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In this Supplementary Material, Section A contains additional mathe-
matical background; Section B contains some additional remarks about the 
motivations behind the definition o n Z V a nd Z E; S ection C  e xplores the 
reproducing kernel Hilbert space properties of our construction; Section D 
we state some general results that may be useful to the definition of kernels 
on arbitrary sets; Section E presents the proofs of the results in the main 
document; while Section F contains some additional material.

A. Mathematical background

Definition A.1 (Simple, connected g raph). Let V  a  finite set (called vertices 
or nodes) and let E ⊆ V × V a set of connections (called edges). Then the 
pair G := (V, E) is called a graph or a network. We said that a graph G is 
simple if it is undirected (videlicet, whenever (v1, v2) ∈ E, then necessarily 
(v2, v1) ∈ E) and if it has no self-loops (namely, for all v ∈ V , (v, v) ∈/ E). 
For an undirected graph G, two nodes v1, v2 ∈ V are adjacent if (v1, v2) ∈ E. 
We write v1 ∼ v2 if v1 and v2 are adjacent, v1 ̸∼ v2 if they are not.

*Corresponding author emilio.porcu@ku.ac.ae
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A path between two nodes v ̸= w ∈ V is a finite sequence of vertices
(v = v1, v2, . . . , vp = w) such that, ∀i ∈ {1, . . . , p− 1}, (vi, vi+1) ∈ E. A
connected component of a graph G is a maximal subset of vertices V ′ ⊆ V
such that, for each pair of nodes v, w ∈ V ′, there is a path between v and w.
A graph G is connected if there is only one connected component, namely if
there is a path between each pair of nodes.

Definition A.2 (Moore-Penrose generalised inverse). Let M ∈ Rn×n be a
matrix. Then its Moore-Penrose generalised inverse is the unique matrix
M+ ∈ Rn×n such that:

� MM+M =M and M+MM+ =M+,

� MM+ = (MM+)⊤ and M+M = (M+M)⊤.

Definition A.3 (g-embedding, isometric embedding). Let (X, d) be a semi-
distance space and g : Dd

X → [0,+∞) a function, where Dd
X denotes the

diameter of X. Then (X, d) is said to have a g-embedding into a Hilbert

space (H, ∥·∥H), written (X, d)
g
↪→ H, if there exists a map ψ : X → H such

that, for all x, y ∈ X,

g(d(x, y)) = ∥ψ(x)− ψ(y)∥H .

If g is the identity map, then it is called isometric embedding.

B. Additional results and remarks

Lemma B.1. Let L be a n × n laplacian matrix, and let x ∈ Rn such
that 1⊤

nx ̸= 0. Let, in addition, δ1, δ2 ∈ [0, 1] and u1, u1, u2, u2 ∈ {1, . . . , n}.
Finally, define δi (i ∈ {1, 2}) as in Equation (4.8). Then it holds:

(δ1 − δ2)
⊤ (L+ xx⊤)−1

(δ1 − δ2) = (δ1 − δ2)
⊤ L+ (δ1 − δ2)

Proof of Lemma B.1. First, let us show that the thesis is meaningful, that
is that L+xx⊤ is strictly positive definite. Clearly, it is positive semidefinite,
as sum of two positive semidefinite matrices. In addition, for y ∈ Rn \ {0},
we have

y⊤ (L+ xx⊤)y = y⊤Ly + y⊤xx⊤y.
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Now, if y does not belong to the kernel of L, that is Ly ̸= 0, we have that
y⊤Ly is strictly positive. If, instead, y ∈ ker(L), then, by the properties of
laplacian matrices stated in Subsection 2.3, y = c1n, where c ∈ R \ {0}. In
such a case we have y⊤ (L+ xx⊤)y = y⊤Ly+y⊤xx⊤y = 0+c2

(
1⊤
nx
)2
> 0,

since 1⊤
nx ̸= 0 by hypothesis.

Now, let us show that the equality holds. In order to express the Moore-
Penrose inverse (which coincides with the standard inverse) of the rank-1
update L + xx⊤, we exploit Theorem 1 of Meyer [1973] with A := L and
c := d := x. Firstly, let us show that the hypotheses of the theorem are
satisfied: we have to prove that x ̸∈ R(L), where R denotes the range or
column space. R(L) is perpendicular to the kernel of L, that is (recall that L
is a laplacian matrix) ker(L) = {h1n : h ∈ R}. Now, x ∈ R(L) ⇐⇒ x ⊥
ker(L) ⇐⇒ 1⊤

nx = 0, yet 1⊤
nx ≠ 0 by hypothesis. Therefore x ̸∈ R(L), i.e.

we can apply the above-mentioned theorem. In the following computations,
we have adopted the notation used by Meyer [1973, Section 2], i.e.:

k := L−x h := x⊤L−

u :=
(
In − LL−)x =

1

n
1n×nx v := x⊤ (In − L−L

)
=

1

n
x⊤1n×n

β := 1 + x⊤L−x.

