Statistica Sinica: Supplement

A MAXIMIN OPTIMAL APPROACH FOR

SAMPLING DESIGNS IN TWO-PHASE STUDIES

Ruoyu Wang!, Qihua Wang?* and Wang Miao®

' Department of Biostatistics, Harvard T.H. Chan School of Public Health
2Academy of Mathematics and Systems Science, Chinese Academy of Sciences

and ® Department of Probability and Statistics, Peking University

Supplementary Material

The supplementary material is organized as the follows. In Section[SI] we provide some examples about efficient influence
functions and the challenge in two-phase sampling design with multi-dimensional parameters. Section[S2]contains the reg-
ularity conditions and proofs. Estimation under two-phase designs is discussed in Section[S3] Some additional simulation

results are reported in Section [S4]

S1 Examples

S1.1 Examples of full data efficient influence functions

We introduce some examples of full data efficient influence functions for illustration.

Example S1. Let Y be a vector of outcomes which is hard to obtain. Suppose the parameter of interest is the outcome
mean 6y = E[Y]. Let Z be a vector of inexpensive covariates that is predictive to Y and hence useful in estimating 6.

In two-phase studies, one can collect V' = Z in the first phase and measure U = Y for a subset of subjects in the second
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S1.1 Examples of full data efficient influence functions

phase. In this example, the full data efficient influence function is ¢ = Y — 6q.

Example S2. Let Y be a scalar outcome which is easy to obtain, Z a vector of inexpensive covariates, and X a vector of
expensive covariates. Suppose the parameter of interest is the least squares regression coefficient fp of X in the regression
of Y on Z, X, which is determined by the estimating equation E[(X™, ZT)™(Y — X"y — Z"Bo)] = 0 where Sy is
the nuisance parameter. In two-phase studies, V' = (Y, Z) is collected in the first phase and U = X is measured for a
subset of subjects in the second phase. In this case, the full data efficient influence function is ¢ = (E[(X — a0 Z)(X —
@0 Z)")HX — o Z)(Y — X0y — Z" o) where oy = E[XZ"|(E[ZZ"])™" is the population linear regression

coefficient of X on Z.

Example S3. Let 7" € {0, 1} be a binary treatment indicator, and Y the outcome. Suppose the parameter of interest is the
average treatment effect, i.e., 0o = E[Y1 — Yp], where Y7 and Yj are the potential outcomes under treatments “1” and “0”,
respectively. In observational studies, one needs to properly adjust for confounders to estimate 6y consistently. In practice,
some confounders X may be hard to measure, while Y, T", and other confounders Z can be easily accessible. Then, a
two-phase study can be conducted, where V' = (Y, T, Z) is collected in the first phase, and U = X is measured for a
subset of subjects in the second phase. Under the unconfoundness condition (Y7,Ys) 1L T | (X, Z), the full data efficient

influence function is

w:WTY (1-T)Y { T

(X.2) 1-=2(X.2) \=(X.2) 1}m1(X’Z)
1-T
+ {m - 1}mo(X, Z) — 0o,
where 7(z,2) = P(T =1 | X =z, Z = z) is the propensity score, and m¢(z,2) = E[Y | X = x,Z = 2,T = t] is the

outcome regression function for ¢t = 0, 1.

The outcome mean estimation in Example [ST] is an important problem in survey sampling (Cochran} 2007) and
epidemiological studies (McNamee} |2002; |Gilbert et al., 2014). Regression problems with expensive covariates in Example
[S2)are of great interest in modern epidemiological and clinical studies (Zeng and Lin| 2014} Zhou et al} 2014} Tao et al
2017), because the determination of a disease’s risk factor can often boil down to such a regression problem. Example
is of practical importance in observational studies (Yang and Ding| |2019). Previous works, e.g.,|Lin and Chen|(2014)) and
Yang and Ding| (2019), focus on the estimation in Example [S3] without exploring the sampling rule design. We contribute

by establishing the optimal sampling rule for a wide range of problems including Example [S3]



S1.2 Example for the issue with a multi-dimensional parameter

S1.2 Example for the issue with a multi-dimensional parameter

Example S4. Suppose Y € {0, 1} is an indicator of some disease status and X € {0, 1} is the test result of some fallible
test for disease status. Suppose V' = X and U = Y. The prevalence of the disease o1 = P(Y = 1), sensitivity
fo2 = P(X =1 |Y = 1) and specificity o3 = P(X = 0 | Y = 0) of the test are often of primary interest in
epidemiological studies. Let 6 = (6o1, 6o2, 903)T be the parameter of interest. It is not hard to show the efficient influence
functions of fo1, Oo2 and Oo3 are Y — Oo1, 05, (X — 602)Y and (1 — 1)~ (1 — X — 0p3)(1 — Y), respectively. Let
P(X) = P(Y = 1| X). The conditional variances o3(V), 03(V) and o3(V) are P(X)(1 — P(X)), 052P(X)(1 —
P(X))(X — 002)? and (1 — 001) " 2P(X)(1 — P(X))(1 — X — 6o3)?, which are different from each other. According
to Theorem the optimal sampling rule for 6o; is determined by 0]2() This implies that the optimal sampling rules for
different parameters are different from each other. Hence, there is no sampling rule that minimizes the semiparametric
efficiency bound for different parameters simultaneously in general.

Suppose 0p1 = 0.2, g2 = 0.8, o3 = 0.6 and o = 0.3. Then some numerical calculations can show that the
semiparametric efficiency bound for 03 under psum (-; 7sum ) and the optimal sampling rule for 6y, are approximately 0.35

and 0.43, which are both larger than that under the uniform rule (= 0.30).

S2 Technical Details

S2.1 Regularity Conditions

Let Fp be the distribution of (V,U). We consider the case where the parameter of interest is a general functional of Fp.
Throughout this paper, we assume p(-) is bounded away from zero and E[||1||?] < oo where || - || denotes the Euclidean
norm.

