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Supplementary Material

The Supplementary Material contains comments for MEM algorithm

and theoretical conditions, boundary analysis, additional simulations, gen-

eralizations to additive and extended spatial modal regression models, as

well as technical proofs of the main theorems and supporting lemmas.

S1 Comments for MEM Algorithm 1

This section provides theoretical and practical insights into the MEM al-

gorithm used in our spatial modal regression framework. Particularly, we

examine numerical stability, convergence properties, and offer theoretical

guarantees comparing MEM with mean-based estimators.

S1-1 Numerical Stability

A potential numerical challenge in the implementation of MEM Algorithm

1 arises in the M-step, which involves the inversion of the weighted local
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design matrix (X∗TWXX
∗). The weight matrix WX is diagonal with entries

π(i | θ(g)), defined by

π(i | θ(g)) ∝ ϕ

(
Yi − a(g) − b(g)T (Xi − x)

h1

)
K

(
Xi − x

h2

)
,

where both ϕ(·) and K(·) are Gaussian kernels with unbounded support

and exponentially decaying tails. From a theoretical perspective, as the

bandwidth h2 → 0, the kernel weights K((Xi−x)/h2) tend towards zero for

observations distant from the evaluation point x. Consequently, π(i | θ(g))

becomes highly sparse, and the effective number of influential observations

may become insufficient to ensure that the weighted local design matrix

X∗TWXX
∗ remains well-conditioned. In such cases, the matrix inversion

can suffer from high condition numbers, introducing substantial numerical

error due to finite precision arithmetic.

This issue is especially pronounced in high-dimensional settings or in

regions with sparse covariate support. If the design matrix has a high

condition number, numerical errors can enter and propagate through the

estimation steps, which can severely degrade the performance of the algo-

rithm. This sensitivity to h2 and the resulting weight sparsity reflects a fun-

damental trade-off in kernel smoothing, i.e., improving local fidelity while

risking numerical instability. In the paper, this theoretical risk is effectively

mitigated by the bandwidth selection procedure developed in Subsection
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2.4. The proposed selection is based on minimizing the asymptotic mean

squared error (AsyMSE) of the local modal estimator m̂(x), which balances

squared bias and variance

AsyMSE(m̂(x)) = Bias2(m̂(x)) + Var(m̂(x)).

The resulting optimal bandwidth ĥ2 satisfies the rate ñ− 1
d+7 , which corre-

sponds to more smoothing than the classical mean regression rate. This

is because modal estimation involves greater curvature sensitivity, leading

to higher variance near the density peak; hence, a slightly larger band-

width is needed to ensure stability. This optimal rate ensures that while

the estimator remains sufficiently localized to capture modal features, it

retains a large enough effective sample size to avoid the degeneracy associ-

ated with vanishing weights and poor matrix conditioning. Consequently,

the AsyMSE-optimal bandwidth plays a dual role, i.e., it governs the local

approximation error and simultaneously acts as an implicit regularization

device that stabilizes the M-step by preserving invertibility of the weighted

local design matrix. For additional robustness in finite samples, particu-

larly when multicollinearity or sparse data regions are present, one may

Under the optimal bandwidth regime h1 ≍ h2 ≍ ñ−1/(d+7), the effective sample size contributing

to the MEM estimator is of order ñhd
2h

3
1 ≍ ñ

1− d+3
d+7 = ñ

4
d+7 , which diverges as ñ → ∞. This ensures

that, asymptotically, the weighted local design matrix remains well-conditioned with high probability,

and the numerical instability due to kernel weight sparsity is avoided.
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supplement this procedure with an explicit regularization strategy. Specif-

ically, the weighted matrix inversion can be replaced with a ridge-adjusted

version (X∗TWXX
∗+λI)−1 for a small regularization parameter λ > 0 (e.g.,

λ = 10−6 × tr(X∗TWXX
∗)), thereby ensuring invertibility.

S1-2 Convergence Behavior and Global Optimality

The MEM algorithm plays a central role in our spatial modal regression

framework. However, a central concern lies in the fact that MEM algorithm,

like many EM-type algorithms, is not guaranteed to converge globally. This

is particularly relevant because the primary estimand in modal regression

is the mode, not merely a local maximizer of the objective function. To

address this concern, we provide a detailed theoretical analysis of the al-

gorithm’s convergence behavior and propose practical heuristics to ensure

robust performance in empirical applications.

We first formalize the convergence properties under regularity condi-

tions. The result mirrors the Newton-Kantorovich framework (Ortega and

Rheinboldt, 1970) but is adapted to our modal objective.

Theorem S1 (Local Quadratic Convergence). Let θ̂ denote a strict local

maximizer of the smoothed kernel objective Qñ(θ) defined in (2.3). Suppose

(i) Qñ(θ) is three-times continuously differentiable in a neighborhood of θ̂;
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(ii) the gradient ∇Qñ(θ̂) = 0 and Hessian ∇2Qñ(θ̂) is negative definite;

(iii) the MEM update map T (θ) satisfies a second-order expansion, i.e.,

T (θ) = θ̂ + 1
2
H(θ − θ̂)2 + o(∥θ − θ̂∥2), where H is a symmetric matrix

derived from curvature of Qñ; and (iv) the initial point θ(0) lies sufficiently

close to θ̂. Then, the sequence {θ(g)} generated by MEM satisfies

∥θ(g+1) − θ̂∥ ≤ C∥θ(g) − θ̂∥2,

for some constant C > 0, i.e., MEM converges quadratically.

Proof. Let T (θ) be the MEM update map. By Taylor expansion around θ̂

and using T (θ̂) = θ̂, we obtain

T (θ) = θ̂ + J(θ − θ̂) +
1

2
(θ − θ̂)THT (θ̃)(θ − θ̂),

where J = ∇T (θ̂), and HT (θ̃) is a third-order tensor evaluated at some

θ̃ on the line segment between θ and θ̂. Because T (θ(g+1)) = θ(g+1), the

expansion simplifies to

θ(g+1) − θ̂ = J(θ(g) − θ̂) +
1

2
(θ(g) − θ̂)THT (θ̃)(θ

(g) − θ̂).

Taking norms and applying the triangle inequality, we can obtain

∥θ(g+1) − θ̂∥ ≤ ∥J∥ · ∥θ(g) − θ̂∥+ C1∥θ(g) − θ̂∥2,

for some C1 > 0 depending on the local curvature. By assumption listed in

Theorem S1, ∥J∥ < 1, so there exists δ > 0 such that for all ∥θ(g)− θ̂∥ < δ,

we have ∥θ(g+1) − θ̂∥ ≤ C∥θ(g) − θ̂∥2, for some C > 0 after absorbing the

linear term into the quadratic. This completes the proof.
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Theorem S1 shows that the MEM algorithm exhibits local quadratic

convergence under standard smoothness and identifiability conditions, mir-

roring the behavior of Newton-type methods near a local mode. This guar-

antees rapid convergence once the iterates enter a sufficiently small neigh-

borhood of a strict local maximum. However, because the kernel-smoothed

objective may be non-convex and possess multiple local optima, the MEM

algorithm is not guaranteed to converge to the global mode unless appro-

priately initialized. This limitation is inherent to EM-type methods and

is particularly important here, given that the estimand of interest is the

mode, not just any local maximizer. To address this issue in practice,

we propose three complementary heuristics: (i) initialization from multi-

ple starting points, such as using local linear mean or quantile regression

estimators as pilot values. This increases the chance of exploring different

basins of attraction in the objective landscape; (ii) employing tempered

EM variants or injecting controlled stochastic perturbations during early

iterations. Tempered EM begins with a large bandwidth h1, resulting in a

smoother likelihood surface, and gradually anneals to the target bandwidth,

helping the algorithm avoid convergence to suboptimal modes. Similarly,

mild stochastic noise can help navigate past flat or shallow regions of the ob-

jective; (iii) selecting the final estimator by comparing the kernel-smoothed



Supplementary Material

likelihood values across candidate solutions and retaining the one that at-

tains the highest value. These heuristics are straightforward to implement

and collectively improve the algorithm’s robustness to poor initializations.