In addition, we have ∥u∥2 = ∥v∥2 = u⊤u = 1
n21

⊤
n (1

⊤
nx)(1

⊤
nx)1n = 1

n
(1⊤

nx)
2 ̸=

0. Let us finally apply Equation (3.1) of Meyer [1973]:(
L+ xx⊤)− = L− − ku− − v−h+ βv−u−

= L− − ku⊤

∥u∥2
− v⊤h

∥v∥2
+ β

v⊤u⊤

∥v∥2 ∥u∥2

= L− − L−x1⊤
n

1⊤
nx

− 1nx
⊤L−

1⊤
nx

+
(
1 + x⊤L−x

) 1n×n(
1⊤
nx
)2 .

To conclude, it is now sufficient to prove that

(δ1 − δ2)
⊤

((
1 + x⊤L−x

) 1n×n(
1⊤
nx
)2 − L−x1⊤

n

1⊤
nx

− 1nx
⊤L−

1⊤
nx

)
(δ1 − δ2) = 0.

It is possible to see this by noticing that 1⊤
n (δ1 − δ2) = 1⊤

n δ1 − 1⊤
n δ2 =

1− 1 = 0 and similarly (δ1 − δ2)
⊤ 1n = 0, therefore each term of the above

equation equals 0.
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A remark about the motivation behind the definitions of the processes ZV

and ZE follows.

Remark B.1. The rationale behind the definitions of ZV and ZE is closely
related to the desired semi-metric properties. Indeed, the objective in Anderes
et al. [2020] is to build an extension to the classical resistance distance and,
to achieve such a result, they define the analogous of a Wiener process on the
graph. To have an intuition about such a choice, consider the standard Wiener
process (Wt)t on the positive real line R+

0 : we have Cov (Wt,Ws) = min (t, s)
and, as a consequence, γW (t, s) := Var (Wt −Ws) = |t− s|, i.e. the variogram
is the Euclidean distance, which, considering the positive real line as a uniform
electric resistor, coincides with the effective resistance distance. Perhaps
surprisingly, this continues to hold shifting from the positive real line to a
graph with Euclidean edges. Clearly, the definition of the Wiener process
cannot be applied directly to a graph, which has several differences with R+

0 :
it is compact and does not have any intrinsic order or sum operation. As
a consequence, the Wiener process (Wt)t needs to be adapted to the new
topology and Anderes et al. [2020] defined it via the conditional independence
structure offered by the (modified) Laplacian, which entails the topology of
the graph. Therefore, they define ZV on the vertices as the Gaussian random
vector with precision matrix L: in such a way, for v1 ̸∼ v2 ∈ V , ZV (v1) and
ZV (v2) are conditional independent given ZV (V \ {v1, v2}). Furthermore, it
has been shown that the inverse laplacian matrix of a resistor graph offers
an efficient way to compute all the effective resistance distances between its
nodes, as we mentioned in Subsection 2.3. Therefore, since we define ZE at
vertices to be zero and since the linear operation on the inverse laplacian
matrix to obtain the effective resistance is actually the variogram, it is natural
to define ZV having precision matrix L.

Once the process is defined on the vertices V , it remains to define it on the
edges. The idea is to build, for each edge e = (v1, v2) ∈ E, a Brownian bridge
linking ZV (v1) and ZV (v2), thus summing a linear interpolation between
ZV (v1) and ZV (v2), and adding a standard Brownian bridge on [0, ℓ(e)].

Clearly, this construction needs to be adapted when we shift from the
purely spatial case of Anderes et al. [2020] to the time-evolving setting studied
in this paper. Indeed, both ZV and ZE need some adaptation to cope with
the time-evolving dynamic. Regarding ZV , the (modified) Laplacian matrix of
the equivalent simple graph offers a nice conditional independence structure:
while, for a given time t, the conditional independence structure is the same
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as there was no time, the links between adjacent time instants of an (order 1)
equivalent simple graph provide the same conditional independence structure
among times. More specifically ZV at layer t1 is independent from ZV at
layer t3 given ZV at layer t2, for each t1 < t2 < t3.

