Statistica Sinica: Supplement

ESTIMATION AND MODEL SELECTION PROCEDURES IN
GENERALIZED FUNCTIONAL PARTIALLY ADDITIVE HYBRID
MODEL WITH DIVERGING NUMBER OF COVARIATES

Supplementary Material

S1. The proof of theorems

This part contains the proofs of THEOREM 1 and THEOREM 2, which depend on
two preliminary lemmas and first we will give the following Lemma 1, a direct result
of de Boor (2001).

Lemma 1 There exists positive constants C', for any functions g(z) € H(r) with

r < h — 1, there exists a function g(z) € 8Y, such that
sup [g(z) — go(2)| < K"

From Lemma 1, we can find ¢ = {(r,j = 1,5+ ,pp,k = 1,--- ,K,}", and an

additive spline function h(Z) = BT(Z)¢ € G, such that

sup [h(Z) — ho(Z)| < Cp. K. (SL.1)
Z



Denote mgy(F) = fol X(t)ao(t)dt + ho(Z), T = (€, 2), &ix = (X, v) and 1ing(T) =

éT')/o + BT (Z)¢y, where vy and ¢, be the true parameter values of 4 and ¢, and define

A

_ E[Zpa{mo(T)} €]

>l B(Z)=B(Z)-T(&).
Epafin(mg . D) = P& T

L)

Lemma 2 Let R; = mo(T ;) — mo(F;) = éz‘T'YO — fol Xi(t)ap(t)dt + BT (Z;)¢o —
ho(Z;),i =1,2,...,n. Suppose that conditions C1-C12 hold and the dimension of the

spline space S fulfils K,, = O,(n'/1+27)) then we have

_a+2b—1

IR =0y (n55%), =12,

Proof of Lemma 2.

1
IRI? = (€70 — / Xo(B)ao(t)dt + BT (Z.)¢o — ho(Z)?
0
= | Zgik'VOk - Z&k%k + B (Z:)¢o — ho(Z))|?
k=1 k=1

= I G — &Gk — Y &kvow+ BT (Zi)Co — ho(Z))|
h=1

k=mn,+1

= D = G)vor + D Gk —&)vor — Y &wvor + BT (Zi)Co — ho(Z:)|?
h—1 k=1

k=my,+1

A Gk — Eavoell* + 41D Gk — E)voell?
k=1 k=1

N

Y Gkl +4IBT(Z) o — ho(Z)|?
k=mn,+1

L A, +4A, +4A5 4+ 4A,,

By lemma 1 of Kong et al. (2016), we can see that | X;]|2 = O,(1), | X; — Xi||? =



0p(n1) and |0y — vi]|* = Op(n~1k?), then we have

A = ||Z (Xi, 0 — vr) ol
< ng|70k|2||le|2H@k—kaz
k=1
mMn
< Op<n—1mn)zk2—2b
k=1
< 0, ().
Ay = HZX X, o) Yo |
< ngIIXi—XiIIQII@kHQImI?
k=1
Mn
< mnop(n_l)Zk_%
k=1
a+2b—1

= op(n~ «t2 ).

(S1.2)

(S1.3)

It follows that {(X;, vx)}72,, L, are uncorrelated random variables and condition C2,

we have

E(As) = E( > (Xl-,vk>%k> = ) W%E (X))

k= mn—i-l k=mn—+1

N

k=mn—+1

So

C Z k~ 2ka “— 0 ( —(2b+a— 1)) O(n,aﬁ;l)‘

Z ’Y()k)\k

k=mn,+1

(S1.4)



By (S1.1), it is easy to see that
A= O, (R K;™) = o(1). (51.5)

Combining (51.2)-(S1.5), we obtain that

IR = 0, (55",
0

Proof of Theorem ??7. Let ¢ = (o + 6,11,y = Yo+ 6, T and T = (T}, T,))". It

suffices to show that for any given € > 0, there exists a large constant C' such that

P{ sup PL({o + 0,11, 70 + 0,T2) < PL (Coa’)’o)} >1—c (51.6)
IT|I=C

This implies that, with probability tending to one, there is local maximum (f %) in
the ball {(¢o + 0, T1,v0 + 6, 1) : |[(T}, T, )"|] < C} such that ||f — Coll = O,(0n),
15 =0l = Op(dn)-

Denote D,,(T1,Ts) = PL(Co + 0,11, Yo + 0,T2) — PL (o, Y0) , and D, 1(Th, Th) =
L(Go+0nTh, Yo+6nT2) =L (Co,Y0) » Dn2(Th) = —n 325y [pa, (1o 00 Ta511) =2, (1o )],

where s is the number of nonzero additive components. Note that p,, (0) = 0 and

pAn(HCH) 2 0 for all Ca thus PL(CU + 5nT1770 + 5nT2> — PL (CO/YO) S Dn,l + Dn,2- We



first deal with D, ;. Let U; = (BT (Z;),€")T, then

Dn,l (Th TZ)