As in Newey| (1994), we consider inference of a pathwise differentiable parameter within a locally nonparametric
distribution class. Here we briefly review the definitions of “pathwise differentiable” and “locally nonparametric”. See
Bickel| (1982); |van der Laan and Robins| (2012); Tsiatis| (2007) for more background on semiparametric theory. Let F be
a set of joint distributions of (V, U) whose specific definition depends on the problem we consider. Suppose Fy € F. A

class of distributions {F; : ¢ € [—1, 1]} is called a submodel of F if it is contained in F and the distribution F; equals to



S2.2  Proof of Lemma

Fy when ¢ = 0. Suppose F; has a density f;(v,u) and let S(v,u) = dlog f:(v, u)/dt’t:0 be the score function under
the submodel. Suppose the parameter 8y = 6(Fp) is a functional of Fy where 6(-) is a functional defined on F. Then
the parameter is pathwise differentiable if there is some function ¢(V,U) with zero mean and finite variance such that
dH(Ft)/dt]tZO = E[¢p(V,U)S(V,U)] for any regular submodel.

Pathwise differentiability is a commonly used regularity condition in semiparametric theory (Bickel, |1982)). Here,
a regular submodel is a submodel that satisfies certain regularity conditions. See Bickel (1982) for more discussions and
the formal definition of a regular submodel. Typical examples of pathwise differentiable parameters including the mean or
quantile of a variable, the solution of many commonly used estimating equations among lots of other parameters.

“Locally nonparametric” is a property of the distribution class /. Because all the submodels are required to belong
to F, the fewer the restrictions on F, the more submodels, and hence the larger the set of score functions. Here, “locally
nonparametric” requires J to be “general” or “unrestricted” in the sense that the set of score functions can approximate any
function of (V, U) with zero mean and finite variance. In a locally nonparametric distribution class, general misspecification
is allowed and few restrictions are imposed except for regularity conditions (Neweyl |1994). For example, the distribution
class which consists of all the distributions with a finite second moment is a locally nonparametric distribution class.
For a missing data problem, all the observation distributions with response missing at random also consists of a locally

nonparametric class.

S2.2 Proof of Lemma (1]

This lemma can be obtained utilizing the techniques in the semiparametric theory for missing data problems (Tsiatis,|[2007).

To be self-contained, we provide its proof here.

Proof. We show the efficient influence function is

and the semiparametric efficiency bound follows by straightforward calculation. The observed likelihood of (U, V, R) is

Flu|0)" f@)p()" (1= p(v))' 7,



S2.3  Proof of Theorem

where f(v) is the density of V and f(u | v) is the distribution of U conditional on V' = v. For any regular submodel

Fe(u | v) fe(0)p(v)" (1 — p(v))*~" whose distribution is denoted by F;, the score function is

rS(u | v) + S(v), (S
where
d
S(u | v) = 5 log fi(u] v),
and
d
S(v) = = log fi(v).

We do not consider a submodel for p(v) since the sampling rule is determined by the researcher and hence is known in this

problem. Because 1 is the full data influence function and E[S(U | V') | V] = 0, we have

do(Fy)
dt

=EpSU | V)] + E[$S(V))]
= E[hRSU | V)| + E[hS(V)] (82)
=Eh{RSU |V)+SV)}].
According to (ST), the tangent space under the two-phase design consists of all functions of the form rS(u | v) + S(v),
where S(u | v) and S(v) are the score function of f(u | v) and f(v) under some full data submodel. Since the full data

model is locally nonparametric, the closure of the tangent space under the two-phase design consists of all score functions

of the form (ST)), which is
T ={rs(u,v) +s(v) : E[s(UV)]|V]=0, E[s(V)] =0}.

It is easy to verify that h belongs to 7. This and (S2) implies h is the efficient influence function according to the

characterization of the efficient influence function which can be found behind Lemma 25.14 in|van der Vaart| (1998). O

S2.3 Proof of Theorem 1|

Proof. Recall that ps(-) = p(+; 0, 7s). By the definition of 75, the sampling rule ps(+) satisfies the constraint E[ps (V)] =
Elp(V;0,7s)] < w. Because the second term in the efficiency bound (3:2) is irrelevant to the sampling rule, to show

p(+; 0, Ts) is the optimal sampling rule, it suffices to prove

e[ 2 ]




S2.4  Proof of Theorem

for any sampling rule p*(-) satisfying E[p* (V)] < w. Note that

o) - [aiom) > et i -

V’ 0,Ts

where the first inequality is because 1/2z1 — 1/z2 > (22 — 21)/23 for any z1, z2 > 0. This completes the proof. O

S2.4 Proof of Theorem 2

Proof. Recall that problem (3.6) is

i, {0 (52 7))}

By Lemma 1.15 in|Rigollet and Hiitter|(2015), for any p(-), we have

i o (62 [777]))

d S wibite?(V)
= min wib g — B | ==L 2T
i S 72

2

where W = {w = (w1, ..., wq) : Z?Zl wj=1,0<w; <1, forj =1,...,d}. Hence (Z.6) is equivalent to

} ‘ (83)

Recall that Py == {p(-) : 0 < p(-) < 1, E[p(V)] < w}and W' = {w = (w1,...,wa) : Z?zl w; =1,0<

d d -1 2
E Y wib: o (V
max min {E ijglfj —E{ j=1 "3 5(V)
=1

PEPG wewt p(V)

w; <1, forj=1,...,d}. Let

Z‘;:l w; bj_la? (V)
p(V)

d
h(p,w) = w;b; & —
j=1

Take the Lo norm and the Euclidean norm as the norm in P and W, respectively. Then, P, W' are compact and h(p, w)

is continuous with respect to p and q. Moreover, h(p, w) is convex with respect to p and linear (hence concave) w.r.t. w.