The construction of ZE extends the original construction by Anderes et al.
[2020] as well. On each edge at a given time, its covariance structure is
the same, however, we add some correlation (governed by the choice of kT )
between times. This is motivated by the following: imagine that the sampling
time of the graph has a scale much smaller than the process on it. Then, for
two adjacent time instants, say t and t+ 1, it is reasonable to assume that
the process on a given edge e does not change too much. This is achieved by
having a high correlation of the final process (and thus a low variogram of
Z = ZV + ZE). Therefore, a high correlation of ZE for adjacent time will fix
this issue.

C. Reproducing kernel Hilbert space construction

In this section, we provide a constructive definition of the reproducing kernel
Hilbert space (RKHS) for the kernel kZ of the process Z = ZV +ZE presented
in Proposition 7. We divide the construction in four steps.

Step 1: construction of the RKHS of ZE on a life λ

Recall from Subsection 4.1 in the main text that Λ :=
{
lf(e) : e ∈ Ẽ

}
is

the set of lives of all the edges of G̃. In this step, we characterise the
RKHS of the kernel kE on any λ ∈ Λ. For the sake of simplicity, we set
nλ := |λ|: the number of edges that share the life λ. Recall that, for a life λ,

kE
∣∣
λ
: G̃
∣∣
λ
× G̃

∣∣
λ
→ R has the following expression:

kE
∣∣
λ
(u1, u2) =

√
ℓ(e1)ℓ(e2) · kT (|t(e1)− t(e2)|) · (min(δ1, δ2)− δ2δ2) .

It is patent that such a kernel is the product of a kernel defined on a finite set
(λ) and the kernel kBB, defined on [0, 1]. As a consequence, following [Berlinet
and Thomas-Agnan, 2004, Theorem 13], in order to find the RKHS of kE

∣∣
λ
,

it is sufficient to build the tensor Hilbert product between the RKHSs of

k
(M)
λ : λ2 → R k

(M)
λ (e1, e2) :=

√
ℓ(e1)ℓ(e2) · kT (|t(e1)− t(e2)|),

(C1)

kBB : [0, 1]2 → R kBB(δ1, δ2) := min(δ1, δ2)− δ2δ2. (C2)
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Regarding the former, since λ has finite cardinality nλ, (C1) can be expressed
in the following matrix form:

k
(M)
λ (e1, e2) := [Mλ]e1,e2 ,

where Mλ ∈ Rnλ×nλ is defined as

[Mλ]e1,e2 :=
√
ℓ(e1)ℓ(e2) · kT (|t(e1)− t(e2)|), e1, e2 ∈ λ.

By introducing the definitions

KT := [kT (|t(e1)− t(e2)|)]e1,e2∈λ ∈ Rnλ×nλ

w⊤ :=

[√
ℓ(e1), . . . ,

√
ℓ(enλ

)

]
∈ Rnλ ,

it is possible to compactly write Mλ as

Mλ = KT ◦ ww⊤ = diag(w)KT diag(w),

where ◦ denotes the Hadamard matrix product. This last expression shows
that, if we assume kT to be a strictly positive definite kernel (and, thus, KT

is strictly positive definite), then Mλ is strictly positive definite as well. This

step is crucial in the definition of the RKHS of k
(M)
λ , which is given next.

Remark C.2. The RKHS of k
(M)
λ is H(M)

λ :=
(
Rnλ , ⟨·, ·⟩(M)

λ

)
, where

⟨v1, v2⟩(M)
λ := v⊤1 M

−1
λ v2.

This is proved by noticing that ⟨·, ·⟩(M)
λ is clearly symmetric, bilinear and

positive definite, and that

⟨k(M)
λ (v1, ·), v2⟩(M)

λ = ⟨v⊤1 Mλ, v2⟩(M)
λ = v⊤1 MλM

−1
λ v2 = v⊤1 v2.

Next, we need to characterise the RKHS of the kernel kBB in (C2). By
the same argument in the proof of [Anderes et al., 2020, Lemma 3.B], the
RKHS of kBB is HBB := (FBB, ⟨·, ·⟩BB), where FBB is the set of functions
f : [0, 1] → R that are absolutely continuous and such that f ′ ∈ L2([0, 1]),
and

⟨f, g⟩BB :=

∫ 1

0

f ′(δ)g′(δ) dδ.

