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Part A. Theoretical Proofs and Further Discussions on Regularity Conditions

This part contains the proofs for Sections 2-3, along with auxiliary lemmas that facilitate

the derivations. Moreover, we make explanations on the conditions in Theorem 1.

A.1 Proofs in Section 2.1

Lemma 1. Suppose that ﬂ;kj?o is the unique minimizer of E{p(y —cﬁk)(u) - Brjzi) —p-(y)}
among O € A. Under conditions (C.1)—(C.3) and (C.6), for any A; > 0 and 0 < « <

min(ay, as), there exist positive constants As and As such that for sufficiently large n,

Bﬁ’? - B(k) > Aln_o‘} <2pK exp(—Ain_‘m) +pK exp(-Aszn'™2%).

Pr {sup max 50

SreA 1<j<p
Proof of Lemma 1. Denote that

BT(Lk)(ﬂT,j) =n"! Z I/T/ipﬂ'(yi - ng)(’uli) - Brj%ij),

i=1
B®(B5) = E{Wp.(y- " (w) - B.,%)}

B(k)(ﬂﬂj) = EPT(y - qgk) (u) - ﬁ‘njzj)'

Obviously BSE)O = arg min Bﬁk)(ﬁm) and 55?,0 is the unique minimizer of B® (3, ;). Since
Br(gk)(ﬁr,j) is directly approximated by B®) (g, ;) for sufficiently large n, we firstly focus on
the relationship between B®) (3, ;) and B®*)(f, ), which is impacted by the convergence
rate of the response mechanism.

Hereafter, we divide the proof into 3 steps:

Step 1. Let W = r/m(x,y), the correct specification of response mechanism leads

E(W - 1|x,y) = 0. Note that 1/7(x,y) < A;! < oo uniformly over (x,y). From (C.2) we

have |7(x,y) - 7(x,y)|L, < Crn=2 for some C; > 0, by Markov’s inequality and Jensen’s
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inequality, it follows that for any e > 0, there exists M; = C; A;2¢~! such that
T - ~ Oﬂ' _ -1 ~
Pr(|W -W|> Min™2) <Pr||r(z,y) - #(x,y)| > —n ) <eCtn®?|n(x,y)-7(x,y)||L, <e.
This indicates |W - W| = O,(n-22) (Section 1.2.5 of Serfling (1980)). On the other hand,
[BO ) - BO ()]
<[E{p- (v-aP(w) - BE) 2 - (@ (w) - a® (w))) - pr (v - P (w) - B 2)) |
+[BE(W =w){pr (-2 (w) - 8z - (@% (w) - ¢ (u))) - pr (y - 3 () - B2 )}
B (W =) pr (y- ) (w) - 82|
= 0B+ 1185 + (811

By the definition of B( )0 we have for any B( " in a small neighborhood of ﬁT o

N 2 1/2
LB < [E (W -w)| 7 0(1) = 0(n2).
To deal with |12(B£Z.))|, the identity of [Knight| (1998) implies that
|12(/87(—,kj))‘
<|BOV =) (6 (w) - ) {1 (v - a9 () - 772 < 0) -7}

(k) (k)
qr (u)_qT (u){

+lBOV-w) [ 1(y - (w) -8 <) =1 (y -2 () - 85z <0)  ds

= o (75« a5

Note that |I(-) - 7| < max(7,1 - 7), we have

. 1/2 . _ 2|1/2 —(a1+a
[ (B < max(r, 1= 7) - [BOV = W) 7| B (6 (w) - ¢ (w)) ‘ = O(n~(erv02),

The boundedness of |Ips( Bikj))| is determined by Cauchy-Schwarz inequality, which implies
2() (k) 1/2

911/2 (u) -7 (w)

(8] < [BOV - B (6 (w) - o (w) [* 1-ds

= O(n~(era2)),
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On the other hand, above argument can be translated into |[1(B£?)| such that

0" (w)-at" (w)
|Il(5£§~))| <max(7,1-7)- ‘E(cjﬁk)(u) - cjﬁk)(u))| - EA 1-ds

<O(n™).

Therefore, let a3 = min(ay, ), for some positive By it follows that
k = k o
0< ‘B(k)(ﬁi,j)) _ B(k)(ﬂf—,j))‘ < Byn~.

Step 2. For § # 0, let ﬂikj) = Bikj)o + 0. According to Lemma 2 of [Hjort and Pollard

(1993),

P

A (k k k k k —a
R RN |5|} <Pr{ sup |B,§ (8™ - B('“)(B£7j)70)| + Bynos
18895 j1<la]

1 — —
= i (k) (k)Y _ (k) (3F)
2 |B(k)_1/81%£)0|=|6| (B (ﬁT,j ) B (BT,j,O))} . (Al)

»J

2

Let §®) =y - cjﬁk)(u) and 0 = In~® with |I| > 0, the similar argument of Lemma A3 in He,

Wang and Hong| (2013) follows that
BO(5) - BO0) = B {0 (160 <2850 - 7))
zjé
B [ 12 a9 ) 508+ 0 - 12 1w + 565 |as
— BQn—2a7

where B, > 0. The last equation is formed by the fact
E{z(Fyo0 (2:8%12) = 7)} = 0
J g <y 7,7,01°7 ’

thus we have

1 — —
z inf B® (g0 _ gk (3 V) s B -2
I G GO R GO R

17,0



SUPPLEMENTARY MATERIALS

Step 3. Note that when 2« < ag, there exists b > 0 such that

Pr sup ‘B,Sk)(ﬁf,j) - B(k)(ﬂg;)’o)‘ + Bin ™ > Ban 2®
188 -p™) I<lin—o

1 -2
<Pr{[BOEE,) - O] > Some

Pl s [BOEE) - B, - BOE,) - B (39)] > Jon7e
18968 <l ! & 7 7717
7.3 715,007
= J1 + JQ.

In Jl,

n

S {Vi- E(Vy)}

B (BE) - BB =n!
i=1

W 7,550 )

where V; = WipT(yi - cjik)(ui) - ﬁiyozij). Obviously |V;| is uniformly bounded by (C.6),
combining Lipschitz continuity of p, we have |V; — E(V})| < oo and D(V; — E(V})) < 02 < o0.
Employing Bernstein’s inequality (Lemma 2.2.9 of van der Vaart and Wellner| (1996)) it

follows that

b2n1—4a/4

s 2exp(‘m

) < 2exp(-Aynt™9). (A.2)

To demonstrate the upper-bound of Jy, Massart’s concentration inequality provides a
convenient tool which is introduced in Lemma 8.5 of He, Wang and Hong| (2013)). Let

A~ ~(k k S ~(k k
Us = Wz’PT(yz‘ - Q£ )(ui) - Bf—,j)zij) - I/I/’ipT(yi - CJ£ )(Uz‘) - Bij),()zij)? we have

Ui < 2W;

T7j70

k k * -
Zi,j(ﬁT(J) ﬁ( . )| < A*n
for some A* > 0 and

E sup nt < A**pmo1/?

18727 =67 ol Arn=

(Ui - BUY)
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for some A** > 0. Therefore,

Jo < exp (—A3n1‘2a)

for positive a and A4; =|l|. Combining (A.1)) and (A.2)), we have

e

for all 1 <j <p and d;. By Boole’s inequality,

Bﬁ’? - ﬂgfj?o > Aln’a} < 2exp(=Aon'™1Y) + exp(-Azn'2*)

Bg? - 5(@ 2 Aln_a} ;

7,550

K p
Br3 - 810 2 An} <3 %P

Pr{ sup max
dpeA 1sjsp k=1j=1

The lemma is established. O

Lemma 2 (Strong consistency of ék)) For each 6y € A, let 5%) be the true value of 59).
If conditions (C.1)—(C.3), (C.5)—(C.6) hold, EX) converges to 55%) with probability one as

n — 00.

Proof of Lemma 2. Obviously 557 is the minimizer of E{p,(y — qu)(u) ¢)}. Based on

the same proof of Lemma 1, for any A4 >0 there exist positive A; and g such that

2(k) _ ¢ (B) —a 1-4a 3
Pr {?,:ig —&0| 2 Aan } <3Kexp(-Asn' ™) < At
Therefore, for every g4 > 0,
> Pr{sup k) _ (%)‘ > 82} <y Pr{sup 3% E%) > A4n_a} < 0.
n=1 5kEA ” =1 5k€A ’
By Theorem 1.3.4 of Serfling) (1980)), the lemma is proved. O

Lemma 3. Under conditions (C.1), (C.3) and (C.6), for ép € A and 1 <j <p,

7,3,0

ﬁ(k.) = argmin E{w, (u, z;) R2(u, z;; 8) },
B



SUPPLEMENTARY MATERIALS

where R, (u,2;; ) = Bz; + @ (w) = 8,502 — ¢- (), Brj0 = argming Ep, (y - q(u) - Bz;) and

welawz) = [0y (5052 + 60 @) + (=) (Brgozs + ar(w))] ;) ds.