Section 4 in the paper provides detailed simulation studies illustrating that,

across various error structures and sample sizes, the MEM algorithm con-

sistently recovers the global mode.

To further address concerns regarding the practical and theoretical

value of our proposed MEM estimator, we establish a formal result compar-

ing the kernel-smoothed conditional likelihood achieved by MEM to that

of standard local linear mean regression. In particular, we show that un-

der non-Gaussian error distributions, especially those exhibiting asymmetry

or multimodality, the MEM estimator yields a strictly higher value of the

kernel-based objective function. This result offers theoretical support for

the use of modal regression in such settings, as the MEM estimator more

accurately targets the mode of the conditional distribution rather than the

mean, which may be misleading or nonexistent. The following theorem

quantifies this advantage.

Theorem S2 (Relative Likelihood Superiority of MEM). Let (Yi,Xi)i∈Iñ

follow the model Yi = m(Xi) + εi with Mode(εi | Xi) = 0, where εi has

conditional density f(·) (possibly asymmetric or multimodal), and assume
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the regularity conditions C1–C7 hold. Define the kernel-based objective

Qñ(θ) =
1

ñh1hd
2

∑
i∈Iñ

ϕ

(
Yi − θTX∗

i

h1

)
K

(
Xi − x

h2

)
,

with X∗
i = [1 (Xi − x)T/h2]

T . Let θ̂MEM and θ̂mean denote the MEM and

local linear mean estimators, respectively. Then, if m(x) ̸= E[Y | X = x]

and f(·) is asymmetric or multimodal, we have

Qñ(θ̂MEM) ≥ Qñ(θ̂mean) + δn,

with high probability, for some δn > 0.

Proof. By definition, the MEM estimator satisfiesQñ(θ̂MEM) = maxθ Qñ(θ),

so we trivially have Qñ(θ̂MEM) ≥ Qñ(θ̂mean). The inequality is strict un-

less θ̂mean also maximizes Qñ(·), which only occurs when the conditional

distribution is symmetric and the mean coincides with the mode.

Now, assume thatm(x) ̸= E[Y | X = x]. Since ϕ(u) is strictly unimodal

and symmetric around zero, it is maximized when the residual Yi − θTX∗
i

is close to zero. The MEM estimator θ̂MEM targets the conditional mode

and aligns residuals towards this central value more effectively than θ̂mean

when the mode and mean differ. For any observation i in the local window

∥Xi−x∥ ≤ Ch2, define the residuals RMEM,i := Yi−θ̂
T

MEMX
∗
i and Rmean,i :=

Yi − θ̂
T

meanX
∗
i . Since ϕ(u) is decreasing in |u|, and |RMEM,i| < |Rmean,i| for a

nontrivial proportion of i due to mode–mean asymmetry, we have
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ϕ

(
RMEM,i

h1

)
> ϕ

(
Rmean,i

h1

)
.

Let pn denote the proportion of such i satisfying this inequality. Then, the

aggregate gain in the objective satisfies

Qñ(θ̂MEM)−Qñ(θ̂mean) ≥
pn
h1hd

2

(
min

i
K

(
Xi − x

h2

))
∆ϕ,

where ∆ϕ = mini∈I

[
ϕ
(

RMEM,i

h1

)
− ϕ

(
Rmean,i

h1

)]
> 0. Under uniform con-

sistency of both estimators and the regularity conditions of the kernel

and bandwidths, we obtain Qñ(θ̂MEM) > Qñ(θ̂mean) + δn, where δn =

Ω(pnh
−1
1 h−d

2 ) vanishes only if m(x) = E[Y | X = x], which contradicts

the assumption. This completes the proof.

Theorem S2 establishes that, under general non-Gaussian error struc-

tures, the MEM estimator yields a strictly higher value of the kernel-

smoothed conditional likelihood than conventional local linear mean regres-

sion. This theoretical distinction is especially significant in scenarios char-

acterized by asymmetry or multimodality in the response distribution, pre-

cisely the regimes in which mean-based estimators may provide a distorted

or unrepresentative summary of the conditional behavior. The inequality

in Theorem S2 underscores that, even in the absence of global optimality

guarantees, the MEM estimator improves the fidelity of likelihood-based

inference by targeting the dominant mode of the conditional distribution.
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This lends strong theoretical support to the use of modal regression in

practice. Furthermore, simulation results in Section 4 of the paper provide

empirical validation, i.e., across a variety of sample sizes and distributional

settings, the MEM estimator consistently attains higher values of the ob-

jective function than its mean-based counterpart, reinforcing its robustness

and practical utility in mode-oriented analysis.

S2 Comments for Conditions in Subsection 2.3

The theoretical conditions listed in Subsection 2.3 are standard in the set-

ting of local smoothers and modal regression models, necessary for establish-

ing asymptotic properties, and their rationale can be elaborated upon. Con-

dition C1 implicitly assumes that the mode of the density function g(·) is

globally uniquely defined. In reality, enforcing the unique mode assumption

is not imperative, suggesting that the technique described in this paper can

also be applied to the multimode case to capture spatial clustering; see Ullah

et al. (2022, 2023). Condition C2 specifies the requirements on the kernel

function K(·) used, which are essential for technical reasons in the proofs

and are common in nonparametric kernel estimation. The bounded support

restriction on the kernel function is not indispensable and can be released

by imposing a restriction on its tail. In particular, the standard multivari-
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ate Gaussian kernel is allowed, i.e., K(x) = (2π)−d/2 exp(−xTx/2), which

is infinitely supported and is the default kernel adopted in the numerical

parts of this paper. Since ϕ(·) is chosen as the Gaussian kernel, no specific

conditions are listed for it. Condition C3 is utilized to regulate the variance

term of the estimation, which has been employed, for instance, by Hallin et

al. (2004) and Hallin et al. (2009). It suggests that the joint probability dis-

tribution fi1,··· ,is(Xi1 , · · · ,Xis) exists and is bounded uniformly in i1, · · · , is

for s = 1, · · · , 2r−1, in which r ≥ 1 is a given integer. If the random field is

composed of independent observations, then |fi,j(x′, x′′)− f(x′)f(x′′)| van-

ishes as soon as i and j are distinct. Condition C3 governs local dependence

through the distance between fi,j(x
′,x′′) and f(x′)f(x′′), whereas the mix-

ing condition regulates the dependence of sites which are far from each other

through the distance between P (AB) and P (A)P (B). Note that the as-

sumption of strict stationarity is a cornerstone in nonparametric regression

estimation for spatial data and plays a fundamental role in this paper, en-

suring that the conditional regression function depends solely on X and not

on the specific site i. This implies that for any nonnegative s in Z and any

jk =
(
jk1 , · · · , jkN

)
in ZN with k = 1, · · · , s, the joint probability measure of

(Yi, Xi) , (Yi+j1 , Xi+j1) , · · · , (Yi+js , Xi+js) remains the same regardless of the

initial i = (i1, · · · , iN) in ZN . While this assumption may not always hold
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in environmental contexts, it can be relaxed by assuming that the Xi’s are

non-identically distributed, which is of particular interest to explore but is

outside the scope of the present paper.