S2.5 Proof of Theorem

Thus, the solution of the optimization problem does not change if we change the order of max and min in (3:6) according

} (54

According to the above derivations, we can focus on the problem (S4). Notice that the inner optimization problem of

; }

to Theorem 3.4 in[Sion| (1958). Thus, the dual problem

Z;‘l:1 W bg‘_1‘712' V)
p(V)

wewt p€Pg

d
min max {ijbjl§j -F
j=1

shares the same solution as (S3), which also leads to an equivalent problem of (3.6).

Z?:1 wj bj_l ‘712' V)

— p(V)
d d -1 _2
) S wiby o3 (V)
= w-bvlfvfminE = J_J
j; TN pepg p(V)

Similar arguments to those in the proof of Theoremcan show that p(-; 0w, T ) minimizes the functional E [Z‘?:l w;b; Yo3(V)/ p(V)]

J

over Pg and the minimum value is

Z?:l wjbjflaf-(V)
p(V)

min F |: = Flow(V)max{cw(V), 7w},

where 0, (V) = \/ijl wj bj_laf-(V) and 7, is the unique solution of E[p(V; 0w, T)] = w with respect to 7. This

completes the proof of Theorem@ O

S2.5 Proof of Theorem

Proof. We prove the result for p;(-) for j = 1,...,d. The result for pc(-) and pg(-) can be established similarly. For
it =1,...,n, the expectation of Ry; is (1 — R1;)p; (Vi) conditional on (R11, V1), ..., (Rin, V») and U; for j with R1; =
1. Thus conditional on the same variables, the expectation of > ;" | (R + Ra2:) is > ;- Ris + Y oy (1 — Ru1i)p; (Va).
Because 7; is the solution of @.I1), we have > (1 — R1;)p;(Vi) = (w — kn)n. According to the law of iterated

conditional expectation, we have E [Y.7 | (R1i + Ra:i)| = knn + (@ — kn)n = wn which proves Theorem O

S2.6 Proof of Theorem

In this and the following proofs, we use M to denote generic positive constants whose values may be different in different
places. We first get down to the required regularity conditions. Recall that 7; is the solution of E[p(V;0;,7)] = @ for

j=1,...,d



S2.6 Proof of TheoremEI

Condition S1. There is some constants r;, L; > Osuchthatr; < 7; and |E[p(V; 05, 71)]|—E[p(V;05,72)]| > Lj|T1—72|

forany 71,72 € [1; — 1,7, +7;]and j = 1,...,d, where p(:;0;5,7) = 1{c;(V) > 7} + 0;(V)/71{c;(V) < 7}.
Condition S2. sup, IT;(v) < co and 0 < inf, 0;(v) < sup, o;(v) < coforj=1,...,d.

Condition Erequires that the budgets under different thresholds are different in a neighborhood of 7;. Condition @

is a mild regularity condition. Next, we give the proof of Theorem 4]

Proof. We prove the results for p;(-) for j = 1, ..., d. The result for ps(-) is a special case of d = 1.
We first show 7; converges to 7; for j = 1,...,d, where 7; is the solution of Equation (Z.I1)) in the main text. Let

7j,n be the solution of E[p(V;0,,7)] = (@ — kn)/(1 — Kn). Note that (o — &n)/(1 — kn) — @ = O(kyn). Under

Condition|S1| we have |75, — 7;| = O(kn). Next, we show that |7; — 7 » | converges to zero. For 7 € [1; — rj,7; + 5],

define
1< (Vs
o) = 1 320 = R (o) 2 73+ P00 140, ) < 7))
and
- 1< _ 5 (V; ~
() = 1 320 R (165500 2 7+ 20150 < ).
By calculating the mean and variance, we have
1
() = Bl (0l = 00 () (59

uniformly in 7 € [7; —r;, 7; +r;]. Moreover, we have E[h; n(7)] = (1—kn)E[p(V; 05, 7)] which implies E[h; »(7)] =

@ — Kn. By Condition[T] it is not hard to verify

~ 1 _ _
hgn(7) = By ()] € —— (15 = olloc = Op { (m0) " } (36)

T —T

uniformly in 7 € [7; —r;, 7; +r;], where § is a constant determined by the convergence rate of ||6; — 0;||cc Which appears

in Condition|[I]. Combining (S3) and (S6), we have
7 -5
hjon(7) = Elhjon (0] = O { (i) }.
Thus for any € > 0, there is some constant M > 0 such that

P (|hjn(7) = Elhjn (7] = M(nsn) ™) <

N

8



S2.6 Proof of TheoremEI

forany 7 € [1; —7j,7; +7;]. Define 7j,n,1 = Tjn — M (nkn)~ 5/( i(1—kp))and 7jn2 = Tjn +M(nl€n)76/(Lj(1 —
Kn)). Because |7j,n — 7;| = O(kn), kn — 0 and nk, — oo, we have 7jn, Tjn,1, Tjn2 € [1; — 15,75 + 1;] for
sufficiently large n. Hence
P(ﬁj,n(Tj,n,l) = Elhjn(Tjna)] < M(nkn) ™", hjn (Tjin2) = Elhjn(Tin,2)] > —M(mﬁn)_é)
> 1= P (hyn(myn) = Elhya(minn)] 2 M(ns) ™)
(87)
= P (hyn(Tim2) = Blhyn(73:n,2)] < =M (i) ")
>1—c¢
for sufficiently large n. According to Condition |S1|and the monotonicity of E[h; »(7)] = (1 — kn)E[p(V;05,7)], we
have

