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Supplementary Material

S1 Conditions and proofs of main results

The following technical conditions are imposed. They are not the weakest

possible conditions, but they are imposed to facilitate the proofs. Recall

X1 = (x1, . . . ,xn−1), and suppose the response vector y and all the co-

variates (columns) of X1 are centered, which are denoted by y and X1 =

(x1, . . . ,xn−1). For any subset A ⊆ {1, 2, . . . , n − 1}, let X1,A be the ma-

trix formed by concatenating the columns {xi : i ∈ A} indexed by A. Let

x∗
0, . . . ,x

∗
n−1 be the discrete Fourier transform of x0, . . . ,xn−1, respectively.

(C1) There exists an integer n0 such that


n/(log(log(n)))4

−1
n/(log(log(n)))4

i=n0

x∗2
ij = O(1), for j = 0, 1, . . . , n− 1,
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where x∗
ij is the jth element of the vector x∗

i ;

(C2) σ2 = σ2 +OP(n
1/2);

(C3) There exists some c1 ∈ (0, 1] such that

XT

1,ScX1,S(X
T

1,SX1,S)
−1∞ ≤ 1− c1,

where M∞ := maxi=1,...,m

n
j=1 |Mij| for an m× n matrix M;

(C4) There exists some c2 > 0 such that λmin


1
n
X

T

1,SX1,S


≥ c2, where

λmin(·) denotes the minimal eigenvalue of a matrix;

(C5) The minimum value of the regression coefficient vector on its support

S satisfies

min
i∈S

|βi| ≥ λ( 1
n
X

T

1,SX1,S)
−1∞ +

4λσ
√
c2
;

(C6) The tuning parameter λ satisfies

λ >
2
√
2σ

c1


log(n)

n
.

As for the common change-point detection for array-based data, let

X ≡ Id ⊗X1, where Id denotes a d × d identity matrix and ⊗ denotes the

Kronecker product. For any subset A ⊆ {1, 2, . . . , n − 1}, let XA be the

matrix formed by concatenating the columns of X indexed by {a+b(n−1) :

a ∈ A, b = 0, 1, . . . , d− 1}. Now the conditions (C2)–(C6) will be replaced

by the following ones:
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(C2′) σ2
i = σ2

i +OP(n
1/2), for i = 1, . . . , d;

(C3′) There exists some c1 ∈ (0, 1) such that ∀i ∈ Sc,

XT
{i}XS(XT

SXS)
−12 ≤

1− c1
|S|

;

(C4′) There exists some c2 > 0 such that λmin


1
n
XT

SXS


≥ c2;

(C5′) α := minj∈S β•,j2 satisfies

1

α

 log(d|S|)
n

+ dλ


|S|

→ 0 as n → ∞;

(C6′) The tuning parameter λ satisfies

1

λ


log(dn−


j∈S β•,j0)
n

→ 0 as n → ∞.

Proof of Theorem 1. After centering the response y and the columns

of X1, the penalized least squares problem (2.5) reduces to the following

standard Lasso problem:

min
β1

1

2n
y −X1β122 + λβ11.

According to Theorem 1(b) of Wainwright (2009), conditions (C3)–(C6)

imply that pn := P(Sini = S) ≥ 1 − 4 exp(−c3λ
2n) for some constant

c3 > 0. Under the event {Sini = S}, conditions (C1)–(C2) and Theorem 1

of Fan and Huang (2001) imply that

P(Tn ≤ x | Sini = S) → exp(− exp(−x)), as n → ∞.
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Therefore, we have

P(Tn ≤ x) = P(Tn ≤ x | Sini = S)P(Sini = S) + P(Tn ≤ x | Sini ∕= S)P(Sini ∕= S)

= pnP(Tn ≤ x | Sini = S) + (1− pn)P(Tn ≤ x | Sini ∕= S)

→ exp(− exp(−x)), as n → ∞,

which completes the proof.

Proof of Theorem 2. After centering the response yi and the columns

of X1, (3.19) reduces to minimizing the following standard group-Lasso

problem:

1

2n

d

i=1

 yi −X1βi,• 22 +λ
n−1

j=1

β•,j2.