Now we have all the ingredients to characterise the RKHS of kE
∣∣
λ
.
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Remark C.3. Consider the Hilbert tensor product space Hλ := H(M)
λ ⊗HBB,

that is: the completion of the set of functions

f
(M)
λ ⊗ fBB : λ× [0, 1] → R

(e, δ) 7→ f
(M)
λ (e) fBB(δ),

where f
(M)
λ ∈ Rnλ and fBB ∈ FBB. The scalar product of Hλ is defined on

the functions f
(M)
λ ⊗ fBB as:

⟨f (M)
λ ⊗ fBB, g

(M)
λ ⊗ gBB⟩Hλ

:= ⟨f (M)
λ , g

(M)
λ ⟩(M)

λ · ⟨fBB, gBB⟩BB,

and then extended by linearity. For the sake of completeness, we report
an explicit way to build Hλ. Assume that {ηi}nλ

i=1 and {ϕj}∞j=1 denote two

orthonormal bases of H(M)
λ and HBB respectively, then Hλ is the space

generated by the (orthonormal) basis {ηi ⊗ ϕj}i,j. Therefore, given two
generic elements of Hλ

f =
∑
i,j

bijηi ⊗ ϕj g =
∑
i,j

cijηi ⊗ ϕj,

their scalar product is defined as:

⟨f, g⟩Hλ
= ⟨
∑
i,j

bijηi ⊗ ϕj,
∑
i′,j′

ci′j′ηi′ ⊗ ϕj′⟩Hλ

=
∑
i,j

∑
i′,j′

bi,jci′,j′⟨ηi ⊗ ϕj, ηi′ ⊗ ϕj′⟩Hλ

=
∑
i,j

∑
i′,j′

bi,jci′,j′⟨ηi, ηi′⟩(M)
λ · ⟨ϕj, ϕj′⟩BB =

∑
i,j

bi,jci,j,

where the last step relies on the orthonormality of {ηi}nλ

i=1 and {ϕj}∞j=1.

This concludes the construction of the RKHS of kE
∣∣
λ
.

Step 2: RKHS of kE on G̃
Once the RKHSs of kE have been defined on each life λ ∈ Λ, it is possible to
characterise the RKHS of kE on the whole set of edges (i.e. on G̃). Indeed,
as kE is null when computed among points on edges that do not share lives,
the RKHS of kE on G̃ will be the sheer direct sum of them:

HΛ :=
⊕
λ∈Λ

Hλ.
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Clearly, the elements of direct sum are the tuples of size |Λ| of functions,
each belonging to the respective Hλ. However, there is clearly a bijection
between such tuples and the set of functions defined on the union of the lives
λ′s. Therefore, Hλ can be interpreted as the set of functions f : G̃ → R such
that their restrictions on each life λ belong to the respective Hλ. In formulae:
HΛ = (FΛ, ⟨·, ·⟩Λ), with:

FΛ :=
{
f : G̃ → R : f is A.C., f ′ ∈ L2(G̃), f(V ) = 0

}
⟨f, g⟩Λ :=

∑
λ∈Λ

⟨f
∣∣
λ
, g
∣∣
λ
⟩λ.

By construction (recall, by Berlinet and Thomas-Agnan 2004, Theorem 5,
that the direct sum of RKHSs is the RKHS of the sum of the kernels), HΛ is

the RKHS of the kernel kE on the whole graph G̃.

Step 3: RKHS of kV on G̃
Since the kernel kV is exactly the same defined in Anderes et al. [2020], this
step is an adaptation. Consider HV := (FV , ⟨·, ·⟩V ), where:

FV :=
{
f : G̃ → R : ∀e ∈ Ẽ, f

∣∣
e
(u) = (1− δ)f(u) + δf(u)

}
,

⟨f, g⟩V := f(V )⊤xx⊤g(V ) +
∑
e∈Ẽ

1

ℓ(e)

∫ 1

0

f
∣∣′
e
(δ)g

∣∣′
e
(δ) dδ

= f(V )⊤xx⊤g(V ) +
∑
e∈Ẽ

(
f
∣∣
e
(1)− f

∣∣
e
(0)
) (
g
∣∣
e
(1)− g

∣∣
e
(0)
)

ℓ(e)
.

