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S1. Tables and Figures

Table S.1: Simulation results based on homogeneous errors with o (1, z5) = 0.1.

Distribution of & Normal
Number of grids N =50 N =100 N =200 N =400
Distribution of ¢ mnormal uniform laplace normal uniform laplace normal uniform laplace normal uniform laplace
0.8 0.728 0.723 0.72 0.747 0.754 0.748  0.746 0.753 0.759  0.787 0.784 0.789
0.9 0.861 0.856 0.857  0.879 0.879 0.867  0.876 0.878 0.877  0.881 0.888 0.889
0.95 0.925 0.921 0.916  0.933 0.933 0.919  0.941 0.942 0.933  0.948 0.943 0.949
0.975 0.955 0.962 0.963  0.965 0.962 0.959  0.971 0.97 0972 0.973 0.975 0.971
0.99 0.98 0.979 0.98 0.988 0.985 0.985  0.989 0.985 0.985  0.991 0.992 0.992
Distribution of & Uniform
Number of grids N =50 N =100 N =200 N =400
Distribution of ¢ normal uniform laplace normal uniform laplace normal uniform laplace normal uniform laplace
0.8 0.702 0.707 0.709 0.74 0.745 0.73 0.768 0.766 0.758  0.794 0.784 0.796
0.9 0.824 0.843 0.83 0.861 0.857 0.847  0.873 0.877 0.87 0.906 0.906 0.9
0.95 0.911 0.913 0.912  0.924 0.927 0.921  0.932 0.931 0.931  0.942 0.938 0.946
0.975 0.948 0.947 0.943  0.958 0.958 0.96 0.964 0.966 0.966  0.968 0.968 0.974
0.99 0.978 0.979 0.976  0.981 0.979 0.978  0.979 0.983 0.979 0.99 0.994 0.994
Distribution of & Laplace
Number of grids N =50 N =100 N =200 N =400
Distribution of ¢ normal uniform laplace normal uniform laplace normal uniform laplace normal uniform laplace
0.8 0.746 0.753 0.746  0.741 0.738 0.748  0.754 0.757 0.752  0.776 0.790 0.774
0.9 0.871 0.879 0.874  0.863 0.872 0.863  0.865 0.869 0.867  0.878 0.880 0.870
0.95 0.941 0.94 0.939  0.937 0.934 0.934  0.925 0.928 0.933  0.932 0.940 0.936
0.975 0.96 0.965 0.965  0.974 0.974 0.976  0.961 0.96 0.961  0.972 0.980 0.972
0.99 0.986 0.986 0.989  0.986 0.987 0.989  0.986 0.985 0.98  0.988 0.990 0.990

Figure S.1: Plot of true mean function (yellow), tensor product B—spline estimator
(red) and the 95% simultaneous confidence region (blue) when N = 100.



Table S.2: Simulation results based on homogeneous errors with o (z1,z2) = 0.2.

Distribution of & Normal
Number of grids N =50 N =100 N =200 N =400
Distribution of ¢ normal uniform laplace normal uniform laplace normal uniform laplace normal uniform laplace
0.8 0.699 0.697 0.707  0.735 0.733 0.743  0.735 0.737 0.742  0.786 0.782 0.775
0.9 0.854 0.85 0.852  0.867 0.867 0.869  0.866 0.871 0.871  0.881 0.885 0.883
0.95 0.92 0.917 0.917  0.922 0.922 0.923  0.929 0.939 0.929  0.947 0.944 0.942
0.975 0.959 0.959 0.957  0.957 0.959 0.963  0.966 0.968 0.968  0.965 0.969 0.971
0.99 0.982 0.976 0.976  0.983 0.982 0.984  0.985 0.985 0.985  0.984 0.984 0.989
Distribution of & Uniform
Number of grids N =50 N =100 N =200 N =400
Distribution of ¢ normal uniform laplace normal uniform laplace normal uniform laplace normal uniform laplace
0.8 0.693 0.697 0.682  0.729 0.721 0.72 0.742 0.748 0.733  0.782 0.762 0.774
0.9 0.822 0.824 0.815  0.853 0.846 0.85 0.859 0.86 0.848  0.894 0.888 0.882
0.95 0.908 0.908 0.903  0.925 0.917 0919  0.923 0.924 0.923  0.940 0.932 0.936
0.975 0.951 0.94 0.946  0.958 0.961 0.956  0.964 0.962 0.958  0.972 0.970 0.970
0.99 0.973 0.976 0.973  0.984 0.977 0.978  0.981 0.974 0.977  0.986 0.986 0.994
Distribution of & Laplace
Number of grids N =50 N =100 N =200 N =400
Distribution of ¢ normal uniform laplace normal uniform laplace normal uniform laplace normal uniform laplace
0.8 0.725 0.728 0.733  0.732 0.73 0.732  0.716 0.726 0.729  0.758 0.758 0.768
0.9 0.867 0.861 0.864  0.859 0.86 0.862  0.853 0.844 0.858  0.870 0.858 0.864
0.95 0.933 0.936 0.93 0.927 0.93 0.931  0.921 0.91 0.92 0.924 0.932 0.924
0.975 0.96 0.961 0.959  0.966 0.97 0.968  0.951 0.957 0.958  0.972 0.978 0.968
0.99 0.986 0.983 0.987  0.985 0.986 0.989  0.981 0.977 0.98 0.986 0.992 0.990
Table S.3: Simulation results based on heteroscedastic errors with o (z1,22) =
0.15(5 —exp(s+1t))/(5+exp(s+1)).
Distribution of & Normal
Number of grids N =50 N =100 N =200 N =400
Distribution of ¢ normal uniform laplace normal uniform laplace normal uniform laplace normal uniform laplace
0.8 0.725 0.721 0.727  0.753 0.756 0.747  0.749 0.755 0.759  0.786 0.794 0.772
0.9 0.864 0.856 0.858  0.877 0.881 0.869  0.878 0.878 0.876  0.886 0.892 0.890
0.95 0.923 0.924 0.921 0.934 0.932 0.921 0.941 0.942 0.931 0.944 0.940 0.950
0.975 0.959 0.962 0.962  0.964 0.964 0.964 0.97 0.97 0.973  0.968 0.974 0.966
0.99 0.979 0.98 0.981  0.988 0.984 0.988  0.987 0.987 0.984  0.986 0.994 0.994
Distribution of & Uniform
Number of grids N =50 N =100 N =200 N =400
Distribution of ¢ normal uniform laplace normal uniform laplace normal uniform laplace normal uniform laplace
0.8 0.717 0.715 0.713  0.738 0.746 0.729  0.769 0.769 0.76 0.796 0.790 0.790
0.9 0.831 0.834 0.832 0.86 0.858 0.845  0.876 0.879 0.873  0.906 0.900 0.900
0.95 0.901 0.908 0.908 0.93 0.931 0919  0.934 0.936 0.936  0.940 0.942 0.942
0.975 0.94 0.936 0.945  0.961 0.96 0.964  0.964 0.965 0.966  0.972 0.968 0.978
0.99 0.98 0.972 0.976  0.983 0.979 0.979  0.984 0.982 0.979  0.986 0.994 0.994
Distribution of & Laplace
Number of grids N =50 N =100 N =200 N =400
Distribution of ¢ normal uniform laplace normal uniform laplace normal uniform laplace normal uniform laplace
0.8 0.725 0.721 0.727  0.742 0.745 0.755  0.757 0.744 0.746  0.774 0.790 0.776
0.9 0.864 0.856 0.858  0.872 0.877 0.87 0.891 0.885 0.878  0.878 0.878 0.874
0.95 0.923 0.924 0.921  0.941 0.935 0.934  0.952 0.955 0.952  0.936 0.940 0.934
0.975 0.959 0.962 0.962  0.968 0.97 0973  0.977 0.976 0975  0.972 0.980 0.976
0.99 0.979 0.980 0.981  0.985 0.986 0.989  0.986 0.989 0.986  0.986 0.990 0.990




