SUPPLEMENT TO "STATISTICAL INFERENCE FOR FUNCTIONAL DATA OVER MULTI-DIMENSIONAL DOMAIN"

Qirui Hu¹, Lijian Yang¹

Tsinghua University

Abstract: This supplement provides tables and figures of simulation results and detailed proofs of the theoretical results with necessarily technical lemmas.

S1. Tables and Figures

Table S.1: Simulation results based on homogeneous errors with $\sigma(x_1, x_2) \equiv 0.1$.

Distribution of ξ						Nor	mal					
Number of grids		N = 50			N=100			N=200			N=400	
Distribution of ε	normal	uniform	laplace									
0.8	0.728	0.723	0.72	0.747	0.754	0.748	0.746	0.753	0.759	0.787	0.784	0.789
0.9	0.861	0.856	0.857	0.879	0.879	0.867	0.876	0.878	0.877	0.881	0.888	0.889
0.95	0.925	0.921	0.916	0.933	0.933	0.919	0.941	0.942	0.933	0.948	0.943	0.949
0.975	0.955	0.962	0.963	0.965	0.962	0.959	0.971	0.97	0.972	0.973	0.975	0.971
0.99	0.98	0.979	0.98	0.988	0.985	0.985	0.989	0.985	0.985	0.991	0.992	0.992
Distribution of ξ						Uni	form					
Number of grids		N = 50			N=100			N=200			N=400	
Distribution of ε	normal	uniform	laplace									
0.8	0.702	0.707	0.709	0.74	0.745	0.73	0.768	0.766	0.758	0.794	0.784	0.796
0.9	0.824	0.843	0.83	0.861	0.857	0.847	0.873	0.877	0.87	0.906	0.906	0.9
0.95	0.911	0.913	0.912	0.924	0.927	0.921	0.932	0.931	0.931	0.942	0.938	0.946
0.975	0.948	0.947	0.943	0.958	0.958	0.96	0.964	0.966	0.966	0.968	0.968	0.974
0.99	0.978	0.979	0.976	0.981	0.979	0.978	0.979	0.983	0.979	0.99	0.994	0.994
Distribution of ξ						Lap	olace					
Number of grids		N = 50			N=100			N=200			N=400	
Distribution of ε	normal	uniform	laplace									
0.8	0.746	0.753	0.746	0.741	0.738	0.748	0.754	0.757	0.752	0.776	0.790	0.774
0.9	0.871	0.879	0.874	0.863	0.872	0.863	0.865	0.869	0.867	0.878	0.880	0.870
0.95	0.941	0.94	0.939	0.937	0.934	0.934	0.925	0.928	0.933	0.932	0.940	0.936
0.975	0.96	0.965	0.965	0.974	0.974	0.976	0.961	0.96	0.961	0.972	0.980	0.972
0.99	0.986	0.986	0.989	0.986	0.987	0.989	0.986	0.985	0.986	0.988	0.990	0.990

Figure S.1: Plot of true mean function (yellow), tensor product B-spline estimator (red) and the 95% simultaneous confidence region (blue) when N = 100.

Distribution of ξ						Nor	mal					
Number of grids		N = 50			N=100			N=200			N=400	
Distribution of ε	normal	uniform	laplace									
0.8	0.699	0.697	0.707	0.735	0.733	0.743	0.735	0.737	0.742	0.786	0.782	0.775
0.9	0.854	0.85	0.852	0.867	0.867	0.869	0.866	0.871	0.871	0.881	0.885	0.883
0.95	0.92	0.917	0.917	0.922	0.922	0.923	0.929	0.939	0.929	0.947	0.944	0.942
0.975	0.959	0.959	0.957	0.957	0.959	0.963	0.966	0.968	0.968	0.965	0.969	0.971
0.99	0.982	0.976	0.976	0.983	0.982	0.984	0.985	0.985	0.985	0.984	0.984	0.989
Distribution of ξ						Uni	form					
Number of grids		N = 50			N = 100			N=200			N=400	
Distribution of ε	normal	uniform	laplace									
0.8	0.693	0.697	0.682	0.729	0.721	0.72	0.742	0.748	0.733	0.782	0.762	0.774
0.9	0.822	0.824	0.815	0.853	0.846	0.85	0.859	0.86	0.848	0.894	0.888	0.882
0.95	0.908	0.908	0.903	0.925	0.917	0.919	0.923	0.924	0.923	0.940	0.932	0.936
0.975	0.951	0.94	0.946	0.958	0.961	0.956	0.964	0.962	0.958	0.972	0.970	0.970
0.99	0.973	0.976	0.973	0.984	0.977	0.978	0.981	0.974	0.977	0.986	0.986	0.994
Distribution of ξ						Lap	lace					
Number of grids		N = 50			N = 100			N=200			N=400	
Distribution of ε	normal	uniform	laplace									
0.8	0.725	0.728	0.733	0.732	0.73	0.732	0.716	0.726	0.729	0.758	0.758	0.768
0.9	0.867	0.861	0.864	0.859	0.86	0.862	0.853	0.844	0.858	0.870	0.858	0.864
0.95	0.933	0.936	0.93	0.927	0.93	0.931	0.921	0.91	0.92	0.924	0.932	0.924
0.975	0.96	0.961	0.959	0.966	0.97	0.968	0.951	0.957	0.958	0.972	0.978	0.968
0.99	0.986	0.983	0.987	0.985	0.986	0.989	0.981	0.977	0.98	0.986	0.992	0.990

Table S.2: Simulation results based on homogeneous errors with $\sigma(x_1, x_2) \equiv 0.2$.

Table S.3: Simulation results based on heteroscedastic errors with $\sigma(x_1, x_2) = 0.15(5 - \exp(s+t)) / (5 + \exp(s+t))$.

Distribution of ξ						Nor	mal					
Number of grids		N = 50			N = 100			N = 200			N=400	
Distribution of ε	normal	uniform	laplace									
0.8	0.725	0.721	0.727	0.753	0.756	0.747	0.749	0.755	0.759	0.786	0.794	0.772
0.9	0.864	0.856	0.858	0.877	0.881	0.869	0.878	0.878	0.876	0.886	0.892	0.890
0.95	0.923	0.924	0.921	0.934	0.932	0.921	0.941	0.942	0.931	0.944	0.940	0.950
0.975	0.959	0.962	0.962	0.964	0.964	0.964	0.97	0.97	0.973	0.968	0.974	0.966
0.99	0.979	0.98	0.981	0.988	0.984	0.988	0.987	0.987	0.984	0.986	0.994	0.994
Distribution of ξ						Uni	form					
Number of grids		N = 50			N = 100			N = 200			N=400	
Distribution of ε	normal	uniform	laplace									
0.8	0.717	0.715	0.713	0.738	0.746	0.729	0.769	0.769	0.76	0.796	0.790	0.790
0.9	0.831	0.834	0.832	0.86	0.858	0.845	0.876	0.879	0.873	0.906	0.900	0.900
0.95	0.901	0.908	0.908	0.93	0.931	0.919	0.934	0.936	0.936	0.940	0.942	0.942
0.975	0.94	0.936	0.945	0.961	0.96	0.964	0.964	0.965	0.966	0.972	0.968	0.978
0.99	0.98	0.972	0.976	0.983	0.979	0.979	0.984	0.982	0.979	0.986	0.994	0.994
Distribution of ξ						Lap	lace					
Number of grids		N = 50			N = 100			N = 200			N = 400	
Distribution of ε	normal	uniform	laplace									
0.8	0.725	0.721	0.727	0.742	0.745	0.755	0.757	0.744	0.746	0.774	0.790	0.776
0.9	0.864	0.856	0.858	0.872	0.877	0.87	0.891	0.885	0.878	0.878	0.878	0.874
0.95	0.923	0.924	0.921	0.941	0.935	0.934	0.952	0.955	0.952	0.936	0.940	0.934
0.975	0.959	0.962	0.962	0.968	0.97	0.973	0.977	0.976	0.975	0.972	0.980	0.976
0.99	0.979	0.980	0.981	0.985	0.986	0.989	0.986	0.989	0.986	0.986	0.990	0.990

Table S.4: Simulation results based on heteroscedastic errors with $\sigma(x_1, x_2) = 0.3 (5 - \exp(x_1 + x_2)) / (5 + \exp(x_1 + x_2))$.

Distribution of ξ						Nor	rmal					
Number of grids		N = 50			N=100			N=200			N=400	
Distribution of ε	normal	uniform	laplace									
0.8	0.703	0.7	0.708	0.737	0.734	0.746	0.742	0.74	0.745	0.784	0.788	0.788
0.9	0.854	0.85	0.851	0.868	0.869	0.869	0.866	0.872	0.869	0.884	0.892	0.896
0.95	0.925	0.92	0.92	0.923	0.923	0.922	0.932	0.938	0.93	0.944	0.948	0.942
0.975	0.956	0.959	0.959	0.959	0.959	0.964	0.967	0.968	0.966	0.964	0.966	0.972
0.99	0.981	0.979	0.978	0.985	0.98	0.985	0.986	0.985	0.984	0.982	0.982	0.988
Distribution of ξ						Uni	form					
Number of grids		N = 50			N = 100			N = 200			N=400	
Distribution of ε	normal	uniform	laplace									
0.8	0.706	0.707	0.69	0.735	0.725	0.725	0.739	0.751	0.736	0.784	0.764	0.780
0.9	0.83	0.825	0.819	0.852	0.843	0.848	0.864	0.861	0.854	0.894	0.892	0.886
0.95	0.899	0.9	0.891	0.926	0.919	0.92	0.923	0.924	0.923	0.936	0.936	0.938
0.975	0.945	0.937	0.943	0.959	0.962	0.958	0.963	0.958	0.961	0.974	0.970	0.974
0.99	0.977	0.972	0.973	0.985	0.979	0.978	0.983	0.974	0.977	0.986	0.988	0.994
Distribution of ξ						Lap	olace					
Number of grids		N = 50			N = 100			N = 200			N=400	
Distribution of ε	normal	uniform	laplace									
0.8	0.713	0.73	0.722	0.737	0.736	0.733	0.728	0.736	0.733	0.752	0.762	0.764
0.9	0.865	0.861	0.861	0.864	0.875	0.865	0.874	0.874	0.876	0.876	0.864	0.864
0.95	0.938	0.939	0.931	0.926	0.931	0.928	0.944	0.932	0.94	0.926	0.936	0.930
0.975	0.963	0.966	0.964	0.968	0.966	0.963	0.971	0.972	0.97	0.968	0.978	0.970
0.99	0.989	0.988	0.988	0.983	0.988	0.987	0.985	0.987	0.985	0.988	0.990	0.992

Figure S.2: Plot of true mean function (yellow), tensor product B-spline estimator (red) and the 95% simultaneous confidence region (blue) when N = 200.

Figure S.3: Plot of true mean function (yellow), tensor product B-spline estimator (red) and the 95% simultaneous confidence region (blue) when N = 400.

Figure S.4: Plot of true mean function (yellow), tensor product B-spline estimator (red) and the 95% simultaneous confidence region (blue) when N = 800.