Notice that the sum in the second line is the same quantity indicated by∫ e

e
f ′
e(t)g

′
e(t) dt in Anderes et al. [2020]. It is straightforward to show that

⟨·, ·⟩V is a scalar product on FV : clearly it is symmetric and bilinear, moreover,
for an f ∈ FV , we have:

⟨f, f⟩V =
(
x⊤f(V )

)2
+
∑
e∈Ẽ

(
f
∣∣
e
(1)− f

∣∣
e
(0)
)2

ℓ(e)
≥ 0,

where ⟨f, f⟩V = 0 if and only if x⊤f(V ) = 0 and ∀e ∈ Ẽ, f
∣∣
e
(1) = f

∣∣
e
(0).

From the latter we get that f is constant at all vertices, that is f(V ) = c1n

for some c ∈ R, and we conclude thanks to the former:

0 = x⊤f(V ) = cx⊤1n,
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that implies c = 0, since x⊤1n ̸= 0.

Step 4: RKHS of k on G̃ in the non periodic case
Also this step is quite straightforward, since, being k on G̃ the sheer sum of
kV and kE (Equation (4.7)). As a consequence, the RKHS of kZ will be the
direct sum of the RKHSs of kV and kE:

H = HV ⊕HE.

Now, analogously to what noticed in Step 2, it is possible to observe that the
set of couples (fV , fE) ∈ HV ×HE is isomorphic to the set F of functions

f : G̃ → R that are absolutely continuous on every edge and f
∣∣′
e
belongs to

L2. Summarising, if we define the two operators PV ,Pλ : F → F as follows:

PV (f)(u) := (1− δ)f(u) + δf(u)

Pλ(f)(u) :=

{
f(u)− PV (f)(u) if u ∈ λ

0 otherwise,

then it is possible to express the RKHS of kZ as follows: H = (F , ⟨·, ·⟩H),
where

⟨f, g⟩H = ⟨PV f,PV g⟩V +
∑
λ∈Λ

⟨Pλf,Pλg⟩λ.

Notice that the operators PV and Pλ are the same operators defined in
Anderes et al. [2020], where our Pλ is simply the union of their Pe, indexed
by e ∈ λ. Therefore, we obtain that PV and PE are orthogonal projectors
and self-adjoint.

Step 5: RKHS of k on G̃ in the periodic case
The expression for the kernel k in case of a periodic time-evolving graph,
given in Equation (5.10), has an additional term to ensure that the process
Z varies at different times, namely β2min (t1, t2). Being this the kernel of a
standard Wiener process multiplied by a constant β > 0, its RKHS is given
by HW := (FW , ⟨·, ·⟩W ), where

FW :=
{
f : R+

0 → R : f is A.C., f(0) = 0, f ′ ∈ L2(R+
0 )
}

⟨f, g⟩ := 1

β2

∫ +∞

0

f ′(x)g′(x) dx.

As a consequence, to obtain the RKHS of k in the case of a periodic time-
evolving graph, it is sufficient to do the direct sum of H and HW .
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D. Definition of isotropic kernels on arbitrary domains

In this brief Section, we state and enrich some crucial results of Anderes
et al. [2020] that can be used in a variety of different frameworks. While
Theorem 1 provides a straightforward recipe for the definition of kernels as
compositions of variograms and completely monotone functions, Proposition
D.1 characterises the separation property and the triangle inequality for a
variogram. As a sheer application of the former, we obtain the proof of
Proposition 8.

Proposition D.1. Let Z, X and d as in Theorem 1. Then:

1. (X, d) is a semi-distance space if and only if, for all x1, x2 ∈ X, Z(x1) =
Z(x2) almost surely implies x1 = x2;

2. d satisfies the triangular inequality if and only if, for all x1, x2, x3 ∈ X,
it holds:

Cov (Z(x1)− Z(x2), Z(x3)− Z(x2)) ≥ 0.

E. Proofs

Proof. of Proposition 1 The proof relies on Lemma B.1. By the proof of
Proposition 2, we have:

Var (ZV (u1)− ZV (u2)) = kZV
(u1, u1) + kZV

(u2, u2)− 2kZV
(u1, u2)

= δ⊤
1 (L

⋆)−1δ1 + δ⊤
2 (L

⋆)−1δ2 − 2δ⊤
1 (L

⋆)−1δ2

= (δ1 − δ2)
⊤(L⋆)−1(δ1 − δ2)

= (δ1 − δ2)
⊤L+(δ1 − δ2),

where the last step follows from Lemma B.1. Notice that the last expression
does not depend on x, therefore for all values of x the variogram is the same.
This settles the proof.