Proof of Lemma 3. See Theorem 1 of Angrist et al.| (2006). O]

Proof of Theorem 1. For (i), note that

o,

k k
BY 2y =&,

according to condition (C.4), one can obtain that

()

> sup min
Ln  speA J€T

(k) (k)
_(k k
)(uz)+ﬁ7(—jozz] 5( ) }

£ _ )] 5 } |

OpEA jeZc 1,n

Pr { inf max 00| }

(k) k)|

< Pr{| inf max+ sup min | n™* Z
opeA jeI¢ 5 A JeI

> | sup min - inf max |n~!
SpeA JeT  dpeA jeIc —

< Pr{sup maxn ! Z

SpeA 1<I<p

- ) 2

Therefore, for any 0 < e* < ¢,

. £ (k)
m > m )
Pr {51122 je%z(: ?22 ]elIn Hfj (T)Hl,n}
3(k) (k) -1 F(k) _ k) %
< > >c—
Pr{ggg{%a% Bri = Brjo ( E |ZZ]|) £ }+Pr{§1£ | >c—¢ }

= Sl + SQ.

Firstly, Sa = 0o(1) by Lemma 2 and Theorem 2 (c) of [Ferguson| (1996)). For the first term of
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the right side, we have

SpeA 1sgsp

Sy <Pr {sup max

5(k) k) £ 1 e*
B = Bra| 2 \/2}+Pr{{§ja3;n > (11 - E|zw|>>\/2}

*
,j Tjo‘ {£1a<XE|Z’U|>5}

+ Pr{ sup max |3
SpeA 155<p

= Sll + 812 + Slg.
By Lemma 1 and (C.3), it is easy to show that for sufficiently large n, Si; and Si3 are both

controlled by o(1). On the other hand, together with Bernstein’s inequality and (C.5),

512<2Pr{n > (241 E|zw|>>\ﬁ}—o<1>

Hence

Pr{ inf max

OpeA jeZc

} o(1) -0, as n— oo.

> sup min H
Spel JeT

To prove (ii), we set k = 1 without loss of generality. Define
1 - 1 (1
0@, =n 180 - €01

and by triangle inequality, one can see that

(1)
7, ozz] T

_12

k 1 L

<|a® - g0, ( 12|zij|)+
=1

Similar to the previous discussion, we have

3(k) ~(k)
/BTJ f’r |

o), -1

A‘S'k) S

e LRGSR MR
< Pr{{gjagc B( 6(,]0 ( ! Z|zm|) > O} +Pr{ SIS O} =o(1).

Note that §£ ) is the “true” 7-th unconditional quantile of § and Lemma 3 reflects BT jo =
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Brjo, the “true coefficient” of Q,(y|z;), as the target function is nonnegative. In this case,

Pr (IT c Y ZA'T(k)) > Pr (IT c fﬁl)) > Pr (min

Spe JeL~

fj(l)(T)HLn > vn)

2 vn)

> min | (7)), - )

152@, 15O,

> Pr min | ()], - max

=1-Pr (max
jeZ,

152@), 15O,
>1-o0(1).

This completes the proof. O

A.2 Proofs in Section 2.3-2.4

Lemma 4. Let e = e, — Ee,, under condition (C.8), e is a centered sub-exponential random

variable and
(i) Eexp(tle]) <2exp(8e2C3 12+ Cost), for V|t <1/(4eCyr).
(ii) E{le,? exp(tle;])} < 16v/2C3 . exp(16€2C3 12 + Cort), for V[t| <1/(8eCy,r).

Proof of Lemma 4. It is obviously seen that e} is a centered sub-exponential variable such
that

. 1 1/k 1
leX|lsexp = sup — {E|eT - EeT|k} < |er|sexp +sup —Ele;| < 2Cs ,,
k1 K k21 K

hence for [t| < 1/(4eCs..),
Eexp(tle,){Eexp(t|Be, )} < Eexp(ter]) < 2exp(8¢*C3,12),

where the second inequality is formed by Lemma 2 (a) of (Gu and Zou/ (2019)). This directly

verifies (i) with (C.9). To prove (ii), note that
E{le[* exp(tle-])} < (Ele:|"){E exp(2tle])}',

10
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where (Ele,[!)'/? <16C3  and Eexp(2t]e,|) < 2exp(32e2C3 12 +2C; 1 t) for 2[t] < 1/(4eCh 1 ).

This completes the proof. O

Proof of Theorem 2. We only focus on the case that B = 1 with {by,...,0,} = {1,...,n}
and omit the index “b” for simplicity of expression. Homologous processes are implemented
in the completely consistent situation of Section 2.2 according with the convexity of check
loss. Let hjy () = exp{-AWp-.(2)} and
e Y e 11 A (5 Q4 ).
(km)ed, i=N+1

it is straightforward to obtain

n w k,m * A k‘7m
Py = B pe (v - QU (i) )

(km)eds 2 (kym)ed, W(km)
§ Z W(k,m) Hz]‘\:[}—\%—l hﬁ ( (k m)(?/|mz))
(em)eSr Xk myes, Wk, (yN+1 - Q )(3/|$N+1))
¥ (e iy By, (= QU (vl )
(kam)eSr 2o (km)ed, W(km) gl h;vNH ( QY m)(y|wz))

ST Y Qi (- Q5 ().

i=N+1 (k,m)eS;

and

0 < hiy(z) = exp{-A\Wp,ra(z)} <exp{-AWp.(2)} = hy ().

Therefore for the i-th copy, denote ¢ as a discrete measure induced by the event Ay, =
{the (k,m)-th candidate in S, is selected} such that ¢(Ajm) = Qm)., Which implies
n - * km
~log(pi) == . log{Echy, (v:- QU (yley) )}

i=N+1

Let my¢(x) be the k-th (k > 2) central moment of x with respect to ¢, Lemma 3.6.1 of

11
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Catoni| (2004) indicates that

log { Echy, (4= QU3 (W) | < ABAWip- (v - QU3 (vl )}
A2 -
+ 5 M2 {I/Vipm (yZ Q( m)(y|wz))} exp {)\ max (0, MCW‘)} ,
(A.3)

where

sup mage, {WipTa( (k m)(y|wz))}

M i:’ye[o)\ . {WpTa( (km)(y|wz))}

Yo

and the induce measure is

Qe my s X {~1Wipra(yi - A(k’m)(ylfvi))}

- - € [0,A].
Z(k,m)eS},N Q(k,m),i eXp { 7W Pr, a(yz (y|£131))}

Cq/:

Note that condition (C.2) implies sup,.;., |Wi| < A;l. On the other hand, p,.(-) is
constructed by the sum of original loss and a quadratic part. For any (k,m) € S, the strong
convexity of the squared loss function derives that

(v- Q57 ) ) ~ e

sup
(k,m)eS~+

|5 2erl sup [ i) - @T<y|w>|

+2 sup [QU (yle) - @-
(k,m)eS~r

and

B (- 0% k) - (- Q% )|

s{2|ef|+4 sup QU (yle) - Q- y|:c>|} E QU () - B QS (o))

(k,m)eS,

Applying the same idea of step 1 in Lemma 1, we have

Mo e sup [Wipra (= QU™ (wla)) = Ec, {Wipra (v - QU5 (wl) )}

<|Wi supsup o (i - QU™ (W) - pra (i - QU™ (1))

76[07/\] (kl ,mM1 )GS-,—
(k’Q ,mz)EST

it _ (k) 1 V) 2
<2|W;|| {max(r,1-7) + 1} Cy; +a, sup Q (yla:) ) —ez;

(k;m)eS,

A1 1,2 -1
< CAW Cl,‘r + ZaHA,r Ol,‘r + 46LnAﬂ. 0177—|€7—71’|,

12
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and

mac {Wzﬂr,a (?/z - (k m)(y|wz))}
< Wil B {pra (- QU7 ) ) = pra (1 - B QYN )(y"’%))}Q
<2 |Wz‘2 {max(7,1-7)+1}" E¢ {Q(k m)(y|33z) Ec@ilfﬁfm)(mmi)r
~ |2 2)2
+2a2 [W] Eg{( Q% m)(y|$z)) —( - BQUY )(y|a:2)) }
< {1/2A;252+16a31A;20127T+8a31A;2|€m| }Ec{ QU (ylzs) - QY m)(ylwi)}27

where C' = 2(max(7,1-7) +1). By the proof of Theorem 1 in [Shan and Yang (2009),

2
EAQUN (i) - EQY () |
<a IEC {p‘ra (yz Q( m)(ylwz)) - pT,a( Yi ECQ(k m)(y|a3@))} )
hence can be written as

log { Echs, (i - QU (wlz) ) b < -MWiBep- (- QU5 (ke )
+ 2—{1/2/1 207 + 16a2 A2CY . +8az A 2|em|2}