S2. Additional simulation results

S2.1 2D case

Following the reviewer's suggestion, we report the MSE, variance, and bias based on the setting in Section 5. Since these results are similar, we only consider the case $\sigma(x_1, x_2) \equiv 0.2.$

Table S.5: Additional 2D simulation results based on homogeneous errors with $\sigma(x_1, x_2) \equiv 0.2$.

Distribution of ξ						Nor	mal					
Number of grids		N = 50			N = 100			N = 200			N=400	
Distribution of ε	normal	uniform	laplace	normal	uniform	laplace	normal	uniform	laplace	normal	uniform	laplace
MSE	0.1693	0.1693	0.1693	0.0825	0.0825	0.0825	0.0444	0.0444	0.0444	0.0249	0.0249	0.0249
Bias	0.0059	0.0059	0.0059	0.0003	0.0003	0.0003	0.0007	0.0007	0.0007	0.0015	0.0015	0.0015
Variance	0.1617	0.1617	0.1617	0.0829	0.0829	0.0829	0.0441	0.0441	0.0441	0.0244	0.0244	0.0244
Distribution of ξ						Uni	form					
Number of grids		N = 50			N = 100			N = 200			N=400	
Distribution of ε	normal	uniform	laplace	normal	uniform	laplace	normal	uniform	laplace	normal	uniform	laplace
MSE	0.1651	0.1651	0.1651	0.0819	0.0819	0.0819	0.0440	0.0440	0.0440	0.0247	0.0247	0.0247
Bias	0.0018	0.0018	0.0018	0.0037	0.0037	0.0037	0.0062	0.0062	0.0062	0.0016	0.0016	0.0016
Variance	0.1610	0.1610	0.1610	0.0826	0.0826	0.0826	0.0442	0.0442	0.0442	0.0243	0.0243	0.0243
Distribution of ξ						Lap	lace					
Number of grids		N = 50			N = 100			N = 200			N=400	
Distribution of ε	normal	uniform	laplace	normal	uniform	laplace	normal	uniform	laplace	normal	uniform	laplace
MSE	0.1636	0.1636	0.1637	0.0858	0.0858	0.0858	0.0439	0.0439	0.0439	0.0251	0.0251	0.0251
Bias	0.0003	0.0003	0.0003	-0.0076	-0.0076	-0.0076	-0.0049	-0.0049	-0.0049	0.0004	0.0004	0.0004
Variance	0.1618	0.1618	0.1618	0.0829	0.0829	0.0829	0.0443	0.0443	0.0443	0.0244	0.0244	0.0244

S2.2 3D case

Following the reviewer's suggestion, we report the MSE, variance, and bias of the proposed estimator in the 3D case. For D = 3, with $N_1 = N_2 = N_3$, we consider the following data generating process:

$$m(\mathbf{x}) = 2\sin\left\{\pi\left(x_1 + x_2\right)/2\right\} e^{-(x_1 + x_2)} + x_1\sin x_2 + x_1x_2x_3,$$

$$\phi_1(\mathbf{x}) = 2\sqrt{2}\sin(\pi x_1/2)\sin(\pi x_2/2)\sin(\pi x_3/2),$$

 $\phi_2(\mathbf{x}) = 2\sqrt{2}\sin(3\pi x_1/2)\sin(\pi x_2/2)\sin(3\pi x_3/2),$

$$\phi_3(\mathbf{x}) = 2\sin(3\pi x_1/2)\sin(\pi x_2/2)\sin(5\pi x_3/2),$$

$$\phi_4(\mathbf{x}) = 2\sin(3\pi x_1/2)\sin(3\pi x_2/2)\sin(7\pi x_3/2),$$

$$\begin{split} \phi_5(\boldsymbol{x}) &= \sqrt{2}\sin(5\pi x_1/2)\sin(3\pi x_2/2)\sin(9\pi x_3/2), \\ \phi_6(\boldsymbol{x}) &= \sqrt{2}\sin(5\pi x_1/2)\sin(5\pi x_2/2)\sin(11\pi x_3/2), \\ \phi_k(\boldsymbol{x}) &= 0 \qquad k \ge 7. \end{split}$$

For the same reason, we only consider the case $\xi_k \sim N(0,1)$ and $\sigma(x_1, x_2, x_3) \equiv 0.2$. The observations are taken for N = 50, 75, 100, 125 (corresponding to n = 44, 65, 85, 105).

Table S.6: Additional 3D simulation results based on homogeneous errors with $\sigma(x_1, x_2, x_3) \equiv 0.2$.

Number of grids	N = 50			N = 75			N = 100			N = 125		
Distribution of ε	normal	uniform	laplace									
MSE	0.0790	0.0790	0.0790	0.0534	0.0533	0.0533	0.0372	0.0372	0.0372	0.0315	0.0315	0.0315
Bias	-0.0046	-0.0045	-0.0046	-0.0014	-0.0014	-0.0014	-0.0045	-0.0045	-0.0045	-0.0047	-0.0047	-0.0047
Variance	0.0250	0.0250	0.0250	0.0166	0.0166	0.0166	0.0128	0.0128	0.0128	0.0105	0.0105	0.0105

One finds that the proposed estimator performs well in both 2D and 3D scenarios in terms of MSE, variance, and bias.

S3. Preliminaries

For any vector $\boldsymbol{a} = (a_1, \dots, a_n) \in \mathbb{R}^n$, take $\|\boldsymbol{a}\|_r = \left(\sum_{i=1}^n |a_i|^r\right)^{1/r}$, $1 \leq r < +\infty$, $\|\boldsymbol{a}\|_{\infty} = \max_{1 \leq i \leq n} |a_i|$. For any matrix $\boldsymbol{A} = (a_{ij})_{i,j=1}^{m,n}$, denote $\|\boldsymbol{A}\|_r = \max_{\boldsymbol{a} \in \mathbb{R}^n, \boldsymbol{a} \neq \boldsymbol{0}} \|\boldsymbol{A}\boldsymbol{a}\|_r \|\boldsymbol{a}\|_r^{-1}$, for $r < +\infty$ and $\|\boldsymbol{A}\|_{\infty} = \max_{1 \leq i \leq m} \sum_{j=1}^n |a_{ij}|$. Denote Vec(A) as the vectorization of matrix A, i.e., Vec(A) = $(a_{11}, \dots, a_{m1}, a_{12}, \dots, a_{m2}, \dots, a_{1n}, \dots, a_{mn})^\top$.

For any two functions $\phi(\cdot), \varphi(\cdot) \in \mathcal{L}^{2}\left([0,1]^{D}\right)$, set

$$\left\langle \phi, arphi
ight
angle = \int_{[0,1]^D} \phi\left(oldsymbol{x}
ight) arphi \left(oldsymbol{x}
ight) doldsymbol{x},$$

as their theoretical inner product, with norm $\|\phi\|_2^2 = \langle \phi, \phi \rangle$. We then define the empirical inner product between ϕ and φ

$$\langle \phi, \varphi \rangle_{D,N} = T_D^{-1} \sum_{j_1=1}^{N_1} \cdots \sum_{j_D=1}^{N_D} \phi\left(\boldsymbol{x}_{j_1\dots j_D}\right) \varphi\left(\boldsymbol{x}_{j_1\dots j_D}\right),$$

with T_D as given in Assumption (A3), and the empirical norm $\|\phi\|_{D,N}^2 = \langle \phi, \phi \rangle_{D,N}$.

For any positive integer p, the theoretical and empirical inner product matrices of $\left\{B_{J_1...J_D}^{[D]}(\cdot)\right\}_{J_1...J_D=1-p}^{N_{s_1}...N_{s_D}}$ are defined as

$$\mathbf{V}_{p,D} = \left(\left\langle B_{j_1...j_D,p}^{[D]}(\cdot), B_{j'_1...j'_D,p}^{[D]}(\cdot) \right\rangle \right)_{\substack{j_1...j_D = 1-p \\ j'_1...j'_D = 1-p}}^{N_{s_1}...N_{s_D}},$$

$$\widehat{V}_{p,D} = \left(\left\langle B_{j_1...j_D,p}^{[D]}(\cdot), B_{j'_1...j'_D,p}^{[D]}(\cdot) \right\rangle_{D,N} \right)_{j_1...j_D=1-p}^{N_{s_1}...N_{s_D}} \sum_{\substack{j_1...j_D=1-p\\j'_1...j'_D=1-p}}^{N_{s_1}...N_{s_D}} \sum_{j_1...j_D=1-p}^{N_{s_1}...N_{s_D}} \left(\sum_{j_1,...,j_D=1}^{N_{s_1}...N_{s_D}} \sum_{j_1,...,j_D=1-p}^{N_{s_1}...N_{s_D}} \sum_{j_1...,j_D=1-p}^{N_{s_1}...N_{s_D}} \sum_{j_1...,j_D=1-p}^{N_{s_D}...N_{s_D}} \sum_{j_1...,j_D=1-p}^{N_{s_D}...N_{s_D}} \sum_{j_1...,j_D=1-p}^{N_{s_D}...N_{s_D}} \sum_{j_1...,j_D=1-p}^{N_{s_D}...N_{s_D}} \sum_{j_1...,j_D=1-p}^{N_{s_D}...N_{s_D}} \sum_{j_1...,j_D=1-p}^{N_{s_D}...N_{s_D}} \sum_{j_D=1}^{N_{s_D}...N_{s_D}} \sum_{j_D=1}^{N_{s_D$$

It is easy to calculate that $\widehat{V}_{p,D} = T_D^{-1}(\mathbf{X}\mathbf{X}^{\top})$, so we will establish some asymptotic properties of $\widehat{V}_{p,D}$ and closeness between $\widehat{V}_{p,D}$ and $V_{p,D}$.

Lemma S.1 (Lemma A.3 of Cao et al. (2012)). For any $p \in \mathbb{N}_+$ there exists a constant $M_p > 0$ depending only on p, such that for large enough n, $\|\boldsymbol{V}_{p,1}^{-1}\boldsymbol{u}\|_{\infty} \leq M_p N_s \|\boldsymbol{u}\|_{\infty}$ for any vector $\boldsymbol{u} \in \mathbb{R}^{N_s+p}$.

By basic properties of Kronecker product, one easily obtains the following.

Lemma S.2. For any $p \in \mathbb{N}_+$ there exists a constant $M_p > 0$ depending only on p, such that for large enough $n \| V_{p,D}^{-1} u \|_{\infty} \leq M_p^D N_s^D \| u \|_{\infty}$. for any vector $u \in \mathbb{R}^{K_n}$.

The difference between theoretical inner product matrix $V_{p,D}$ and the emprical $\widehat{V}_{p,D}$ of $\left\{B_{J_1...J_D}^{[D]}\left(\cdot\right)\right\}_{J_1...J_D=1-p}^{N_{s_1}...N_{s_D}}$ is asymptotically negligible, and $\widehat{V}_{p,D}^{-1}$ behaves similarly as $V_{p,D}^{-1}$.

