IVW: θ̂ivw under ρ̃S; dashed lines are the true values.
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