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In this Supplementary Material, Section @ contains additional mathe-
matical background; Section @ contains some additional remarks about the
motivations behind the definition on Z yand Z g; S ection @ e xplores the
reproducing kernel Hilbert space properties of our construction; Section
we state some general results that may be useful to the definition of kernels
on arbitrary sets; Section @ presents the proofs of the results in the main
document; while Section @ contains some additional material.

A. Mathematical background

Definition A .1 (Simple, connected graph). Let V' a finite set (called vertices
or nodes) and let £ CV x V a set of connections (called edges). Then the
pair G := (V, E) is called a graph or a network. We said that a graph G is
simple if it is undirected (videlicet, whenever (vq,vy) € E, then necessarily
(vg,v1) € E) and if it has no self-loops (namely, for all v € V, (v,v) ¢ E).
For an undirected graph G, two nodes vy, v € V' are adjacent if (vy,vy) € E.
We write v; ~ vy if v; and vy are adjacent, vy o4 vy if they are not.
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A path between two nodes v # w € V is a finite sequence of vertices
(v = v1,vg,...,v, = w) such that, Vi € {1,...,p—1}, (v;,vi11) € E. A
connected component of a graph G is a maximal subset of vertices V' C V
such that, for each pair of nodes v,w € V| there is a path between v and w.
A graph G is connected if there is only one connected component, namely if
there is a path between each pair of nodes.

Definition A.2 (Moore-Penrose generalised inverse). Let M € R"™*" be a

matrix. Then its Moore-Penrose generalised inverse is the unique matrix
M+ € R™™ guch that:

o MM*M = M and MTMM* = M*,
o MM* = (MM*)T and M*M = (M+M)".

Definition A.3 (g-embedding, isometric embedding). Let (X, d) be a semi-
distance space and g : D% — [0,+00) a function, where D% denotes the
diameter of X. Then (X, d) is said to have a g-embedding into a Hilbert

space (H, ||-||;), written (X, d) < H, if there exists a map ¢ : X — H such
that, for all x,y € X,

gld(z,y)) = ll¥(x) = L)l -

If g is the identity map, then it is called isometric embedding.

B. Additional results and remarks

Lemma B.1. Let L be a n x n laplacian matriz, and let € € R™ such
that 11@ # 0. Let, in addition, 61,0, € [0,1] and u,, Uy, uy,Us € {1,...,n}.
Finally, define &; (i € {1,2}) as in Equation ({4.8). Then it holds:

(81— 65)  (L+aa’) ™ (8, —85) = (81— 65) L (6, — &)

Proof of Lemma [B.1] First, let us show that the thesis is meaningful, that
is that L +xax " is strictly positive definite. Clearly, it is positive semidefinite,
as sum of two positive semidefinite matrices. In addition, for y € R™\ {0},
we have

y' (L+ :B:BT) y=vy Ly+y zz'y.



Now, if y does not belong to the kernel of L, that is Ly # 0, we have that
y' Ly is strictly positive. If, instead, y € ker(L), then, by the properties of
laplacian matrices stated in Subsection 2.3} y = ¢1,,, where ¢ € R\ {0}. In
such a case we have y " (L + me) y=vy Lyt+y zx'y=0+c (12:13)2 > 0,
since 1} # 0 by hypothesis.

Now, let us show that the equality holds. In order to express the Moore-
Penrose inverse (which coincides with the standard inverse) of the rank-1
update L + z ', we exploit Theorem 1 of Meyer| [1973] with A := L and
c :=d := x. Firstly, let us show that the hypotheses of the theorem are
satisfied: we have to prove that @ ¢ R(L), where R denotes the range or
column space. R(L) is perpendicular to the kernel of L, that is (recall that L
is a laplacian matrix) ker(L) = {h1, : h€ R}. Now, x € R(L) <— x L
ker(L) <= 1,2 =0, yet 1] # 0 by hypothesis. Therefore = ¢ R(L), i.e.
we can apply the above-mentioned theorem. In the following computations,
we have adopted the notation used by Meyer| [1973, Section 2], i.e.:

k=L x h = a:TL_
1 1
u = (In — LL’) xr=—1,x,T vi=x' (In — L’L) =21,
n n
fi=1+z L x.