B {pra (1= QU W) = pra (i = BQU (i) )}

-exp{N(C A C 7 +2a, A1 CL) + 4ha, A Cy cler|}-

Using Lemma 4 and taking the expectation (denoted by E;) of both sides in (A.3) with

respect to y; among @; U (&, 1;)iZ;, one can derive that for M; ;A < (8e)7L,

13
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Eog{ Echy, (v - QU (ylw:) )}

<AB (Wi = Wi) Ecpra (v - QU3 (W) ) } = ABiEepra (v: - QU3 (yles) )

n

()l\_ (2}Cl T €Xp {(Ml -t ICQ T))\ + M? 7')\2} + 8\/_M 1 TeXp {(MLT + IC2,T))\ + 2M2,7')\2})
&l

Ec{pra (9= QU7 W) = pra (vi - BQU ()}

= AE{ (Wi = W) Egpra (= QU3 (W) ) } = AEiEcpra (i = QU3 ()
(B r + o) B[ B {pra (3 - QU8 () = pra (w1 - EQU () ]

where My, = 4a,4:1C1,Cor, Moy = 82M2, K1, = 0.54:2C + M2, C52 and Ky, =

A;1601,7+2an14;1012;. Further, if A also satisfies A2(KC1 . +K,.,) < A, we have with probability

one,

Eog{ Echy, (v - Q4" (yle:) )}
< _)\Ez {pT,a ( Yi ECQ(k m)(y|wz))} - /\Ez {(Wz - Wi)ECpT,a ( (k @ (?ﬂ%))}
Together with Jensen’s inequality and p,,(v) > p-(v), above inequality is reformed as

Elog(l/m:—i E (Elog[Ecexp{-Mpra (v - QU (wlz) ) H])

i=N+1

>\ Y Ep (yz > fz(k,m),i@i’fzvm)(y|a:i>)

i=N+1 (k,m)es;

E (W W) Z Q(k m), iPr.a (yz (k m)(y|wl))}
(k,m)eS,

(k;m)eS,

Ep‘r (yz Z Q(k,m),z@*(rfc]’\fm)(mwl))

p{i-w) int g (- <’“”><y|wz>)}.

i= N+1 (k,m)eSr

On the other hand, for (k,m)

n

- 1Og(p7]</) < 1Og(1/w(k,m)) +A Z Vi/ipﬂa ( Y; (k m)(y|mz)) 3

i=N+1

14
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it follows that

- Flog(1/p) AEp. (- Q% (o)) + N {1 = ) (3 - Q57 (k) )

N log(l/w(km))

) +ap M(CF . +2C3 ){1+0(n*%)}.

Using the convexity of the check loss, we have for any (k,m) € S,

Ep, (y- Q™ (ylz)) < ! Zn: EPT(y— > Q) QYN )(ylw))

n-N, (kamyes.
Ep- (- Q%" () + E{(W - W)p, (y- Q5" () )}
—E&W—W>1ﬁ o (50 ) |

(k;m)eS,

log(l/W(k’m))
A(n—-N)

The remaining is to determine the convergence rate of

+a,(CF, +203,) {1+ 0(n™)}

1= B {00 - Wm4yQ<mmmﬂ—E%W—W>uﬁp4yQ >mmﬁ.

k,m)eS,

Note that
s B[07 1) o (v Q5 o) e (- @]
El(W—W){ inf pT(y QU (ylw))—pf(y—QT(ylw))}H

(k,m)eS,

= 11|+ |1].

By Lagrange’s mean theorem and (C.10),

QU (yl2)-Q- (yl)
e[ [1(y < Q:(yf) +5) ~ 1y < Q- (o)) ] ds

- 0E Q5" () - Q. (vl))

one can derive that
1< {E(W_W)Q}l/z[ {0 (y- Q% (le)) -, (y—QT(:&/IfB))}Q]l/2
<(B(Q b -, Gl)' | 06
- O,

15
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and
R 1/2 (k ) 9 1/2
2 . m
< B0V w8t o (5 Q0 i) - (- 2.6l |
< inf O (nox2amm).
<(k,irrzl)eg§f (n )
Therefore,

_ Amix . (k m) log(l/w(k:,m)) —o—2akm
Ep: (y- Q7™ (yl)) < kﬁgleST{EpT( (yl)) + oy towm )

+a,(CF . +2C5 ) {1+0(n™2)}.

The proof is completed. O

Derivation the inequality in Remark 2. For simplicity, We only care about the case
that B =1. Observed that

log(l/w(k,m) )

Ep, (y - Qr™(ylz)) < Jnf {EpT (- Q" () + N~ N)

,m)eS,

+ O(na22akm)}+0(an).

Combined the identity of the quantile loss function and iterated expectation,

QU™ (ylz)-Q- (ylz)
E f [I(er <)~ (e, <0)]ds
0

. Q" (wl2)-Q- (yle) log(l/w(k m)) o
< nf {E fo [F(er <) = I(er 0)]ds + =0 4 O(n )} +O(an).

Let &, lie between Q. (y|x) and Q. (y|x) + s, it follows that
1 A 2
: 1 Otk } log(1/w(km)) or-2ai
ot |58 {hie(e) (@ k) - 0. 0fe)) |+ 258 G e | 0
Therefore, the conclusion is established by taking C' = max{sup, fy.(t)/2,1}- (inf; f,.(¢))~".

]

Lemma 5. Under same conditions in Theorem 1, if HQUCO m‘))(y|sc)—QT(y|:1:)HL2 =0 for some

(ko,mo) €S-, we have for some constant ¢ >0 and any k> 0,

; A (k,m) —20m—K _ Amix
Lt (B (5= QR Gl - en e < Bpe (y - Q2 (yla)
1<b<B

16
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Proof of Lemma 5. We first give the proof for B = 1. Given x > 0, note that

inf  Ep, < ( m)(y|a:)) Ep, (y - QTIX(M*’B))
(km)el,

e QU (yl)- QT<y|m>[ I ) I(er <0Y]d
= 1n e;<s)—1(e; < S
(k,m)eS, Qi (yla)-Q- (yl)

< " 111)f E |Q(k m)(y|m) - Q?IX(?J|$)|

= ot P{QIY ) - Qi) T (ferl < nem S, )}

+ it B{|QUT (yle) - Qi (ylw)| I (le] 2 n2n 1S, }

(k,m)eS,

= -[1 + -[2a
where the first inequality is obtained by I(a) - 1(b) € [-1,1]. Note that

1 < B[QU™) (yle) - Qux(yl)|

<k

> Qe (QU (wl2) - QU (vl )

(k:,m)#(ko,mo)

<2E{ sup |Q( o (ylz) - QT(?J|33)| ( Q(lwn))}
(k,m)eS, (k, m)¢(k0 mg)

3201,T-E( D Q(k,m)).
(k7m)¢(ko,m0)

Since the (kg, mg)-th candidate is correctly specified, and Q(km) is uniformly bounded over

[0,1]. By adopting the same proof of Theorem 4 (p.19), the last inequality converges to 0.

Let o = sup; .yeq, Qrm- Together with Markov’s inequality and Cauchy-Schwarz’s in-

17



SUPPLEMENTARY MATERIALS

equality,

I, < ian { |Q(km)(y|$) lex(y|w)‘ } {Pr |€7—|>n2a+;{|8 |)}1/2
(k,m)eS-

g<ki%f§{ QU (vle) - @m“‘<y|w>\} 020N [ Bl |}

< —— 8Cor {E

QU () - Qe )| + B Y Qg (@47 (0l) - Q- (yla))

< n2a+n|37_| (km)els

1/2
(k’m)(y|a;) Q- y‘:z:)| +F Z Q(km)){ Z ( (km)(y‘m) QT(y\w)) }:|

(k,m)eS, (k,m)eS,

< \/ 8C2,T

- n2a+n|5‘7_|

1/2
V/8Ca - m 3 m
VR {E sup QU (wl) - @ )| +ISPE sup (U ) - QT@'“’))}

2SI (hm)ed, (kym)e&s

< n72a7”\/80277(1 +18,72)C1 7 = en~207",

This completes the proof. When B > 1, note that

B A A A .
inf  B|QU (vlw) - Qmix( y|w>\<E{ D Q‘zkm\@5{“;:2<y\w>—czslm(y|w>]}.

k,m)eS, — &
( 1@53 b=t (km)es:
Then the definition of Qmix(y|z) directly fits above steps. O

Proof of Theorem 3. We care about B =1 for simplicity. By the identity of p,(-),

QI (yle)-Q- (yl)

inf  Fp, (y- QN (ylz)) = inf E [I(e, <)~ (e, <0)]ds+ Ep,(e;)
(k,m)eSy (k,m)eS, 0

> int DS owm iay o )|

(k,;m)ed,

Obviously, the order of ||Q(k ™ (ylx) - Q-(ylx)|7, depends on whether Q( ™) (y|z) is con-
sistent to the true CQF. In this sense, the result of Theorem 3 requires the discussion on the
candidate set, i.e., whether S, contains the correct model.