Proof. of Proposition 2
From the definition of ZV , we have that

Cov (ZV (u1), ZV (u2)) = (1− δ1) (1− δ2)L
+[u1, u2] + (1− δ1) δ2L

+[u1, u2]

+ δ1 (1− δ2)L
+[u1, u2] + δ1δ2L

+[u1, u2]

= δ⊤
1 L

+ [(u1, u1), (u2, u2)] δ2. (E3)
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Let us now consider the process ZE. For the sake of simplicity, here we
set e1 := (u1, u1) and e2 := (u2, u2). By construction, the covariance between
ZE(u1) and ZE(u2) is null whenever lf(e2) ̸= lf(e1). Furthermore,

Cov (ZE(u1), ZE(u2)) = ℓ(e1) (min(δ1, δ2)− δ1δ2)

if e1 = e2 ∈ ET and

Cov (ZE(u1), ZE(u2)) =
√
ℓ(e1)ℓ(e2) kT (|t(u1)− t(u2)|) (min (δ1, δ2)− δ1δ2)

if e1, e2 ∈ ES and lf(e1) = lf(e2). By noticing that the covariance expression
for former case is actually a special case of the one of the latter (recall that
kT (0) = 1), we can summarise the covariance function of ZE for each couple
of points u1, u2 ∈ G as follows:

kZE
(u1, u2) = 1lf(e1)=lf(e2)

√
ℓ(e1)ℓ(e2) kT (|t(u1)− t(u2)|) (min (δ1, δ2)− δ1δ2) .

(E4)

Notice that the process ZE is defined on all the vertices V (it is zero) and
that the expression (E4) is meaningful even when any of the points u1 and
u2 belongs to V . Indeed, if, say, u1 ∈ V , then δ1 ∈ {0, 1} regardless of which
incident edge (u, v) is taken in the expression u1 = (u, v, δ). As a consequence,
the last factor in (E4) vanishes and the covariance is therefore null. Finally,
notice that, since ZV and ZE are independent, the covariance function of Z
is simply the sum of (E3) and (E4).

Proof. of Proposition 3
Symmetry, non-negativeness and the implication u1 = u2 =⇒ d(u1, u2) =
0 follow immediately from (4.4). Therefore, we just need to show that
d(u1, u2) = 0 =⇒ u1 = u2. From (4.4), if d(u1, u2) = 0, then Z(u1) = Z(u2)
almost surely. As a consequence:

ZV (u1)− ZV (u2) = −ZE(u1) + ZE(u2).

Being ZV and ZE independent, necessarily ZV (u1)−ZV (u2) = 0 and−ZE(u1)+
ZE(u2) = 0, hence ZV (u1) = ZV (u2) and ZE(u1) = ZE(u2) a.s.. Now ZV (u1)
and ZV (u2) are linear combinations of ZV (V ), that is: ZV (u1) = x⊤1 ZV (V ) and
ZV (u2) = x⊤2 ZV (V ) for some x1, x2 ∈ RN , where N = |V |. More specifically,
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A0 B0

A1 B1

A2 B2

t = 0

t = 1

t = 2

P

Q

R

Figure E.1: An example of equivalent simple graph for which the semi-distance
defined at (4.9) does not satisfy the triangle inequality. Here the length of
the top edge (A2, B2) becomes vanishingly small, while length of the bottom
edge (A0, B0) grows to infinity.

x1 and x2 have the following structure (here we assume that the vertices V
are ordered, so that ui comes before ui, for i ∈ {1, 2}):x

⊤
1 =

[
0⊤ 1− δe(u1) 0⊤ δe(u1) 0⊤

]
x⊤2 =

[
0⊤ 1− δe(u2) 0⊤ δe(u2) 0⊤

]
,

where the 0’s represent vectors of zeroes of the appropriate length (possibly
zero). Since ZV (u1) = ZV (u2) a.s., it follows that (x1 − x2)

⊤ZV (V ) = 0 a.s.,
that is: x1 − x2 = λ1N for some λ ∈ R. Hence,

λ = λ
1⊤
N1N

N
=

1

N
1⊤
N(x1 − x2) =

1

N

(
1⊤
Nx1 − 1⊤

Nx2
)
= 0.

This means that x1 = x2, that is u1 = u2.