Lemma S.3. Under Assumption (A6), $\forall D \in \mathbb{N}^+$, $\left\| \widehat{V}_{p,D} - V_{p,D} \right\|_{\infty} = \mathcal{O}(N^{-D})$ and $\left\| \widehat{V}_{p,D}^{-1} \right\|_{\infty} = \mathcal{O}(N_s^D)$

PROOF. Using the basic properties of B-splines in Lemma S.8, one can obtains

$$\left\|\widehat{V}_{p,D} - V_{p,D}\right\|_{\infty} = \max_{1-p \le l_d \le N_{s_d}, 1 \le d \le D} \left|\sum_{k_1=1}^{N_{s_1}} \cdots \sum_{k_D=1}^{N_{s_D}} T_D^{-1}\right|$$

$$\begin{split} B_{l_{1}...l_{D}}^{[D]}\left(\boldsymbol{x}_{j_{1}...j_{D}}\right)B_{k_{1}...k_{D}}^{[D]}\left(\boldsymbol{x}_{j_{1}...j_{D}}\right) & -\int_{\left[0,1\right]^{D}}B_{l_{1}...l_{D}}^{[D]}\left(\boldsymbol{x}\right)B_{k_{1}...k_{D}}^{[D]}\left(\boldsymbol{x}'\right)d\boldsymbol{x}d\boldsymbol{x}' \\ & \leq \max_{1-p\leq l_{d}\leq N_{s_{d}},1\leq d\leq D}\sum_{k_{1}=1}^{N_{s_{1}}}\cdots\sum_{k_{D}=1}^{N_{s_{D}}}\left|T_{D}^{-1}\right|\\ B_{l_{1}...l_{D}}^{[D]}\left(\boldsymbol{x}_{j_{1}...j_{D}}\right)B_{k_{1}...k_{D}}^{[D]}\left(\boldsymbol{x}_{j_{1}...j_{D}}\right) & -\int_{\left[0,1\right]^{D}}B_{l_{1}...l_{D}}^{[D]}\left(\boldsymbol{x}\right)B_{k_{1}...k_{D}}^{[D]}\left(\boldsymbol{x}'\right)d\boldsymbol{x}d\boldsymbol{x}' \\ & = \max_{1-p\leq l_{d}\leq N_{s_{d}},1\leq d\leq D}\sum_{k_{1}=1}^{N_{s_{1}}}\cdots\sum_{k_{D}=1}^{N_{s_{D}}}\sum_{j_{1}=1}^{N_{1}}\cdots\sum_{j_{D}=1}^{N_{D}}\\ & \left|\int_{\Delta_{j_{1}...j_{D}}}B_{l_{1}...l_{D}}^{[D]}\left(\boldsymbol{x}_{j_{1}...j_{D}}\right)B_{k_{1}...k_{D}}^{[D]}\left(\boldsymbol{x}_{j_{1}...j_{D}}\right)B_{l_{1}...l_{D}}^{[D]}\left(\boldsymbol{x}\right)B_{k_{1}...k_{D}}^{[D]}\left(\boldsymbol{x}'\right)d\boldsymbol{x}d\boldsymbol{x}' \right| \\ & \leq \sum_{l_{1}=1}^{N_{s_{1}}}\cdots\sum_{l_{D}=1}\sum_{k_{1}=1}^{N_{s_{1}}}\cdots\sum_{k_{D}=1}^{N_{s_{D}}}\sum_{j_{1}=1}^{N_{1}}\cdots\sum_{j_{D}=1}^{N_{D}}\\ & \left|\int_{\Delta_{j_{1}...j_{D}}}B_{l_{1}...l_{D}}^{[D]}\left(\boldsymbol{x}_{j_{1}...j_{D}}\right)B_{k_{1}...k_{D}}^{[D]}\left(\boldsymbol{x}_{j_{1}...j_{D}}\right)-B_{l_{1}...l_{D}}^{[D]}\left(\boldsymbol{x}\right)B_{k_{1}...k_{D}}^{[D]}\left(\boldsymbol{x}'\right)d\boldsymbol{x}d\boldsymbol{x}' \right| \\ & \leq \sum_{l_{1}=1}^{N_{s_{1}}}\cdots\sum_{l_{D}=1}\sum_{k_{1}=1}^{N_{s_{1}}}\cdots\sum_{k_{D}=1}\sum_{j_{1}=1}^{N_{1}}\cdots\sum_{j_{D}=1}^{N_{D}}\\ & \left|\int_{\Delta_{j_{1}...j_{D}}}B_{l_{1}...l_{D}}^{[D]}\left(\boldsymbol{x}_{j_{1}...j_{D}}\right)B_{k_{1}...k_{D}}^{[D]}\left(\boldsymbol{x}_{j_{1}...j_{D}}\right)-B_{l_{1}...l_{D}}^{[D]}\left(\boldsymbol{x}\right)B_{k_{1}...k_{D}}^{[D]}\left(\boldsymbol{x}'\right)d\boldsymbol{x}d\boldsymbol{x}'\right| \\ & = \mathcal{O}\left(1\times\left(NN_{s}^{-1}\right)^{D}\times\left(N^{-1}N_{s}\right)^{D}\times N^{-D}\right)=\mathcal{O}\left(N^{-D}\right), \end{split}$$

where $\Delta_{j_1...j_D} = [(j_1 - 1)/N_1, j_1/N_1] \times \cdots \times [(j_D - 1)/N_D, j_D/N_D]$. For any K_n dimensional vector $\boldsymbol{\tau}$, Lemma S.2 implies $\|\boldsymbol{V}_{p,D}^{-1}\boldsymbol{\tau}\|_{\infty} \leq M_p^D N_s^D$. Hence $\|\boldsymbol{V}_{p,D}^{-1}\boldsymbol{\tau}\|_{\infty} \geq M_p^{-D} N_s^{-D} \|\boldsymbol{\tau}\|_{\infty}$. Note next that

$$\begin{split} \left\| \widehat{\boldsymbol{V}}_{p,D}^{-1} \boldsymbol{\tau} \right\|_{\infty} &\geq \left\| \boldsymbol{V}_{p,D}^{-1} \boldsymbol{\tau} \right\|_{\infty} - \left\| \left(\widehat{\boldsymbol{V}}_{p,D}^{-1} - \boldsymbol{V}_{p,D}^{-1} \right) \boldsymbol{\tau} \right\|_{\infty} \\ &= \mathcal{O}\left(N_s^{-D} \right) \| \boldsymbol{\tau} \|_{\infty}. \end{split}$$

The proof is complete. \Box

The next lemma on Gaussian strong approximation is explicit and powerful.

Lemma S.4 (Theorem 4 of Götze and Zaitsev (2010)). Let ξ be a \mathbb{R} -valued random variable with $\mathbb{E}\xi = 0$ and $\mathbb{E} |\xi|^r < \infty$ for some r > 2. Then there exists independent random variables ξ_1, ξ_2, \ldots and independent random variables Z_1, Z_2, \ldots defined on a common probability space such that each ξ_i equals ξ in distribution and each Z_i follows $N(0, \mathbb{E}\xi^2)$ and for $x > 0, n \in \mathbb{N}_+$

$$\mathbb{P}\left\{\max_{1\leq\tau\leq n}\left|\sum_{i=1}^{\tau}\xi_{i}-\sum_{i=1}^{\tau}Z_{i}\right|>x\right\}\leq cn\mathbb{E}\left|\xi\right|^{r}/x^{r},$$

where c is a positive constant depending only on r.

Lemma S.5 (Lemma S.14 of Wang et al. (2020)). Let $W_i \sim N(0, \sigma_i^2), \sigma_i > 0, i = 1, ..., n$, for a > 2

$$\mathbb{P}\left(\max_{1\leq i\leq n}|W_i/\sigma_i|>a\sqrt{\log n}\right)<\sqrt{\pi/2}n^{1-a^2/2}$$

The Lévy concentration function of real random variable ξ and $\varepsilon > 0$ according to Chernozhukov et al. (2015) is

$$\mathcal{L}(\xi,\varepsilon) = \sup_{z\in\mathbb{R}} \mathbb{P}\left\{ |\xi-z| \le \varepsilon \right\}.$$

The next lemma concerns also distributions of Gaussian maxima. For $p \in \mathbb{N}_+$, let

covariance matrices $\Sigma_X = (\sigma_{jk,X})_{j,k=1}^p, \Sigma_Y = (\sigma_{jk,Y})_{j,k=1}^p$ be standardized so that $\sigma_{jj,X} = \sigma_{jj,Y} = 1, 1 \le j \le p$, and let random vectors

$$(X_1,\ldots,X_p)^{\mathsf{T}} \sim N(0_p,\Sigma_X), (Y_1,\ldots,Y_p)^{\mathsf{T}} \sim N(0_p,\Sigma_Y).$$

Denote

$$\Delta = \max_{1 \le j,k \le p} \left| \sigma_{jk,X} - \sigma_{jk,Y} \right|, \quad a_{2p} = \mathbb{E} \left[\max_{1 \le j \le p} \left(\left| Y_j \right| \sigma_{jj,Y}^{-1/2} \right) \right].$$

Then according to Chernozhukov et al. (2015),

$$a_{2p} = \mathbb{E}\left[\max_{1 \le j \le p} \left(Y_j \sigma_{jj,Y}^{-1/2}, -Y_j \sigma_{jj,Y}^{-1/2}\right)\right] \le \sqrt{2\log 2p}.$$

Lemma S.6. For any $\varepsilon > 0$,

$$\mathcal{L}(\max_{1 \le j \le p} |X_j|, \varepsilon) \le 4\varepsilon \left(a_{2p} + 1\right).$$
(S3.1)

Furthermore, there is a universal constant C > 0 such that

$$\sup_{x \in (0,+\infty)} \left| \mathbb{P}\left(\max_{1 \le j \le p} |X_j| \le x \right) - \mathbb{P}\left(\max_{1 \le j \le p} |Y_j| \le x \right) \right| \\ \le C\Delta^{1/3} \log^{1/3} (2p) \left\{ \max\left(1, a_{2p}^2, -\log \Delta \right) \right\}^{1/3}$$

$$\leq C\Delta^{1/3} \max\left(1, \log^{2/3}\left(2p/\Delta\right)\right).$$
(S3.2)

PROOF. The proof follows from arguments in the proofs of Theorems 1 and 3 and Comment 5 in Chernozhukov et al. (2015). \Box

The next lemma provides spline approximation of $\mathcal{C}^{q,\mu}[0,1]^D$.

Lemma S.7 (Theorem 12.8 of Schumaker (1981)). There is an absolute constant $C_{q,\mu} > 0$ such that for every $\phi \in C^{q,\mu}[0,1]^D$ for some $\mu \in (0,1]$, there exists a function $g \in \mathscr{H}^{q,D}$ for which $||g - \phi||_{\infty} \leq C_{q,\mu} ||\phi||_{q,\mu} h_s^{q+\mu}$.