Elhjn(Tjmi1)] € @ — kin — M(nky) ™"

and

E[hjyn(’rj,ng)] > w— Kn + M(nlin)76

Combining this with (S7), we have
P (ilj’n(Tj,nJ) <W—Kkn < iL]'Yn(Tj,'an)) >1—e

Recall that 7; is the solution of h;,,,(7) = @ — kn. We have P (7 € [Tjn.1,Tjnz2]) > 1 — € by the monotonicity of

Rjn (7). This implies |7 — 75,n| = Op{(nsn)°} and hence

175 — 75| = Op{(nkn) " + Kn}. (S8)
Under Condition[S7] we have
155(0) = 0, 0)]
= 1650 > 1) + 2105, < 1) - 1) > ) - 2140 < 1)
<[iew > 5+ 2150 < 5 - 1o > 5 - ”1{ J(0) <7}

‘1{0;(v)>n}+ 20 110,(0) £ 5 - Uos0) > - 2 o) < )

< M(||6j = ojlloc + |75 = 75)



S2.7 Proof of Theorem

for some constant M with probability approaching one. Combining this with Condition[]and Equation (S8}, we have

175 = plleo = O { () ™* + n

which completes the proof. O

S2.7 Proof of Theorem 5

In this subsection, we turn to the convergence result of the estimated sampling rule in the multi-dimensional parameter

)

case. For w € W, define

a; (V)
po(V) + 35 w;(p; (V) = po(Vi))

and

where & = E[03(V)/po(V)] and b; = E [05(V)/po(V)] + Var[lI;(V)] for j = 1,...,d. Similarly, for w € W*, let
d
Hg(w) = ijb;1§j — Eow(V)max{ow(V),Tw}] -
j=1

Then, we = argmin,, ¢y, He(w) and wg = argmin,, ¢yt Hg(w). The following condition is required to establish the

convergence rate of pe(-) and pg(+).
Condition S3. The benchmark sampling rule po(-) is bounded away from zero and satisfies E[po(V')] = .

Condition S4. (i) Hc(w) has the unique minimum point we; (ii) for some constants r¢, Le > 0 and any w € W such that

lw — we|| < re, we have He(w) — He(we) > Lel|jw — wel|?.

Condition S5. (i) Hg(w) has the unique minimum point wg; (ii) for some constants rg, Lg > 0 and any w € W such

that ||’LU — UJgH < Tg, W€ have Hg(’w) — Hg(’LUg) > LgHw — ’LUgHQ.

Condition is a regularity condition on the benchmark sampling rule po(-). Condition is a mild regularity
condition, which can be satisfied if Hc(w) has a continuous Hessian matrix in a neighborhood of r¢ and the Hessian
matrix at r¢ is positive definite. Condition [S3]is similar to Condition [S4 with He(w) replaced by Hg(w). Now, we are

ready to prove Theorem@

10



S2.7 Proof of Theorem

Proof. We only prove the result for p¢ (). The result for gg(-) can be established similarly.
Recall that pc(-) = po(-) + 31— we,;{ps(-) = po()} and pe(-) = po(-) + Yo, e ;(B;(-) — po(-)), where
we,; and we,; are the jth component of we and we, respectively, for j = 1,...,d. Recall that p;(v) = 1{o;(v) >

7} + 05 (v)1{o;(v) < 75}/7; for j = 1,...,d. By Condition[S2] we have

1
2 < fp;(v) < supp;(v) < M (89)
for some M > 1. Hence
d
15e = pelloe <D 1155 = pilloe + M|libe — well.
j=1

Theorem 4| has established the convergence rate of ||3; — pjlleo. Thus, in order to establish the convergence rate of

||oc — pe||oos it suffices to establish the convergence rate of ||we — wel| . Define

(w) = b€ — l Y &JQ(V)
Hj(w) bJ <§J n Z po(V) + Z;.izl w;(p; (V) — PO(Vi))>

and

He(w) = jgl??idﬁj (w),
where, for j = 1,...,d, b; = n ' 3" 62(Vi)/po(Vi) + n 0 {I;(Vi) — n ' 00 T;(Vi)}? and €; =
n=tS"  52(V;)/po(Vi). Then @e = arg min,, .y, He(w). Define b; and H; (w) similarly to b; and H; (w) with IT;(-),
5;(-) and j;(-) in b; and H; (w) replaced by I1;(-), o; () and p; (-). Let He (w) = max;_1, . q H;j(w). According to Con-
dition|[T} Theorem[d] and inequality (S9), there is some constant M > 1 such that 1/M < inf, ;(v) < sup, p;(v) < M
with probability approaching one. Conditionsimply that maxj—1_a|bj —b;| < M (|| —11;]|cc + |55 — 05|00 +

15 — p;lloc) for some constant M. Then, Conditions[S2] [S3]and the mean value theorem implies that

sup |Hj(w) — Hj(w)| < M(|[TL; = jl[oo + 155 — 0llec + 155 — pjlloc)

with probability approaching one for some constant M. This implies

sup |He(w) — He(w)| <
weW

M (jgé_{d I = jlloe +  max |55 — ojlloe + max |5; — pj\loo)

11



S2.7 Proof of Theorem

with probability approaching one. Then, according to Condition [[jand Theorem[d] we have

sup |He(w) — He(w)| :Op{(n/cn)76+/$n}. (S10)

wew
Recall that
2
1< 032 Vi) 1 &
(n 2 oo {HJ(VZ)— n;HJ(VZ)} )
. Ly { H\D) }
nig ) + 30 wi(ps (Vi) = po(V2))

for any w € W. According to Condition we have b; > 1/M for some constant M and j = 1,...,d. Notice that the
function o (v)/po(v) + o;(v)/[po(v) + Z‘;:l w;(pj(v) — po(v))] is bounded and Lipschitz continuous with respect to
w due to (S9), Condition[S2} and Condition[S3} Then, similar concentration arguments as in the proof of Lemma C.1 in[He

et al.|(2021) can show that

sup |, (w) — #(w)] = Op (7=} (s11)

wew

Combining (ST0) with (STT), we have

sup | (w) — Hy(w)| = Op { (ns0n) ™ + ki }

wew
Thus, for any € > 0, there is some M > 0 such that P(sup,, ¢y |Hj(w) — Hj(w)| > M{(nkn) "% + kn}) < e Because

e is the minimum point of He (w), we have He (we) < He(we) and hence
He(wc) — He(we) < He(ie) — He(we) +2 sup |Hj(w) — Hj(w)]
wew