Condition C4 is regular in the literature of nonparametric regression to

characterize the functional space of a model. The smoothness condition on

the unknown function m(x) determines the convergence rate of the spatial

modal estimator. Higher-order smoothness is required if local polynomial

estimation is applied. Condition C5 is employed for establishing asymptotic

properties. Following the arguments presented in this paper, analogous re-

sults can be straightforwardly derived, in which φ(·) decays exponentially,

i.e., φ(t) ≤ C exp(−st) for some s > 0. Conditions C6-C7 are typical tech-

nical conditions in the spatial data context, which are essential for modal

regression. They are crucial to achieving the same rate of convergence as

in the independence case for the proposed spatial modal estimators. If we

impose χ (n′, n′′) ≤ C (n′ + n′′ + 1)κ for some C > 0 and κ > 1 in condition

C5, the last condition in C6 would be replaced by (ñκ+1/p)φ(q) → 0. In con-

trast to local linear spatial mean regression, we do not require the existence

of moments for the error terms. However, to ensure the presence of asymp-

totic variance and bias of the estimator in the case of random fields with a

spatial trend (see Remark 2.4 in the paper), we need to impose a condition
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that the random variables Yi and Xi possess finite absolute moments of or-

der (2+δ), i.e., E[|Yi|2+δ] < ∞ and E[∥Xi∥2+δ] < ∞ for some δ > 0, which is

the classic rank condition constraining covariate moments. The bandwidth

significantly influences the behavior of the developed modal estimators, as

is typical in all kernel estimations. Aside from condition C7, all other con-

ditions related to bandwidths are delineated in the asymptotic theorems.

S3 Modal Boundary Behavior

The local linear approximation offers significantly improved boundary be-

havior compared to the local constant approach. It is natural to inquire

whether the spatial modal estimators proposed in this paper maintain their

asymptotic properties near the boundaries. For simplicity, we assume that

there is a univariate regressor X (d = 1) with a bounded support, i.e.,

[−M,M ]. By employing an argument similar to the one developed in the

proof of Theorem 2.2, it can be shown that asymptotic normality still holds

near the boundary point x = −M+ch2, where c is a positive constant. How-

ever, there are adjustments in the asymptotic biases and variances such that

B0(x) =
(
∫M

−c
u2K(u)du)2 −

∫M

−c
uK(u)du

∫M

−c
u3K(u)du∫M

−c
K(u)du

∫M

−c
u2K(u)du− (

∫M

−c
uK(u)du)2

[
h2
2

2

∂2m(x)

∂x2

∣∣∣
x=−M+

]

− h2
1

2

(g(3)(0 | −M+))

(g(2)(0 | −M+))
,
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B1(x) =

∫M

−c
K(u)du

∫M

−c
u3K(u)du−

∫M

−c
uK(u)du

∫M

−c
u2K(u)du∫M

−c
K(u)du

∫M

−c
u2K(u)du− (

∫M

−c
uK(u)du)2[

h2
2

2

∂2m(x)

∂x2

∣∣∣
x=−M+

]
,

σ2
0(x) =

∫
ϕ2(t)t2dt

nlh2h3
1f(−M+)

g(0 | −M+)

(g(2)(0 | −M+))2

V0

(
∫M

−c
K(u)du

∫M

−c
u2K(u)du− (

∫M

−c
uK(u)du)2)2

,

and

σ2
1(x) =

∫
ϕ2(t)t2dt

nlh2h3
1f(−M+)

g(0 | −M+)

(g(2)(0 | −M+))2

V1

(
∫M

−c
K(u)du

∫M

−c
u2K(u)du− (

∫M

−c
uK(u)du)2)2

,

respectively, where

V0 =
(∫ M

−c

u2K(u)du
)2 ∫ M

−c

K2(u)du− 2

∫ M

−c

uK(u)du

∫ M

−c

u2K(u)du∫ M

−c

uK2(u)du+
(∫ M

−c

uK(u)du
)2 ∫ M

−c

u2K2(u)du,

and

V1 =
(∫ M

−c

uK(u)du
)2 ∫ M

−c

K2(u)du− 2

∫ M

−c

uK(u)du

∫ M

−c

K(u)du∫ M

−c

uK2(u)du+
(∫ M

−c

K(u)du
)2 ∫ M

−c

u2K2(u)du.

Indeed, this boundary advantage would likely become more pronounced as

N grows. Consequently, local linear modal estimation exhibits automatic

good behavior at boundaries without the need for boundary correction.

This holds true for both the left boundary point x = −M+ch2 and the right
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boundary point x = M − ch2. Even if point M were an interior point, the

same results would still apply with c = M .

S4 Additional Monte Carlo Experiments

DGP 1 (Asymmetric Data) For DGP 1 listed in the paper, we also investi-

gate the impact of including additional spatial lags into the definition ofXi,j

on the estimation of spatial modal regression. For illustration, we specifi-

cally concentrate on the scenario when (n1, n2) = (20, 30), while the results

for other sample sizes are comparable. We adopt the same model as in DGP

1 but generate Xi,j according to the following four different equations

Case 1: Xi,j = sin(Xi−1,j +Xi,j−1) + ei,j,

Case 2: Xi,j = sin(Xi+1,j +Xi,j+1) + ei,j,

Case 3: Xi,j = sin(Xi−2,j +Xi,j−2 +Xi−1,j +Xi,j−1) + ei,j,

Case 4: Xi,j = sin(Xi−2,j +Xi,j−2 +Xi−1,j +Xi,j−1 +Xi+1,j

+Xi,j+1 +Xi+2,j +Xi,j+2) + ei,j.

Compared to Figure 1-(d), the results in Figure S1 indicate that the

estimated spatial modal regression is not sensitive to the choice of lags,

implying that the lags of Xi,j have little influence on estimation. These

findings are consistent with those obtained by Hallin et al. (2004) in spatial

mean regression. We also report the simulation results in which the band-
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width is obtained from the modal cross-validation (CV) procedure. The re-

sults demonstrate that the suggested data-based “rule of thumb” bandwidth

choice procedure performs well, as evidenced by nearly identical AMSEs.

(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 1-CV (f) Case 2-CV

(g) Case 3-CV (h) Case 4-CV

Figure S1: Impact of Spatial Lags on Modal Estimator of Function m(·)

DGP 2 (Symmetric Data) To illustrate the robustness performance of the

developed spatial modal estimator, we generate data from the model

Yi,j = m(Xi,j) + εi,j with m(x) = sin(πx),
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where {εi,j, (i, j) ∈ Z2} are independently taken from one of the following

distributions: (i) standard normal distribution N (0, 1); (ii) fat tails t distri-

bution with degrees of freedom equal to 3, i.e., t(3); (iii) symmetric heavy-

tailed mixture Laplace distribution 0.8Lp(0, 1)+0.2Lp(0, 5); (iv) symmetric

contaminated normal distribution 0.9N (0, 1)+0.1N (0, 102), and {Xi,j, (i, j)

∈ Z2} are produced by the spatial autoregression Xi,j = sin(Xi−1,j +

Xi,j−1 + Xi+1,j + Xi,j+1) + ei,j with {ei,j, (i, j) ∈ Z2} ∼ N (0, 1). We then

have Mode(Yi,j | Xi,j) = E(Yi,j | Xi,j) = sin(πXi,j). The data simula-

tion setup mirrors that of DGP 1, ensuring the generation of stationary

points. We also conduct simulations across four different sample sizes, i.e.,

(n1, n2) = (10, 10), (15, 15), (20, 20), and (20,30), separately, and provide

the associated AMSEs based on 200 replications. The bandwidth for spatial

mean regression is chosen by the traditional cross-validation method built

on the MSE criterion.