Table S.4: Simulation results based on heteroscedastic errors with o (z1,22) =
0.3(5 —exp (a1 +x2)) /(5 +exp (z1 + x2)).

Distribution of & Normal
Number of grids N =50 N =100 N =200 N =400
Distribution of ¢ normal uniform laplace normal uniform laplace normal uniform laplace normal uniform laplace
0.8 0.703 0.7 0.708  0.737 0.734 0.746  0.742 0.74 0.745  0.784 0.788 0.788
0.9 0.854 0.85 0.851  0.868 0.869 0.869  0.866 0.872 0.869  0.884 0.892 0.896
0.95 0.925 0.92 0.92 0.923 0.923 0.922  0.932 0.938 0.93 0.944 0.948 0.942
0.975 0.956 0.959 0.959  0.959 0.959 0.964  0.967 0.968 0.966  0.964 0.966 0.972
0.99 0.981 0.979 0.978  0.985 0.98 0.985  0.986 0.985 0.984  0.982 0.982 0.988
Distribution of & Uniform
Number of grids N =50 N =100 N =200 N =400
Distribution of ¢ normal uniform laplace normal uniform laplace normal uniform laplace normal uniform laplace
0.8 0.706 0.707 0.69 0.735 0.725 0.725  0.739 0.751 0.736  0.784 0.764 0.780
0.9 0.83 0.825 0.819  0.852 0.843 0.848  0.864 0.861 0.854  0.894 0.892 0.886
0.95 0.899 0.9 0.891  0.926 0.919 0.92 0.923 0.924 0.923  0.936 0.936 0.938
0.975 0.945 0.937 0.943  0.959 0.962 0.958  0.963 0.958 0.961  0.974 0.970 0.974
0.99 0.977 0.972 0.973  0.985 0.979 0.978  0.983 0.974 0.977  0.986 0.988 0.994
Distribution of & Laplace
Number of grids N =50 N =100 N =200 N =400
Distribution of ¢ normal uniform laplace normal uniform laplace normal uniform laplace normal uniform laplace
0.8 0.713 0.73 0.722  0.737 0.736 0.733  0.728 0.736 0.733  0.752 0.762 0.764
0.9 0.865 0.861 0.861  0.864 0.875 0.865  0.874 0.874 0.876  0.876 0.864 0.864
0.95 0.938 0.939 0.931  0.926 0.931 0.928  0.944 0.932 0.94 0.926 0.936 0.930
0.975 0.963 0.966 0.964  0.968 0.966 0.963  0.971 0.972 0.97 0.968 0.978 0.970
0.99 0.989 0.988 0.988  0.983 0.988 0.987  0.985 0.987 0.985  0.988 0.990 0.992

Figure S.2: Plot of true mean function (yellow), tensor product B—spline estimator
(red) and the 95% simultaneous confidence region (blue) when N = 200.



Figure S.3: Plot of true mean function (yellow), tensor product B—spline estimator
(red) and the 95% simultaneous confidence region (blue) when N = 400.