< 2 sup |H;(w) — H;(w)].
weW
Thus

He(we) — He(we) < 2M{(nkn) ™% + kn} (S12)
with probability at least 1—e. Because He (w) is continuous with respect to w, WV is a compact set and we is the unique min-
imum point of He(w), we have inf, ey jjw—we || >re { He(w)—Hce(we)} > 0forre in Condition For sufficiently large

n such that 2M {(nk,) % + kn} < infyew Jw—we | >re {He(w) — He(we)}, we have [[we —wel| < e with probability

at least 1 — e according to (S12). Then inequality (ST2)) and Conditionimply | We —wel|| < v/2M{(nkn)=% + kn}/Le
with probability at least 1 — e. Because e is arbitrary, we have ||[We¢ — we| = Op(y/(nkn)=° + K,). Combin-
ing this with Condition [S2| and the fact that ||; — pjllcc = Op{(nrn) "% + Kn}, we conclude that ||gc — pclleo =

Op(\/(nkn)=% + Kn). O

12



S3 Estimation

S3.1 Estimate the Conditional Mean and Variance of the Efficient In-

fluence Function

The full data efficient influence function depends on ¢y and may also depend on some unknown nuisance parameters, €.g.,
o and By in Example[S2]and m (+), mo(-) and 7r(-) in Example[S3] Thus, we need to estimate these unknown quantities.
We write the efficient influence function as ¥ (V, U; 6o, o) where 1 is the nuisance parameter. The nuisance parameter 770
can be estimated using the pilot sample. Denote the resulting estimator by 7. Then 6, can be estimated by 6 which is the

solution of the estimating equation

> Rut(Vi, Ui 0,77) = 0,

i=1
where R;; is the inclusion indicator for the pilot sample. Then we obtain the estimates 1ZZ =(V;, Us; 0~, M) G: Ry =1)
for the full data efficient influence function of observations in the pilot sample.

In order to estimate the optimal sampling rule and construct efficient estimator according to the efficient influence
function in Lemma one needs to estimate the conditional mean I1;(-) and the standard deviation o (-) for j = 1,...,d.
These quantities can be estimated by fitting a heteroscedastic parametric regression model using the pilot sample and
the estimated ¢;’s. In practice, it may be hard to model II;(-) and o;(-) for j = 1,...,d. If plausible parametric
models are not available, we recommend to estimate them nonparametrically. Many methods are available for this task,
including kernel smoothing (Fan and Yaol [1998; [Fan and Gijbels| [2018), sieve methods (Huang, |1998} 2001} |Chen, |2007)
and kernel ridge regression (Mendelson, [2002). A sieve method that can estimate the conditional mean and standard
deviation simultaneously is proposed in the next section. The proposed method is computationally efficient and performs

well even when the dimension of the first-phase variable is moderately high.

13



S3.2  New Nonparametric Estimators for the Conditional Mean and Variance

S3.2 New Nonparametric Estimators for the Conditional Mean and

Variance
If a plausible model for the conditional mean function II;(v) is unavailable for j = 1,...,d, we can approximate it with
a linear combination of some basis functions such as polynomials, wavelets, or splines. Let p(v) = (p1(v), ..., pr(v))"

be a vector of basis functions which can change with n. One can increase K with n to make the approximation more and
more accurate as the sample size increases. Then, we approximate IT; (v) by ~{ p(v) for some 1. The conditional standard
deviation o (v) can be approximate similarly by 3 p(v) for some ~y>. However, this approximation is not guaranteed to be
non-negative. An infeasible negative sampling rule is obtained if we plug the negative approximation into the expression of
the optimal sampling rule in Theorem Using the truncated version max{~y3 p(v), 0} can avoid this problem but leads the
function not differentiable with respect to 2 which makes optimization difficult. Hence we propose to use a transformation
function A(v) = log(1+exp(v)) and use A(y3 p(v)) to approximate o (v). The function A(v) is a smooth approximation
of the truncation function max{v, 0}. Moreover, it is convex, Lipchitz continuous, differentiable, and non-negative. These
nice properties benefit the optimization.

Then, the remaining problem is to determine 1 and ~2. The discussion behind Theorem |I| can show that o;(-)
minimizes E[(¢; —IL;(V))?/ f2(V)] over all positive fa(-) such that E[f2(V)] < E[o;(V)]. This motivates us to consider
the penalized objective formulation of the constrained optimization problem E[(v; — I1;(V))?/ f2(V)] + E[f2(V)]. One
can verify that this objective function is minimized if f2(-) = o;(+). On the other hand, it is straightforward to show,
for any given positive function f2(-), the conditional mean function IT;(-) minimizes the weighted least squares objective
function E[(v; — f1(V))?/f2(V)]+ E[f2(V)] over all f1(-). This inspires us to recover the conditional mean and variance
simultaneously by minimizing E[(v); — f1(V))?/f2(V)] + E[f2(V)] with respect to f1(-) and fa(-). By replacing the

expectation with sample mean and plugging in the estimates and approximations, we obtain the objective function

Lnj(v1,72) = nin ZRM {% + A('YZTP(Vi))} ; (513)

where 1);; is the jth component of ; for j = 1,...,dand i = 1,...,n. Let 51, 72, be the minimum point of ST3).
Then I1;(V) and o (V) can be estimated by II,; (V) = 1;p(V) and 6;(V') = A(32;p(V)), respectively. The proposed

objective function has the following block-wise convex property.
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S3.2  New Nonparametric Estimators for the Conditional Mean and Variance

Proposition S1. For j = 1,...,d and any give v1, Ln;(71,72) is convex with respect to v2; for j = 1,...,d and any

give ya, Lnj(71,72) is convex with respect to 1.