Table S1: Results of Simulations—DGP 2

Distribution (n1, n2) Modal Local Linear (n1, n2) Modal Local Linear

N (0, 1) (10,10) 0.1445 0.1243 (15,15) 0.1087 0.0866

(20,20) 0.0845 0.0743 (20,30) 0.0713 0.0666

t(3) (10,10) 0.2091 0.2450 (15,15) 0.1587 0.1854

(20,20) 0.1247 0.1353 (20,30) 0.1027 0.1173

0.8Lp(0, 1) + 0.2Lp(0, 5)
(10,10) 0.3197 0.3369 (15,15) 0.2239 0.2689

(20,20) 0.1867 0.2347 (20,30) 0.1750 0.2184

0.9N (0, 1) + 0.1N (0, 102) (10,10) 0.2570 0.2814 (15,15) 0.1830 0.2314

(20,20) 0.1639 0.2144 (20,30) 0.1517 0.2071
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Figure S2: Modal and Mean Estimators of Function m(·)

The simulation results in terms of AMSE are presented in Table S1

and Figure S2. Because of the similarity of observations, only results for

(n1, n2) = (20, 30) are reported in the figure. In Figure S2, the pink solid

line denotes the true spatial regression function. The results show that the

proposed modal estimation procedure is on average as good as or better

than local linear mean estimation method (represented by “Local Linear”).

From Table S1, we can see that both modal and mean estimations exhibit

satisfactory performance for errors following a standard normal distribution.

Also, local linear mean estimation slightly outperforms modal estimation
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somewhat in such a case. However, in the presence of contaminated or

heavy-tailed errors, modal estimation significantly outperforms local linear

mean estimation across all sample instances. This trend is consistent with

the observations in Figure S2. These results underscore the robustness and

efficiency of the proposed spatial modal estimator compared to the spatial

mean estimator. Furthermore, in line with the asymptotic theory outlined

in Section 2, all AMSEs decrease with increasing sample size.

S5 Additive Spatial Modal Regression

As elucidated in Section 1, the implementation of the proposed nonparamet-

ric spatial modal regression becomes progressively intricate with an increas-

ing number of covariates. An alternative strategy is to employ an additive

modal regression model, designed to mitigate the curse of dimensionality

and uncover crucial features often overlooked by additive mean or quantile

regression models. The additive models, on the other hand, are well-suited

for approximating the conditional mode of a spatial random variable given

its nearest neighbor observations. Despite the extensive literature and re-

cent advancements in additive models, as far as we know, the statistical

estimation issue in additive spatial modal regression remains unexplored.

Leveraging the developed estimation method from the previous sections, we
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delve into the exploration of how to estimate the optimal additive approx-

imation for the conditional spatial modal function (1.1). Specifically, the

additive model decomposes m(X) into an additive sum of the form

m(X) = µ+
d∑

κ=1

mκ(Xκ), (S1.1)

where µ represents the spatial modal regression intercept, defined asMode(Y

−
∑d

κ=1 mκ(Xκ)) = µ, and the functions m1(·), · · · ,md(·) are real measur-

able functions valued in the space functions M = {mκ ∈ C2(R) : ∥mκ∥ =

supXκ∈R|mκ(Xκ)| < C}, with C2(R) the space of twice differentiable func-

tions and C a positive constant. For identification, location normalization

is required. We assume that all mode values of mκ(Xκ) are zero, that is,

Mode(mκ(Xκ)) = 0, without imposing any other conditions on moments.

Otherwise, we set

m̃κ(Xκ) = mκ(Xκ)−Mode(mκ(Xκ)) and µ̃ = µ+
d∑

κ=1

Mode(mκ(Xκ)).

(S1.2)

In such a scenario, the optimal convergence rate shall remain the same as

that in the univariate nonparametric spatial modal regression under certain

regularity conditions, regardless of the value of d. To numerically solve the

The mode identification condition for the developed additive spatial modal regression model is

different from that of the additive spatial mean and quantile regression models, namely, E(mκ(Xκ)) = 0

andQτ (mκ(Xκ)) = 0, whereQτ (·) represents the τth quantile (τ ∈ [0, 1]). However, if the moments exist

for the suggested additive spatial modal regression, we suppose that the mean identification condition

could also be utilized for identifying the proposed model.
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developed additive spatial modal regression, we can suggest a nonparamet-

ric kernel-based backfitting algorithm.

Based on Definition 2.1, the optimal additive approximation is derived

by maximizing

E

[
1

h3

ϕ

(
Yi − µ−

∑d
κ=1 mκ(Xiκ)

h3

)]
(S1.3)

over µ +
∑d

κ=1mκ(Xiκ) ∈ Fadd, where Fadd = {µ +
∑d

κ=1mκ(Xiκ) | µ ∈

R,Mode(mκ(Xiκ)) = 0 for 1 ≤ κ ≤ d}. However, directly extending the

local linear estimator to the additive spatial modal regression is challenging

due to the presence of nuisance functions mι(Xiι)’s for ι ̸= κ when estimat-

ing mκ(Xiκ). To address this, we extend the findings of Yu and Lu (2004),

who developed an estimator for the components of a nonparametric additive

quantile regression, to treat other components of the model as known when

one of them is estimated.

To be more specific, we define the fitted value of (S1.1) at the point x as

m̂(x) = µ̂+
d∑

κ=1

m̂κ(xκ), (S1.4)

in which

µ̂ = argmax
µ

1

ñh3

∑
i∈In

ϕ

(
Yi − µ−

∑d
κ=1 mκ(Xiκ)

h3

)
(S1.5)

with the precondition that all component functions {mκ(Xiκ)}dk=1 are known,

where h3 = h3(n) is a bandwidth that depends on n and approaches zero as
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n → ∞, m̂κ(xκ) = âκ, and m̂
(1)
κ (xκ) = b̂κ. The values âκ and b̂κ are obtained

by maximizing the following kernel-based objective function under the pre-

condition that µ and other component functions {mι(Xiι)}dι̸=κ,ι=1 are known

Q(aκ, bκ) =
1

ñh4h5κ

∑
i∈In

ϕ

(
Yi − µ−

∑d
ι̸=κ,ι=1mι(Xiι)− aκ − bκ(Xiκ − xκ)

h4

)

K

(
Xiκ − xκ

h5κ

)
(S1.6)

using a local linear approximation for mκ(Xiκ), i.e., mκ(Xiκ) ≈ mκ(xκ) +

m
(1)
κ (xκ)(Xiκ −xκ) = aκ+ bκ(Xiκ−xκ), and h4 and h5κ are two bandwidths

that depend on n and approach zero as n → ∞. For flexibility, we let h5κ be

different for each independent variable Xiκ. As discussed later, the cautious

choice of bandwidths is crucial for the proposed estimators to be asymptot-

ically normal. The practical selection of bandwidths for the suggested add-

itive spatial modal regression shall be investigated in the end.