The next result follows from p. 96 of De Boor (2001)

Lemma S.8 (p96 of De Boor (2001)). For the spline function $B_{J_d,p}(x_d), x_d \in [0,1]$,

$$\max_{1-p \leq J_d \leq N_{s_d}} \sum_{j_d=1}^{N_d} B_{J_d,p}\left(\frac{j_d}{N_d}\right) = \mathcal{O}\left(NN_s^{-1}\right),$$
$$\max_{1 \leq j_d \leq N_d} \sum_{J_d=1-p}^{N_{s_d}} B_{J_d,p}\left(\frac{j_d}{N_d}\right) \leq p+1 = \mathcal{O}(1).$$

For p > 1, there exists a constant $C_p > 0$, only depend on p such that

$$\max_{\substack{1-p \le J_d, J'_d \le N_{s_d}, x_d \in [(i-1)/N, i/N] \\ 1 \le j_d \le N_d}} \sup_{k_d \in [(i-1)/N, i/N]} \left| B_{J_d, p}\left(\frac{j_d}{N_d}\right) B_{J'_d, p}\left(\frac{j_d}{N_d}\right) - B_{J_d, p}\left(x_d\right) B_{J'_d, p}\left(x_d\right) \right| \le C_p N^{-1} N_s.$$

which also implies that $\|B_{J_d,p}\|_{0,1} = \mathcal{O}(N_s), \forall J = 1, \dots, N_s.$

Lemma S.9. The constraints (3.5), (3.6),(3.7),(3.8) are consistent and guarantee that there exists γ satisfied (3.9). Under Assumptions (A3) and (A6), as $N \to \infty$,

$$N_s^{-p^*} \left(n \log n \right)^{2/\omega_0} = \mathcal{O}(1) , \qquad (S3.3)$$

$$NN_s^{-1}N^{-\nu} = o(1),$$
 (S3.4)

$$N^{-D/2} N_s^{D/2} \log^{1/2} N = \mathcal{O}\left(n^{-1/2}\right), \qquad (S3.5)$$

$$N^{D\beta_2 - 1} N_s = \mathcal{O}\left(n^{-1/2}\right).$$
 (S3.6)

PROOF. First, note that Hölder continuity indices μ and ν are merely specified appropriate range in (3.5). Then, since $\theta < 2p^*, \theta < 2p^*/(1+p^*)$ required in (3.6), it implies that $p^* > \theta/2$, $1 - \theta/(2D) - \theta/(2p^*D)$, and thus there exists β_2 that satisfies (3.7). Next, since (3.7) compels $\beta_2 < (1 - \theta/2 - \theta/(2p^*))/D$, hence,

$$2p^*(1 - D\beta_2 - \theta/2) - \theta > 0$$
(S3.7)

and ω_0 exists. Finally, according to (3.7), (3.8) and (S3.7), one obtains $1 - \nu < 1 - D\beta_2 - \theta/2$ and $\theta(1 + 4/\omega_0)/2p^* < 1 - D\beta_2 - \theta/2$, thus

$$\max\left\{\frac{\theta}{2p^*} + \frac{2\theta}{p^*\omega_0}, 1 - \nu\right\} < 1 - D\beta_2 - \frac{\theta}{2}.$$

thus γ exists.

Noticing that Assumptions (A3) and (A6) ensure that

$$N_s^{-p^*} (n\log n)^{2/\omega_0} n^{1/2} = N^{-p^*\gamma + 2\theta/\omega_0 + \theta} (\log^\tau N)^{-p^*} (\log n)^{2/\omega_0}$$

Following from (3.9, (S3.3)) is proved.

Since $N_s N^{-\gamma} + N_s^{-1} N^{\gamma} = \mathcal{O}(\log^{\tau} N)$, one computes,

$$NN_{s}^{-1}N^{-\nu} = \mathcal{O}(N^{1-\gamma-\nu}\log^{-\tau p^{*}}N) = \mathcal{O}\left(N^{-1-\gamma-\nu}\log^{-\tau}N\right)$$
$$N^{-D/2}N_{s}^{D/2}\log^{1/2}Nn^{1/2} = \mathcal{O}(N^{-D/2+D\gamma/2+\theta/2}\log^{(\tau D+1)/2}N)$$
$$= \mathcal{O}\left(N^{-D/2+D\gamma/2+\theta/2}\log^{(\tau D+1)/2}N\right)$$
$$N^{D\beta_{2}-1}N_{s}n^{1/2} = \mathcal{O}(N^{D\beta_{2}-1+\gamma+\theta/2}\log^{\tau}N) = \mathcal{O}\left(N^{D\beta_{2}-1+\gamma+\theta/2}\log^{\tau}N\right)$$

which are $\mathcal{O}(1)$ based on (3.9) and (S3.4) - (S3.6). The proof is completed. \Box

Lemma S.10. Assumption (A5') implies Assumptions (A5)

PROOF. Under Assumption (A5), applying Lemma S.4, for $k = 1, ..., \kappa_n$, one obtains $\left\{\tilde{\xi}_{ik}\right\}_{i=1}^n$ equal in distribution to $\{\xi_{ik}\}_{i=1}^n$ and standard Gaussian variables

 $\{Z_{ik,\xi}\}_{i=1}^n$ on a probability space $\left(\tilde{\Omega}_{k,\xi}, \tilde{\mathcal{A}}_{k,\xi}, \tilde{\mathbb{P}}_{k,\xi}\right)$, such that

$$\tilde{\mathbb{P}}_{k,\zeta}\left(\max_{1\leq t\leq n}\left|\sum_{i=1}^{t}\tilde{\xi_{ik}}-\sum_{i=1}^{t}Z_{ik,\xi}\right|>n^{\beta_1}\right)\leq c_{\varpi_1}n\mathbb{E}|\xi_{1k}|^{\varpi_1}n^{-\beta_1\varpi_1}.$$

Similarly, for $\beta_2 \in (0, \varpi_3/D)$, such that $\varpi_3\beta_2 > D+1+\theta$, one obtains $\{\tilde{\varepsilon}_{i,j_1(j)\dots j_D(j)}\}_{j=1}^{T_D}$ equal in distribution to $\{\varepsilon_{i,j_1(j)\dots j_D(j)}\}_{j=1}^{T_D}$, and standard Gaussian variables $\{Z_{i,j_1(j)\dots j_D(j),\varepsilon}\}_{j=1}^{T_D}$ on a probability space $(\tilde{\Omega}_{i,\varepsilon}, \tilde{\mathcal{A}}_{i,\varepsilon}, \tilde{\mathbb{P}}_{i,\varepsilon})$ such that

$$\mathbb{P}_{i,\varepsilon} \left\{ \max_{1 \le t \le T_D} \left| \sum_{j=1}^t \tilde{\varepsilon}_{i,j_1(j)\dots j_D(j)} - \sum_{j=1}^t Z_{i,j_1(j)\dots j_D(j),\varepsilon} \right| > N^{D\beta_2} \right\}$$
$$\leq c_{\varpi_2} N^D \mathbb{E} |\varepsilon_{1,1\dots 1}|^{\varpi_2} N^{-D\beta_2 \varpi_2}.$$

Since Assumption (A5') stipulates the independence of $\{\xi_{ik}\}_{i=1,k=1}^{n,\infty}$ and $\{\varepsilon_{i,j_1(j)\dots j_D(j)}\}_{i=1,j=1}^{n,T_D}$, the independence is automatically preserved for $\{\tilde{\xi}_{ik}\}_{i=1,k=1}^{n,\kappa_n}$ and $\{\tilde{\varepsilon}_{i,j_1(j)\dots j_D(j)}\}_{i=1,j=1}^{n,T_D}$ if their new probability space $(\tilde{\Omega}_{k,\xi}, \tilde{\mathcal{A}}_{k,\xi}, \tilde{\mathbb{P}}_{k,\xi}), k \geq 1$ and $(\tilde{\Omega}_{i,\varepsilon}, \tilde{\mathcal{A}}_{i,\varepsilon}, \tilde{\mathbb{P}}_{i,\varepsilon}), i \geq 1$ are all independently embedded into a product probability space

$$\left(\tilde{\Omega}, \tilde{\mathcal{A}}, \tilde{\mathbb{P}}\right) \equiv \left(\left(\bigotimes_{k=1}^{\infty} \tilde{\Omega}_{k,\xi}\right) \bigotimes \left(\bigotimes_{i=1}^{\infty} \tilde{\Omega}_{i,\varepsilon}\right), \left(\bigotimes_{k=1}^{\infty} \tilde{\mathcal{A}}_{k,\xi}\right) \bigotimes \left(\bigotimes_{i=1}^{\infty} \tilde{\mathcal{A}}_{i,\varepsilon}\right), \tilde{\mathbb{P}}\right),$$

according to Ionescu-Tulcea Theorem (Theorem 14.32 in Klenke (2014)). This independent embedding also ensures that all Gaussian random vectors $\{Z_{ik,\xi}\}_{i=1,k=1}^{n,\kappa_n}$,

 $\{Z_{ij,\varepsilon}\}_{i=1,j=1}^{n,T_D}$ remain independent in the new product probability space, as required in the Assumption (A5).

In what follows, with some abuse of notations, we will not distinguish ξ_{ik} , ε_{ij} on the original probability space from $\tilde{\xi}_{ik}$, $\tilde{\varepsilon}_{ij}$ on the above product probability space, nor the original probability measure \mathbb{P} from $\tilde{\mathbb{P}}$ on the product space.

Since $\sup_{k\geq 1} \mathbb{E} |\xi_{1,k}|^{\varpi_1} < \infty$ by Assumption (A5'), there exists a common $c_{\varpi_1} > 0$, such that

$$\mathbb{P}\left(\max_{1\leq k\leq\kappa_n}\max_{1\leq t\leq n}\left|\sum_{i=1}^t\xi_{ik}-\sum_{i=1}^tZ_{ik,\xi}\right|>n^{\beta_1}\right)\leq c_{\varpi_1}\sup_{t,k}\mathbb{E}|\xi_{1k}|^{\varpi_1}\kappa_n n^{1-\beta_1\varpi_1}.$$

Noticing that $\varpi_1 > (4+2\omega)$, so there exists some $\beta \in (0, 1/2)$, $\varpi_1 > (2+\omega)/\beta_1$ and $\gamma_1 = \varpi_1\beta_1 - 1 - \omega > 1$, the first assertion is proved.