Proof. For any given 71, the Hessian of £, (y1,y2) with respect to s is

! Z Rlip(‘/i)p(‘/;;)T{(Q[}i — v p(Vi)* x

Nkn &
223 p(V) AP (Vi) = A p(V) AP (V)] + AP (35 p(Vi)) }
where AV (v) = exp(v)/{1 + exp(v)} and A® (v) = exp(v)/{1 + exp(v)}?. This matrix is positive semi-definite
because A® (v) > 0 and 2A(v) *AD ()% — A(v) "2A@ (v) > 0. Thus L,,;(71,72) is convex with respect to 2. For
any given ~y2, the Hessian of £, (1, v2) with respect to -, is
LS Rup(Vp(V) T
Nhn £ A~y

which is also positive semi-definite. This completes the proof. O

Proposition shows Ln;(71,72) is block-wise convex with respect to 7, and ~2 for j = 1,...,d and hence
the optimization problem (ST3) can be solved efficiently by routine optimization algorithms. So far we have defined a
nonparametric estimator for II;(V'), o;(V') based on the sieve method (Chen, 2007). For our numerical experiments, the
estimators IT; and 5; are employed. In the simulation, we introduce a small regularization 0.1(dy +1) (|71 ||>+ ||y2||2) into
the loss function to further enhance the stability of the solution, where dy is the dimension of the first-phase variable
V. In the simulation studies and real data analysis, we normalize all first-phase variables to the range [0, 1] using min-max
normalization and then use a second-order polynomial with full interactions between variables as the basis functions. This
simple choice performs well in our numerical experiments, and we recommend it for practical use. However, we do not
claim that this choice of basis functions is optimal in any sense. Identifying the optimal basis functions for the problem
considered here remains an interesting direction for future research.

The idea to recover the mean and variance simultaneously also appears in parametric heterogeneous regression lit-
erature and is shown to perform well in finite sample (Daye et al.| 2012; |Spady and Stouli, 2018). Our estimator is an
extension of the idea to the nonparametric literature. The proposed method has several nice properties compared to other
nonparametric conditional mean and variance estimators, such as kernel smoothing, sieve least squares, and kernel ridge

regression. First, it is computationally efficient as the conditional mean and variance can be estimated simultaneously by
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S3.3 Estimate the Parameters of Interest

solving the optimization problem (ST3). Second, heteroscedasticity is considered in fitting the conditional mean model,
which can deliver efficiency gains when fitting a model with many parameters and limited observations (Daye et al.|[2012).
Third, the conditional variance estimator is always positive. This is also a desirable property (Yu and Jones} |2004) which
is not possessed by some classic existing methods, e.g., local linear kernel smoothing, sieve least squares, and kernel ridge

regression.

S3.3 Estimate the Parameters of Interest

Define R2; = 0 for subjects with R;; = 1. With some abuse of notation, let R; = Ri; + R2; be the overall sampling
indicator for the second phase sampling. Under the sampling procedure proposed in Section[S3] V; is measured for all the
n subjects, and U; is measured for subjects with R; = 1. If a nonrandom sampling rule p(-) is used to select the subsequent
sample in the second phase, we have the inclusion probability P(R; = 1| V;) = kn + (1 — kn)p(V;) fori = 1,...,n.
Denote the sampling rule adopted in the second phase by p(+), where 5(-) depends on the pilot sample and hence is random.
However, it converges to some nonrandom sampling rule according to Theorem 5} Thus the inclusion probability can be
approximated by pn, (Vi) = rin + (1 — ,)p(Vi). Let the inverse probability weighted estimator 6i,, be the solution of the

estimating equation

" Riw(Vi,Us; 0,7
Z ( 7)

mvy

=1

The inverse probability weighted estimator éipw is \/n-consistent under certain regularity conditions but may not be efficient
(Tsiatis} [2007). Based on éipw, an efficient estimator can be obtained through one-step estimation (Bickel, |1982). Let ﬁ()
be an estimate of II(-) based on the pilot sample. According to the efficient influence function given in Lemma |1} the

one-step estimator is defined by

0

5 ~ Rip(Vi, Uss Oipws ) S~ Ri N\ ws
e,pw+; o) ; 1) (V)

=3 (5 ) 10

i=1

The one-step estimator 6 is asymptotically normal and efficient under appropriate empirical process conditions (van der
Laan and Robins| |2012; ivan der Vaart and Wellner, |1996)).
As noted by an anonymous reviewer, the use of the pilot sample breaks the i.i.d. structure across observations because

the distribution of the sampling indicator in the second phase depend on the pilot sample. This complicates the theoretical
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analysis of the proposed one-step estimator 6. However, we note that, conditional on the pilot sample, the remaining
observations are i.i.d., and the pilot sample typically constitutes only a small fraction of the total dataset. Intuitively,
this suggests that the overall data distribution does not deviate substantially from the i.i.d. setting. Although not able
to rigorously prove, we conjecture that this deviation does not cause serious issues. Our numerical results indicate that,
despite of the non-i.i.d. structure, the proposed estimator 6 performs well in practice, suggesting that the non-i.i.d. structure
and potential overfitting are not major concerns—at least in our numerical experiments. The simulations in Section [S4.4]
show that 6 has negligible bias and achieves higher finite-sample efficiency than several alternative estimators. Based on
these observations, we recommend the one-step estimator 6 for practical use, while leaving a rigorous investigation of its

theoretical properties to future research.