Proof. of Proposition 4 Consider the equivalent simple graph represented
in Figure E.1, where all the weights of are 1, exception made for the edges
(A0, B0) and A2, B2, which have weights ε and 1

ε
respectively, for a sufficiently

small ε > 0. Considering the vertices in the order A0, B0, A1, . . . , B2, the

12



Laplacian matrix L is

L =


1 + ε −ε −1 0 0 0
−ε 1 + ε 0 −1 0 0
−1 0 3 −1 −1 0
0 −1 −1 3 0 −1
0 0 −1 0 1 + 1

ε − 1
ε

0 0 0 −1 − 1
ε 1 + 1

ε

 .

Let now consider the points P :=
(
0, A0, B0,

1
2

)
, Q :=

(
1, A1, B1,

1
2

)
and

R :=
(
2, A2, B2,

1
2

)
. We will show that, for any γ > 0, for ε sufficiently small,

it holds
d(P,Q) + d(Q,R) < d(P,R). (E5)

First, let us rewrite and simplify a bit (E5). Notice that here all the δ’s are 1
2
.

(E5) ⇐⇒ kZ(P, P ) + kZ(Q,Q)− 2kZ(P,Q)

+ kZ(Q,Q) + kZ(R,R)− 2kZ(Q,R)

< kZ(P, P ) + kZ(R,R)− 2kZ(P,R)

⇐⇒ kZ(Q,Q)− kZ(P,Q)− kZ(Q,R) < −kZ(P,R)

⇐⇒ 1

4
1⊤
2 L

+ [(A1, B1), (A1, B1)] 12 +
√
1 · 1 γ0 · 1

4

− 1

4
1⊤
2 L

+ [(A0, B0), (A1, B1)] 12 −
√

1

ε
· 1 γ1 · 1

4

− 1

4
1⊤
2 L

+ [(A1, B1), (A2, B2)] 12 −
√
1 · ε γ1 · 1

4

< −1

4
1⊤
2 L

+ [(A0, B0), (A2, B2)] 12 −
√

1

ε
· ε γ2 · 1

4

⇐⇒ 1⊤
2

(
L+ [(A1, B1), (A1, B1)] + L+ [(A0, B0), (A2, B2)]

)
12

+ 1⊤
2

(
−L+ [(A0, B0), (A1, B1)]− L+ [(A1, B1), (A2, B2)]

)
12

< −1 +
γ√
ε
+ γ

√
ε− γ2. (E6)

Notice that the right-hand size of the last inequality (E6) is not limited for
any γ > 0 when ε→ 0+. As a consequence, it is sufficient to show that the
left-hand size is limited when ε→ 0+. Indeed the left-hand side of the last
inequality is a sheer signed sum of 16 elements of the matrix L+. This sum is
surely not greater than

16 max
i,j∈{1,...,6}

∣∣L+[i, j]
∣∣ ≤ 16 max

i∈{1,...,6}

∣∣L+[i, i]
∣∣ .

13



Now, in our case, the main diagonal of L+ is given by:

diag(L+) =

[
10ε2 + 39ε+ 34

36 (ε2 + 3ε+ 1)
,
10ε2 + 39ε+ 34

36 (ε2 + 3ε+ 1)
,
10ε2 + 27ε+ 10

36 (ε2 + 3ε+ 1)
,
10ε2 + 27ε+ 10

36 (ε2 + 3ε+ 1)
,

34ε2 + 39ε+ 10

36 (ε2 + 3ε+ 1)
,
34ε2 + 39ε+ 10

36 (ε2 + 3ε+ 1)

]
.

As all the entries are continuous functions of ε ∈ [0, 1], they are limited.
Since the maximum of (a finite number of) limited functions on the same
domain is limited, the left-hand of (E6) is limited as well. This concludes the
proof.

Proof. of Proposition 6
The proof is very similar to the one of Proposition 3. Also in this case, we get
symmetry, non-negativeness and the implication u1 = u2 =⇒ d(u1, u2) = 0
immediately from (4.4). Let us show that d(u1, u2) = 0 =⇒ u1 = u2. From
(4.4), if d(u1, u2) = 0, then Z(u1) = Z(u2) almost surely. As a consequence:

ZV (u1)− ZV (u2) = −ZE(u1) + ZE(u2)− βW (t1) + βW (t2).

Since ZV is independent from ZE and W , it must be ZV (u1) = ZV (u2)
a.s.. Following the same argument of the proof of Proposition 3, we obtain
(u1, u1, δ1) = (u2, u2, δ2). It remains to be shown that t1 = t2. Again, using
Z(u1) = Z(u2), and the independence between Wt and both ZV and ZE, we
obtain βW (t1) = βW (t2) a.s., that is t1 = t2.