Figure S.4: Plot of true mean function (yellow), tensor product B—spline estimator
(red) and the 95% simultaneous confidence region (blue) when N = 800.

S2. Additional simulation results

S2.1 2D case

Following the reviewer’s suggestion, we report the MSE, variance, and bias based on

the setting in Section 5. Since these results are similar, we only consider the case



S2.2 3D case

o(xy,m9) = 0.2

Table S.5: Additional 2D simulation results based on homogeneous errors with
o (z1,22) = 0.2.

Distribution of £ Normal
Number of grids N =50 N =100 N =200 N =400
Distribution of ¢ mnormal uniform laplace normal uniform laplace normal uniform laplace normal uniform laplace
MSE 0.1693  0.1693 0.1693 0.0825 0.0825 0.0825 0.0444 0.0444 0.0444 0.0249 0.0249 0.0249
Bias 0.0059  0.0059  0.0059 0.0003 0.0003 0.0003 0.0007 0.0007 0.0007 0.0015 0.0015 0.0015
Variance 0.1617 0.1617 0.1617 0.0829 0.0829 0.0829 0.0441 0.0441 0.0441 0.0244 0.0244 0.0244
Distribution of £ Uniform
Number of grids N =50 N =100 N =200 N =400
Distribution of ¢ normal uniform laplace normal uniform laplace normal uniform laplace normal uniform laplace
MSE 0.1651  0.1651  0.1651 0.0819  0.0819  0.0819 0.0440 0.0440 0.0440 0.0247 0.0247  0.0247
Bias 0.0018  0.0018 0.0018 0.0037 0.0037  0.0037 0.0062 0.0062 0.0062 0.0016 0.0016 0.0016
Variance 0.1610  0.1610  0.1610 0.0826  0.0826  0.0826  0.0442 0.0442 0.0442 0.0243 0.0243  0.0243
Distribution of Laplace
Number of grids N =50 N =100 N =200 N =400
Distribution of ¢ normal uniform laplace normal uniform laplace normal uniform laplace normal uniform laplace
MSE 0.1636  0.1636  0.1637 0.0858 0.0858  0.0858 0.0439 0.0439 0.0439 0.0251 0.0251  0.0251
Bias 0.0003  0.0003  0.0003 -0.0076 -0.0076 -0.0076 -0.0049 -0.0049 -0.0049 0.0004 0.0004 0.0004
Variance 0.1618 0.1618 0.1618 0.0829 0.0829 0.0829 0.0443 0.0443 0.0443 0.0244 0.0244 0.0244

S2.2 3D case

Following the reviewer’s suggestion, we report the MSE, variance, and bias of the
proposed estimator in the 3D case. For D = 3, with N; = Ny = N3, we consider the

following data generating process:

m(x) = 2sin{r(z;+x5)/2} e @) 4oy sinay + zy 201,
o1 () = 2v2sin 7z /2)sin (722/2) sin (725/2)

do(x) = 2v/2sin (3may/2)sin (mx5/2) sin (3mas/2)

¢s(x) = 2sin (3m1/2)sin (725/2) sin (5ras/2) |

¢4 (x) = 2sin(3mwxy/2)sin (37xe/2) sin (Trws/2),



S2.2 3D case

b5 () = /2sin (5w /2)sin (3mas/2) sin (9ma5/2)
d6 () = V2sin (5mxy/2)sin (5rxy/2) sin (117ws/2)

For the same reason, we only consider the case & ~ N(0,1) and o(xq,x9,23) =
0.2. The observations are taken for N = 50,75,100,125 (corresponding to n =

44,65, 85,105).

Table S.6: Additional 3D simulation results based on homogeneous errors with

o (z1,x9,23) = 0.2.

Number of grids N =50 N=T175 N =100 N =125
Distribution of ¢ normal uniform laplace normal uniform laplace normal uniform laplace normal uniform laplace
MSE 0.0790  0.0790  0.0790 0.0534 0.0533  0.0533 0.0372 0.0372 0.0372 0.0315 0.0315 0.0315
Bias -0.0046 -0.0045 -0.0046 -0.0014 -0.0014 -0.0014 -0.0045 -0.0045 -0.0045 -0.0047 -0.0047 -0.0047
Variance 0.0250 0.0250 0.0250 0.0166 0.0166 0.0166 0.0128 0.0128 0.0128 0.0105 0.0105 0.0105

One finds that the proposed estimator performs well in both 2D and 3D scenarios

in terms of MSE, variance, and bias.



S3. Preliminaries

n 1/r
For any vector @ = (ay,...,a,) € R, take |a|, = (Z|a¢|r) 1< r <
i=1

+00, [lall. = max |a;|. For any matrix A = (aj;);;",, denote [ Al], = ohax, |Aal|.||a|| !, for

n
r < 400 and || Al = max > |a;j|- Denote Vec(A) as the vectorization of matrix
stsm ]_1

: T
A, de., Vec(A) = (@11, -+ Qm1, G125 -+ s Qn2y - oy Qg -« oy Q)

For any two functions ¢ (-), ¢ (+) € L2 <[0, 1]D), set

as their theoretical inner product, with norm [|¢||3 = (¢, ¢). We then define the

empirical inner product between ¢ and ¢

N1 Np
<¢7 §0>D,N = T51 Z T Z ¢ (wJ'l.--jD) 4 (wjlmjD) )

j1=1 jp=1

with Tp as given in Assumption (A3), and the empirical norm [|p]|3, x = (), ¢)p -

For any positive integer p, the theoretical and empirical inner product matrices

of {BBD}

Ney.-Nsp
dD ()} are defined as

Jl‘..JDzl—p

_ (D] (D] f1ED
Vio = <<Bj1...jD,p () B i (‘)>)j1...jD=1fp :

J1-Jp=1-p



Ney...Nap,

_ (D] . (D] .
P (<Bﬁ--~m () B ( >>D7N)J;1~-~J:D1—p'

J1--dp=1-p

)

It is easy to calculate that ‘7;,, p=Tp" (XXT), so we will establish some asymptotic

properties of V), p and closeness between V, p and V,, p.