In addition, we have ||u||* = ||v|* = u u = S (1L, e)(1x)1, = L(1,@)? #

0. Let us finally apply Equation (3.1) of Meyer| [1973]:

(L+zz') =L —ku —v h+pv u”

ki T Th T, T
:L_— u2_v 2_{_5 'UQ’U, .
wl vl v]” |||
L 1! 1,2"L" 1
=L — n_ % +(1+a2" L= nxn
1, 1, ( >(1;w)2

To conclude, it is now sufficient to prove that

1 L xl, l,x'L"
51—8) [(1+2'L o) 5 — n_ 81— 83) = 0.
(6= ) (( = L) (1233)2 1 1, (01— 02)
It is possible to see this by noticing that 1) (§; —d3) = 118, — 165 =
1 —1 =0 and similarly (8; — d5) ' 1,, = 0, therefore each term of the above
equation equals 0. O



A remark about the motivation behind the definitions of the processes Zy
and Zg follows.

Remark B.1. The rationale behind the definitions of Zy and Zg is closely
related to the desired semi-metric properties. Indeed, the objective in|Anderes
et al.[[2020] is to build an extension to the classical resistance distance and,
to achieve such a result, they define the analogous of a Wiener process on the
graph. To have an intuition about such a choice, consider the standard Wiener
process (W;); on the positive real line R{: we have Cov (W;, W) = min (¢, s)
and, as a consequence, Yy (t, s) := Var (W, — Wy) = |t — s, i.e. the variogram
is the Euclidean distance, which, considering the positive real line as a uniform
electric resistor, coincides with the effective resistance distance. Perhaps
surprisingly, this continues to hold shifting from the positive real line to a
graph with Euclidean edges. Clearly, the definition of the Wiener process
cannot be applied directly to a graph, which has several differences with R :
it is compact and does not have any intrinsic order or sum operation. As
a consequence, the Wiener process (W;); needs to be adapted to the new
topology and |Anderes et al.| [2020] defined it via the conditional independence
structure offered by the (modified) Laplacian, which entails the topology of
the graph. Therefore, they define Zy on the vertices as the Gaussian random
vector with precision matrix L: in such a way, for vy o0 vy € V| Zy(v1) and
Zyv (vq) are conditional independent given Zy (V' \ {vy,v9}). Furthermore, it
has been shown that the inverse laplacian matrix of a resistor graph offers
an efficient way to compute all the effective resistance distances between its
nodes, as we mentioned in Subsection [2.3] Therefore, since we define Zp at
vertices to be zero and since the linear operation on the inverse laplacian
matrix to obtain the effective resistance is actually the variogram, it is natural
to define Zy, having precision matrix L.

Once the process is defined on the vertices V', it remains to define it on the
edges. The idea is to build, for each edge e = (v1,v9) € E, a Brownian bridge
linking Zy (v;) and Zy(vq), thus summing a linear interpolation between
Zy(v1) and Zy(vq), and adding a standard Brownian bridge on [0, ¢(e)].

Clearly, this construction needs to be adapted when we shift from the
purely spatial case of Anderes et al.| [2020] to the time-evolving setting studied
in this paper. Indeed, both Zy and Zg need some adaptation to cope with
the time-evolving dynamic. Regarding Zy, the (modified) Laplacian matrix of
the equivalent simple graph offers a nice conditional independence structure:
while, for a given time ¢, the conditional independence structure is the same



as there was no time, the links between adjacent time instants of an (order 1)
equivalent simple graph provide the same conditional independence structure
among times. More specifically Zy at layer t; is independent from Zy at
layer t3 given Zy at layer ty, for each t; <ty < t3.

The construction of Zg extends the original construction by Anderes et al.
[2020] as well. On each edge at a given time, its covariance structure is
the same, however, we add some correlation (governed by the choice of kr)
between times. This is motivated by the following: imagine that the sampling
time of the graph has a scale much smaller than the process on it. Then, for
two adjacent time instants, say ¢t and ¢ + 1, it is reasonable to assume that
the process on a given edge e does not change too much. This is achieved by
having a high correlation of the final process (and thus a low variogram of
Z = Zy + Zg). Therefore, a high correlation of Zg for adjacent time will fix
this issue.