According to conditions (C3′)–(C6′) and Theorem 4.2 of Nardi and Rinaldo

(2008), we have P(Sini = S) → 1 as n → ∞. Similar to the proof of

Theorem 1, we only need to show that

P(Tn ≤ x | Sini = S) → exp(− exp(−x)), as n → ∞. (A.1)

Let {zi,j : i = 1, . . . , d; j = 1, . . . , n} be the independent random variables

with zi,j
i.i.d.∼ N(0, σ2

i ). Following the proof of Theorem 1 of Fan and Huang

(2001), under the event {Sini = S}, together with conditions (C1) and

(C2′), we have

k−1/2

k

j=n0

ε∗2i,j = k−1/2

k

j=n0

z2i,j+oP{(log(log(n)))−3/2}, i = 1, . . . , d. (A.2)
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Let Z
(i)
j = (z2i,j − σ2

i )/(
√
2σ2

i ) and

Tn = max
1≤k≤n

 d

i=1

 k

j=1

z2i,j − σ2
i

2kσ4
i

21/2

.

Then, by Lemma 2.2 of Horváth (1993) and the fact that Z
(i)
j has a zero

mean and unit variance, we have

P


2 log(log(n))Tn−

2 log(log(n))+

d

2
log(log(log(n)))−log


Γ
d
2


≤ x


→ exp(− exp(−x)).

(A.3)

Hence,

Tn =


2 log(log(n)){1 + oP(1)},

Tlog(n) =


2 log(log(log(n))){1 + oP(1)},

which implies that the maximum of Tn cannot be achieved at k < log(n).

Thus, using (3.20) and (A.2), we have

T ∗
n = Tn + oP{(log(log(n)))−3/2}. (A.4)

Therefore, (A.1) follows from (A.3) and (A.4), which completes the proof.

S2 Additional simulation

In this section, we evaluate the performance of nonconvex penalty in the

partial penalized least squares (PPLS) algorithm. Suppose the true data
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generating process is as follows:

yj = f(xj) +
K

k=1

βkI(xj ≥ τk) + εj, j = 1, . . . , n,

where the sample size n = 500, and xj = j, j = 1, . . . , n. We set the

number of change points K = 4, with corresponding locations of change

points S = (τ1, τ2, τ3, τ4) = (150, 200, 400, 450), and the differences in mean

levels (β1, β2, β3, β4) = (0.5,−1, 1,−0.5). Assume εj
i.i.d.∼ N(0, 0.15), and the

mechanism for generating the wave pattern f(·) is as follows:

Scenario I Settingm = 2 and configuring all Fourier coefficients {a1, a2, b1, b2}

in (3.8) to be equal to 0.1.

Scenario II Settingm = 7, with the Fourier coefficients {a3, a4, a5, b3, b4, b5}

in (3.8) equal to 0, while the other Fourier coefficients are set to 0.1.

Scenario III Defining f(·) as in (4.24) with θ = 0.1.

We conduct the simulation 100 times. For each simulated dataset, we em-

ploy the following methods to estimate the support set S:

Method 1 PPLS estimator (3.14) with m = 5.

Method 2 PPLS estimator (3.14) with m = 10.

Method 3 PPLS estimator (3.14) with m = 5 and SCAD penalty.

Method 4 PPLS estimator (3.14) with m = 10 and SCAD penalty.



S2. ADDITIONAL SIMULATION

Figure 1: Average number of true change-points detected by different methods over 100

simulations with Lasso (◦) or SCAD (×) penalty. Top panels: m=5; bottom panels:

m=10. Left panels: Scenario I; middle panels: Scenario II; right panels: Scenario III.

Figure 1 displays the average number of true change-points correctly

detected by the estimated support set S using different methods across

100 simulations, as λ decreases (or equivalently, as the estimated number

of change-points K = |S| increases from 1 to 10). A true change-point

τk is considered correctly detected if there exists τ ∈ S such that τ ∈
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[τk − 2, τk + 2]. The results demonstrate that the PPLS algorithms with

Lasso and SCAD penalties are comparable in most scenarios, except in

the top middle panel, where we assume m = 5 in the fitting procedure

but the true value is m = 7. Even for the most complex wave pattern

(Scenario III) which deviates from the standard Fourier series expansion, our

proposed method with either Lasso or SCAD penalty performs remarkably

well. Notably, the Lasso-based algorithm is significantly faster than the

SCAD-based counterpart due to the nonconvex nature of the SCAD penalty.