When S, does not contains the correct model, combining Theorem 1 of Angrist et al.

(2006)) with (C.7)—(C.10) we can see

inf  Ep: (y- Q5" (ulr)) = 0(1).

(k,m)eS-
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Hence the result holds if log|S,|/{\(n — N)} = o(1), which satisfies the constraint in (i) of
Theorem 3.

When S, contains the correct model, Combining Theorem 2 with Lemma 5, we have

inf B, (y- QUi (vhe)) - O(n>amo7)
(k,m)eS,

_ Amix : (k’ m) 1Og|‘§7'| —Q2 =20 m
< Epr(y-Qr™(yla)) < inf {Ep: (y- Qi) }+ 50 s + O e 2050m0) + O(an),

and

inf  Ep, ( Q¥ m)(y|m)) = O(n~2%omo),
(km)ed,

To ensure the excess risk shrinks to 0 as n — oo, it requires that

log S|

an®*komo = 0(1), and ————
An-N)"

n?*komo = o(1).
Hence (ii) of Theorem 3 is satisfied. Therefore, the proof is completed. H

Proof of Theorem 4. Note that 0 < Q(km) <1for (k,m) € S;cor- The result of the theorem

is equivalent to that for any given € > 0,
Plr(—log;QCOr >e)—>0, asn-— oo.

Since for N +2<i<n,

z AN(k,m
W(k,m) eXp{ “A XN Wipra(y - QU5 )(ylfvz))}

71— T A k,m !
(k,m)eSr cor Z(k,m)eg; W(k,m) €XP {—)\ lejlv+1 Wlﬂr,a(yl - Q;N )(?/|$l))}

N
Qcor,i =

we have

i— T A(k,m
~ 1 n Z(k,m)e&,cor W(k,m) €XP {_)‘ Zl=11\7+1 VVZPT a(yl - ( )(y|m ))}
Qeor =(n = N) Z .
=ENA2 Y m)ed, W(km) €XP { AT N Wipra(yi - (?J|€Bz))}

w STCOT
.\ (km) IS, |.
n—-N
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Moreover, by the convexity of logarithmic function, it follows that

Pr(_logQCOT ZE) < (n —1N)E (Zn: Ellog Z w(k,m) exp{ A Z Wlp‘r a(yl Q(k m)(y|ml))}])

(kym)egf I=N+1

i—1

! (liQEllog > W(k,m)eXP{)\ZWlPTa(yl QMY )(ylw))}])

(n-N)e\,.% (k,m)eSy cor I=N+1

1
T N)e 10g (w(k,m)|Sr.cor|) -

According to the proof of Theorem 2, one can verify that for either S = S, or Sr cors

n i—1
> log > w(hm)exp{—)\ > W/lpra(yl )(?/|wl))}

i=N+2  (k;m)eS I=N+1

n

= Z log Z Q(k7m)7ieXp{ )\Wpra(yz )(y|$2))}

=N+l (km)eS

hence for (k,m) € S; cor,

>~

10g |S- cor| + 10g(W(k,m)|Srcor|)
k,m T,cor m T,cor
250 () |+

Pr ( lochor_ )S (n=N)e

EE {Wp'r,a (y

A ng E Q A(k,m _ oo
B m pr (y -2 (k,m),z@gffv )(y|azz)) +etO(n 2 km)
i=N+1

<28 {iWp, (- 0% W) - pr (- Q2 wl)) } + o).

meS,

Therefore, for any (k,m) € S,

OSPr( logﬂcor_ )s

o | >

[E{Wpf(y QP ()} - inf Ep(u- Q”“’”)(mm))]w(l).

(k,i)eS;

The remaining task is to demonstrate that the right side of above inequality is o(1). In
fact, it is obviously shown that by Theorem 1 (ii) and Lemma 3, S, contains at least one
candidate such that ng’m)(ykz:) = ¢-(u)+B] 21 in probability. Denote e, = y—¢,(u)-8] 21,

combining (C.10) with the argument of Lemma 2 and Theorem 2(c) of [Ferguson (1996), we
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have ~
2 (0, (- Q7 )} - int B (- 050 Glo)
<|BOWV - W) {p. (v - Q4" W) ) - pr (er)
| {pr (er1 - (QU" o) - Q- (yl2)) ) - o (e)}|
+| gt E{p, (ers - (Q( V(e - Q- (ylr)) ) - pr (67,1)}|
<O )+ {E(QU (o) - Q- (o)) }1/2
e it (B ) - rtom) |
=o(1),
thus the proof is completed. O

A.3 Proof in Section 3

Proof of Corollary 1. Let k(x) = 1/7(x),

_ @@ )
L) = (o) L (0)ds
and
w(x) =10
5(3) - (®)f,(0)

Joes Fx (0)w(v) f23,(0)dv”
One can define a random variable # on X with the density fg, such that

w(z)f54(0)
2Xs [,ox fX(U)W(U)f{;‘;(O)dU

= PI‘(% € Xs) = ’(j’(Xs)

E{w(z)](zXs)} = fx(®)dx

Since |,

e [x(W)w(v) fg|m(0)dv is nonstochastic and is bounded away from 0 and infinity, it

can be regarded as a constant C,, that will not affect the extremum of the target variance by

multiplying a specific probability level max{72, (1-7)?}. Therefore, the question is equivalent
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to minimizing

V. (Xg) = ?(Xs)E{wQ(E)](j e Xg)k(x)}
o 3 (@) 151(0) o
‘ﬂ(xg e, TN T o) L@ )

- e )E{w(w)k:(a:)|[(az eXs)}.

Following the argument of Theorem A1l in Crump et al.| (2009), the remainder is to calculate

0 > 0 to obtain the optimal subspace
Xg = {& e X|@(2)k(x) < 6}.

Define a random variable u = @(Z)k(Z) with the density f,, the minimum of

X s
Vi (Xs) = E{ul(u e?is)} _ S uf,(u)du

Pr(ueXs) ([ fu(uydu}

is achieved at either § = sup, k(x) or § = 2E{@(Z)k(Z)|[@(Z)k(Z) < d}. Recall the

definition of & and @(x), let v = dC,,

o E{ee@ i om@) 1 (Cou@ 0k <500}

C., { (Cwlw(m)f5|w(0)/f(w) < 70&1)}

it follows that

Y

Qfmx (@) [2(0)k()] (w(@)k(z) <7) fx(2)de
f = w(w)fdm(o)f (w(@)k(z) <) fx(x)dz
{ k! (w(@) /70 (0)k(x) <7) fx(w)dw}_1
{ (w(@)F73(0)k(@) <) fx(w)dw}_1

2E{w2(w)f€ (0)k(@)|w(2) f1(0) k(=) < 7}
E{w(@) [AO(@) 20 <7}

"}/:

The proof is completed. 0
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A .4 Further Discussions regarding to Conditions in Theorem 1

We take account of the order in condition (C.2), and further explain (C.4) and the constraint
in Theorem 1 (ii).
Discussion on condition (C.2)

To illustrate a specific order in (C.2), we consider the MAR response mechanism with

respect to a logistic regressive model:

exp(07x)

= N 0 =
(o.9) = w(@:0) - o s
Following (3.3) of Wang (2011)), it implies |8, - 8| = O,(y/p/n). By the Lipschitz continuity

of m(x;0), common regularities (e.g., 0 < Apin (Fxx™) < Apax (Exx™) < 00; the parameter

space is compact) follows that for both ¢, ¢ > 0,

c|6.-6], <Im(z;6,)-7(x:60)|, <z]0, -0

Ly~

When p is fixed, the right side of above inequality is obviously controlled by Con~/2. The left
side of above inequality is bounded below by C1n~/2 (Theorem 8.11 of van der Vaart| (2000)))
as well. Consequently, as = 1/2 as the minimax optimal order of the response probability
estimator. Moreover, for nonlinear specifications and the MNAR mechanism, it always has
an order that 0 < ap < 1/2 (e.g., [T'sybakov| (2009); |[Shan, Li and Ai (2024)).
Discussion on condition (C.4)

we first consider the case that A contains the consistent estimation, that is, | (w) -
¢-(u)||z, = o(1) for some & € A. To ensure the screening consistency, the identifying con-

straint is as \Wang et al.| (2023)) that

JjeIr  jeI¢

(min - max) n™' > 1Brj0%i — &> 0. (A.4)
i=1
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In fact, above condition directly implies (C.4) because S, ;o = 5£;0> ) _ &, and the left

side of (A.4) is bounded by

(S:ig 11161%171 al,fiA ez )" ) Brs Td 0% = &
When A are all misspecified, note that