Lemma S.1 (Lemma A.3 of Caoef"all (2012)). For any p € N, there ezists a

constant M, > 0 depending only on p, such that for large enough n,

dull, <
Vmu o S

M,N; ||ul|, for any vector uw € RN="7.
By basic properties of Kronecker product, one easily obtains the following.

Lemma S.2. For any p € Ny there exists a constant M, > 0 depending only on p,

such that for large enough n HV;’guHoo < MPNP ||ul| . for any vector u € R*".

The difference between theoretical inner product matrix V, p and the emprical

Vo of {BY ()}

larly as ‘/1-),_D1'

Ny, ..Ns),

is asymptotically negligible, and ‘A/;[% behaves simi-
Jl...JDZI—p ’

Lemma S.3. Under Assumption (AG), VD € N7,

‘/}p7D_‘/p’DH :O(NfD) and
V.o

D,

=0 (N?)

HOO

PROOF'. Using the basic properties of B-splines in Lemma 5=, one can obtains

N,

S1
~

Nsp

N —1

p’D_Vp’DH = max g E T,
1-p<lg<N,,,1<d<D

oo
k1=1 kp=1




where A

J1.--JD

IN

IN

D] D D D
By @, 50) By (5 0) = /[ o Bitan @) Bl () dadal

Ny, Ne,,

max E E |T 1
1-p<la<Nsy 1<d<D !

ki1=1 kp=1

D] D D D
By @5a0) By @) = [ B, @) B, (@) dwdw’\

[071}D
Ny Nsp M

BETN0 S 9D 3 S

k1=1 kp=1j1=1 ip=1

D D D D
/A By iy @iren) By @ivin) By (@) By, (@) dada!

J1--ID
Nsy Nsp Nsy Nep Ny

DI D) SEED BD IR S

l1 1 lD lk‘l 1 k’D 1]1 1 .]D 1

D D D D
A Bl[l ]lD (w.]l.]D) B][fl]kD (mjljD) - Bl[l..].lD (m) B][g’l]k’D (a:/) dwdw,

J1-dD

O (1 (VN1 x (NIN)? x NP) =0 (NP)

= [(j1 = 1) /N1, ji/N1] x -+~ x [(jp — 1) /Np,jp/Np]. For any K,

dimensional vector 7, Lemma 82 implies HVp_DlTHoo < MPNP. Hence HVP_L%THOO >

M;PNZP |7l

. Note next that

Vv

-1 H _ -1 -1
1V,srll || (Vs - Vi) 7|

= O(N;") 7]l

oo

The proof is complete. O




The next lemma on Gaussian strong approximation is explicit and powerful.

Lemma S.4 (Theorem 4 of Gofze and Zaifsev (2010)). Let & be a R-valued random
variable with B = 0 and E|§|" < oo for some r > 2. Then there exists independent
random variables &1,&s, .. .and independent random variables Zy, Zs, . . .defined on a

common probability space such that each &; equals & in distribution and each Z; follows

N (0,E€?) and for x > 0,n € N,

Z & — Z Z;
=1 =1

P{lréljagcn > x} < cenE|E|" /o,

where ¢ is a positive constant depending only on r.

Lemma S.5 (Lemma S.14 of Wang et all (2020)). Let W; ~ N (0,0%),0; > 0,1 =

1,...,n, fora> 2

P <n1ax \W;/oi| > a\/logn> < \/7/2n' )2

1<i<n

The Lévy concentration function of real random variable £ and € > 0 according

to Chernozhukov ef-all (2015) is

L(§ €)= sgﬂgﬁ”{\f —z| <e}.

The next lemma concerns also distributions of Gaussian maxima. For p € N, let



covariance matrices Xx = (0j1,x);,_, - 2y = (oji,y);,_; be standardized so that

ojix =04y = 1,1 < j < p, and let random vectors

(X1, 0, X)T ~ N(0,%x),(V1,...,Y,) ~ N(0,%y).
Denote

A= max oy — 0yl ap=E L%% (|Y,~| Uj_j,lf)} :

Then according to Chernozhukov_ef all (2013),

as, =E [max (Y}-aj_;f, —Y}Uj_j’lf)} < v/2log 2p.

1<j<p

Lemma S.6. For any e > 0,

L(max |X;|,e) < 4e(ag +1). (S3.1)

1<j<p

Furthermore, there is a universal constant C' > 0 such that

sup 'IP’ (max | X;| < x) —-P <max Y;| < x)
2€(0,4-00) 1<j<p 1<j<p

< CAY3log'? (2p) {max (1,a3,, —log A) }1/3



< CAY?max <1, log?/? (2p/A)> : (S3.2)

PROOF. The proof follows from arguments in the proofs of Theorems 1 and 3

and Comment 5 in Chernozhukov ef-all (2O15). O

The next lemma provides spline approximation of C%#[0, 1]%.