C. Reproducing kernel Hilbert space construction

In this section, we provide a constructive definition of the reproducing kernel
Hilbert space (RKHS) for the kernel kz of the process Z = Zy + Zg presented
in Proposition [7} We divide the construction in four steps.

Step 1: construction of the RKHS of Z; on a life \
Recall from Subsection in the main text that A := {lf(e) te€ E} is
the set of lives of all the edges of G. In this step, we characterise the

RKHS of the kernel kg on any A € A. For the sake of simplicity, we set
ny := |A|: the number of edges that share the life . Recall that, for a life A,

kE} \ é‘ 3 X é} , — R has the following expression:

kE‘)\<u1,u2> = \/£(61>£(62) . kT<|t(€1> — t(€2)|) . (min(51,5g) — (5252) .

It is patent that such a kernel is the product of a kernel defined on a finite set
(A) and the kernel kgp, defined on [0, 1]. As a consequence, following [Berlinet
and Thomas-Agnan) 2004, Theorem 13|, in order to find the RKHS of kE‘ N
it is sufficient to build the tensor Hilbert product between the RKHSs of

kgM) A2 5 R kgM)(el,ez) =/ l(e1)l(e2) - kr(|t(er) — t(e2)’()701)
kBB : [O, 1]2 — R kBB((Sla 52) = min(él, 52) — 5252. (62)



Regarding the former, since A has finite cardinality ny, (C1]) can be expressed
in the following matrix form:

EM ey, e2) == [M,]

er,e2’
where M, € R™*™ is defined as
61 62 kT ’t 61 - t(€2)‘) €1,€62 € A

6162'

By introducing the definitions
Kr = [kr([t(er) — t(e2)])]e, epen € R™™

[\/71 Uen, ] € R™,

it is possible to compactly write M), as
My = Kpoww' = diag(w) Kr diag(w),

where o denotes the Hadamard matrix product. This last expression shows
that, if we assume k7 to be a strictly positive definite kernel (and, thus, Kr
is strictly positive definite), then M) is strictly positive definite as well. This

step is crucial in the definition of the RKHS of kE\M), which is given next.
Remark C.2. The RKHS of k(™ is H(*) = (Rm, () -)&M)), where

(vl,v2>E\M) =, M Vs.

This is proved by noticing that (-, -)E\M) is clearly symmetric, bilinear and
positive definite, and that

R ), 0a) = (o My, 023 = ol MM 02 = 0] 0y,

Next, we need to characterise the RKHS of the kernel kgp in (C2). By
the same argument in the proof of |[Anderes et al.| 2020, Lemma 3.B], the

RKHS of kpp is Hpp := (FBs, (-, )BB), Where Fpp is the set of functions
f:]0,1] — R that are absolutely continuous and such that f’ € L*([0,1]),

and
mm%:lfwwmw

Now we have all the ingredients to characterise the RKHS of kE‘ )
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Remark C.3. Consider the Hilbert tensor product space H, := H(AM) Q@ Hpg,
that is: the completion of the set of functions
M@ fep i Ax[0,1] > R
(e:0) = 1"(e) fo(3),

where fiM) € R™ and fgp € Fgp. The scalar product of H, is defined on
the functions fiM) ® fep as:

MO

M M
<f§ )®fBByg§\ )®gBB>H>\' <f)\ 79/\ Y (fBB,9BE) BB,

and then extended by linearity. For the sake of completeness, we report
an explicit way to build HA Assume that {n;};2, and {¢;}]Z, denote two

orthonormal bases of 7-[/\ and Hpp respectively, then H, is the space
generated by the (orthonormal) basis {n; ® ¢j}ij‘ Therefore, given two
generic elements of H

f= sz‘jm®¢j gzzcijni®¢ja
1,3 1,3
their scalar product is defined as:

f g Hy — szﬂh@%yzczg )it ®¢]

—Zzbucz 77@®¢]»771’®¢J>

0 15

_Zzbucz’]/ 7717771 <¢]7¢] BB—ZbZ]Cl],

ij .5
where the last step relies on the orthonormality of {;};?, and {¢; }j:I
This concludes the construction of the RKHS of k:E‘ )