In reality, the oracle equations (S1.5) and (S1.6) cannot be directly

utilized for estimation due to the lack of knowledge regarding the true val-

ues of the other components when estimating mκ(Xiκ). To overcome this

challenge, we employ a backfitting algorithm in conjunction with the MEM

algorithm. Specifically, for the numerical estimation of the proposed addi-

tive spatial modal regression, we devise a kernel-based backfitting algorithm

by preestimating components used to construct oracle estimators as if they
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Algorithm 0: Backfitting-MEM Algorithm

Step-1-Initial Estimation. Estimate µ̂(0) = argmaxµ
1

ñh3

∑
i∈In

ϕ
(

Yi−µ
h3

)
and

(âκ, b̂κ) = arg max
aκ,bκ

1

ñh4h5κ

∑
i∈In

ϕ

(
Yi − µ̂(0) − aκ − bκ(Xiκ − xκ)

h4

)
K

(
Xiκ − xκ

h5κ

)

for κ = 1, · · · , d. Then, set m(0)
κ (xκ) = âκ and take m

∗(0)
κ (xκ) as m

(0)
κ (xκ)−

Mode({m(0)
κ (Xiκ)}i∈In).

Step-2-Iteration. Set µ̂(g) = argmaxµ
1

ñh4

∑
i∈In

ϕ
(

Yi−
∑d

κ=1 m∗(g−1)
κ (Xiκ)−µ

h4

)
,

where g is the iteration indicator, and

(âκ, b̂κ) = arg max
aκ,bκ

1

ñh4h5κ∑
i∈In

ϕ

(
Yi − µ̂(g) −

∑d
ι̸=κ,ι=1 m

∗(g−1)
ι (Xiι)− aκ − bκ(Xiκ − xκ)

h4

)
K

(
Xiκ − xκ

h5κ

)
.

Let m
(g)
κ (xκ) = âκ and take m

∗(g)
κ (xκ) as m

(g)
κ (xκ)−Mode({m(g)

κ (Xiκ)}i∈In).

Iterate-Updating. Keep iterating Step-2 for g = 1, 2, 3, · · · until the value of

(µ̂(g),m
∗(g)
1 , m

∗(g)
2 , · · · , m∗(g)

d ) has converged. Next, for κ = 1, · · · , d, set

(âκ, b̂κ) = (m
∗(g)
κ (xκ), b̂κ). The final estimators (âκ, b̂κ) = (m̂κ(xκ), m̂

(1)
κ (xκ)).

were true functions. It can be seen from Algorithm 0 that preliminary esti-

mates are updated after each additive component is estimated. Meanwhile,

in each step, only one additive component is revised through the MEM

algorithm, leaving the other components fixed. As a result, the proposed

estimation procedure is computationally expedient. According to the map-

ping theorem, the developed backfitting-MEM algorithm is a first-order al-

gorithm with similar properties as the classical backfitting algorithm, which
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may result in sluggard convergence. However, by utilizing the Gaussian ker-

nel for ϕ(·) during modal estimation, we obtain an explicit expression in the

M-Step, leading to reduced computational costs and faster convergence.

As discussed earlier, a significant benefit of the developed additive spa-

tial modal regression model lies in its capability to achieve a one-dimensi-

onal convergence rate. For simplicity, we primarily highlight the conver-

gence rate and asymptotic normality of the oracle estimators, along with off-

ering some insights into the asymptotic results derived from Algorithm 0.

Theorem S1.1. Under the regularity conditions C1-C7 (with d = 1 and

Xiκ and K(·) be univariate), with probability approaching one, as ñ → ∞,

h4 → 0, h5κ → 0, and ñh5κh
5
4 → ∞, there exist consistent maximizers

(m̂κ(xκ), m̂
(1)
κ (xκ)) of (S1.6) such that

i. |m̂κ(xκ)−mκ(xκ)| = Op

(
(ñh5κh

3
4)

−1/2
+ h2

4 + h2
5κ

)
,

ii. |h5κ(m̂
(1)
κ (xκ)−m

(1)
κ (xκ))| = Op

(
(ñh5κh

3
4)

−1/2
+ h2

4 + h2
5κ

)
,

where mκ(xκ) is the spatial modal function of Y −µ−
∑

ι ̸=κ,ι=1 mι(Xiι) given

Xiκ = xκ.

Theorem S1.2. With ñh5
5κh

3
4 = O(1) and ñh5κh

7
4 = O(1), under the same

conditions as Theorem S1.1, if nk (h5h5κ)
δ/(2+δ)a > 1 for all k = 1, · · · , N

as n → ∞, the estimators satisfying the consistency results in Theorem
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S1.1 have the following asymptotic result

√
ñh5κh3

4

[ m̂κ(xκ)−mκ(xκ)

h5κ(m̂
(1)
κ (xκ)−m

(1)
κ (xκ))


− S∗−1

(
h2
5κ

2
m(2)

κ (xκ)Λ
∗ − h2

4

2

g(3)(0 | Xiκ = xκ)

g(2)(0 | Xiκ = xκ)
Γ∗
)]

d→ N
(
0,

∫
ϕ2(t)t2dt

g(0 | Xiκ = xκ)

(g(2)(0 | Xiκ = xκ))2
(f(xκ))

−1S∗−1Σ∗S∗−1

)
.

If we allow ñh5
5κh

3
4 → 0 and ñh5κh

7
4 → 0, the asymptotic theorem becomes

√
ñh5κh3

4

 m̂κ(xκ)−mκ(xκ)

h5κ(m̂
(1)
κ (xκ)−m

(1)
κ (xκ))


d→ N

(
0,

∫
ϕ2(t)t2dt

g(0 | Xiκ = xκ)

(g(2)(0 | Xiκ = xκ))2
(f(xκ))

−1S∗−1Σ∗S∗−1

)
,

where S∗ =


∫
K(u)du

∫
uK(u)du∫

uK(u)du
∫
u2K(u)du

, Γ∗ =


∫
K(u)du∫
uK(u)du

,

Λ∗ =


∫
u2K(u)du∫
u3K(u)du

, and Σ∗ =


∫
K2(u)du

∫
uK2(u)du∫

uK2(u)du
∫
u2K2(u)du

.

Because additive models draw inspiration from local linear spatial modal

regression, it is unsurprising that the proofs of the preceding two theorems

closely follow the lines of Theorems 2.1 and 2.2. Therefore, we omit these

proofs in this paper. Theorem S1.2 illustrates that the proposed method

is adept at estimating the additive components at a one-dimensional non-
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parametric optimal rate, irrespective of the size of d. Consequently, neither

the dimension d nor the other function components influence the formation

of the bandwidths for mκ(xκ). If a symmetric condition is imposed on the

kernel function K(·), the estimators m̂κ(xκ) and m̂
(1)
κ (xκ) will be asymptot-

ically independent. Notice that we employ local linear approximation for all

component functions. However, if various components are known to have

different orders of differentiation, the rate of bias for all estimated functions

will be determined by the rate of the lowest degree local polynomial. In such

cases, if the primary interest is estimating the overall model, the backfitting

estimator may converge more slowly than the one-dimensional nonparamet-

ric estimator. Although Theorem S1.2 is established only for the interior

point, it is expected that the suggested estimator will not require boundary

adjustments. Finally, we emphasize that the estimator described here can

be easily extended to a generalized spatial additive modal regression model

with a specified link function.