S4 Additional Simulations

S4.1 Response Mean

In this section, we consider the response mean estimation problem where covariates are inexpensive and the response is hard
to obtain. As in the main text, we set n = 5000. Let Z be a g-dimensional covariate vector with independent U[—2.5, 2.5]

components, where U[—2.5, 2.5] is the uniform distribution on [—2.5, 2.5]. Suppose the response
Y =00 + C,;FZ —+ 1/1(2)67

where 6y = 1, ¢g = (0.5/,/q,...,0.5/\/Q)", v1(z) = /0.1 + (2(f 2)%, € is the standard normal error. In this example,

we let V' = Z be the vector of first-phase variables and U = Y be the second-phase variable. The parameter of interest is
the response mean 6y = E[Y]. We take k., = @ /{1 + log(wwn/q)} in this simulation. Figure[S]is the boxplot based on

the results of 500 simulations.

[Insert Fig.[ST]about here]

As can be seen in Fig. the estimation efficiency is improved under ps compared to the uniform rule. The im-

provement is observed for different combinations of n and ¢, and is particularly pronounced when ¢ = 5. The REs are
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S4.2  Linear Regression Coefficient

1.5038, 1.7409, 1.5103, and 2.1777 when (n,¢) = (2000, 1), (2000, 5), (5000, 1), and (5000, 5), which indicates that
the efficiency is significantly improved under the proposed optimal sampling rule compared to that under the uniform rule.
In the following, we consider the problem of multi-dimensional parameter estimation and evaluate the effectiveness

of the sampling rule ¢ and pg. We consider a two-dimensional response variable Y = (Y1, Y2)". Suppose
Vi =001 — (g Z + vi(D)e,
Y2 = 02 + Sin((;FZ) + v2(Z)e,

where o1 = 1, 0p2 = 0, v1(2) is introduced in the scalar case, v2(z) = exp(2§qT z), €1 and €2 are independent standard
normal errors, and Z is defined in the same way as in the scalar case. We consider the estimation of the two-dimensional
response mean 0y = (0o1,002)" = (E[Y1], E[Y2])T under two-phase designs. Tablereports the bias and standard error
(SE) of the one-step estimator with different sampling rules based on 500 simulations, and the RE compared to the uniform

rule.

[Insert Table [ST]about here]

In all cases, the SEs under the sampling rules pc and pg are smaller than that under the uniform rule. In some cases,

the improvement is very significant with a RE close to 3.

S4.2 Linear Regression Coefficient

In this subsection, we consider the problem of estimating linear regression coefficients when response variables and a part
of covariates are measured in the first phase and other covariates are measured in the second phase. Define Z in the same
way as in Section[S4.1] Suppose

X =sin((; 2) + v2(2)ea,
Y =(]Z+ 00X + ¢y,

where 6y = 1, v2(z) is defined in the last Section [S4.1] and €, and €, are independent and follow a standard normal

distribution. Let V = (Y, Z™) be the first-phase variable vector and U = X be the second-phase variable. The estimation
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S4.2  Linear Regression Coefficient

of the regression coefficient 6 is considered in this simulation. We take k., = w/[1+log{wn/(¢+1)}] in this simulation.

Figure[S2] contains boxplots of the estimator in 500 simulations across different combinations of n and g.

[Insert Fig.[S2]about here]

As can be seen in Fig. |§_7L the accuracy of the estimator is improved under ps compared to that under the uniform
rule. The improvements are observed across different combinations of n and ¢, and is particularly pronounced when

(n,q) = (5000, 5). The REs are 2.1175, 2.4225, 2.3096, and 2.3206 when (n, ¢) = (2000, 1), (2000, 5), (5000, 1), and

(5000, 5).
Next, we consider the case with a two-dimensional regression coefficient of interest. The covariate vector Z is defined

in the same way as in Section Let X = (X1, X2)" be a two-dimensional covariate vector which satisfies
X1 = C;FZ + lll(Z)Ezl,

X2 = —C(;FZ -|— Z/Q(Z)CxQ,

where 1 (z) and v2(z) are defined in Section [S4.1} €51, €z2 are independent standard normal variables. The response

variable Y satisfies

Y =7+ 60X +ey,

where 62 = (01, 002) = (0,1) and €, follows a standard normal distribution.

Table [S2] reports the bias, SE of the one-step estimator, and the RE compared to the uniform rule based on 500

simulations.

[Insert Table [S2]about here]

As seen in Table[S2} the SEs under under the sampling rules gc and g are smaller than those under the uniform rule

in all cases. The REs are larger than two in some cases.
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S4.3 Sampling Design with Different Priorities under the Multi-dimensional Setting in
Section

S4.3 Sampling Design with Different Priorities under the Multi-dimensional

Setting in Section [5]

In this section, under the multi-dimensional setting in Section[5] we illustrate the numerical effect of the priority parameter
a = (a1,1 — a1) discussed in Remark [1} We set (n, ¢) = (5000, 1). Table [S3]presents the bias, SE of the estimator, and
the RE compared to the uniform rule, based on 500 simulations. We consider the one-step estimator under the estimated
optimal rule for 6o1, fo2, and the G-opt rule with a1 = 0.05, 0.5 and 0.95. The results under the uniform sampling rule are
also reported for reference. Table[S3|shows that biases of the estimator are small under all sampling rules. Notably, the SE
for estimating 61 decreases as a1 increases, accompanied by a modest increase in the SE for estimating 6o2. Notably, the
SEs for both parameter components are smaller than those obtained under the uniform sampling rule, no matter what value

a1 takes. This desirable property is not achieved for the estimated optimal rule for o1 or fp2.