Lemma S.7 (Theorem 12.8 of Schumaker ([981)). There is an absolute constant
Cyu > 0 such that for every ¢ € C*[0,1]P for some u € (0,1], there exists a function

g € AW for which]g — @lloc < Cyplldllguhl™.
The next result follows from p. 96 of De Booi (2001)

Lemma S.8 (p96 of De Boor (2001)). For the spline function By, , (x4),zq € [0,1],

Ns, )
Jd
el < —
132%”21 Biar (Nd) sp+1=0(@).
d=1—p

For p > 1, there exists a constant C,, > 0,only depend on p such that

J J _
Bj.p <ﬁ2> Bin,p (ﬁa;) — Bjup (za) BJg,p (za)| < CpN "N,

max sup
1=p<Ja, Jy<Nsy» z4€[(i—1)/N,i/N]
1<ja<Nq

which also implies that | By, plloq = O (Ns),¥J =1,..., N.



Lemma S.9. The constraints (83), (&4),(371),(38) are consistent and guarantee

that there exists v satisfied (32). Under Assumptions (A3) and (A6), as N — oo,

N7 (nlogn)** = o(1), (S3.3)
NNIN77 = o(1), (S3.4)
N=PRNPR1og 2 N = o (n7V?), (S3.5)
NPPRING = o (n1?). (S3.6)

PROOF. First, note that Holder continuity indices u and v are merely specified
appropriate range in (B3H). Then, since § < 2p*, 0 < 2p*/(1+ p*) required in (B8), it
implies that p* > 6/2, 1 —60/(2D) — /(2p* D), and thus there exists [, that satisfies

(B21). Next, since (BZ) compels By < (1 —6/2 —60/(2p*)) /D, hence,

2" (1 — DBy — 0/2) — 6 > 0 (S3.7)

and wp exists. Finally, according to (B7), (BR) and (S37), one obtains 1 — v <

1 —=Dpfy—0/2 and 0(1 + 4/wy)/2p* <1 — Dfy — 6/2, thus

0 20 0
max{ — + J1—ve<1—Dfy——.
20%  prwo 2



thus v exists.

Noticing that Assumptions (A3) and (A6) ensure that

NP (77, log n)?/wonl/Q _ N—p*'y+29/wo+€(logf N)—p* (10g n)2/wo .

S

Following from (B, (833) is proved.

Since N,N™7 + N7IN7 = O (log” N), one computes,

NNINTY = O(N'"7log ™ N)=0O (N'""log" N)

N_D/2NSD/2 1Og1/2 Nn1/2 — O(N—D/2+D'y/2+9/2 log(TD+1)/2 N)
— 0 (NfD/2+D'y/2+9/2 1Og(TD+1)/2 N)

ND,BQ—INSnl/Q _ O(ND,BQ—1+7+9/2 log‘r N) -0 (ND,32—1+’y+9/2 10g‘r N)
which are o (1) based on (B9) and (834) - (838). The proof is completed. O

Lemma S.10. Assumption (A5’) implies Assumptions (A5)

PROOF. Under Assumption (A5), applying Lemma 84, for £ =1,..., k,, one

obtains {{:k} equal in distribution to {&;};_, and standard Gaussian variables
1



{Z¢}?-, on a probability space (Qk’g, AM, I@k@), such that

Zflk_zzzkg

=1

ﬁ”k,c (max > n51> < ey nE[E1E| M0 —hr
1<t<

Similarly, for By € (0, w3/ D), such that w3fs > D+1+6, one obtains {5”10 ]D(j)}TD

Tp

equal in distribution to {&; i, (7)...in (i Tf , and standard Gaussian variables { Z; i ()i (Ve -
J1(5)--p () § j=1 J1(5)--dp(9):€ § j=1

ND,32 }

on a probability space (Qm, flz-,e, I@’m) such that

Zgzjl (4)--3p(d ZZ,Jl(J -ip(4)€

max
1<t<Tp

< Cm, NDE’€1,1...1|W2N7D’82@-

Since Assumption (A5’) stipulates the independence of {& }127,._; and {&;,(j)...in() }:gD]:l,

Fn n,I'p

the independence is automatically preserved for {&k} and {5,-73'1 ()i (G) }izl =1

1,k=1
if their new probability space <Qk7§, flk@, I@’k,§>, k> 1 and (Qm, fli,g, If”i,a>, 1> 1 are

all independently embedded into a product probability space

049 (@) 0(@0.) (3)0(84))

according to lonescu-Tulcea Theorem (Theorem 14.32 in Klenkeé (2014)). This

N,Kn

independent embedding also ensures that all Gaussian random vectors { Zj ¢ }:2} =1



{Zijvf}?;I;,Djzl remain independent in the new product probability space, as required
in the Assumption (A5).

In what follows, with some abuse of notations, we will not distinguish &, €;; on
the original probability space from éik, €;; on the above product probability space,
nor the original probability measure P from P on the product space.

Since supys; E[£14]™" < oo by Assumption (A5’), there exists a common ¢z, > 0,

such that

P ( max max

1<k<tn 1<t<n

> nﬂl) < o, SUp E|€14 [P kpn 171,
tk

t t
Z §ik — Z Zike
i=1

i=1

Noticing that @y > (4 + 2w), so there exists some 5 € (0,1/2), @y > (2+w)/f;1 and
v1 = w11 — 1 —w > 1, the first assertion is proved.