Proof. of Theorem 1

1. Define d̃ :=
√
d. Since d = d̃2 is a variogram, it is conditionally negative

semidefinite: as a consequence, by Anderes et al. [2020, Theorem 6],

(X, d̃)
id
↪→ H for some Hilbert space H. Therefore (X, d)

√
·

↪→ H.

2. Follows immediately from the previous point and Anderes et al. [2020,
Corollary 1].

3. If Z(x1) = Z(x2) almost surely implies x1 = x2, then (X, d) is a semi-
distance space by Proposition D.1. Thus, by Anderes et al. [2020,
Corollary 1], (x1, x2) 7→ C(d(x1, x2)) is strictly positive definite.

Proof. of Proposition D.1
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1. (X, d) is a semi-distance space iff d(x1, x2) = 0 implies x1 = x2. But
d(x1, x2) = 0 is equivalent to Z(x1) = Z(x2) almost surely.

2. Without loss of generality, we can restrict the proof to a zero-mean
process X. Indeed, both the variance and the covariance do not change
if we change the mean of their arguments. The proof consists in the
following chain of equivalences. Let x1, x2, x3 ∈ X.

d(x1, x2) + d(x2, x3) ≥ d(x1, x3)

⇐⇒Var (Z(x1)− Z(x2)) + Var (Z(x2)− Z(x3)) ≥ Var (Z(x1)− Z(x3))

⇐⇒VarZ(x1) + VarZ(x2)− 2Cov (Z(x1), Z(x2))
+ VarZ(x2) + VarZ(x3)− 2Cov (Z(x2), Z(x3)) ≥
VarZ(x1) + VarZ(x3)− 2Cov (Z(x1), Z(x3))

⇐⇒VarZ(x2)− Cov (Z(x1), Z(x2))− Cov (Z(x2), Z(x3)) ≥
− Cov (Z(x1), Z(x3))

⇐⇒E
(
Z2(x2) + Z(x1)Z(x3)− Z(x1)Z(x2)− Z(x2)Z(x3)

)
≥ 0

⇐⇒E ((Z(x2)− Z(x1))(Z(x2)− Z(x3))) ≥ 0

⇐⇒Cov (Z(x2)− Z(x1), Z(x2)− Z(x3)) ≥ 0

15



F. Additional plots

The next figure shows some realisations of the process ZE for and edge at four
time steps, for different values of the correlation parameter ϕ, as described in
Section 4.1.
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Figure F.1: Draws from the process ZE on an edge with lifespan {0, 1, 2, 3},
for several values of the parameter ϕ.
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The next Figure show two examples of correlation values σZT
, as defined

in Subsection 5.1, for some values of the parameter ρ and for two periods
(m = 8, 20).
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The correlations of ZT for some values
of ρ and m = 8.

0 5 10 15 20

0

0.5

1

1.5

|τ1 − τ2|
C
o
r
(Z

T
(τ

1
),
Z
T
(τ

2
))

ρ = 0.45

ρ = 0.4

ρ = 0.2

The correlations of ZT for some values
of ρ and m = 20.

Figure F.2: Some examples of the correlation functions kT in the case ls(e) =
{0, . . . ,m− 1}.
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The next Figure shows some covariance generated by the example presented
in Subsection 6.1.
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Figure F.3: Covariances generated by the distances in Figure 6 between the
points A0, P and Q. Left: exponential kernel with parameters (α = 1, β = 1)
(see Table 1). Right: generalised Cauchy kernel with parameters (α = 1, β =
5, ξ = 0.5) (see Table 1).
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The next heatmaps provide the estimation of distances and covariances
(and their errors) in the worked example presented in Section 7. It is in order
to notice the huge difference in terms of accuracy under the two models (the

true G̃1 and the misspecified static graph G̃2).
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Figure F.4: Estimated distance matrices D̂ (top) and distance errors D̂ −D

(bottom) under the two graphs G̃1 (left) and G̃2 (right). Each row/column
represents a spatio-temporal point, denoted by (t, e, e, δe(u)), accordingly to
Definition 4 in the main text.
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Figure F.5: Estimated covariance matrices Σ̂ (top) and covariances errors

Σ̂ − Σ (bottom) under the two graphs G̃1 (left) and G̃2 (right). Each
row/column represents a spatio-temporal point, denoted by (t, e, e, δe(u)),
accordingly to Definition 4 in the main text.
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