(k) _

Vo= Brio|n 12|zw|+

minn~ Z|ﬁmozw £T|<m1nn

JeLr

(/f)|
Z; + max
,]0 i 57' 1<55p B

maxmn -1 Z (k)

jeze

ﬁTjO ﬁT,j,O‘ 1Z|Z,L]|-'-

k
5£J)0zm 55 )‘ < maxn -1 Z |Brjozij — & + max(

In this case,

T ey

n
In — ma < a !
(=) 2w =< (e 21

i=1
which implies (C.4) is rational when the signal strength of significant predictors exceeds the
deviation introduced by pseudo parameters. Therefore, (C.4) is regarded as a generalization
of for multiple model specifications.
Discussion on the additional constraint in Thoerem 1 (ii)

Thoerem 1 (ii) imposes two additional conditions: (a) ¢ (w) = ¢, (u) for some §; € A;
(b) minjez, | f;(7)]l1,n > vn. The latter is common for identifying the marginal quantile utility,
serves as one theoretical basis for consistently screening significant predictors (Fan and Song
(2010)). For (a), note that gr )(u) is the pseudo true model of ¢,(u). The constraint is
close to standard assumptions in doubly robust inference (Han et al. (2019)), |Li, Gu and Liu
(2020)). To care the existence in our model framework, we assume a linear specification that
qgk)(u) = a’u. The parameter is estimated as

Q, = arg min nt Z Wips (yl —a'u; - B(Tk)z(k)i) )
(e.Bky) i=1
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where z(;); is a prior specification of z; through d;. Following the proof of Lemma 1 and

Angrist et al| (2006), one can show that ¢ (u) = & with

2
a= a(Jrg ml?E {’LUT($, «, ﬁ(k)) (aTu + sz)z(k) - QT(U) - /Btrueztrue) } ) (A5)
a,Br)

where

1
w.(x; o, Bry) = /(; (1-1)fye (taTu +(1-t)g(u) + t,@(Tk)Z(k) +(1- t)ﬁtrueztme) dt.

Note that (A.5)) is equivalent to minimizing
EPT (y -a'u- /Bz—k)z(k)) )

which has the unique minimum on the parameter space. It can be seen that when ¢, (u) =

o/ ., the score function satisfies

ow,(x;a, B
E{Rf(a,ﬁue)) ( S0 ) +2R7(a,,3(k))w7(w;a,ﬁ(k))u} =0,

(@.Bw))

ow,(x; o, Bry)

-0,
0B

(.Bky)

E{Ri(a,ﬁ(k)) + 2R(a76<k>)w7(33;a’ﬂ(m)z(k)}

where R, (o, Bry) = (0 = 0tgrue) "0 + B(Tk)z(k) - B ueZtrue- Of this view, a natural solution
is (a7, B(Tk))T = (O 1uer Birue) T to ensure R, (o, Bky) = 0 almost surely. Therefore, condition
(b) implies that J; ensures both qgk)(u) and ,B(Tk)z are correctly specified. In practice, this
can be implemented via prior information to include as many potentially significant factors

as possible.

Part B. Discussion on the Relationship between Asymptotic Risk Optimalities

In this part, we compare Theorem 3 to classical asymptotic risk optimalities such as Theorem

3.3 in|Lu and Su/ (2015)), Corollary 1 in|Xu, Zhang and Chiou|(2023), and Theorem 2 in Xiong,
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Deng and Wang| (2025)). To distinguish the methods, We uniformly summarize competitors
as “weight-optimization” model average (WOMA)'| For ease of description, we set
= Qr(ylx), tm) = ng)(y\w), fim)N = erfv)(y@), and replace the candidate set as M =
{pemy :m=1,..., M,}. Let ji(n), be the CQF estimator of the m-th candidate corresponding
t0 Dy = {(2],yi,7:)7 20 = 1,.,n}, fin(w) = L0 Winfigmyn, and &y (w) = E{y = i, (w)|Dy}

be the out-of-sample prediction risk. The asymptotic risk optimality of WOMA is

&n(w)

—infwewén(’w) =1+0,(1), (B.1)

where the pair (27,y)7 in (B.1)) is an independent copy of those in D,,.
Without loss of generality, we only focus on the case of B =1. As shown in |Lu and Su

(2015), Wang et al.| (2023), common conditions induce that

i?gvfn(w) 2 E,OT(QT) - Op(l)‘

Therefore, two types of asymptotic optimalities are theoretically equivalent if

Epr(y - ﬂ(m)N)
meM infwel/\/ Sn(w)

~1| = 0,(1). (B.2)

Since the numerator is the optimal risk of a single candidate, it can be regarded as a weighted
estimator such that

dnf Epr(y = figmyn) = &a(w.) +o(1),
where w, € W is the weight vector such that its My-th element is 1 and all other elements are

0, and the My-th candidate has the infimum Ep,(y = figm)n). Let wp = arg mingep &, (w),

! This type of model averaging is named by the form = arg min,,,c aq En(w), where ﬁn(w) incorporates
quantile loss with candidate estimators (Yu, Zhang and Liang| (2025)). In the area of missing data, it could

be rewritten as L, (w;#) via inverse probability weighting.
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then (B.2)) holds provided that

Pr(w, = wy) — 1.

Unfortunately, above convergence does not hold when M is rather general. However, for a
fully linear CQF (i.e., = B7x), the result can be established if WOMA is parsimonious?
This frequently restrict M to be a nested set that contains all significant predictors.

Now return to a general specification of p, the natural question is whether we can relax
the nested requirement for M. The answer is Yes. Inspired by condition (C.7) (i) and
Lemma , we can see that fi(mn), is Lo consistent to p as ji(y) is correctly specified. Since
such specification may not be exclusive, wy should be respectively expanded to including all
correct models.

Of this view, we give the following key conditions:

(S:1) Supye [&n(w) = &, (w)| = 1+ 0,(1).

(S.2) As n — oo, the weight estimator of WOMA is over-consistency, i.e.,

S iy, 1,

mEMT

where M is the set of correct models in M.

(S.3) For some constant ¢, Ep.(e;) > ¢ almost surely.

Condition (S.1) provides a fundamental theoretical medium for validating (B.1). This

condition incorporates essential regularities such as ||z, = O(1), the uniform boundedness

2 In the linear specification, “parsimony” demonstrates that the weight corresponding to the minimal-
overfitting model is consistent to 1. Such procedure consistently assigns maximal weight to the candidate
estimator with minimum out-of-sample prediction risk. See [Zhang et al.| (2020), Xu and Zhang| (2024) for

detailed descriptions.
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of fy=(+), constraints on the order of M, and the dimension of candidates. Condition (S.2)
is weaker than the parsimony but another important conclusion in the study of WOMA.
It demonstrates that the weight estimator asymptotically assigns to all correct candidates
(including overfitted models), further ensures the estimator possesses large sample properties
that are asymptotically equivalent to the oracle specification. Both (S.1) and (S.2) have
emerged as central objects for related inference, which have been extensively discussed in
the past decade (Lu and Su| (2015),|[Zhang et al. (2020),|Chen et al.| (2023)), Wang et al.| (2023)),
Xu, Zhang and Chiou (2023)), Xiong, Deng and Wang (2025)), etc.). Condition (S.3) excludes
scenarios in which n!=%m [inf,,qy &, (w) is not convergence to zero. It further ensures that
(B.1) remains well-defined when the candidate set contains the correct model (Yu, Zhang

and Liang (2025))). Combining with Theorem 3, the following result is established:

Theorem S1. Under conditions (C.1)—(C.10), and (S.1)—(S.3). Suppose M contains at least
one correct model, and (ii) of Theorem 3 holds. Then our adaptive estimator is optimal in

the sense that its global risk is asymptotically identical to out-of-sample prediction risk of the

best-but-infeasible WOMA estimator, i.e.,

Ep; (y — [LmiX)

ooy £, (W) =1+0,(1).