Also, one has that

t

t
Z €ij1(j)-in(G) — Z Zij1(3)-ip (i)
, o

Jj=1

> NM?}

P max
1<i<n,1<t<Tp
< cmElern ‘WQND(PBWZHQ;

and based on Assumption (A5’), there exists 52 in (BZ2) satisfying Dwsf8y > D+146

ensuring D (1 — fyws) + 0 < —1. The proof is completed. O



Denote Zip,g ()=B, () (XTX)_1 X" Z;, where as in equation (B00), Z; = (0 (2, _jp) Zijr..in )j=1..N

-----

Lemma S.11. Under Assumptions (A2) -(A6), as N — oo,

T — Dp2—1
112%}; Zzp,s €ip - Oa.s (N Ns) .
PROOQOPF. This follows from
Tp
iz

> By w @i6)int) i (3,6).i00)) (Zidi)in(re = EiiaG)in()
j=1

Tp—1

= Z {<BB?.]..JD,p (mjl(j)‘..jD(j)) i (‘”jl(j)...jp(a‘))
j=1

j
_BB?.}..JD,p (mjl(j+1).v.jn(j+1)) gi (wjl(j+1)...jD(j+1))> (Zi,jl(k)...jp(k),a - 5i,j1(k)...jp(k))}
k=1
Tp
D
+BY o (@i@o)iom) i (Tju(@p).in (1)) > ((Ziiwiv e = Eiia9)in®))) -
k=1

Notice that the difference between these two vectors, By, j,» (a:jl(j)mjD(j)) and
By ..gpp (:cjl(jﬂ)mjD(jH)), is only one component.

Applying Lemma 58, one has

|Bianw (%4:0). o)) — Biedop (T2 G41)gp4+1)) | < CNNTE



Under Assumption (A3), the Hélder continuity ensures that

|0 (T4 (3)...i0 () — 01 (Zju(51).dpG+1)) | SCNTY max loillo, < CNNTH

where these bounds are uniformly over 1 < J;...Jp < N,. Then we can get

MQ.E%

~1
< {ggag; s 7o' 2 (€6310)-30G) = Zis()-in)c) }
Tp
){ONPN;PNN"Y+T5" > ((Ziju)oine).e = Ein-in(®))
k=1

= Ous (NPRINITD 4 NPREDY

Then Lemma 8233 implies that

max || Z;, . — €
128X || “ipe ip

e

By IN-XT (2 )l

[e.e]

= O, (NP2IN,).

The proof is completed. O



Lemma S.12. Under Assumptions (A1)-(A3), (A5)-(A6), as N — oo

max ||gip||m =0, (NDﬁz—le + N—D/QNSD/2 log1/2 N) ‘

1<i<n

PROOF. We just need to control the decayed rate of Zp?g (x). Note that the
random vector Tgl‘A/;DlXTZi is K, = HdD:1 (Ns, +p) (see Section @) dimensional

normal with covariance matrix 7', Q‘zfﬁXTVar (Z;) XT‘A/;Dl is bounded by

A~

V| oy,

p,2

—2v,-17, 1-1 -1
HTD Vp,DV;),DVp,DHOO < OTD

bounding the tail probability of entries of 17, I‘A/Z)TQIXT Z; by Lemma B3 and applying

the Borel-Cantelli lemma leads to

|75V, 5X 72| = O (NP2NP 105" 0)
which implies
HZp — O, (N—D/2N£/2 log!/? N) .

hence, the triangle inequality implies the initial assertion. O

For any function ¢ € C[0,1]” denote the vector ¢ = (¢ (xj,.;,)) as the same

order as (BM) and function ¢ (-) = B, () (XTX)_1 X' .



Lemma S.13. There exists ¢y, € (0,00) such that when n is large enough,
Copll@lloo for any ¢ € C[0,1]P. Furthermore, if ¢ € C¥#[0,1]P for some p € (0,1],

then there exists éq,u

Hg— ¢HOO < apfl,quﬁHq,uthrq-

PROOF. Note that for any « € [0,1]? at most (p + 1)” the vector component

of B, (+) are in (0, 1), others being 0 based on Lemma 88, so

o] = e+ |x™x) X8| <p+1)P 1! ||[VX 0|
< MYTy' (0 + 1) N0l [ XT1n, |
in which 17, = (1,..., 1)T is a Tp-dimensional vector of 1’s. Clearly, Lemma E=&
ensures that
IX"1r, | =  max Z Z B, (2, ,,) <CNPN;P,

1_p§Jj§NS71Sd§DJ1 1 P

which implies H%H < Cppl| D] co-
Now if ¢ € C%#[0, 1]” for some p € (0,1], let g € #P~1P be such that ||g— @[l <

Cyull ol g hT according to Lemma 872, the g = g as g € 771" hence,

l6-¢|| = ||#-a]_+le- gl



< (eop+ 1) 16 = gllo < Collpllguhi™.

The proof is completed. O

Lemma S.14. Under Assumptions (A1),(A3),(A6) as N — oo
Vi, = mll, = o(1).

PROOF. According to Lemma ET3 and the Assumptions (Al), (A3),(A6),

Vnh? — 0. O

Lemma S.15. Under Assumptions (A2) - (A6), as N — oo

\/ﬁ ngHoo = Op(1>-

PROOF. Let Z,. () =B] () (X") ' X"Z,Z = ¥, Z;/n. Applying Lemma

ST,

n

< n_lg max
00 1<i<n

=1

= Oa.s. (NDﬁQile) .