[Insert Table |S3|about here]

S4.4 Comparison with Alternative Estimators

In this section, we further investigate the numerical performance of the proposed one-step estimator 6 and compare it
with several alternative estimators. There are multiple alternative ways to construct an efficient estimator in two-phase
studies. For example, one may construct an estimator, based on the efficient influence function and the one-step estimation
technique, using all observations except those in the pilot sample. Denote the resulting estimator by fex. Conditional
on the pilot sample, the remaining observations are i.i.d. Thus, the asymptotic properties of feox can be established using
standard arguments conditional on the pilot sample. In addition, the efficiency loss lead by excluding the pilot sample is
asymptotically negligible because x, — 0. Another reasonable approach is to perform an inverse-variance-weighted meta-
analysis combining the pilot sample estimator 6 and the estimator fex. Denote the resulting estimator by Biuy- Figure
presents boxplots of different average treatment effect estimators under the optimal sampling rule for a scalar parameter ps
over 500 simulations with ¢ = 1 and n = 2000, 5000, 20000, 50000. For reference, the results for the one-step estimator

under the uniform sampling rule are also included.
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[Insert Fig.[S3]about here]

Figure shows that, under ps, all three estimators have higher efficiency than the one-step estimator under the
uniform sampling rule. The performance of the three estimators under ps is similar when n = 50000. However, for smaller
sample sizes (n = 2000, 5000, 50000), the proposed one-step estimator 6 demonstrates better finite-sample efficiency than
both Gex and Gy, under ps. In addition, the confidence interval based on 6 and normal approximation performs well in the
simulation. Coverage rates of the confidence intervals constructed using 0 and the influence function-based standard error

estimator are 94.4%, 93.8%, 96.8%, and 96.8% when n = 2000, 5000, 20000, 50000, respectively.
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Figure S1: Boxplots for the mean estimation with different combinations of n and ¢; dashed

lines are the true values.
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Table S1: Bias, SE, and RE in two-dimensional mean estimation

(n,q)

(2000, 1)

(2000, 5)

(5000, 1)

(5000, 5)

Rule

uni
C-opt

G-opt

uni
C-opt

G-opt

uni
C-opt

G-opt

uni
C-opt

G-opt

Estimate of 6y,

Bias

0.0017

-0.0028

0.0007

0.0068

0.0024

0.0060

0.0008

-0.0038

0.0010

-0.0056

-0.0006

0.0010

SE

0.1224

0.0897

0.0965

0.1441

0.1031

0.1068

0.0719

0.0601

0.0599

0.0889

0.0665

0.0620

24

RE

1.0000

1.8620

1.6088

1.0000

1.9535

1.8205

1.0000

1.4312

1.4408

1.0000

1.7871

2.0560

Estimate of 6,

Bias

-0.0012

-0.0001

0.0050

0.0254

0.0053

0.0036

0.0047

0.0019

-0.0003

-0.0047

-0.0018

-0.0012

SE

0.1601

0.1201

0.1240

0.2305

0.1526

0.1522

0.0981

0.0754

0.0722

0.1639

0.0947

0.0962

RE

1.0000

1.777

1.667

1.0000

2.2816

2.2936

1.0000

1.6928

1.8461

1.0000

2.9954

2.9027
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Table S2: Bias, SE, and RE in two-dimension regression coefficient estimation

(n,q)

(2000, 1)

(2000, 5)

(5000, 1)

(5000, 5)

Rule

uni
C-opt

G-opt

uni
C-opt

G-opt

uni
C-opt

G-opt

uni
C-opt

G-opt

Estimate of 6y;

Bias

-0.0005

-0.0012

-0.0003

0.0000

0.0005

0.0000

0.0001

-0.0003

-0.0003

0.0008

0.0001

0.0003

SE

0.0145

0.0126

0.0133

0.0126

0.0105

0.0103

0.0094

0.0079

0.0078

0.0075

0.0062

0.0060

25

RE

1.0000

1.3243

1.1886

1.0000

1.4400

1.4965

1.0000

1.4158

1.4523

1.0000

1.4633

1.5625

Estimate of 6,

Bias

0.0010

4e-04

8e-04

0.0003

0.0004

0.0003

0.0009

0.0005

0.0003

0.0003

0.0001

0.0001

SE

0.0110

0.0092

0.0088

0.0076

0.0057

0.0057

0.0071

0.0055

0.0054

0.0047

0.0032

0.0032

RE

1.0000

1.4296

1.5625

1.0000

1.7778

1.7778

1.0000

1.6664

1.7287

1.0000

2.1572

2.1572
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Figure S2: Boxplots for linear regression coefficient estimation with different combinations

of n and ¢; dashed lines are the true values.

Table S3: Bias, SE, and RE in two-dimensional average treatment effect estimation with

(n,q) = (5000, 1)

Estimate of 0y, Estimate of 6y

Rule
Bias SE RE Bias SE RE

uni 0.0273 03113 1.0000 -0.0101 0.2787 1.0000
S-opt (6o1) 0.0206 0.2463 1.5975 -0.0024 0.2977 0.8764
S-opt (6p2) 0.0516 0.3639 0.7318 0.0009 0.1851 2.2671
G-opt (a; = 0.05) 0.0427 0.2814 1.2238 0.0026 0.1982 1.9773
G-opt (a; = 0.5)  0.0254 0.2585 1.4502 0.0058 0.2222 1.5732
G-opt (a; = 0.95) 0.0262 0.2517 1.5296 -0.0053 0.2262 1.5181
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Figure S3: Boxplots for the average treatment effect estimation under ¢ = 1 and n =
2000, 5000, 20000, 50000; OS-uni: 0 under the uniform sampling rule; OS: 0 under ps; BEX:

éex under pg; IVW: éivw under pg; dashed lines are the true values.
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