Step 2: RKHS of £z on G

Once the RKHSs of kg have been defined on each life A € A, it is possible to
characterise the RKHS of kg on the whole set of edges (i.e. on G). Indeed,
as kg is null when computed among points on edges that do not share lives,

the RKHS of kg on G will be the sheer direct sum of them:

HA = @HA

AEA
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Clearly, the elements of direct sum are the tuples of size |A| of functions,
each belonging to the respective H,. However, there is clearly a bijection
between such tuples and the set of functions defined on the union of the lives
N's. Therefore, H, can be interpreted as the set of functions f : G — R such
that their restrictions on each life X\ belong to the respective Hy. In formulae:
Ha = (Fa, (-, )a), with:

Fa = {f:é—>R L Fis AC, f e LX(G), f(V):o}

(f.g)n =Y _(f

AEA

)\79‘)\>)\

By construction (recall, by Berlinet and Thomas-Agnan 2004, Theorem 5,
that the direct sum of RKHSs is the RKHS of the sum of the kernels), H, is
the RKHS of the kernel kg on the whole graph G.

Step 3: RKHS of &y on G
Since the kernel ky is exactly the same defined in |Anderes et al. [2020], this
step is an adaptation. Consider Hy := (Fv, (-,-)v), where:

Fv —{f G—R:Veeck, f] 1—5)}0(@)_’_5]"(@)}’
(foo)v = f(V) zx g(V +Z€ / g|
= f(V) Tz g(V —I—Z ﬂ } Oz)(e()‘ )_g‘e(o)).

ecE
Notice that the sum in the second line is the same quantity indicated by
f fL(t)gl(t) dt in |Anderes et al.| [2020]. It is straightforward to show that

(-,-)visa scalar product on Fy: clearly it is symmetric and bilinear, moreover,
for an f € Fy, we have:

v = (V) +> .0 ‘ 20,

ecE

where (f, f)y = 0 if and only if " f(V) = 0 and Ve € E, f’e(l) = f‘e(O)
From the latter we get that f is constant at all vertices, that is f(V') = c1,
for some ¢ € R, and we conclude thanks to the former:

0=z f(V)=cax'1,,
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that implies ¢ = 0, since < "1,, # 0.

Step 4: RKHS of £ on G in the non periodic case _

Also this step is quite straightforward since, being £ on G the sheer sum of
ky and kg (Equation (£.7)). As a consequence, the RKHS of kz will be the
direct sum of the RKHSS of ky and kg:

H="Hy ®HE.

Now, analogously to what noticed in Step 2, it is possible to observe that the
set of couples (fy, fg) € Hy X Hg is isomorphic to the set F of functions
f: G — R that are absolutely continuous on every edge and f | belongs to
L?. Summarising, if we define the two operators Py, Py : F — F as follows:

Py () = (1= 6)f(w) + 5@
PA(f) () = {f<u> ~Pu(f)w) ifue A

0 otherwise,
then it is possible to express the RKHS of kz as follows: H = (F, (-, ")),
where
(f,9n = (Pvf,Pvgv + > _(Psf, Prg)s.
AEA

Notice that the operators Py and P, are the same operators defined in
Anderes et al.| [2020], where our P, is simply the union of their P., indexed
by e € A\. Therefore, we obtain that Py, and Pg are orthogonal projectors
and self-adjoint.

Step 5: RKHS of k£ on G in the periodic case

The expression for the kernel k in case of a periodic time-evolving graph,
given in Equation , has an additional term to ensure that the process
Z varies at different times, namely 3% min (¢;,%,). Being this the kernel of a
standard Wiener process multiplied by a constant g > 0, its RKHS is given
by Hw = (Fw, (-, )w), where

Fwo={f:Rf >R : fis A.C, f(0) =0, f' € LA(R{)}

I
(f,9) = 7 f(x)g'(z) dw.
As a consequence, to obtain the RKHS of k in the case of a periodic time-
evolving graph, it is sufficient to do the direct sum of H and Hy .
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D. Definition of isotropic kernels on arbitrary domains

In this brief Section, we state and enrich some crucial results of |Anderes
et al. [2020] that can be used in a variety of different frameworks. While
Theorem (1| provides a straightforward recipe for the definition of kernels as
compositions of variograms and completely monotone functions, Proposition
characterises the separation property and the triangle inequality for a
variogram. As a sheer application of the former, we obtain the proof of
Proposition [§]

Proposition D.1. Let Z, X and d as in Theorem [l Then:

1. (X,d) is a semi-distance space if and only if, for all x1, 29 € X, Z (1) =
Z(x5) almost surely implies 1 = xs;

2. d satisfies the triangular inequality if and only if, for all x1,xo,x3 € X,
it holds:
Cov(Z(21) — Z(w3), Z(ws) — Z(22)) > 0.