Z[Q{g_l(BT(Zi)(CO +0,T0) + & (o + 0, T2)), Yi}
~Q{g " (BT(Z:)¢o + &/ w0). Yi}]
Z[Q{gfl(mo(Tz‘) +0,(BT(Z)T1 + € T2)), i} — Q{g™\(

i=1
n

D 1Q{ ™ (1o(T) + 6,170, Yi} — Qg™ (mo(T7), Y},

i=1

By means of a Taylor expansion, we obtain

nl—Z(h o (T 5TTU—|— (52TTBT

where the random matrix

B,

with ¢; between 0 and §,T'U;, fori =1, - --

1
n @ (mo(T ;) + <, Y;)UZUZT
=1
1
E [(Y; B g_l(mO(Ti) + gl))pll(ﬁm(Tz) + §i) - P2<77~”L()(TZ) + §i)]UiUiT,

of van Der Vaart (1998), it can be shown that

So

B, = ——Zpgmo NUU," + 0,(1)

= —E[Pz(mo(}"))UUT] +0p(1) = =B +0,(1).

Dpi =6,T" 50" a1 (mo(T7),Ys) Ui — 2682T BT + 0,(1).

,n, independent of Y;. By Theorem 19.24

(S1.7)



By means of a Taylor expansion, we have

On Z ¢ (Mmo(T5),Y:) U;

= 0n qu mo(F;),Y:) Ui + 6, ZCD mo(F:), V) (mo(T:) — mo(F)) U + Op(ndy 1 — mol|?)
= On Z% mo(Fi),Y;) Ui + 0y 292 mo(Fi), i) (mo(T3) — mo(Fi)) Ui + 0p(1).

By Lemma 2, the second term on the right hand side of the above is

523" 02 (ol L), Y:) (o(T) — molF) U,

i=1
= 0n, i pr(mo(F:))U; (mo(T ) — mo(Fi)) € — bn i p2(mo(F;))U; (mo(T ) — mo(Fi))
: i=1

< On Z | P (mo(Fi))Uigi | - || 1o — mo || +O0p(ndy [0 — moll) = 0,(1),

where g; = Y; — g1 (mo(F;)). Therefore, we have
Dy =0, 300 a1 (mo(Fy),Yi) Ui — 56, T BT + 0,(1), (S1.8)

where the orders of the first term and the second term on the right-hand side of (51.8)
are O, (n*/26,/(m,+K,)) and O,(né%(m,+K,)?), respectively. By choosing a sufficiently
large C, the second term dominates the first term uniformly in ||T'|| = C'. Furthermore,

according to known conditions, we have

[Cosl

From known conditions, we get that D,, » is bounded by

Dz < =n ) [6a04, (I€os ) 725 T, + 0n2, (160 VT T15{1 + 0(1)}].
j=1

Vsn0,a,|| T || + nd2b, | T ||? = CndZ (Vs + b,0).



As b, — 0, this is also dominated by the second term of (S1.8) in | T}|| = C. Hence,

(S1.6) holds for sufficiently

Next, we show that

large C'.

14(2) = ho(Z) |2 = ||~ o)
= (€—¢)'E *ZB ](c ¢o)
< OlI¢— ol
thus || h(Z) = ho(Z) |[>= Op(52).
la(t) — ao(t)]* = ||Z%@j(t)—270ﬂj(t)
=1 j
< 2”2%’”3 Z'VOJUJ )1+ 2 Z o v; (t
j j=mn+1
< 4“2 — Y05) 05 (1) +4HZ’YOJ 0;(t) — v;()) I +2 Z 057
7=1 Jj=mn+1
< 4||’5’—’)’0H2+4H270j(% t) —v;(t) | +2 Z 0;°
7j=1 j=mn+1
= 44 —voll* + 4L + 21 (S1.9)

By means of [|0; — v;]|?

C2, we obtain that

= O,(n™'5?) and Cauchy-Shwartz inequality and condition

< "

My, e
9 9
E J 7oy
n <
Jj=1

Mn
my, Z 19; = 511 70°

TL mnE :]2 2b

Op(n “ﬁ};b : ),

L(ntmy,)

(S1.10)



2b—1

L < C Y j7*=0m,®")=0n =) (S1.11)

From (51.9)-(S1.11), we can get that
la(t) = ao()[I* = O, (57) -
This completes the proof of the Theorem 77. O

Proof of Theorem ?7(a). We use proof by contradiction. Suppose that there exists a
s+ 1 < ko < p, such that the probability of hy,(z) being a zero function does not
converge to one. Then, there exists n > 0 such that, for infinitely many n, P(éko +
0) = P(hy,(2) # 0) > 1. Let {* be the vector obtained from ¢ with ¢y, being replaced
by 0. It will be shown that there exists a > 0 such that PL({,4) — PL(*,4) < 0
with probability at least ¢ for infinitely many n, which contradicts with the fact that

2b—1

By Theorem ??, we have ||C; — G| = Op(\/(mn + Kn)n_(%_aﬁb)). Since ¢, = 0

2r

for k = s+ 1,--+,pn, we have ||| = Op(\/(mn—i—Kn)n_(W_%)) for k = s+

2r 2b—1

L . S0 |[Choll = Op(\/(mn + K,,)n~ 52 ~ei»)). With probability tending to one,

||éko|| S >\n, since

2r _ 2b—1

A (n~ 5 —@m)) =2 //my, + J, — oo. By the definition of py, (), we have P{py. (||Ck,||) =