Proof of Theorem S1. Let w; be the limit weight vector of w in (S.1), that is, the sum

of elements corresponding to all candidates in M is 1. Note that

Epr(y=fimix) _ Epr(y=fimix)  mer Epr (y = fimn) (i)
infweVV gn(w) inf'rne/\/l E,OT (y - ﬂ(m)N) Sn(wl) infweVV gn(w)

(B.3)
Since Mr # @ fits (ii) of Theorem 3, the first term on the right side of (B.3)) converges to 1.
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On the other side,

én(wl) - inffweV\/ fn(w) < gn(wl) - én(w) + infweVV én(w) - inf’wEVV fn(w)

inf e &n(w) - infpew &n(w)
< En(w1) — gn(wl) + én('wl) _én(w) + én('wl) —&n(wy) + 7y
T infypay & (w) inf e &n(w) inf e &n(w) ’

(B.4)

where 7, is a non-negative sequence (may depend on 7) such that r, tends to 0 as n — oo.
The existence of r, is natural and by Lemma 1.7.1 of |Chang and Shi (2003), and r,, has a
non-negative decreasing subsequence with a corresponding weight vector subsequence. From

(S.2) and the convexity of the quantile loss, we have

Pr (|én('w1) - én(w)

>O)—>0.

Thus (B.4)) is 0,(1) by (S.1). It follows that the last term on the right side of (B.3) converges
to 1 in probability.

Finally, we consider the asymptotic performance of

R, (wy) :=

inf Ep- (y = fim)n) = €a(wr)
For any given ¢ > 0,

Pr (Rn(wl) > 456"1) < Pr[ inﬁAE {pT (y - ﬂ(m)N) - pT(eT)} > 260‘1]
+ Pr{|¢&.(w1) - Ep;(e,)| > 2eC}
= PRln + PRgn

By the identity of Knight, (1998]), the law of iterated expectations, and mean-value theorem,

A(m)N—H _
PRln:Pr{in/aE [I(ys,u+s)—](y§u)]d52260_1}
me 0

SPr{égLHﬂ(m)N—uH;25}20 as n — oo.
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On the other side,

6 (w1) = Bpr(e)| = E {p, (e (fuu(w1) ~ 1)) = pr (e,) [P}

é 2
meMrp
C 2
S _E su 7 m)n DTL )
> {m 1 (A= 1) }

where the first equality is followed by the independence between (x7,y)" and (x],y;)7’s,
and the last inequality is followed by Jensen’s inequality. Combining the consistency of fi(y)n

(m e Mr) with Markov’s inequality, we have

PRy, <Pr [E{ sup (,&(m)n - ,u)2

_ N 2
Dn} 25] <e! .ni%)T Hﬂ(m)n‘MHLQ =0(1).

mEMT
Therefore,
infme/\/( EPT (y - ,&(m)N) P
-1 as n—oo.
gn(wl)
The left side of (B.3]) converges to 1 in probabilty. The proof is completed. n

Table S1: Summary of the equivalence of asymptotic optimalities between adaptive estima-

tion and WOMA

Cardinality of Mp O, Equivalence
<1/4 v
>0
>1/4 X
0 - = X

Together with the discussion of Theorem 3, we can summarize a clear list of conditions

for the equivalence (see Table . It implies that the asymptotic equivalence must require
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IMr| > 0, and further restrict the order of inf,ca, Hﬂ(m)N _“HL2 (denoted as a,,). The

result can be attributed to either of the following reasons:
(R1) The infimum prediction risk among correct models decays faster than excess risk.
(R2) WOMA assigns weights to the non-optimal models with a positive probability.

Thus, when |[Mr| =0, the equivalence is destroyed due to (R2); When |[My| > 0 with the
order of infepty | fmyn — 1] 2, faster than n=1/4, the equivalence is destroyed due to (R1).

Finally, we roughly explain why Pr(w, = wy) + 1 under [My| = 0. Consider a binary
set M = {pq)y, 12y} Without loss of generality we assume ju (1) has the infimum prediction
risk, i.e., w, = (1,0)". Due to the convexity of p.(-), if Pr(w, = wg) — 1, it follows that for

any w = (W, wz)" € M and w # w,,

Note that

W11y +(1-w1)fic2)—p

() — €0 () - E{ / [y <+ s)~ Iy < )] ds

(1)~H

D).

It is not hard to prove the uniform integrability under conditions such as (C.7) and (C.8).

In this case, an essential condition is E (§,(w) — &, (w.)) = 0. However,

E (&,(1) - &(w.)) = B[ £u(&) {(@1 - 1) (i) - i) } ] 2 %(1 ~01)2E (i ~ i)
(B.5)
One can see the lower-bound of (B.5) is positive unless w; = 1 or inf,, sm, | fimy) = temo) Lo =
o(1). The first is contradictory because 0 < w; < 1, and the second always destroys the

identification of candidates. Of this aspect, w, # wy has a positive probability.
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To further investigate the problem, we conduct a simple simulation as a counterexample.
Set y; = T + X0 + €;, Where x;; and x; are i.i.d. sample from N(0,1), and ¢; ~ N(0,1).
The candidate CQF models are ji1y; = 0x1; and ji2); = 0xg;, respectively. We apply JMA
procedure to estimate wo of WOMA, which is consistent to wg = (wy,wz)T by Theorem
1 of Yu, Zhang and Liang (2025). The normalized FPR among candidates are defined as
G = Epr(y = fun) [&n(W0), G2 = Epr(y = fic2)) [6n (o), Cs = infineqr 2 Epr (Y = fimy ) [&n (o).

From Figure , we can find that although fis) always has the infimum prediction
risk, the empirical probability of wy < 1/2 is around 0.5. It indicates that the weight of fi(2)
evaluates far away from 0 and 1 with a positive probability. Moreover, none of (;, (k =1,2,3)

is close to 1. Therefore, it practically verifies the nonequivalence.

(a) Empirical Performance of wy (b) Out-of-Sample NFPR (c) Histogram of &3
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Figure S1: Simulation results under 7 = 0.05. The size of out-of-sample observations is 100.

Part C. Additional Numerical Results

In this part, we show some other numerical studies to support the performance of the pro-

posed method, including supplementary results in Section 4 and further simulation designs.
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C.1 Supplementary Simulation Results in Section 4

Firstly, We present additional results that are omitted in Section 4. We investigate the

change of SIS properties when ¢,(w) is misspecified. The subset of z is established by

selecting the top [2n/(3log(n))| features. We consider the following two criteria: The first

is normalized true discovery rate (NTDR):

NTDR(7) =

TDR(7)

TDRfull(T) ’

where the numerator is average true discovery rate obtained from incomplete dataset, and

the denominator is the aaverage true discovery rate obtained from full dataset and true

¢-(u). The second criterion is the minimum model size, which is the smallest number that

needs to be included to ensure all active components are selected.

Table S2: NTDR and MMS (in parentheses) of SIS procedure of z in Section 4.1. f

n =100 n =200 n =300

(7.0)
q¢-LM ¢--NAM  Union? q¢-LM ¢--NAM  Union ¢--LM ¢--NAM  Union
(0.05,0) 0.553(425) 0.587(421) 0.701 0.597(1294) 0.653(1281) 0.715 0.581(4361) 0.651(4342) 0.685
(0.5,0) 0.697(145) 0.715(148) 0.760  0.844(132) 0.846(129) 0.869 0.902(175)  0.903(176) 0.919
(0.75,0) 0.737(262) 0.818(197) 0.897  0.875(595)  1.006(295) 1.046 0.997(1750) 1.162(567) 1.204
(0.05, 0.5) 0.588(444) 0.615(446) 0.694 0.668(1360) 0.689(1365) 0.755 0.660(4551) 0.676(4586) 0.731
(0.5,0.5) 0.762(323) 0.763(324) 0.820  0.860(954) 0.861(947) 0.882 0.936(3053) 0.926(3087) 0.944
(0.75,0.5)  0.74(363) 0.853(340) 0.927  0.871(994) 0.963(965) 1.006 0.887(3430) 0.992(3190) 1.013

t The missing rate is about 32.42% by setting 6 = (-1,1,1)7.

¥ The index set is formed by the union of screened variables from ¢,-LM and ¢,-NAM.

Table |S2|presents the result of SIS procedure (2.2). It demonstrates that the misspecified

¢-(u) dose affect the screening process. On the other side, different specification for ¢, (u)
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derives different active variables, as the NTDR of the union set is almost higher than the
single one. Specifically, both ¢,-LM and ¢,-NAM are correct at 7 = 0.5, resulting in smaller
MMSs. While ¢,-NAM can better capture the nonlinearity, none of specifications are entirely
correct for 7 # 0.5. Therefore, ensembling the screened components from all candidates
will be advantageous. An interesting point is that as n increases, the TDR of “Union” is
better than that given by full data and true ¢,(w). This implies that incorporating model
uncertainty through multiple candidate specifications and combining screening sets of their

marginal quantile utilities can effectively enhance the SIS property.
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Figure S2: FPR of the MA estimator for CQF across a range of missing rates (n = 200, p =

0.5).