HZP:S — 6 Zip,s — €ip

Next, we would derive the uniform convergence rate of Zp,g (x) analogously, because



the variance of (XTX)_l X T Z are bounded by

‘7—D

D2

[

< COn NP ‘

| =0 'NOND).

Lemma B3 ensures that the uniform convergence rate of (XTX)_1 X'Z is
O, (nil/ 2N-PNP Jog!/? n), Finally, the proof is completed by triangle inequality

and (833) - (838)

Vilele £ va|Z,.

+vn HZ”’S -2,

= O, (./\/Dﬁrlzvsnl/2 + N~DND1og!/? n> — 0,(1).

Lemma S.16. Under Assumptions (A1)-(A6), for i.i.d. N (0,1) variables Z. ¢ =

NI Zikes Zige's as in Assumptions (A5), as n — oo,

= 0,(1).

Z VnZ. kedr —/n{m —m}

[e.e]

For any a € (0,1) and i.i.d. N (0,1) variables Zy,k € N, as n — oo,

x€[0,1]P

IP’{ sup )\/ﬁ{m(w)—m(w)}G(w,w)”m) SQl_a}



o)

— P< sup Z
x€[0,1]P 1

Ziy (z) G (2, )

< Qla} =1-a.
PROOF. We denote () =Zureor (-),1 <k < oo and define
00 -1/2 00 0o
Z()=vn [Z o (')] Y G () =VnG ()Y G ().
k=1 =1

It is clear that = (-) is a Gaussian field with the same distribution as Z(-), i.e.,

EZ(-)=0,EZ2(-) = 1 and
EZ (2) 2 (z') = G (z,2') {G (z,z) G (&', ')} V2, z, x'P.
Notice that for Ek =nt Z?:l ik
E[E.] < (BfE]") =0 ().
In addition, Assumption (A5) entails that

P ( max |Zk — 7.,k,§| > Clnﬁll) < Con™ M,
1<k<kn

which implies

max ’Ek — 7.,k,5| =0, (nﬂl_l) )

1<k<kn



Similarly, under Assumption (A4) it is clearly that

Eléx— Zope| SE|E 4| +E|Z pe| = O(n~1?)

and

Vi sup G (z,z) (Z ke — Ex) Or ()

x€[0,1]P k=1
< Clgﬁx ‘5 kT -,k,£| ; [Dklloc = Oas.(1)
Evn sup G(z,z) Z (Z ke =€) On ()
xel0,1]P k=rn+1
< PN bl = o(1),
k=rn+1
hence
Vit swp G @) S (Zas ~ E) 00 (@) = oyl
x€[0,1]P =1
Note that
G)PEC =vVafm()—mO)}=vn Y (Zae—E4) oi (),
k=1

hence



The proof is complete. O

Proof of Theorem M.

For any k € N, let ¢ (-) = B, () (XTX)_1 X¢y. According to equation (B13),

0 () =mi ()= Rip(-) = Ri (-) +my () =m () + & (). (S3.8)

By Lemma BT3, there exist universal constant C, such that

Hmp - mHoo < Cq,uHqu,uNs_p*v

|6 =odl| = Conllonlane” k=1 k0

which implies that

i,

oo P} oo

where W; = >0 |&llloxllgus ¢ = 1,...,n are i.i.d nonnegative random variables

with wg-th finite absolute moment under Assumptions (A4), (A5). Hence
ETW=

P< max W; > (nlo nQ/“O} <p——==r _ =EW*n ' (logn) 2,
{max W (iogny? | < n =B — B og

thus, the Borel-Cantelli lemma ensures that max W; = O, {(n log n)2/ wo}. Com-

1<i<n



bined with equations (S33R), (833), (838) and Lemma 8T

max |[7; — 1|

1<i<n
max || Rip — Ri|| + max [Im, —ml|,, + max [lelo

Ous. (N7 4+ N7 (nlog )/ + NPRIN, 4 N-P2NP/2logh V)

Ous. (N—p* (n log n)Z/wo + ND62—1N8> ‘

S

Proof of Theorem 2.

Notice the decomposition

72 () = iy ()] < guase [ (-) =0 ()] + mase (7 ()]

The maximum deviation [/ (-) — M, ()| is controlled by the uniform approximate

power of trajectories and the convergence rate of error term. Therefore, applying

Lemmas 814, §T3, and 818, the proof is completed. O

Proof of Theorem B.

Lemmas 814, B3, and 8T8 together imply Theorem B. O

Proof of Theorem @.



For the collection of i.i.d. random fields {n; (), x € [0,1]°}", we define the

“infeasible” estimator of covariance function, for x,z’ € [0, 1].

(@) (m: (x') = (2)) 2, ' € [0,1], (53.9)

Q)
VH
&\

|

| —
)
8

|

3

where m (x) is the “infeasible” estimator of mean function defined in (22).

Applying Theorem [, and Lemmas 8135, 516, 8§14 and Assumption (A6) one

obtains that

,SS[E”D G (x,x') — G, (z, ')
= s N (@), (@) < )7 @)+ 1D (0 (@) (@) = (@) @)

sup Iﬁp(fv)mp(w’)—m(w)m(w/)lJrlZ sup |1 (z)n (@) — 7 (x) 7 ()|

x,x'€[0,1]P N zarefo,)P

IN

IN

([l V) [, — | 4 pax {[(f] + [75]) 7 = malll oo
Similarly, one recalls,

max |7, —nill, = O, (Ns_q (nlogn)2/”°+ND’32_1N8>

1<i<n

max [ —m|, = O, ((nlogn)*’")

1<i<n

7 —mly = O, (n"?).