Also, one has that

$$\mathbb{P}\left\{\max_{1\leq i\leq n,1\leq t\leq T_D}\left|\sum_{j=1}^{t}\varepsilon_{i,j_1(j)\dots j_D(j)} - \sum_{j=1}^{t}Z_{i,j_1(j)\dots j_D(j),\varepsilon}\right| > N^{D\beta_2}\right\}$$
$$\leq c_{\varpi_2}\mathbb{E}|\varepsilon_{1,1\dots 1}|^{\varpi_2}N^{D(1-\beta_2\varpi_2)+\theta},$$

and based on Assumption (A5'), there exists β_2 in (3.7) satisfying $D\varpi_2\beta_2 > D+1+\theta$ ensuring $D(1-\beta_2\varpi_2)+\theta < -1$. The proof is completed. \Box Denote $\widetilde{\boldsymbol{Z}}_{ip,\varepsilon}(\cdot) = \mathbf{B}_p^{\top}(\cdot) \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1} \mathbf{X}^{\top} \boldsymbol{Z}_i$, where as in equation (3.10), $\boldsymbol{Z}_i = \left(\sigma\left(\boldsymbol{x}_{j_1,\dots,j_D}\right) Z_{i,j_1\dots,j_D}\right)_{j_d=1\dots N}$

Lemma S.11. Under Assumptions (A2) -(A6), as $N \to \infty$,

$$\max_{1 \le i \le n} \left\| \widetilde{\boldsymbol{Z}}_{ip,\varepsilon} - \widetilde{e}_{ip} \right\|_{\infty} = \mathcal{O}_{a.s} \left(N^{D\beta_2 - 1} N_s \right).$$

PROOF. This follows from

$$\begin{split} &\sum_{j=1}^{T_D} B_{J_1\dots J_D, p}^{[D]} \left(\boldsymbol{x}_{j_1(j)\dots j_D(j)} \right) \sigma_i \left(\boldsymbol{x}_{j_1(j)\dots j_D(j)} \right) \left(Z_{i, j_1(j)\dots j_D(j), \varepsilon} - \varepsilon_{i, j_1(j)\dots j_D(j)} \right) \\ &= \sum_{j=1}^{T_D - 1} \left\{ \left(B_{J_1\dots J_D, p}^{[D]} \left(\boldsymbol{x}_{j_1(j)\dots j_D(j)} \right) \sigma_i \left(\boldsymbol{x}_{j_1(j)\dots j_D(j)} \right) \right. \\ &\left. - B_{J_1\dots J_D, p}^{[D]} \left(\boldsymbol{x}_{j_1(j+1)\dots j_D(j+1)} \right) \sigma_i \left(\boldsymbol{x}_{j_1(j+1)\dots j_D(j+1)} \right) \right) \sum_{k=1}^{j} \left(Z_{i, j_1(k)\dots j_D(k), \varepsilon} - \varepsilon_{i, j_1(k)\dots j_D(k)} \right) \right\} \\ &\left. + B_{J_1\dots J_D, p}^{[D]} \left(\boldsymbol{x}_{j_1(T_D)\dots j_D(T_D)} \right) \sigma_i \left(\boldsymbol{x}_{j_1(T_D)\dots j_D(T_D)} \right) \sum_{k=1}^{T_D} \left(\left(Z_{i j_1(k)\dots j_D(k), \varepsilon} - \varepsilon_{i j_1(k)\dots j_D(k)} \right) \right) \right) \right) \right] \end{split}$$

Notice that the difference between these two vectors, $B_{J_1...J_D,p}\left(\boldsymbol{x}_{j_1(j)...j_D(j)}\right)$ and $B_{J_1...J_D,p}\left(\boldsymbol{x}_{j_1(j+1)...j_D(j+1)}\right)$, is only one component.

Applying Lemma S.8, one has

$$\left| B_{J_1...J_D,p} \left(\boldsymbol{x}_{j_1(j)...j_D(j)} \right) - B_{J_1...J_D,p} \left(\boldsymbol{x}_{j_1(j+1)...j_D(j+1)} \right) \right| \le C N_s N^{-1}.$$

Under Assumption (A3), the Hölder continuity ensures that

$$\left|\sigma_{i}\left(\boldsymbol{x}_{j_{1}(j)\dots j_{D}(j)}\right) - \sigma_{i}\left(\boldsymbol{x}_{j_{1}(j+1)\dots j_{D}(j+1)}\right)\right| \leq CN^{-\nu} \max_{1 \leq i \leq n} \|\sigma_{i}\|_{0,\nu} \leq CN_{s}N^{-1},$$

where these bounds are uniformly over $1 \leq J_1 \dots J_D \leq N_s$. Then we can get

$$\begin{aligned} & \left\| T_D^{-1} \mathbf{X}^\top \left(\mathbf{Z}_i - \mathbf{e}_i \right) \right\|_{\infty} \\ & \leq \left\{ \max_{1 \le i \le n} \max_{1 \le j \le T_D} \left| T_D^{-1} \sum_{t=1}^j \left(\varepsilon_{i,j_1(j)\dots j_D(j)} - Z_{i,j_1(j)\dots j_D(j),\varepsilon} \right) \right| \right\} \\ & \times \{ CN^D N_s^{-D} N_s N^{-1} \} + T_D^{-1} \sum_{k=1}^{T_D} \left(\left(Z_{ij_1(k)\dots j_D(k),\varepsilon} - \varepsilon_{ij_1(k)\dots j_D(k)} \right) \right) \\ & = \mathcal{O}_{a.s.} \left(N^{D\beta_2 - 1} N_s^{1-D} + N^{D\beta_2 - D} \right). \end{aligned}$$

Then Lemma S.3 implies that

$$\max_{1 \le i \le n} \left\| \widetilde{\boldsymbol{Z}}_{ip,\varepsilon} - \widetilde{\boldsymbol{e}}_{ip} \right\|_{\infty} \le C \left\| \widehat{V}_{p,D} \right\|_{\infty} \left\| N^{-D} \mathbf{X}^{\top} \left(\boldsymbol{Z}_{i} - \boldsymbol{e}_{i} \right) \right\|_{\infty}$$
$$= \mathcal{O}_{a.s.} \left(N^{D\beta_{2}-1} N_{s} \right).$$

The proof is completed. \square

Lemma S.12. Under Assumptions (A1)-(A3), (A5)-(A6), as $N \to \infty$

$$\max_{1 \le i \le n} \|\widetilde{e}_{ip}\|_{\infty} = \mathcal{O}_{a.s.} \left(N^{D\beta_2 - 1} N_s + N^{-D/2} N_s^{D/2} \log^{1/2} N \right).$$

PROOF. We just need to control the decayed rate of $\widetilde{Z}_{ip,\varepsilon}(\boldsymbol{x})$. Note that the random vector $T_D^{-1}\widehat{V}_{p,D}^{-1}\mathbf{X}^{\top}\boldsymbol{Z}_i$ is $K_n = \prod_{d=1}^D (N_{s_d} + p)$ (see Section 4) dimensional normal with covariance matrix $T_D^{-2}\widehat{V}_{p,D}^{-1}\mathbf{X}^{\top}$ Var $(\boldsymbol{Z}_i)\mathbf{X}^{\top}\widehat{V}_{p,D}^{-1}$ is bounded by

$$\left\|T_D^{-2}\widehat{\boldsymbol{V}}_{p,D}^{-1}\widehat{\boldsymbol{V}}_{p,D}\widehat{\boldsymbol{V}}_{p,D}^{-1}\right\|_{\infty} \leq CT_D^{-1}\left\|\widehat{\boldsymbol{V}}_{p,2}^{-1}\right\|_{\infty} = \mathcal{O}\left(N^{-D}N_s^D\right)$$

bounding the tail probability of entries of $T_D^{-1} \widehat{V}_{p,2}^{-1} \mathbf{X}^\top \mathbf{Z}_i$ by Lemma S.5 and applying the Borel-Cantelli lemma leads to

$$\left\|T_D^{-1}\widehat{\boldsymbol{V}}_{p,D}^{-1}\mathbf{X}^{\top}\boldsymbol{Z}_i\right\|_{\infty} = \mathcal{O}_{a.s.}\left(N^{-D/2}N_s^{D/2}\log^{1/2}n\right).$$

which implies

$$\left\| \widetilde{Z}_{ip,\varepsilon} \right\|_{\infty} = \mathcal{O}_{a.s.} \left(N^{-D/2} N_s^{D/2} \log^{1/2} N \right).$$

hence, the triangle inequality implies the initial assertion. \Box

For any function $\phi \in C[0,1]^D$ denote the vector $\boldsymbol{\phi} = (\phi(\boldsymbol{x}_{j_1...j_D}))^\top$ as the same order as (3.10) and function $\widetilde{\phi}(\cdot) = \mathbf{B}_p^\top(\cdot) (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \boldsymbol{\phi}$.

Lemma S.13. There exists $c_{\phi,p} \in (0,\infty)$ such that when n is large enough, $\|\widetilde{\phi}\|_{\infty} \leq c_{\phi,p} \|\phi\|_{\infty}$ for any $\phi \in C[0,1]^D$. Furthermore, if $\phi \in C^{q,\mu}[0,1]^D$ for some $\mu \in (0,1]$, then there exists $\widetilde{C}_{q,\mu}$

$$\left\|\widetilde{\phi} - \phi\right\|_{\infty} \le \widetilde{C}_{p-1,\mu} \|\phi\|_{q,\mu} h_s^{\mu+q}$$

PROOF. Note that for any $\boldsymbol{x} \in [0, 1]^D$ at most $(p+1)^D$ the vector component of $\mathbf{B}_p(\cdot)$ are in (0, 1), others being 0 based on Lemma S.8, so

$$\begin{aligned} \left\| \widetilde{\boldsymbol{\phi}} \right\|_{\infty} &\leq \left(p+1 \right)^{D} \left\| \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{X}^{\top} \boldsymbol{\phi} \right\|_{\infty} \leq \left(p+1 \right)^{D} T_{D}^{-1} \left\| \widehat{\boldsymbol{V}}_{p,D}^{-1} \mathbf{X}^{\top} \boldsymbol{\phi} \right\| \\ &\leq M_{p}^{D} T_{D}^{-1} \left(p+1 \right)^{d} N_{s}^{D} \| \boldsymbol{\phi} \|_{\infty} \left\| \mathbf{X}^{\top} \mathbf{1}_{T_{D}} \right\|, \end{aligned}$$

in which $\mathbf{1}_{T_D} = (1, \dots, 1)^{\top}$ is a T_D -dimensional vector of 1's. Clearly, Lemma S.8 ensures that

$$\left\|\mathbf{X}^{\top}\mathbf{1}_{T_{D}}\right\|_{\infty} = \max_{1-p \leq J_{j} \leq N_{s}, 1 \leq d \leq D} \sum_{j_{1}=1}^{N_{1}} \cdots \sum_{j_{D}=1}^{N_{D}} B_{J_{1}...J_{D}}^{[D]}\left(\boldsymbol{x}_{j_{1}...j_{D}}\right) \leq CN^{D}N_{s}^{-D},$$

which implies $\left\| \widetilde{\phi} \right\|_{\infty} \leq c_{\phi,p} \|\phi\|_{\infty}$.