Figure [S52| supplies the performance of three model averaging estimators under different
missing rates, with respect to p = 0.5. We can find that the overall performance is same
as that in Figure 1: Our method (AMA) has an outperformance regardless of 7 and the

missing rate. Besides, FPR of each estimator is almost higher than that with p = 0 due to
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the accuracy of SIS.

Table S3: Out-of-sample FPR and its standard deviation (in parentheses) of AMA

estimator via NON-NESTED candidate clusters.t

Number of Random Split B

(1, p)
1 2 5 10 20

(0.05,0)  1.97(1.50)  1.80(0.99)  1.69(0.95)  1.63(0.90)  1.64(0.87)
(0.5,0)  1.34(0.70)  1.26(0.69) 1.24(0.67)  1.20(0.60)  1.18(0.58)

(0.75,0)  1.75(1.15)  1.58(0.81)  1.45(0.68)  1.43(0.71)  1.42(0.67)

(0.05,0.5)  1.99(2.26)  2.04(2.34)  1.79(2.19)  1.46(1.66)  1.52(1.17)
(0.5,05)  2.07(0.80)  1.94(0.47) 1.86(0.41)  1.83(0.36)  1.77(0.33)

(0.75,0.5)  2.21(1.58)  2.09(0.98)  1.98(0.82)  1.84(0.54)  1.82(0.54)

t The missing rate is about 32.42% by setting 6 = (-1,1,1)".

Secondly, we show the performance of AMA among different settings of random split
time. Table reveal a consistent decreasing trend in both FPR and SD as B increases.
This phenomenon demonstrates the data-adaptation of the proposed algorithm: Through an
iterative random partition mechanism, the method effectively reduces potential uncertainty
inherent in the fixed dataset. In this sense, it shares the conceptual similarity with the
data-robust behavior of cross-validation techniques.

Thirdly, we show the histogram of A in Figure , which is selected by (2.5). One can
find that when 7 = 0.5 the optimal A tends to be smaller than other probability levels.
Such phenomenon stems from the action of A: it simultaneously describes the sensitivity

of adaptive weights corresponding to the loss of testing sample. In our simulation design,
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Figure S3: Histogram of the optimal A in “MA” column of AMA, corresponding to n = 200
and 32.42% missing rate. The fist row is plotted by non-nested set and the second row is

plotted by nested set.
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Table S4: Out-of-sample FPR and its standard deviation (in parentheses) of AMA

estimator via NESTED candidate clusters.t

Number of Random Split B

(1, p)
1 2 5 10 20

(0.05,0)  2.17(1.27)  1.94(1.14)  1.79(1.13)  1.76(1.13)  1.74(0.86)
(0.5,0)  1.33(0.69) 1.24(0.65)  1.25(0.65)  1.22(0.62)  1.18(0.59)

(0.75,0)  1.61(0.82)  1.49(0.82)  1.47(0.70)  1.45(0.69)  1.45(0.69)

(0.05,0.5) 2.36(2.42) 1.99(1.86)  1.69(1.69)  1.69(1.64)  1.66(1.51)
(0.5,0.5)  2.01(0.69) 1.94(0.62) 1.87(0.51)  1.84(0.45)  1.79(0.35)

(0.75,0.5)  2.20(1.02)  1.98(1.11)  1.94(0.70)  1.89(0.65)  1.84(0.66)

t The missing rate is about 32.42% by setting 8 = (-1,1,1)7.

smaller A (with 7 = 0.5) induce near-uniform weights and a simple averaging procedure.
This is mainly because both ¢.-LM and ¢.-NAM are correctly specified, hence weakening
the necessity for distinguishing candidates. In contrast, larger A (with 7 # 0.5) sharpen the
weight differentiation, preferentially matching the model with superior historical loss as the
inter-model divergence grows.

In summary, the output of A\ also implicitly encodes the relative discriminability among

candidate models across quantiles.

C.2 Additional Simulations

Further results for predicting response mechanism
In this part, we compare the predicting accuracy of high-dimensional (&) in Section 4.3.

Set 100 pairs of out-of-sample observations, we use the following Kullback-Leibler divergence
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(KLD) as a measure:

1 100

KLD = - > i {logit(m(2;)) — logit(7(&;))} +log {t:—g;}] :

We consider the following competitors: (i) MCP: variable selection by MCP penalty; (ii)
GLASSO: group-lasso estimation; (iii) 5-CVMA: 5-folds cross-validation model averaging;
(iv) JMA: jackknife model averaging; (v) RJMA: robust jackknife model averaging (3.5);
(vi) RCVMA: 5-folds robust cross-validation model averaging. Methods (ii)—(v) are same
as those in Section 4.3, and the last is adopted incorporating 5-CVMA with constraints in

(3.5). Other settings are same as in Section 4.3.

Table S5: Out-of-sample KLD and its standard deviation (in parentheses) of response mechanism.

(n = 200)1

Methods

MCP GLASSO JMA 5-CVMA RIMA RCVMA

0 0.411(1.316) 0.222(0.138) 0.266(0.137) 0.137(0.062) 0.158(0.101) 0.136(0.540)
0.5 0.362(0.540) 0.222(0.157) 0.210(0.101) 0.112(0.052) 0.143(0.103) 0.115(0.048)

0.8 0.382(1.648) 0.200(0.163) 0.137(0.067) 0.088(0.050) 0.131(0.099) 0.108(0.051)

t The best and the second best outputs are in bold and italic, respectively.

Results in Table [S5|demonstrate that model averaging estimators consistently outperfor-
m variable selection methods. Specifically, 5-CVMA achieves better performance than JMA,
mainly due to the greater data adaptability and ability for controlling overfitting through
multifolds cross-validation. On the other side, RIMA always performs better than JMA, and
RCVMA performs nearly as well as 5-CVMA. These suggest that the unbiased constraint

does not compromise predicting accuracy. Combining with the result in Section 4.3, we
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can further conclude that high precision for w(x) does not contribute for predicting CQF
when applying inverse probability weighting. Therefore, implementing the robust enhancing
strategy is necessary.

Further simulation studies for nonsparse high-dimensional model, aggregating
with model-free feature screening procedures

In this part, we change the true value of 3 in Section 4.3 as
ﬂj = (_1)j\/§j717 j = 17 Y 2

and n = 200, p = 1000. Other settings of data generating process and candidate models are

inherited from Section 4.3. We focus on the following competitors:

(a) SIS-mix: adaptive estimation based on variable screening procedure (2.2), where ¢ (u)

is fitted by minimizing S5, Wipr (4 - o8 (u:) - £51 8% ).

(b) DC-mix: adaptive estimation based on the distance-correlation screening procedure
(DC-SIS, proposed by |Li, Zhong and Zhu (2012)). Since y|x,r = 1 has the same

distribution with y|z under MAR, the dataset for DC-SIS is { (], vi|r; = 1) :i=1,...,n}.

The response mechanism in each competitor is estimated by JMA and RJMA, respectively,
hence resulting in total 6 averaged estimators.

The simulation results in Tables reveal several key findings. Firstly, DC-mix
performs lower FPR than SIS-mix for 7 # 0.5, while SIS-mix shows better performance at
7 =0.5. This demonstrates that the misspecification of ¢,(u) impacts model-based screening
effectiveness, further affects the prediction of CQF. Secondly, the robust enhancement from
JMA to RJMA consistently improves both FPR and SD across all scenarios, aligning with

the performance in Section 4.3. Thirdly, the adaptive estimator combined SIS and DC-SIS
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candidates keeps the outperformacne, demonstrating that our method can aggregate diverse
screening approaches as well. Finally, the nested candidate set consistently outperforms the
nonnested counterparts, as the screening process tends to produce underfitted models for

the nonsparse case.