E. Proofs

Proof. of Proposition [1] The proof relies on Lemma By the proof of
Proposition [2| we have:

Var (Zv(u1) — Zy(uz2)) = kz, (w1, u1) + kz, (u2, u2) — 2kz, (ug, ug)
=6 (L*)7'81 + 65 (L) '8, — 28, (L) 16
= (81— 85)" (L)' (61 — 82)
= (81 — 82) LT(8, — 8,),
where the last step follows from Lemma [B.I] Notice that the last expression

does not depend on @, therefore for all values of @ the variogram is the same.
This settles the proof. n

Proof. of Proposition
From the definition of Zy,, we have that

Cov (Zy(u1), Zv(ug)) = (1 —61) (1 — d2) L [uy, u] + (1 — 01) 0oL [wy, o]
+ 01 (1 = 02) LT[0y, uy] + 010, L [ty , )
=8 L' [(uy, ), (uy, Wa)] 6. (E3)
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Let us now consider the process Zg. For the sake of simplicity, here we
set e; := (uy, ) and eg := (u,, Us). By construction, the covariance between
Zg(uy) and Zg(us) is null whenever 1f(ey) # 1f(e1). Furthermore,

Cov (Zg(uy), Zr(uz)) = £(eq) (min(dy, dy) — 0162)

if €1 = €9 € ET and

Cov (Zp(w), Zp(uz)) = Vlle1)l(ez) kr ([t(wy) — t(up)]) (min (01, 02) — 616,)

if e1,e5 € Eg and 1f(e;) = If (e2). By noticing that the covariance expression
for former case is actually a special case of the one of the latter (recall that
kr(0) = 1), we can summarise the covariance function of Zg for each couple
of points uy, us € G as follows:

kzp (U1, u2) = Lig(e)=ir(en) V £(€1)€(€2) kr ([t(uy) — t(uy)]) (min (61, 2) — 51(%215

Notice that the process Zg is defined on all the vertices V' (it is zero) and
that the expression is meaningful even when any of the points u; and
us belongs to V. Indeed, if, say, u; € V, then §; € {0, 1} regardless of which
incident edge (u, v) is taken in the expression u; = (u, v, d). As a consequence,
the last factor in (E4)) vanishes and the covariance is therefore null. Finally,
notice that, since Zy and Zg are independent, the covariance function of Z

is simply the sum of and . O]

Proof. of Proposition

Symmetry, non-negativeness and the implication u; = uy = d(uy,us) =
0 follow immediately from (4.4). Therefore, we just need to show that
d(ur, ug) = 0 = uy = up. From ([4.4)), if d(us,us) = 0, then Z(u1) = Z(us)
almost surely. As a consequence:

Zv(ul) - Z\/(Ug) = —ZE(ul) + ZE(UQ)

Being Zy and Zg independent, necessarily Zy (u;)—Zy (uz) = 0 and —Zg(uy)+
Zg(uz) = 0, hence Zy (u1) = Zy(ug) and Zg(u1) = Zg(ug) a.s.. Now Zy(uy)
and Zy (uy) are linear combinations of Zy (V), that is: Zy(u;) = ] Zy(V) and
Zy(ug) = 9 Zy (V) for some x1, 19 € RN, where N = |V|. More specifically,
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AQ*BQ t=2

1o
/ N

By t=0

Figure E.1: An example of equivalent simple graph for which the semi-distance
defined at does not satisfy the triangle inequality. Here the length of
the top edge (A, Bs) becomes vanishingly small, while length of the bottom
edge (Ao, By) grows to infinity.