Now if $\phi \in C^{q,\mu}[0,1]^D$ for some $\mu \in (0,1]$, let $g \in \mathscr{H}^{p-1,D}$ be such that $||g-\phi||_{\infty} \leq C_{q,\mu} ||\phi||_{q,\nu} h_s^{q+\mu}$ according to Lemma S.7, the $\widetilde{g} \equiv g$ as $g \in \mathscr{H}^{p-1,D}$, hence,

$$\left\|\widetilde{\phi} - \phi\right\|_{\infty} = \left\|\widetilde{\phi} - \widetilde{g}\right\|_{\infty} + \|\phi - g\|_{\infty}$$

$$\leq (c_{\phi,p}+1) \|\phi - g\|_{\infty} \leq \widetilde{C}_{q,\mu} \|\phi\|_{q,\mu} h_s^{\mu+q}.$$

The proof is completed. \Box

Lemma S.14. Under Assumptions (A1), (A3), (A6) as $N \to \infty$

$$\sqrt{n} \left\| \widetilde{m}_p - m \right\|_{\infty} = \mathcal{O}(1).$$

PROOF. According to Lemma S.13 and the Assumptions (A1), (A3), (A6), $\sqrt{n}h_s^{p^*}\to 0.\ \Box$

Lemma S.15. Under Assumptions (A2) - (A6), as $N \to \infty$

$$\sqrt{n} \|\widetilde{e}_p\|_{\infty} = \mathcal{O}_p(1).$$

PROOF. Let $\widetilde{\boldsymbol{Z}}_{p,\varepsilon}(\cdot) = \mathbf{B}_p^{\top}(\cdot) \left(\mathbf{X}^{\top}\right)^{-1} \mathbf{X}^{\top} \boldsymbol{Z}, \boldsymbol{Z} = \sum_{i=1}^{n} \boldsymbol{Z}_i / n$. Applying Lemma S.11,

$$\begin{aligned} \left\| \widetilde{Z}_{p,\varepsilon} - \widetilde{e}_p \right\|_{\infty} &\leq n^{-1} \sum_{i=1}^n \max_{1 \leq i \leq n} \left\| \widetilde{Z}_{ip,\varepsilon} - \widetilde{e}_{ip} \right\| \\ &= \mathcal{O}_{a.s.} \left(N^{D\beta_2 - 1} N_s \right). \end{aligned}$$

Next, we would derive the uniform convergence rate of $\widetilde{Z}_{p,\varepsilon}(x)$ analogously, because

the variance of $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Z}$ are bounded by

$$\left\| N^{-2D} \widehat{\boldsymbol{V}}_{p,D}^{-1} \widehat{\boldsymbol{V}}_{p,D} \widehat{\boldsymbol{V}}_{p,D}^{-1} \right\|_{\infty} \leq C n^{-1} N^{-D} \left\| \widehat{\boldsymbol{V}}_{p,2}^{-D} \right\|_{\infty} = \mathcal{O} \left(n^{-1} N^{-D} N_s^D \right).$$

Lemma S.5 ensures that the uniform convergence rate of $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Z}$ is $\mathcal{O}_{a.s.}\left(n^{-1/2}N^{-D}N_s^D\log^{1/2}n\right)$, Finally, the proof is completed by triangle inequality and (S3.5) - (S3.6)

$$\begin{split} \sqrt{n} \|\widetilde{e}\|_{\infty} &\leq \sqrt{n} \left\|\widetilde{Z}_{p,\varepsilon}\right\|_{\infty} + \sqrt{n} \left\|\widetilde{Z}_{p,\varepsilon} - \widetilde{e}_{p}\right\|_{\infty} \\ &= \mathcal{O}_{a.s.} \left(N^{D\beta_{2}-1}N_{s}n^{1/2} + N^{-D}N_{s}^{D}\log^{1/2}n\right) = \mathcal{O}_{p}(1). \end{split}$$

Lemma S.16. Under Assumptions (A1)-(A6), for i.i.d. N(0,1) variables $\overline{Z}_{\cdot,k,\xi} = n^{-1} \sum_{i=1}^{n} Z_{i,k,\xi}$, $Z_{i,k,\xi}$'s as in Assumptions (A5), as $n \to \infty$,

$$\left\|\sum_{k=1}^{\infty}\sqrt{n}\overline{Z}_{\cdot,k,\xi}\phi_k - \sqrt{n}\{\overline{m} - m\}\right\|_{\infty} = \mathcal{O}_p(1).$$

For any $\alpha \in (0,1)$ and i.i.d. N(0,1) variables $Z_k, k \in \mathbb{N}_+$, as $n \to \infty$,

$$\mathbb{P}\left\{\sup_{\boldsymbol{x}\in[0,1]^{D}}\left|\sqrt{n}\{\overline{m}\left(\boldsymbol{x}\right)-m\left(\boldsymbol{x}\right)\}G\left(\boldsymbol{x},\boldsymbol{x}\right)^{-1/2}\right|\leq Q_{1-\alpha}\right\}\right\}$$

$$\rightarrow \mathbb{P}\left\{\sup_{\boldsymbol{x}\in[0,1]^{D}}\left|\sum_{k=1}^{\infty}Z_{k}\phi_{k}\left(\boldsymbol{x}\right)G\left(\boldsymbol{x},\boldsymbol{x}\right)^{-1/2}\right|\leq Q_{1-\alpha}\right\}=1-\alpha.$$

PROOF. We denote $\widetilde{\zeta}_{k}(\cdot) = \overline{Z}_{\cdot k,\xi}\phi_{k}(\cdot), 1 \leq k < \infty$ and define

$$\widetilde{\Xi}(\cdot) = \sqrt{n} \left[\sum_{k=1}^{\infty} \phi_l^2(\cdot) \right]^{-1/2} \sum_{k=1}^{\infty} \widetilde{\zeta}_k(\cdot) = \sqrt{n} G(\cdot, \cdot)^{-1/2} \sum_{l=1}^{\infty} \widetilde{\zeta}_k(\cdot).$$

It is clear that $\widetilde{\Xi}(\cdot)$ is a Gaussian field with the same distribution as $\Xi(\cdot)$, i.e., $\mathbb{E}\widetilde{\Xi}(\cdot) = 0, \mathbb{E}\widetilde{\Xi}^2(\cdot) = 1$ and

$$\mathbb{E}\widetilde{\Xi}\left(\boldsymbol{x}\right)\widetilde{\Xi}\left(\boldsymbol{x}'\right) = G\left(\boldsymbol{x},\boldsymbol{x}'\right) \{G\left(\boldsymbol{x},\boldsymbol{x}\right) G\left(\boldsymbol{x}',\boldsymbol{x}'\right)\}^{-1/2}, \boldsymbol{x}, \boldsymbol{x}'^{D}.$$

Notice that for $\overline{\xi}_{\cdot k} = n^{-1} \sum_{i=1}^{n} \xi_{ik}$

$$\mathbb{E}\left|\overline{\xi}_{\cdot k}\right| \leq \left(\mathbb{E}\left|\overline{\xi}_{\cdot k}\right|^{2}\right) = \mathcal{O}\left(n^{-1/2}\right).$$

In addition, Assumption (A5) entails that

$$\mathbb{P}\left(\max_{1\leq k\leq\kappa_n}\left|\overline{\xi}_{\cdot k}-\overline{Z}_{\cdot,k,\xi}\right|>C_1n^{\beta_1-1}\right)\leq C_2n^{-\gamma_1},$$

which implies

$$\max_{1 \le k \le \kappa_n} \left| \overline{\xi}_{\cdot k} - \overline{Z}_{\cdot,k,\xi} \right| = \mathcal{O}_{a.s.} \left(n^{\beta_1 - 1} \right).$$

Similarly, under Assumption (A4) it is clearly that

$$\mathbb{E}\left|\overline{\xi}_{\cdot,k} - \overline{Z}_{\cdot,k,\xi}\right| \le \mathbb{E}\left|\overline{\xi}_{\cdot,k}\right| + \mathbb{E}\left|\overline{Z}_{\cdot,k,\xi}\right| = \mathcal{O}(n^{-1/2})$$

and

$$\begin{split} &\sqrt{n} \sup_{\boldsymbol{x} \in [0,1]^{D}} G\left(\boldsymbol{x}, \boldsymbol{x}\right)^{-1/2} \left| \sum_{k=1}^{\kappa_{n}} \left(\overline{Z}_{\cdot k, \xi} - \overline{\xi}_{\cdot k} \right) \phi_{k}\left(\boldsymbol{x}\right) \right| \\ &\leq C \max_{1 \leq k \leq \kappa_{n}} \left| \overline{\xi}_{\cdot, k} - \overline{Z}_{\cdot, k, \xi} \right| \sum_{k=1}^{\kappa_{n}} \| \phi_{k} \|_{\infty} = \mathcal{O}_{a.s.}(1) \\ & \mathbb{E} \sqrt{n} \sup_{\boldsymbol{x} \in [0,1]^{D}} G\left(\boldsymbol{x}, \boldsymbol{x}\right)^{-1/2} \left| \sum_{k=\kappa_{n}+1}^{\infty} \left(\overline{Z}_{\cdot k, \xi} - \overline{\xi}_{\cdot k} \right) \phi_{k}\left(\boldsymbol{x}\right) \right| \\ &\leq C n^{\beta_{1} - 1/2} \sum_{k=\kappa_{n}+1}^{\infty} \| \phi_{k} \|_{\infty} = \mathcal{O}(1), \end{split}$$

hence

$$\sqrt{n} \sup_{\boldsymbol{x} \in [0,1]^D} G\left(\boldsymbol{x}, \boldsymbol{x}\right)^{-1/2} \left| \sum_{k=1}^{\infty} \left(\overline{Z}_{\cdot k, \xi} - \overline{\xi}_{\cdot k} \right) \phi_k\left(\boldsymbol{x}\right) \right| = \mathcal{O}_p(1).$$

Note that

$$G(\cdot, \cdot)^{1/2} \widetilde{\Xi}(\cdot) - \sqrt{n} \{ \overline{m}(\cdot) - m(\cdot) \} = \sqrt{n} \sum_{k=1}^{\infty} \left(\overline{Z}_{\cdot k, \xi} - \overline{\xi}_{\cdot k} \right) \phi_k(\cdot),$$

hence

$$\sup_{\boldsymbol{x}\in[0,1]^{D}}\left|\widetilde{\Xi}\left(\boldsymbol{x}\right)-\sqrt{n}G\left(\boldsymbol{x},\boldsymbol{x}\right)^{-1/2}\left\{\overline{m}\left(\boldsymbol{x}\right)-m\left(\boldsymbol{x}\right)\right\}\right|=\mathcal{O}_{p}(1).$$

The proof is complete. \Box

Proof of Theorem 1.