Table S6: Out-of-sample FPR and its standard deviation (in parentheses) of CQF estimator via NON-

NESTED candidate clusters. T

JMA RIMA
(7, p)
SIS-mix DC-mix MA# SIS-mix DC-mix MA

(0.05,0)  0.788(0.377) 0.727(0.290) 0.733(0.315) 0.793(0.277) 0.700(0.241) 0.717(0.219)
(05,0)  1.042(0.145) 1.055(0.143) 0.989(0.123) 1.019(0.125) 1.047(0.135) 0.979(0.115)
(0.75,0)  1.065(0.216) 1.033(0.247) 0.984(0.212) 0.973(0.175) 0.963(0.179) 0.906(0.151)
(0.05,0.5) 0.664(0.537) 0.659(0.336) 0.663(0.462) 0.634(0.232) 0.652(0.523) 0.650(0.277)
(0.5,0.5) 0.923(0.119) 0.946(0.125) 0.889(0.114) 0.913(0.112) 0.939(0.130) 0.883(0.104)
(0.75,0.5)  0.960(0.218) 0.933(0.245) 0.898(0.224) 0.852(0.138) 0.857(0.143) 0.809(0.130)
(0.05, 0.8) 0.524(0.265) 0.515(0.246) 0.516(0.258) 0.523(0.217) 0.503(0.224) 0.509(0.222)
(0.5,0.8)  0.590(0.091) 0.595(0.090) 0.567(0.080) 0.579(0.083) 0.583(0.081) 0.556(0.072)
(0.75, 0.8) 0.644(0.182) 0.614(0.177) 0.600(0.177) 0.565(0.104) 0.545(0.092) 0.529(0.089)

t The best output among “MA” columns is labeled in bold.

¥ The candidate set forms as the union of that in SIS-mix and DC-mix.

C.3 Application in Gene Microarray Data

In this section, we apply the proposed method to analyze a microarray dataset from Gene

Expression Omnibus (the dataset is available at https://www.ncbi.nlm.nih.gov/geo/, or ac-
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Table S7: Out-of-sample FPR and its standard deviation (in parentheses) of CQF estimator via NEST-

ED candidate clusters. T

JMA RIMA
(7, p)
SIS-mix DC-mix MA# SIS-mix DC-mix MA

(0.05,0) 0.813(0.391) 0.751(0.301) 0.716(0.297) 0.845(0.299) 0.710(0.222) 0.688(0.209)
(0.5,0)  1.042(0.143) 1.053(0.138) 0.990(0.124) 1.019(0.128) 1.046(0.135) 0.979(0.115)
(0.75,0)  1.063(0.239) 1.024(0.360) 0.978(0.219) 0.965(0.173) 0.944(0.175) 0.901(0.161)
(0.05,0.5) 0.705(0.537) 0.699(0.386) 0.674(0.443) 0.693(0.318) 0.685(0.409) 0.646(0.345)
(0.5,0.5)  0.923(0.119) 0.946(0.128) 0.889(0.114) 0.912(0.112) 0.937(0.130) 0.883(0.105)
(0.75,0.5) 0.948(0.213) 0.911(0.244) 0.887(0.133) 0.838(0.133) 0.838(0.158) 0.801(0.126)
(0.05,0.8) 0.552(0.262) 0.528(0.232) 0.515(0.234) 0.562(0.231) 0.532(0.228) 0.504(0.213)
(0.5,0.8)  0.590(0.089) 0.596(0.095) 0.567(0.080) 0.579(0.083) 0.582(0.081) 0.556(0.072)
(0.75,0.8)  0.636(0.185) 0.605(0.172) 0.594(0.168) 0.556(0.096) 0.536(0.090) 0.526(0.088)

t The best output among “MA” columns is labeled in bold.

¥ The candidate set forms as the union of that in SIS-mix and DC-mix.

cess via getGEQ("GSE5680") in R), which is collected by the expression quantitative trait
locus mapping in the Rattus norvegicus. The aim is to research the gene regulation in the
mammalian eye and to identify genetic variation relevant to human eye disease (Scheetz
et al| (2006)). The dataset consists of over 31,000 gene probes individually acquired from
total 120 12-week-old eye tissue of hybrid F2 rats and 18,976 of them are detected at a
level sufficient to be considered “expressed”, the main purpose of which is to find the genes

that are correlated with the gene TRIM32 (presented by the probe “1389163_at”) causing
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Bardet—Biedl syndrome.

we investigate the relationship between the quantile effects of TRIM32 (denoted as y)
and the sparsity assumption based on ”sufficiently expressed” probes. We first standardize
each probe set and select the top 3000 probes with the largest variances. Besides of the
linear specification in Wang et al.| (2023), we also wonder the nonlinear representation of
TRIM32 corresponding to the covariates with the strongest correlation. Thereby w is cho-
sen by the largest absolute value among 3000 probes and dim(z) = 2999, the mission is
transformed into evaluating ¢, (u) + Z§:1 - ;%; with either linear (qﬁl)(u) = au) or nonlinear
(¢ (u) = f,(u)) candidate. Furthermore, to illustrate the methodology in the presence of
nonresponse scenario, we artificially induce approximately 36% random missingness among
{y; :1=1,...,120} by the mechanism logit{m(x;p)} = 1.5+ ¢"&, where T = (T1,...,T2)" is a
random permutation of (1, ...,29)7, and ¢; = (-1)7 for j =1,...,20.

We randomly divide the dataset by n; = 90 observations for fitting and others for val-
idation. During the process of CVMA for the response mechanism, we screen the top 50
components in conjunction with p-values less than 0.05 after ranking in decreasing order
and set d = {5,10}. Besides we use the top 5 components in terms of absolute correlation
with y among z to obtain a prior cjﬁk)(u) (k = 1,2). Throughout the screening process,
v, = |n1/log(ny)], and we use the same clustering procedure in Section 4.1 to establish
either non-nested or nested candidate set. Other settings of competitors are employed in
Section 4.3.

Table present results over 100 random replications. From AMA, we can find that
when 7 = 0.05 and 7 = 0.95, the linear specification of ¢, (u) outperforms the nonlinear model.

However, this feature is obscured in G-JMA and 5-CVMA due to the presence of outlier-
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Table S8: Hybrid F2 rat eye tissue microarray data: out-of-sample FPR and SD (in paren-

theses) via NON-NESTED clusters. |

G-JMA 5-CVMA R-AMA

¢-LM  ¢-NAM MA  ¢-LM ¢-NAM MA  ¢-LM ¢-NAM  MA

0.410 0.303 0.362 0.677 0.454 0.337 0.243 0.448 0.246

e (0.568)  (0.097)  (0.426) (1.073) (0.180)  (0.282) (0.172)  (0.166)  (0.136)
0775 0310  0.620 0790 0371 0396 0386 0353  0.316
e (2.863)  (0.074)  (2.495) (1.965) (0.088) (0.730) (0.234)  (0.085)  (0.086)
0457 0273 0374 058 0309  0.307 0402 0302 0314
v (0.493)  (0.052)  (0.458) (0.603)  (0.057) (0.155) (0.136)  (0.055)  (0.066)
0434 0304 0366 0575 0367 0339 035 0325  0.291
e (0.261)  (0.077)  (0.166) (0.508)  (0.095)  (0.138) (0.156)  (0.057)  (0.087)
1.665 0286  1.639  1.190 0477 2295 0215 0431  0.210
0.95

(>10)  (0.106)  (>10)  (6.476) (0.225)  (>10)  (0.156) (0.187)  (0.138)

t In each row, the best output among “MA” columns is labeled in bold.

s. Both averaging estimators exhibit poor performance particularly at 7 = 0.95. R-AMA
uniformly results an adaptive approximation with the optimal estimator, and keeps the sat-
isfactory predictive accuracy and variance under non-nested and nested clusters. This also

confirms the conclusions drawn from our numerical simulations.
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Table S9: Hybrid F2 rat eye tissue microarray data: out-of-sample FPR and SD (in paren-

theses) via NESTED clusters. T

G-JMA 5-CVMA R-AMA

.

¢-LM ¢-NAM MA  ¢-LM ¢-NAM MA  ¢-LM ¢-NAM MA

0383 0323 0373 0573 0474 0346 0276 0444  0.266
e (0.312)  (0.109)  (0.258) (0.591)  (0.191)  (0.202) (0.261)  (0.156)  (0.170)

0408 0317 0362 0601 0369 0371 0410 0352  0.335
e (0.220)  (0.077)  (0.142) (0.553)  (0.090) (0.268) (0.256)  (0.076)  (0.107)

0415 0286 0339 0702 0319 0372 0398 0308  0.313
v (0.357)  (0.056)  (0.118) (1.357)  (0.064) (0.638) (0.127)  (0.060)  (0.067)

0.600 0289 0547 0874 0349 0345 0333 0341  0.285
e (2.060)  (0.058)  (1.852) (2.728) (0.076) (0.229) (0.137)  (0.062)  (0.078)

0678 0313  0.626 0903 0454 0481 0221 0411  0.228
0.95

(1.529)  (0.108)  (1.376) (2.125) (0.210)  (0.784) (0.153) (0.157)  (0.169)

t In each row, the best output among “MA” columns is labeled in bold.
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