x1 and x9 have the following structure (here we assume that the vertices V/
are ordered, so that u, comes before u;, for i € {1,2}):

z] =07 1—6.(u) 07 6e(uy) OF
zg =07 1—6(ug) 07 6So(ug) 071,
where the 0’s represent vectors of zeroes of the appropriate length (possibly

zero). Since Zy(uy) = Zy (uz) a.s., it follows that (z; — 22)" Zy (V) = 0 ass.,
that is: 1 — 29 = A1y for some X € R. Hence,

101y 1

1

A=A

This means that z; = x4, that is u; = wus. ]

Proof. of Proposition [4| Consider the equivalent simple graph represented
in Figure [E.I where all the weights of are 1, exception made for the edges
(Ao, Bo) and Ay, By, which have weights e and % respectively, for a sufficiently
small ¢ > 0. Considering the vertices in the order Ay, By, A1,..., By, the
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Laplacian matrix L is

l+e - -1 0 0 0
- 1l4+e 0 -1 0 0
-1 0 3 -1 -1 0
=19 1 13 o —
0 o -1 0 1+1 -1
0 o o0 -1 -1 141

Let now consider the points P := (O,AO,BO,%), Q = (1,A1,Bl, %) and
R = (2, Ag, Bo, %) We will show that, for any v > 0, for € sufficiently small,
it holds

d(P,Q)+d(Q,R) < d(P,R). (Eb)

First, let us rewrite and simplify a bit |D Notice that here all the d’s are %

(ED) <= kz(P, P) + kz(Q,Q) — 2kz(P, Q)
+kz(Q, Q) + kz(R, R) — 2kz(Q, R)
< kz(P,P)+kz(R,R) — 2kz(P, R)

= kz(Q,Q) — kz(P,Q) — kz(Q, R) < —kz(P, R)

1
< 11; L+ [(Al,Bl), (AlyBl)] 1, ++v1- 1’70 .

1 1
- 11; L [(Ao, Bo), (A1, By)] 15 — Voo 14"

1 —
— 1_11; L+ [(Al,Bl), (AQ, BQ)] 1, — 1- E’)/l :

1 /1 1
< —11;L+ [(Ao,Bo),(AQ,BQ>] 1, — g'€72'zl

1, (L7 [(A1, B1), (A1, B1)] + L7 [(Ag, By), (A2, By)]) 1
+ 1, (=L [(Ao, Bo), (A1, B1)] — LT [(A1, By), (As, B>)]) 1,
g 2
<—-14—= - 7. E6
T2 We—1 (E6)
Notice that the right-hand size of the last inequality (E6) is not limited for
any 7 > 0 when € — 0. As a consequence, it is sufficient to show that the
left-hand size is limited when ¢ — 07. Indeed the left-hand side of the last
inequality is a sheer signed sum of 16 elements of the matrix L*. This sum is
surely not greater than
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Now, in our case, the main diagonal of L™ is given by:

10e2 4+ 39¢ 4 34 102 4 39¢ + 34 102 4 27e + 10 10e? 4 27 + 10
36(e2+3c+1)"36(c2+3c+1)" 36(e2+3e+1)"36(2+3c+1)’
34e2 + 39 + 10 34e2 + 39 + 10
36(a2+35+1)’36(52—&—36—&—1)}

diag(LT) = {

As all the entries are continuous functions of € € [0, 1], they are limited.
Since the maximum of (a finite number of) limited functions on the same
domain is limited, the left-hand of is limited as well. This concludes the
proof. O

Proof. of Proposition [6]

The proof is very similar to the one of Proposition [3 Also in this case, we get
symmetry, non-negativeness and the implication u; = uy = d(uy,uz) = 0
immediately from . Let us show that d(uy,us) = 0 = u; = uy. From
(.4), if d(u1,us) = 0, then Z(u1) = Z(us) almost surely. As a consequence:

Zyv(ur) = Zy(ug) = —Zg(w1) + Zp(uz) — BW (1) + W (t2).

Since Zy is independent from Zr and W, it must be Zy(u;) = Zy(us)
a.s.. Following the same argument of the proof of Proposition [3, we obtain
(uy,u1,01) = (uy, Us, d2). It remains to be shown that t; = t5. Again, using
Z(uy) = Z(uz), and the independence between W; and both Zy and Zg, we
obtain SW (t1) = W (t) a.s., that is t; = ts. O

Proof. of Theorem

1. Define d := v/d. Since d = d? is a variogram, it is conditionally negative
semidefinite: as a consequence, by |Anderes et al.| [2020, Theorem 6],

(X,d) &% H for some Hilbert space H. Therefore (X, d) <[> H.