S3 Additional real data analysis

In this section, we show the performance of our proposed algorithms using

a publicly available aCGH dataset obtained from the UCSF Cancer Center

Array CGH Core Facility (http://microarrays.curie.fr/publications/

oncologie_moleculaire/bladder_TCM/). The data comprise bladder tu-

mor samples analyzed on CGH microarrays, with more than 2000 bacterial

artificial chromosome (BAC) clones covering the human genome, offering

an average resolution of 1.3 Mb (HumArray 2.0). Spots located in regions

with spatial bias, characterized by abnormally high log2 ratios measured in

specific areas of the array, typically due to edge or corner effect, have been

excluded (Stransky et al., 2006). For subsequent transcriptome and CGH

http://microarrays.curie.fr/publications/oncologie_moleculaire/bladder_TCM/
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correlations, we consider the log2 ratios of positions spanning 2171559 to

37334583 kilobases from four samples (X1410, X1533-1, X506 and X2259-

1). This selection results in a final list of 2300 probes for each sample.

Notably, segments with high or low log2 ratios correspond to gains or losses

of copy numbers.

We utilize the CBS (Olshen et al., 2004), cumSeg (Muggeo and Adelfio,

2011), LB (Huang et al., 2005) algorithms, and our proposed partial penal-

ized least squares method to detect change points in the bladder tumor data.

In our proposed method, both the tuning parameter λ and the number m

of basis functions in the Fourier expansion (3.8) are chosen by minimizing

the following generalized Bayesian information criterion (gBIC):

gBIC = log(σ̂2) + edf
log(n)

n
Cn,

where σ̂2 is the residual variance estimator, edf is the actual model di-

mension quantified by the number of estimated parameters, and Cn =

log(log(n)), as described in Muggeo and Adelfio (2011).

Table 1 displays the estimated number of change points obtained from

different methods for each sample. Additionally, the adaptive Neyman test

statistics (3.12) were computed for all four samples, and as all of them are

large, we rejected the null hypothesis H0 in (3.9) at a significance level

α = 0.05. The CBS and LB methods tend to identify more change points
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Table 1: Estimated number of change points from different methods and the adaptive

Neyman test statistic Tn in (3.12) for each sample.

Sample CBS cumSeg LB Proposed Tn

X1410 26 14 18 16 38.52

X1533-1 46 16 41 29 48.71

X506 41 15 28 15 35.97

X2259-1 29 15 27 22 18.32

Figure 2: Analysis of the log2 ratios for sample X506 and X2259-1: data (the first 500

probes) and the fitted lines using the PPLS estimator (3.14).

compared to the other methods. However, most of these detected change

points are likely to be false positives due to the presence of local trends.

Given the lengthy original sequences, it is challenging to visually discern the

wave patterns directly from the plots. In Figure 2, we provide a partial view
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Figure 3: Analysis of the log2 ratios for the four samples: the (solid) lines fitted by the

proposed estimator (3.14) for a single sequence and the common change points (vertical

dashed lines) according to the proposed estimator (3.22) for multiple sequences.
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of the data along with the corresponding lines fitted using PPLS method.

When comparing this approach with classic piecewise-constant regression

model, we observe that significant change points are effectively preserved,

while our proposed method also provides a good fit for the wave patterns.

In Figure 3, we present the estimates of common change points (in-

dicated by vertical dashed lines) obtained via the GPPLS method (3.22).

Unlike change point estimators for a single sequence, this method detects

some probes with weak signals, such as locations 46 and 2254. This benefit

arises from the utilization of multiple samples, which enhances the statis-

tical power for change point detection. Additionally, certain change point

estimates, for example, at location 810, which are significant for only one or

two sequences and might be related to diseases other than bladder tumors,

are not identified as common change points by our proposed method.
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