It is worth mentioning that the appearance of µ̂ in the objective function

in Algorithm 0-Step-1 does not affect the asymptotic results for (m̂κ(xκ),

m̂
(1)
κ (xκ)) owing to faster convergence rate. We can easily demonstrate that

|µ̂− µ0| = Op

(
(ñh3

3)
−1/2 + h2

3

)
, (S1.7)

where µ0 is the true value of µ. As a result, given the optimal bandwidths
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obtained by minimizing AsyMSE, the above statement is automatically ful-

filled. We can also show that the proposed estimator in Algorithm 0-Step-2

is asymptotically equivalent to mκ(xκ). Thus, when estimating an additive

component such as mκ(xκ) in the additive modal regression model, we can

achieve asymptotic performance as if the other additive components were

known by undersmoothing. The fundamental idea is to choose a relative

smaller bandwidth, ensuring that the bias of estimating other functions is

asymptotically negligible when estimating mκ(xκ). Since the asymptotic

variance of the estimator is independent of the bandwidths associated with

other functions, the bandwidths should be chosen to be as small as possible

when estimating mκ(xκ), which is the benefit of utilizing the kernel-based

backfitting algorithm–avoiding data-based bandwidth selection for mκ(xκ).

To select appropriate bandwidths for the proposed additive spatial

modal regression model in empirical settings, several strategies are avail-

able. One practical approach is to apply the plug-in rule outlined in Subsec-

tion 2.4, which derives optimal bandwidths by minimizing the asymptotic

mean squared error. Alternatively, one may adopt a data-driven selection

method using a multi-stage cross-validation scheme, such as the concate-

nated cross-validation procedure proposed by Feng et al. (2020). Given our

focus on estimating conditional modes rather than conditional means or
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quantiles, conventional bandwidth selection criteria based on mean squared

error or absolute deviation loss may not be appropriate. Instead, we pro-

pose a kernel-based cross-validation criterion tailored to modal estimation.

Specifically, consider a validation set {(Xi, Yi)}i∈Im̃ , and define the valida-

tion loss using a Gaussian kernel centered at the predicted mode µ̂i for each

observation. The goal is to select the bandwidth h3 that maximizes the

average modal fit, measured by

argmax
h3

1

m̃h3

∑
i∈Im̃

exp

(
−(Yi − µ̂i)

2

h2
3

)
. (S1.8)

To implement this in practice, we begin by setting the initial value of h3 to

m̃−1/7, which corresponds to the AsyMSE-optimal bandwidth rate for local

linear modal regression. We then conduct a first round of five-fold cross-

validation to update and refine the estimate of h3, yielding an intermediate

value denoted by h∗
3. We repeat the procedure described above using a

second five-fold cross-validation method to achieve the optimal value of h3

argmax
h3

1

m̃h∗
3

∑
i∈Im̃

exp

(
−(Yi − µ̂i)

2

h∗2
3

)
. (S1.9)

The best one is denoted as h∗∗
3 . We finally implement a third five-fold cross-

validation procedure

argmax
h3

1

m̃h∗∗
3

∑
i∈Im̃

exp

(
−(Yi − µ̂i)

2

h∗∗2
3

)
(S1.10)
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to achieve the optimal value for h3. This three-stage refinement procedure

is designed to stabilize the selection process and mitigate sensitivity to lo-

cal fluctuations in the validation loss surface. A similar procedure can be

applied to select h4 and h5κ by setting h4 = h5κ for convenience. The initial

values for h4 and h5κ are both set to be m̃−1/8.

S6 Extended Models

The methodology developed in this paper encompasses a wide range of spa-

tial modal regression models, including both parametric and nonparametric

approaches. Several of them are listed below.

S6-1 Parametric Linear Spatial Modal Regression

As mentioned in the Introduction section, expanding the number of vari-

ables in nonparametric spatial modal regression becomes impractical due to

the curse of dimensionality. When there is prior information to reasonably

impose a parametric specification on the function m(·), such as m(X) = a+

bTX, the kernel-based objective function becomes

Qñ(a,b) =
1

ñh1

∑
i∈In

ϕ

(
Yi − a− bTXi

h1

)
,

referred to as the linear spatial modal regression. Following similar argu-

ments as in the paper, it can be demonstrated that the linear spatial modal



Nonparametric Spatial Modeling towards the Mode

estimators, θ̂LM = (âLM , b̂T
LM)T , are asymptotically distributed with a con-

vergence rate of
√

ñh3
1 under certain appropriate conditions√

ñh3
1

[
θ̂LM − θLM,0 − h2

1

2
(E(g(2)(0 | Xi))XiX

T
i )

−1
(
E(g(3)(0 | Xi))Xi

)
d→N

(
0,

∫
ϕ2(t)t2dtΣθ

)
,

where θLM,0 denotes the true parameter vector and

Σθ =
(
E(g(2)(0 | Xi))XiX

T
i

)−1
(E(g(0 | Xi))XiX

T
i )

−1
(
E(g(2)(0 | Xi))XiX

T
i

)−1
.

S6-2 Varying Coefficient Spatial Modal Regression

If we are concerned with estimating spatial modal regression with func-

tional coefficients that smoothly vary over another covariate, we can define

a varying coefficient spatial modal regression as Yi = Xi1β1 (Ui) + · · · +

Xidβd (Ui) + εi with Mode(εi | Xi,Ui) = 0, where Yi, with values in R, Xi,

with values in Rd, and Ui, with values in Rκ, are defined over a probability

space (Ω,F , P ). Utilizing the concept of local linear fitting and assuming

that each of the coefficients βr(Ui), r = 1, · · · , d, is at least second contin-

uously differentiable, we can solve the following maximization problem to

obtain the corresponding spatial modal estimates

max
ar,br

1

ñh1hk
2

∑
i∈In

ϕ

Yi −
∑d

r=1

[
αr + (Ui − u0)

T br

]
Xir

h1

K

(
Ui − u0

h2

)
,

where βr(Ui) ≈ αr + (Ui − u)Tbr for Ui in the neighborhood of u.
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To mitigate the curse of dimensionality, it is common to set κ = 1.

Let the corresponding spatial modal estimators be denoted as (α̃(u), b̃(u))

with α̃(u) = (α̃1(u), · · · , α̃d(u))
T and b̃(u) = (b̃1(u), · · · , b̃d(u))T . The true

estimators are denoted as (α0(u), b0(u)), fU(·) is the density of U , µ2 =∫
w2K(w)dw, and vj =

∫
wjK2(w)dw for j=0 and 2. Choosing K(·) to be

a symmetric kernel, under certain mild conditions, we can follow the same

arguments in the paper to show

√
ñh2h3

1


 α̃(u)−α0(u)

h2(b̃(u)− b0(u))

− Γ̃(u)−1

(
h2
2

2
Ω̃1α

(2)
0 (u)− h2

1

2
Λ̃

)
d→ N

(
0,

∫
t2ϕ2(t)dt

fU(u)
Γ̃(u)−1Ω̃2Γ̃(u)

−1

)
,

where Γ̃(u) = E


XXTg(2)(0 | X) 0

0 µ2XXTg(2)(0 | X)


∣∣∣∣∣U = u

,

Λ̃ = E


Xg(3)(0 | X)

0


∣∣∣∣∣U = u

, Ω̃1 = E


µ2XXTg(2)(0 | X)

0


∣∣∣∣∣U = u

,

and Ω̃2 = E


v0XXTg(0 | X) 0

0 v2XXTg(0 | X)


∣∣∣∣∣U = u

.
The proposed varying coefficient spatial modal regression serves as a

complement to the varying coefficient spatial mean regression introduced in

Lu et al. (2009). To ensure a valid interpretation of the spatial nonstationar-
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ity of the regression relationship, we could further develop a goodness-of-fit

test to determine whether some coefficients truly vary over space.