Anl|Cro I} — 1. Mimicking the proof for Theorem ?? indicates that

PL({.A) = PL(C".4)

= > Qg (BT (Z2)¢+E€4).Yi} — Qg (BT (2)¢ + £ %), Y3}

—n > {pa (ICel) = pa (1€E D}
= Z(h(mo(}-i%y;)(é - 6*)
—g(c‘ — &) E(pa(mo(F)))(C = &) = ndal| ol + 0p(1)

= 0,21k 1) + Op (1l %) — 1A | G

iy l?
= A+ 0,190
(M, + I,) (n~ G~ 530

= A=A Gk [l + O (S1.12)

A

2b—1

By the fact that /\n(n_(%_awb))_%/\/mn + K,, — 0o, we can conclude that (51.12) is

dominated by )\;1||ék0|], SO PL(é, ) — PL(&*, 4) < 0, which contradicts to PL(f, ) —
PL(¢*,4) > 0. The proof of the theorem ?? (a) is complete.

Now we prove the Theorem ?7?(b). By Theorem ??(a), we know that, with proba-
bility tending to one, it follows that éb = 0. We next establish the asymptotic normality
of s. Let 8 = 6:1(Cs — Cos) and mg(Tis) = BT (Zis)Cos + £ 0. For any v € R*,
define m, = m(Ts) + v B(Zs) = €™y —v'T1(€) + ({s + v)TB(Zs). Note that

i, maximizes the function 1,(m) = L 7 Qg™ (M(Tis)), Yil — 325, o, (1€ + vj])



when v = 0, thus we have

0

0 = a_vln(mv)|v:0

= %; [QI {m(Tis), Yi} B(Zi8>i|
T S
- {pgn (/6] CC } + 0p(1). (S1.13)
For the first term in (S1.13), we get

—Z{ (Ts).Yi} B(Zis)]

T on Z_: [‘11 {mo(Tis), Yi} B(ZiS)]

¢

j=1

o3 [ 00(Ti), Yo} (0(Ts) — ol i) B Zis)|

LS [n(T), Y (Ts) — ol Tos) B )|

= I +1,+ Is. (S1.14)
We decompose I into two terms I5; and Iy as follows:

I, = _ZQQ{mO 15)71/;}3( zS) (’7 Yo)

+= Z%{mo Tis),Yi} B(Zis)B' (Z;s)(Cs — Cos)



Mimicking the proof for (S1.7) indicates that

Iy = —— 2,02 {m0(Tis)} B(Zis)& (4 — 7o) + 0,(1)
= - [pz {mo(Ts)} B(Zs)ET (5 — v0)] + 0,(1).
By the definition of B(Zs), for any measurable function ¢, E[¢(€)ps {io(Ts)} B(Zs)] =
0. Hence Iy = 0,(1). Using similar arguments, we can show that
by = L3 (T ), Y B(Z) BT (Zi5)(Gs — Gos) + 0y(1)
P

~T

= S T Y BB (i) s — Gus) + 1)
According to (S1.6) aIZlZdl condition (C6), we have
b= LS [n(Ts) Youn(Tos) - ol Ts) Bl Zs)
< Ol RTS) =T = 0y

For the second term in (S1.13), we get

{p&n ( ¢ )%}
j=1

Z{p&n(lkoﬂl)“gﬁ} (Zp (I1Sos1l) + op( )) (& — Coj). (S1.15)

Combining (S1.13), (S1.14) and (S1.15), we have

0 = -3 [ (iolTis), Vi) B(Zis)| - {p;n (16,11 C—}

— ISosll f _,

—{Elp> (0(Ts)) B(Zs)B' (Zs)] + 0,(1)}s — Cus)

(Zp (o5 ll) + Op(1)> (& = Cos) + O, (8.




Therefore,

0 = %Z[QI{mO(TiS)aYi}B(ZiS> -c,

=1

—(Zn, + Qs +0,(1))(&s — Cos) + Op(52).
Note that ¢ {mo(Tis), i} = [Y — g (mo(Tis))]p1(mo(Tis)) and

Elp2(mo(Ts))[Y — g~ (mo(Ts))2B(Zs) B (Zs))
— E[E([Y — g~ (mo(T )| T )0 (o(T's)) B(Zs) B (Zs)]

— Elpa(no(T's))B(Zs)B (Zs)] = E(Qs). (S1.16)
Thus

% Z [Ch {mo(Tis),Y:} B(Zzs)]
= V(S +Qs)(Cs — Cos) + Ve, + 0,(1).

By the Lindeberg-Feller central limit theorem, we have
1 <& . ~ d 9 ¢~ ~ ~ T
N > [Ch {mo(Tis), Yi} B(Zis)| = N(0, Elg; {mo(T's),Y} B(Zs)B (Zs))).
i=1
According to (S1.16), we have
Vi(Ss, + Qs){s = Cos + (B, + Q) eu} S N (0, E(Qs)).

The proof of the Theorem ?7?(b) is complete. O
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