For any $k \in \mathbb{N}_+$, let $\widetilde{\phi}_k(\cdot) = \mathbf{B}_p(\cdot) \left(\mathbf{X}^\top \mathbf{X}\right)^{-1} \mathbf{X} \boldsymbol{\phi}_k$. According to equation (3.13),

$$\widehat{\eta_i}(\cdot) - \eta_i(\cdot) = \widetilde{R}_{ip}(\cdot) - R_i(\cdot) + \widetilde{m}_p(\cdot) - m(\cdot) + \widetilde{e}_i(\cdot).$$
(S3.8)

By Lemma S.13, there exist universal constant $C_{q,\mu}$ such that

$$\begin{split} \|\widetilde{m}_p - m\|_{\infty} &\leq C_{q,\mu} \|m\|_{q,\mu} N_s^{-p^*}, \\ \left\|\widetilde{\phi}_k - \phi_k\right\|_{\infty} &\leq C_{q,\mu} \|\phi_k\|_{q,\mu} N_s^{-p^*}, k = 1..., \kappa_n. \end{split}$$

which implies that

$$\left\|\widetilde{R}_{ip} - R_i\right\|_{\infty} = \sum_{k=1}^{\infty} |\xi_{ik}| \left\|\widetilde{\phi}_k - \phi_k\right\|_{\infty} \le C_{q,\mu} W_i N_s^{-p^*},$$

where $W_i = \sum_{k=1}^{\infty} |\xi_{ik}| \|\phi_k\|_{q,\mu}$, i = 1, ..., n are i.i.d nonnegative random variables with ω_0 -th finite absolute moment under Assumptions (A4), (A5). Hence

$$\mathbb{P}\left\{\max_{1 \le i \le n} W_i > (n \log n)^{2/\omega_0}\right\} \le n \frac{\mathbb{E}W_i^{\omega_0}}{(n \log n)^2} = \mathbb{E}W_i^{\omega_0} n^{-1} (\log n)^{-2},$$

thus, the Borel-Cantelli lemma ensures that $\max_{1 \le i \le n} W_i = \mathcal{O}_{a.s} \left\{ (n \log n)^{2/\varpi_0} \right\}$. Com-

bined with equations (S3.8), (S3.3), (S3.6) and Lemma S.12

$$\begin{split} & \max_{1 \le i \le n} \|\widehat{\eta}_{i} - \eta_{i}\|_{\infty} \\ & \le \quad \max_{1 \le i \le n} \left\|\widetilde{R}_{ip} - R_{i}\right\|_{\infty} + \max_{1 \le i \le n} \|\widetilde{m}_{p} - m\|_{\infty} + \max_{1 \le i \le n} \|\widetilde{e}_{i}\|_{\infty} \\ & = \quad \mathcal{O}_{a.s.} \left(N_{s}^{-p^{*}} + N_{s}^{-p^{*}} \left(n \log n\right)^{2/\omega_{0}} + N^{D\beta_{2}-1}N_{s} + N^{-D/2}N_{s}^{D/2}\log^{\frac{1}{2}}N\right) \\ & = \quad \mathcal{O}_{a.s.} \left(N_{s}^{-p^{*}} \left(n \log n\right)^{2/\varpi_{0}} + N^{D\beta_{2}-1}N_{s}\right). \end{split}$$

Proof of Theorem 2.

Notice the decomposition

$$\left|\overline{m}\left(\cdot\right) - \widehat{m}_{p}\left(\cdot\right)\right| \leq \max_{1 \leq i \leq n} \left|\widetilde{\eta}_{ip}\left(\cdot\right) - \eta\left(\cdot\right)\right| + \max_{1 \leq i \leq n} \left|\widetilde{e}_{ip}\left(\cdot\right)\right|.$$

The maximum deviation $|\overline{m}(\cdot) - \widehat{m}_p(\cdot)|$ is controlled by the uniform approximate power of trajectories and the convergence rate of error term. Therefore, applying Lemmas S.14, S.15, and S.16, the proof is completed. \Box

Proof of Theorem 3.

Lemmas S.14, S.15, and S.16 together imply Theorem 3. \Box

Proof of Theorem 4.

For the collection of i.i.d. random fields $\{\eta_i(\boldsymbol{x}), \boldsymbol{x} \in [0, 1]^D\}_{i=1}^n$, we define the "infeasible" estimator of covariance function, for $\boldsymbol{x}, \boldsymbol{x}' \in [0, 1]^D$.

$$\widehat{G}(\boldsymbol{x},\boldsymbol{x}') = \frac{1}{n} \sum_{i=1}^{n} \left(\eta_i \left(\boldsymbol{x} \right) - \overline{m} \left(\boldsymbol{x} \right) \right) \left(\eta_i \left(\boldsymbol{x}' \right) - \overline{m} \left(\boldsymbol{x}' \right) \right), \boldsymbol{x}, \boldsymbol{x}' \in [0,1]^D, \quad (S3.9)$$

where $\overline{m}(\boldsymbol{x})$ is the "infeasible" estimator of mean function defined in (2.2).

Applying Theorem 1, and Lemmas S.15, S.16, S.14 and Assumption (A6) one obtains that

$$\begin{split} \sup_{\boldsymbol{x}, \boldsymbol{x}' \in [0,1]^{D}} \left| \widehat{G} \left(\boldsymbol{x}, \boldsymbol{x}' \right) - \widehat{G}_{p} \left(\boldsymbol{x}, \boldsymbol{x}' \right) \right| \\ &= \sup_{\boldsymbol{x}, \boldsymbol{x}' \in [0,1]^{D}} \left| \left(\widehat{m}_{p} \left(\boldsymbol{x} \right) \widehat{m}_{p} \left(\boldsymbol{x}' \right) - \overline{m} \left(\boldsymbol{x} \right) \overline{m} \left(\boldsymbol{x}' \right) \right) + \frac{1}{n} \sum_{i=1}^{n} \left(\eta \left(\boldsymbol{x} \right) \eta \left(\boldsymbol{x}' \right) - \widehat{\eta} \left(\boldsymbol{x} \right) \widehat{\eta} \left(\boldsymbol{x}' \right) \right) \right| \\ &\leq \sup_{\boldsymbol{x}, \boldsymbol{x}' \in [0,1]^{D}} \left| \widehat{m}_{p} \left(\boldsymbol{x} \right) \widehat{m}_{p} \left(\boldsymbol{x}' \right) - \overline{m} \left(\boldsymbol{x} \right) \overline{m} \left(\boldsymbol{x}' \right) \right| + \frac{1}{n} \sum_{i=1}^{n} \sup_{\boldsymbol{x}, \boldsymbol{x}' \in [0,1]^{D}} \left| \eta \left(\boldsymbol{x} \right) \eta \left(\boldsymbol{x}' \right) - \widehat{\eta} \left(\boldsymbol{x} \right) \widehat{\eta} \left(\boldsymbol{x}' \right) \right| \\ &\leq \left\| \left(\left| \overline{m} \right| + \left| \widehat{m}_{p} \right| \right) \left| \widehat{m}_{p} - \overline{m} \right| \right\|_{\infty} + \max_{1 \leq i \leq n} \left\| \left(\left| \eta_{i} \right| + \left| \widehat{\eta}_{i} \right| \right) \left| \widehat{\eta}_{i} - \eta_{i} \right| \right\|_{\infty} \end{split}$$

Similarly, one recalls,

$$\begin{aligned} \max_{1 \le i \le n} \|\widehat{\eta}_i - \eta_i\|_{\infty} &= \mathcal{O}_p \left(N_s^{-q} \left(n \log n \right)^{2/\omega_0} + N^{D\beta_2 - 1} N_s \right) \\ \max_{1 \le i \le n} \|\eta_i - m\|_{\infty} &= \mathcal{O}_p \left((n \log n)^{2/\omega_0} \right) \\ \|\overline{m} - m\|_{\infty} &= \mathcal{O}_p \left(n^{-1/2} \right). \end{aligned}$$

Hence, by equations (S3.3) and (S3.6)

$$\begin{aligned} \|(|\overline{m}| + |\widehat{m}_{p}|) |\widehat{m}_{p} - \overline{m}|\|_{\infty} + \max_{1 \le i \le n} \|(|\eta_{i}| + |\widehat{\eta}_{i}|) |\widehat{\eta}_{i} - \eta_{i}|\|_{\infty} \\ &= \mathcal{O}_{p} \left(n^{-1/2} + N_{s}^{-q} \left(n \log n \right)^{4/\omega_{0}} + \left(n \log n \right)^{2/\omega_{0}} N^{D\beta_{2}-1} N_{s} \right) \\ &= \mathcal{O}_{p} \left(n^{-\varrho} \right) \end{aligned}$$

for some $\rho > 0$. Similar to the proof of Proposition 1 in Cao et al. (2016), one can show that

$$\left\|\widehat{G} - G\right\|_{\infty} = \mathcal{O}_p(n^{-\varrho}).$$

The proof is complete. \Box

Proof of Theorem 5.

Recalling the definition of $\Xi(\cdot)$ and $\widehat{\Xi}_{K_n}(\cdot)$, and defining a transitional process $\Xi_{K_n}(\cdot)$,

$$\Xi(\cdot) = \sum_{k=1}^{\infty} Z_k \phi_k(\cdot) / G^{1/2}(\cdot, \cdot),$$

$$\widehat{\Xi}_{K_n}(\cdot) = \sum_{k=1}^{\kappa_n} Z_k \widehat{\phi}_k(\cdot) / \widehat{G}_p^{1/2}(\cdot, \cdot),$$

$$\Xi_{K_n}(\cdot) = \sum_{k=1}^{K_n} Z_k \phi_k(\cdot) / G_{K_n}^{1/2}(\cdot, \cdot),$$

where Z_k are i.i.d. N(0,1) variables, generated independently from $\mathbf{Y}_i, 1 \leq i \leq n$, partial sum approximate covariance function $G_{K_n}(\boldsymbol{x}, \boldsymbol{x}') \equiv \sum_{k=1}^{K_n} \phi_k(\boldsymbol{x}) \phi_k(\boldsymbol{x}')$.

Noticed that $\Xi(\cdot)$ is the Gaussian process satisfies the assumptions in Theorem 1 in Yang (2025a) and Theorem 1 in Yang (2025b). Following Theorem 3, Theorem 1 in Yang (2025a) and Theorem 1 in Yang (2025b) and Pólya's Theorem, one has that as $n \to \infty$,

$$\sup_{z \in \mathbb{R}} \left| \mathbb{P}\left(\sup_{\boldsymbol{x} \in [0,1]^D} \sqrt{n} \left| \frac{\overline{m} \left(\boldsymbol{x} \right) - m \left(\boldsymbol{x} \right)}{G \left(\boldsymbol{x}, \boldsymbol{x} \right)^{1/2}} \right| \le z \right) - \mathbb{P} \left(\left\| \Xi \right\|_{\infty} \le z \right) \right| = \mathcal{O}(1).$$
(S3.10)

Since $K_n = \prod_{d=1}^{D} (N_{s_d} + p) \to \infty$ as $N \to \infty$, Assumption (A6) ensures that as $N \to \infty$, $\|G_{K_n} - G\|_{\infty} = \mathcal{O}(n^{-\vartheta})$ and $\inf_{\boldsymbol{x} \in [0,1]^D} G_{K_n}(\boldsymbol{x}, \boldsymbol{x}) \ge c_G/2$ for large enough N. Note that according to Theorem 4, as $N \to \infty$,

$$\left\|\widehat{G}_p - G\right\|_{\infty} = \mathcal{O}_p\left(n^{-\varrho}\right).$$

for some $\rho > 0$. Hence, as $N \to \infty$,

$$\left\|\widehat{G}_p - G_{K_n}\right\|_{\infty} = \mathcal{O}_p\left(n^{-\varrho} + n^{-\vartheta}\right),$$

and for large enough N, $\inf_{\boldsymbol{x}\in[0,1]^D} \widehat{G}_p(\boldsymbol{x},\boldsymbol{x}) \ge c_G/2$ with probability as close to 1 as

specified. Thus as $N \to \infty$,

$$\sup_{\boldsymbol{x},\boldsymbol{x}'\in[0,1]^{D}} \left| \frac{\widehat{G}_{p}\left(\boldsymbol{x},\boldsymbol{x}'\right)}{\widehat{G}_{p}\left(\boldsymbol{x},\boldsymbol{x}\right)^{1/2} \widehat{G}_{p}\left(\boldsymbol{x}',\boldsymbol{x}'\right)^{1/2}} - \frac{G_{K_{n}}\left(\boldsymbol{x},\boldsymbol{x}'\right)}{G_{K_{n}}\left(\boldsymbol{x},\boldsymbol{x}\right)^{1/2} G_{K_{n}}\left(\boldsymbol{x}',\boldsymbol{x}'\right)^{1/2}} \right|$$

$$= \mathcal{O}_{p}\left(n^{-\varrho} + n^{-\vartheta}\right).$$
(S3.11)