S6-3 Unconditional Spatial Modal Regression

It is intriguing to extend conditional spatial modal regression to the un-

conditional counterpart. According to the law of iterated expectations, the

estimates of coefficients from the conditional mean regression also represent

the effects on the unconditional population average of the dependent vari-

able. However, such a property is no longer guaranteed when transitioning

from the mean to the mode. Unlike the mean case, it is not necessary for

the conditional mode effect and unconditional mode effect to be equal. To

investigate the impact of changes in the independent variables on the uncon-

ditional mode of the dependent variable, we broaden the scope by extending

the nonspatial-unconditional quantile regression introduced in Firpo et al.

(2009). This extension leads to the proposal of unconditional spatial modal

regression grounded in the influence function and kernel density estimation.

Firpo et al. (2009) developed an unconditional quantile regression (UQR)

model based on the influence function (IF) and recentered influence function

(RIF). The IF is an analytical technique that assesses the impact of a parti-

cular observation on distributional statistics and is defined as

IF(y; v(F )) = lim
ε→0

[v ((1− ε) · F + ε · δy)− v(F )]/ε, 0 ≤ ε ≤ 1,
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where F represents the cumulative distribution function for Y and δy is a

distribution that only puts mass at the value y. For a specific quantile τ of

the outcome distribution, we can obtain

IF (Y ; qτ ) = (τ − I {Y ≤ qτ})/fY (qτ ) ,

where fY (qτ ) denotes the probability density function of Y evaluated at qτ .

Accordingly, we have E[IF (Y ; qτ )] = 0. The RIF is defined as

RIF (Y ; qτ , FY ) = qτ +
τ − I {Y ≤ qτ}

fY (qτ )
,

where qτ is the value of the outcome variable Y at the quantile τ . Accord-

ing to Firpo et al. (2009), when we model the conditional expectation of

RIF (Y ; qτ , FY ) as a function of explanatory variables, E(RIF (Y ; qτ , FY ) |

X = x) = m(x), a RIF regression can be viewed as an UQR. We then base

the unconditional spatial modal regression on UQR such that

E(RIF (Y ; qτ∗ , FY ) | X = x) = m∗(x),

in which τ ∗ represents the τth quantile of Y evaluated at the mode value,

and m∗(x) is the unconditional spatial modal regression line. As a result,

unconditional spatial modal regression can be regarded as a conventional

regression with a transformed dependent variable.

S6-4 Spatial Modal Autoregressive Model

We in this paper investigate spatial modal regression under the presence of a
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mixing condition. It is intriguing to extend the proposed modal regression

framework to incorporate spatial dependence among cross-sectional units,

which we refer to as the spatial modal autoregressive model . Following the

notations in Su and Yang (2011), the model is expressed as follows

Yn = λ0WnYn +Xnβ0 +Un,

where n represents the total number of spatial units, Yn ≡ (yn,1, · · · , yn,n)T

indicates a n× 1 vector of response values, λ0 is the spatial lag parameter,

Wn ≡ {wn,ij} is a known n×n spatial weight matrix with zero diagonal ele-

ments, WnYn is the spatial lagged variable, Xn ≡
(
xT
n,1, · · · , xT

n,n

)T
is a n×

pmatrix containing the values of the regressors, β0 is a p-vector of regression

coefficients, and Un ≡ (un,1, · · · , un,n)
T denotes a n-vector of i.i.d. random

disturbances with zero mode.

Because of the presence of the endogenous covariate (the spatial lag),

the direct utilization of the kernel-based objective function in S6-1 is not

feasible. To address this, we propose an instrumental variable spatial modal

regression estimation procedure, building on the framework introduced by

Su and Yang (2011). Suppose that there is a n × q instrumental matrix

Zn ≡ (zn,1, · · · , zn,n)T such that

Mode
(
yn,i ≤ λ0τ ȳn,i + βT

0τxn,i | xn,i, zn,i
)
= 0, i = 1, · · · , n.

Then, the following kernel-based objective function can be applied
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Qn(λ,β,γ) ≡
1

nh

n∑
i=1

K

(
yn,i − λȳn,i − βTxn,i − γT zn,i

h

)
,

where γ is the instrumental variable coefficient vector. Let ξn,i ≡ (xT
n,i, z

T
n,i)

T .

The estimation steps for obtaining spatial modal estimators are summarized

as follows:

(i) for a given value of λ, perform a modal regression of yn,i − λȳn,i on

ξn,i to obtain (β̂n(λ), γ̂n(λ)) ≡ argmax
(β,γ)

Qn(λ,β,γ);

(ii) minimize a weighted norm of γ̂n(λ) over λ to achieve the modal

estimator of λ0, i.e., λ̂n = argmin
λ

γ̂n(λ)
T Ânγ̂n(λ), where Ân = A + op(1)

for some positive definite matrix A;

(iii) run a modal regression of yn,i − λ̂nτ ȳn,i on ξn,i to obtain the modal

estimator of β0, i.e., β̂n ≡ β̂n(λ̂n).

This proposed estimation procedure not only addresses the spatial modal

autoregressive model but also provides a solution to the endogeneity issue

in modal regression. The detailed discussions, including asymptotic prop-

erties, will be explored in a separate paper.

S7 Technical Proofs

Due to the correlation structure inherent in spatial data, the asymptotic

distributions of the modal estimators become intricate. The subsequent

proofs heavily rely on the significance of the following lemmas, where we
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use the notation op(1) to denote a sequence of random variables that con-

verges to zero in probability, i.e., Zn = op(1) implies Zn
p−→ 0 as n → ∞.

Lemma 1 Suppose that α (B(S),B (S ′)) in Definition 2.2 holds. Denote

Lr(F) be the class of F -measurable random variable X satisfying ∥X∥r =

(E|X|r)1/r < ∞. Suppose X ∈ Lr(B(S)) and Y ∈ Ls (B (S ′)) . Assume also

that 1 ≤ r, s, t < ∞ and r−1 + s−1 + t−1 = 1. Then,

|EXY−EXEY| ≤ C∥X∥r∥Y∥s {χ (Card(S),Card (S ′))φ (dist (S, S ′))}1/t .

For random variables bounded with probability one, the right-hand side of

the above equation can be replaced by Cχ (Card(S),Card (S ′))φ (dist (S, S ′)).

Proof. The proof can be seen in Tran (1990).

Lemma 2 Let ϕ(·) be a standard Gaussian kernel, S(Xi) = m(Xi) −

m(x) − m(1)(x)(Xi − x), and µ2 =
∫
Rd uu

TK(u)du. We then have the

following equations

1

ñh3
1h

d
2

∑
i∈In

ϕ(2)

(
εi
h1

)(
Xi − x

h2

)(
Xi − x

h2

)T

K

(
Xi − x

h2

)

=f(x)µ2g
(2)(0 | X = x) + op(1).

1

ñh3
1h

d
2

∑
i∈In

ϕ(2)

(
εi
h1

)
K

(
Xi − x

h2

)(
Xi − x

h2

)
S(Xi)

=
h2
2

2
f(x)g(2)(0 | X = x)

d∑
i=1

d∑
j=1

mij(x)

∫
Rd

uiujuK(u)du+ op(1).
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1

ñh2
1h

d
2

∑
i∈In

ϕ(1)

(
εi
h1

)
K

(
Xi − x

h2

)
=

h2
1

2
f(x)g(3)(0 | X = x) + op(1).