Hence, by equations (8§33) and (838)

Cim] + Jm,[) [, =l + max {I(mil + [75:1) [7: = milllo

= Op <n—1/2 4 Ns_q (TL IOg n)4/w0 + (n log n)?/wo ND52_1N8>

= 0,(n7?)

for some ¢ > 0. Similar to the proof of Proposition 1 in Caa et all (2016), one can
show that

Hé _ GH = 0,(n"9).
The proof is complete. O

Proof of Theorem BH.

Recalling the definition of = (-) and Zk, (-), and defining a transitional process
EK’n (.)7
EC) = Y4 () /G (),
k=1
= () = L A6 (/G (),

Er, ( ZZW% () /G (),



where 7, are i.i.d. N (0, 1) variables, generated independently from Y;, 1 <7 < n,
partial sum approximate covariance function Gk, (z, ') =) ;" ¢k () ¢ (2').
Noticed that =(-) is the Gaussian process satisfies the assumptions in Theorem 1
in [Yang (2025a) and Theorem 1 in [Yang (2025H). Following Theorem B, Theorem
1 in [Yang (20254) and Theorem 1 in [Yang (2025H) and Pdlya’s Theorem, one has

that as n — oo,

= o(1).  (S3.10)

< ) ~P(E].. < 2)

Since K,, = HdD:1 (Ns, +p) — 0o as N — oo, Assumption (A6) ensures that as
N = o0, |Gk, — G|, = O (n™”) and inf, 12 Gk, (@, @) > cq/2 for large enough

N. Note that according to Theorem B as N — oo,
|Go—c|| =07,
for some o > 0. Hence, as N — o0,

fo.-cx

=0, (n7¢+ n_ﬂ) ’

o0

n

and for large enough N, inf_(;p CA;p (x,x) > ce/2 with probability as close to 1 as



specified. Thus as N — oo,

@p ("B’ w,) GKn (CB, "B/>
Sup D é\ /2 A AN 1/2 , N1/2
z,z'€[0,1] 2 (w7 CC) Gp (iB y L ) GKn (CB, iB) GKn (iB y L )
= o0, (n7?+n7"). (S3.11)

Therefore, combined with Theorem B, Theorem 1 in [Yang (2025a) and Theorem

1 in [Yang (P025H), one obtains that

my (x) —m ()

sup |P| sup +/n|—% <z|-P| sup vn <z||=
2€R <me[0,1]D Gll/2 (z,x) ) x€0,1]D G (x, :c)l/2
For large enough N
ElIE]l = IExllel SEIE—Zxlle <cg" DY ElZel 6kl
k=Kp+1
KTL
+egt (ca/2) 7 G, = Glloo Y ElZil [l = O (n77).
k=1
By Assumption (A4) on ||¢klo,, for large enough N
1=kl — | max (S, (b0
1<d<D
< = —=
< | Dax sup =k, (tiy,in) Ko (o ap + 1)

1<d<D ||t||ooS<miH1§d§D nd)



—-» Ky
<C ( min nd) Z | Zi| (6% ]loo + llokllon) = Op (n7H) .
k=1

1<d<D

Combining the above, one obtains that

1=l = max |Ex, (ty,.00)l| = Op (07" +07") . (S3.12)
1<lig<ng
i<d<D

To examine the distribution of maxi<i,<n, |2k, (¢, 1,)|, recall that the (1 —
1<d<D

a)-th quantile Q_, of maxi<j,<n, |2

1<d<D

i, (ti,..1,)| exists and is unique by Theorem

1 in [Yang (20254) and Theorem 1 in [Yang (2025K). Conditional on Y, 1 <

1 < n, the centered Tp-dimensional Gaussian vectors {EKn(tllv--le)}1<ld<nd and

1<d<D
{Ek, (t1r,.10) }1<t,<n,1<a<p DaVe covariance matrices,

ap (tll ..... lp» tlll,...,l'D)
Z1 - = 12 A 1/2 5
Gy byt tinen) " Gy (b i)

10 10

GKn (tll,---,l[n tlll,...,l’D)
22 - 1/2 1/2 :
GK” (tll7“"lD ) tll:~~~7lD> GKn (tll I tl/ l/D)

155t p R

Applying (832) in Lemma S, one has that

sup,cg (P (maxlsldSnd 1=k, (ty,..00)] < Z>

1<d<D
<- r{Yi}?l) \

< CTY3max {1, log?/3 <TVDT*1> } , (83.13)




in which
T = |[Vee(S2 — X)), =0, (2 +n7"), (S3.14)

according to (B3TT).

sup [P(||Z]|, <2)—P  ax Ekn(ty,p)| < 2 H{Yibio || = 0p(1),
z€R <4<D

thus

< Qo Y}t | = 0(D),

Kn (tll ,,,,, lD)

2. < Qroa) —
P(IEl. < @ra) =P | max

or

which implies that

CA}p (x, m)1/2 @l—a -G (x, a:)l/2 Qi—a| = 0.

sup
xe[0,1)P

Hence, (§310), (8312), (8313) and (8314) imply that

my (x) —m ()

Gy (z, )

1<lg<ng
1<d<D

sup ]P’( sup Vn

z€R z€[0,1]P

<Z> ~P | max |Zk,(t, 1) <2 {Y}L,

= Op(1)7
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