2. Follows immediately from the previous point and |Anderes et al.|[2020],
Corollary 1].

3. If Z(z1) = Z(x3) almost surely implies x; = x5, then (X, d) is a semi-
distance space by Proposition . Thus, by Anderes et al. [2020,
Corollary 1], (x1,x2) — C(d(xy,x2)) is strictly positive definite.

]

Proof. of Proposition
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1. (X,d) is a semi-distance space iff d(x1,x2) = 0 implies x; = x5. But
d(x1,29) = 0 is equivalent to Z(x;) = Z(x9) almost surely.

2. Without loss of generality, we can restrict the proof to a zero-mean
process X. Indeed, both the variance and the covariance do not change
if we change the mean of their arguments. The proof consists in the
following chain of equivalences. Let x1, 25,13 € X.

d(zy, ) + d(z2, x3) > d(x1, 23)
<= Var (Z(x,) — Z(x3)) + Var (Z(z2) — Z(x3)) > Var (Z(z1) — Z(x3))
<= Var Z(x) + Var Z(z3) — 2Cov (Z(z1), Z(x3))

+ Var Z(z5) + Var Z(z3) — 2Cov (Z(x2), Z(x3)) >

Var Z(z1) + Var Z(x3) — 2Cov (Z(x1), Z(x3))
<= Var Z(xq) — Cov (Z(x1), Z(x2)) — Cov (Z(x2), Z(x3)) >

— Cov (Z(x1), Z(x3))
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F. Additional plots

The next figure shows some realisations of the process Zg for and edge at four
time steps, for different values of the correlation parameter ¢, as described in

Section 4.1l

¢ =0.25

Figure F.1: Draws from the process Zg on an edge with lifespan {0, 1,2, 3},
for several values of the parameter ¢.
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The next Figure show two examples of correlation values oz,., as defined
in Subsection for some values of the parameter p and for two periods
(m =8, 20).

1.5 : 1.5 :
p =045 p =045
— p=04 — p=04
= —— p=02 = —— p=02
£ 1 £ 1
&~ &~
N N
£ £
& 05 - £ 0.5
N N
— —
Q Q
o o
= - = -
| | |
0 2 4 6 8 0 5 10 15 20
|71 — 72| |1 — 72
The correlations of Z for some values The correlations of Zp for some values
of p and m = 8. of p and m = 20.

Figure F.2: Some examples of the correlation functions k7 in the case ls(e) =
{0,...,m—1}.
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The next Figure shows some covariance generated by the example presented
in Subsection [6.11

1 I 1 T

—_— Cov (Ao, P) —_— Cov (Ao, P)

0sl ——  Cov(40,Q) 1 081 ——  Cov(4,Q) I
' Cov (P,Q) (¢ = 0.6) ' Cov (P, Q) (¢ = 0.6)
0.6 - 0.6 -

04| . 0.4 ////

0.2 s 0.2 .

Figure F.3: Covariances generated by the distances in Figure |§| between the
points Ag, P and Q. Left: exponential kernel with parameters (o = 1,5 = 1)
(see Table . Right: generalised Cauchy kernel with parameters (o =1, =
5,£ =0.5) (see Table .
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The next heatmaps provide the estimation of distances and covariances
(and their errors) in the worked example presented in Section [7] It is in order
to notice the huge difference in terms of accuracy under the two models (the
true él and the misspecified static graph éQ)
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Figure F.4: Estimated distance matrices D (top) and distance errors D—-D

(bottom) under the two graphs G (left) and G5 (right). Each row/column
represents a spatio-temporal point, denoted by (¢, ¢, €, d.(u)), accordingly to
Definition {4 in the main text.
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Figure F.5: Estimated covariance matrices ¥ (top) and covariances errors
3 — ¥ (bottom) under the two graphs Gy (left) and G, (right). Each
row/column represents a spatio-temporal point, denoted by (¢,¢,€,d.(u)),
accordingly to Definition El in the main text.
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