Therefore, combined with Theorem 2, Theorem 1 in Yang (2025a) and Theorem 1 in Yang (2025b), one obtains that

$$\sup_{z \in \mathbb{R}} \left| \mathbb{P}\left(\sup_{\boldsymbol{x} \in [0,1]^D} \sqrt{n} \left| \frac{\widehat{m}_p\left(\boldsymbol{x}\right) - m\left(\boldsymbol{x}\right)}{\widehat{G}_p^{1/2}\left(\boldsymbol{x},\boldsymbol{x}\right)} \right| \le z \right) - \mathbb{P}\left(\sup_{\boldsymbol{x} \in [0,1]^D} \sqrt{n} \left| \frac{\overline{m}\left(\boldsymbol{x}\right) - m\left(\boldsymbol{x}\right)}{G\left(\boldsymbol{x},\boldsymbol{x}\right)^{1/2}} \right| \le z \right) \right| = \mathcal{O}(1).$$

For large enough N

$$\mathbb{E} |\|\Xi\|_{\infty} - \|\Xi_{K_n}\|_{\infty}| \leq \mathbb{E} \|\Xi - \Xi_{K_n}\|_{\infty} \leq c_G^{-1} \sum_{k=K_n+1}^{\infty} \mathbb{E} |Z_k| \|\phi_k\|_{\infty} + c_G^{-1} (c_G/2)^{-1} \|G_{K_n} - G\|_{\infty} \sum_{k=1}^{K_n} \mathbb{E} |Z_k| \|\phi_k\|_{\infty} = \mathcal{O} (n^{-\vartheta}).$$

By Assumption (A4) on $\|\phi_k\|_{0,\mu}$, for large enough N

$$egin{aligned} & \left\| \|\Xi_{K_n} \|_\infty - \max_{\substack{1 \leq l_d \leq n_d \ 1 \leq d \leq D}} |\Xi_{K_n}(oldsymbol{t}_{l_1,...,l_D})|
ight\| \ & \leq \max_{\substack{1 \leq l_d \leq n_d \ 1 \leq d \leq D}} \sup_{\|oldsymbol{t}\|_\infty \leq \left(\min_{1 \leq d \leq D} n_d
ight)^{-1}} |\Xi_{K_n}(oldsymbol{t}_{l_1,...,l_D}) - \Xi_{K_n}(oldsymbol{t}_{l_1,...,l_D} + oldsymbol{t})| \end{aligned}$$

$$\leq C \left(\min_{1 \leq d \leq D} n_d \right)^{-\mu} \sum_{k=1}^{K_n} |Z_k| \left(\|\phi_k\|_{\infty} + \|\phi_k\|_{0,\mu} \right) = \mathcal{O}_p \left(n^{-\mu} \right).$$

Combining the above, one obtains that

$$\left\|\Xi\right\|_{\infty} - \max_{\substack{1 \le l_d \le n_d \\ 1 \le d \le D}} \left|\Xi_{K_n}(\boldsymbol{t}_{l_1,\dots,l_D})\right| = \mathcal{O}_p\left(n^{-\mu} + n^{-\vartheta}\right).$$
(S3.12)

To examine the distribution of $\max_{\substack{1 \leq l_d \leq n_d \\ 1 \leq d \leq D}} |\Xi_{K_n}(t_{l_1,\dots,l_D})|$, recall that the $(1 - \alpha)$ -th quantile $\widehat{Q}_{1-\alpha}$ of $\max_{\substack{1 \leq l_d \leq n_d \\ 1 \leq d \leq D}} |\widehat{\Xi}_{K_n}(t_{l_1,\dots,l_D})|$ exists and is unique by Theorem 1 in Yang (2025a) and Theorem 1 in Yang (2025b). Conditional on $\mathbf{Y}_i, 1 \leq i \leq n$, the centered \widetilde{T}_D -dimensional Gaussian vectors $\left\{\widehat{\Xi}_{K_n}(t_{l_1,\dots,l_D})\right\}_{\substack{1 \leq l_d \leq n_d, \\ 1 \leq d \leq D}}$ have covariance matrices,

$$\Sigma_{1} = \left\{ \frac{\widehat{G}_{p}\left(\boldsymbol{t}_{l_{1},...,l_{D}},\boldsymbol{t}_{l'_{1},...,l'_{D}}\right)}{\widehat{G}_{p}\left(\boldsymbol{t}_{l_{1},...,l_{D}},\boldsymbol{t}_{l_{1},...,l_{D}}\right)^{1/2}\widehat{G}_{p}\left(\boldsymbol{t}_{l'_{1},...,l'_{D}},\boldsymbol{t}_{l'_{1},...,l'_{D}}\right)^{1/2}} \right\},\$$

$$\Sigma_{2} = \left\{ \frac{G_{K_{n}}\left(\boldsymbol{t}_{l_{1},...,l_{D}},\boldsymbol{t}_{l'_{1},...,l'_{D}}\right)}{G_{K_{n}}\left(\boldsymbol{t}_{l_{1},...,l'_{D}},\boldsymbol{t}_{l'_{1},...,l'_{D}}\right)^{1/2}} \right\}.$$

Applying (S3.2) in Lemma S.6, one has that

$$\begin{split} \sup_{z \in \mathbb{R}} \left| \mathbb{P} \left(\max_{\substack{1 \le l_d \le n_d \\ 1 \le d \le D}} |\Xi_{K_n}(\boldsymbol{t}_{l_1,\dots,l_D})| \le z \right) \\ - \mathbb{P} \left(\max_{\substack{1 \le l_d \le n_d \\ 1 \le d \le D}} \left| \widehat{\Xi}_{K_n}(\boldsymbol{t}_{l_1,\dots,l_D}) \right| \le z \left| \{\mathbf{Y}_i\}_{i=1}^n \right) \right| \\ \le \quad \mathcal{C}\Upsilon^{1/3} \max \left\{ 1, \log^{2/3} \left(\widetilde{T}_D \Upsilon^{-1} \right) \right\}, \end{split}$$
(S3.13)

in which

$$\Upsilon = \left\| \operatorname{Vec}(\Sigma_2 - \Sigma_1) \right\|_{\infty} = \mathcal{O}_p\left(n^{-\varrho} + n^{-\vartheta} \right), \qquad (S3.14)$$

according to (S3.11).

$$\sup_{z \in \mathbb{R}} \left| \mathbb{P}\left(\left\| \Xi \right\|_{\infty} \le z \right) - \mathbb{P}\left(\max_{\substack{1 \le l_d \le n_d \\ 1 \le d \le D}} \left| \widehat{\Xi}_{K_n}(\boldsymbol{t}_{l_1,\dots,l_D}) \right| \le z \left| \{\mathbf{Y}_i\}_{i=1}^n \right) \right| = \mathcal{O}_p(1),$$

thus

$$\mathbb{P}\left(\left\|\Xi\right\|_{\infty} \leq \widehat{Q}_{1-\alpha}\right) - \mathbb{P}\left(\max_{\substack{1 \leq l_d \leq n_d \\ 1 \leq d \leq D}} \left|\widehat{\Xi}_{K_n}(\boldsymbol{t}_{l_1,\dots,l_D})\right| \leq \widehat{Q}_{1-\alpha} \left|\{\mathbf{Y}_i\}_{i=1}^n\right) = \mathcal{O}_p(1),$$

or

$$\mathbb{P}\left(\left\|\Xi\right\|_{\infty} \leq \widehat{Q}_{1-\alpha}\right) - (1-\alpha) = \mathcal{O}_p(1),$$

which implies that

$$\left| \widehat{Q}_{1-\alpha} - Q_{1-\alpha} \right| \to_p 0,$$
$$\sup_{\boldsymbol{x} \in [0,1]^D} \left| \widehat{G}_p \left(\boldsymbol{x}, \boldsymbol{x} \right)^{1/2} \widehat{Q}_{1-\alpha} - G \left(\boldsymbol{x}, \boldsymbol{x} \right)^{1/2} Q_{1-\alpha} \right| \to_p 0.$$

Hence, (S3.10), (S3.12), (S3.13) and (S3.14) imply that

$$\sup_{z\in\mathbb{R}} \left| \mathbb{P}\left(\sup_{\boldsymbol{x}\in[0,1]^D} \sqrt{n} \left| \frac{\widehat{m}_p\left(\boldsymbol{x}\right) - m\left(\boldsymbol{x}\right)}{\widehat{G}_p^{1/2}\left(\boldsymbol{x},\boldsymbol{x}\right)} \right| \le z \right) - \mathbb{P}\left(\max_{\substack{1\le l_d\le n_d\\1\le d\le D}} \left| \widehat{\Xi}_{K_n}(\boldsymbol{t}_{l_1,\dots,l_D}) \right| \le z \left| \{\mathbf{Y}_i\}_{i=1}^n \right) \right| = \mathcal{O}_p(1),$$

The proof is completed. \Box

References

- Cao, G., Wang, L., Li, Y., and Yang, L. (2016). Oracle-efficient confidence envelopes for covariance functions in dense functional data. *Statist. Sinica* 26 359–383.
- Cao, G., Yang, L., and Todem, D. (2012). Simultaneous inference for the mean function based on dense functional data. J. Nonparametr. Stat. 24 359–377.
- Chernozhukov, V., Chetverikov, D., and Kato, K. (2015). Comparison and anticoncentration bounds for maxima of Gaussian random vectors. *Probab. Theory Relat. Fields* 162 47–70.
- De Boor, C. (2001). A Practical Guide to Splines. Springer, New York.
- Götze, F., and Zaitsev, A. Y. (2010). Rates of approximation in the multidimensional invariance principle for sums of i.i.d. random vectors with finite moments. J. Math. Sci. 167 495–500.
- Klenke, A. (2014). Probability Theory, 2nd edn. Springer, London.
- Schumaker, L. (1981). Spline Functions: Basic Theory. Wiley.
- Wang, J., Cao, G., Wang, L., and Yang, L. (2020). Simultaneous confidence band

for stationary covariance function of dense functional data. J. Multivariate Anal. 176 104584.

- Yang, L. (2025a). Strict monotonicity of stochastic process extreme distributions. Statist. Probab. Lett. 217 110292.
- Yang, L. (2025b). Continuity of Gaussian extreme distributions. Statist. Probab. Lett. 215 110274.

Department of Statistics and Data Science, Tsinghua University, Beijing 100084, China.

E-mail: hqr20@mails.tsinghua.edu.cn

Department of Statistics and Data Science, Tsinghua University, Beijing 100084, China.

E-mail: yanglijian@tsinghua.edu.cn