Proof. We prove the first equation. The second and third equations can be

proved by following the same steps. Let Ti =
1

h3
1h

d
2
ϕ(2)

(
εi
h1

)(
Xi−x
h2

)(
Xi−x
h2

)T
K
(

Xi−x
h2

)
. When n → ∞, we have

E

(
1

ñ

∑
i∈In

Ti

)
= E(E(Ti | Xi))

=
1

h3
1h

d
2

∫∫
Rd+1

ϕ(2)

(
ε

h1

)(
X− x

h2

)(
X− x

h2

)T

K

(
X− x

h2

)
g(ε|X)dεdF (X)

=
1

h2
1

∫∫
Rd+1

ϕ(τ)(τ 2 − 1)uuTK(u)g(τh1 | X = x)f(uh2 + x)dτdu

=f(x)µ2g
(2)(0 | X = x).

We first consider the variance of the above equation, where

Var

(
1

ñ

∑
i∈In

Ti

)
=

1

ñ2

∑
i∈In

Var(Ti) +
1

ñ2

∑
i̸=j

E(Ti − E(Ti))(Tj − E(Tj))
T

=: A1 + A2.

With the assumption that ñhd
2h

5
1 → ∞ and the Lebesgue dominated con-

vergence theorem, we have

A1 ≤
1

ñ2

∑
i∈In

E(TiT
T
i ) =

1

h6
1h

2d
2

∫∫
Rd+1

(
ϕ(2)

(
ε

h1

))2(
X− x

h2

)(
X− x

h2

)T

K2

(
X− x

h2

)(
X− x

h2

)(
X− x

h2

)T

g(ε | X)dεdF (X)

=
1

ñhd
2h

5
1

E[(ϕ(2)(τ))2 | X = x]f(x)

∫
R
uuTK2(u)(uuT )Tdu+ o

(
1

ñhd
2h

5
1

)
→ 0.
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We now prove that for n large enough, there exists C such that ñhd
2h

5
1A2

< C. Define S = {i, j, d(i, j) ≤ sn}, where sn is a real sequence that conve-

rges to infinity and will be specified later. We have A2 = A21 + A22 with

A21 =
1

ñ2

∑
i,j∈S

E(Ti − E(Ti))(Tj − E(Tj))
T ,

A22 =
1

ñ2

∑
i,j∈Sc

E(Ti − E(Ti))(Tj − E(Tj))
T ,

where Sc stands for the complement of S. In addition, we have

1

h4
1

E
[
ϕ(2)

(
εi
h1

)
ϕ(2)

(
εj
h1

) ∣∣∣(Xi,Xj)

]
=

1

h2
1

∫∫∫
R2d+2

ϕ(t)(t2 − 1)ϕ(s)

(s2 − 1)g(th1, sh1|(Xi,Xj))dtdsdF (Xi,Xj) = O(1).

Similarly, we obtain E
[

1
h2
1
ϕ(2)

(
εi
h1

) ∣∣∣Xi

]2
= O(h−3

1 ). In addition, by

condition C3, we have

E

[(
Xi − x

h2

)(
Xi − x

h2

)T

K

(
Xi − x

h2

)
((

Xj − x

h2

)(
Xj − x

h2

)T

K

(
Xj − x

h2

))T ]

=h2d
2

∫∫
R2d

uuTK(u)(vvTK(v))Tf(uh2 + x,vh2 + x)dudv = O(h2d
2 ).

Also, we can get

E

[(
Xi − x

h2

)(
Xi − x

h2

)T

K

(
Xi − x

h2

)]

=hd
2

∫
Rd

uuTK(u)f(uh2 + x)du = O(hd
2).

Let us consider A21, where we can obtain
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∣∣∣ 1
ñ2

E(Ti − E(Ti))(Tj − E(Tj))
T
∣∣∣ = ∣∣∣ 1

ñ2
(E(TiT

T
j )− E(Ti)E(Tj)

T )
∣∣∣

≤ 1

ñ2
E[E|TiT

T
j |(Xi,Xj)|] +

1

ñ2
(E[E|Ti| | Xi])(E[E|Ti| | Xi])

T ≤ ñ−2h−2d
2 h−6

1

E

[(
Xi − x

h2

)(
Xi − x

h2

)T

K

(
Xi − x

h2

)((
Xj − x

h2

)(
Xj − x

h2

)T

K

(
Xj − x

h2

))T]
E
[
ϕ(2)

(
εi
h1

)
ϕ(2)

(
εj
h1

) ∣∣∣(Xi,Xj)

]
+ ñ−2h−2d

2 h−6
1(

E

[(
Xi − x

h2

)(
Xi − x

h2

)T

K

(
Xi − x

h2

)]
E
[
ϕ(2)

(
εi
h1

) ∣∣∣Xi

])
(
E

[(
Xi − x

h2

)(
Xi − x

h2

)T

K

(
Xi − x

h2

)]
E
[
ϕ(2)

(
εi
h1

) ∣∣∣Xi

])T

≤Cñ−2h−5
1 h−d

2 → 0.

After that, we compute A22. Since kernel functions are bounded, by apply-

ing Lemma 1, setting r = s = 2 + δ and t = (2 + δ)/δ, we can get∣∣∣ 1
ñ2

E(Ti − E(Ti))(Tj − E(Tj))
T
∣∣∣

≤Cñ−2h−2d
2 h−6

1 (h1h
d
2)

2/(2+δ)[χ(1, 1)φ(∥i− j∥)]δ/(2+δ).

Then, we obtain

ñhd
2h

5
1

∣∣∣ 1
ñ2

∑
i,j∈Sc

E(Ti − E(Ti))(Tj − E(Tj))
T
∣∣∣ ≤ Cñ−1h

−dδ/(2+δ)
2 h

−δ/(2+δ)
1

∑
i,j∈Sc

[χ(1, 1)φ(∥i− j∥)]δ/(2+δ) ≤ Ch
−dδ/(2+δ)
2 h

−δ/(2+δ)
1 s−Nδ/(2+δ)

n

∑
∥i∥>sn

[∥i∥Nφ(∥i∥)]δ/(2+δ) ≤ Ch
−dδ/(2+δ)
2 h

−δ/(2+δ)
1 s−Nδ/(2+δ)

n

∑
∥i∥>sn

[∥i∥N−µ]δ/(2+δ).

As µ > N + 1, we choose sn = (hd
2h1)

−1/N , which gives
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Var

(
1

ñ

∑
i∈In

Ti

)
= O

(
1

ñhd
2h

5
1

)
.

Combining the above calculations, we achieve the desired result.

The second lemma holds independent significance and plays a pivotal

role in the subsequent proofs. In alignment with Hallin et al. (2009), we re-

frain from assuming that the mixing coefficient adheres to the form specified

in Definition 2.2 in the paper.

Lemma 3 Let
{
(Yj,Xj) ; j ∈ ZN

}
be a stationary spatial process with gen-

eral mixing coefficient φ(j) = φ (j1, · · · , jN) := sup{|P(AB)− P(A)P(B)| :

A ∈ B ({Yi,Xi}) , B ∈ B ({Yi+j,Xi+j})}. Define An =
(

1
ñh1hd

2

)1/2∑
i∈In[

ϕ(1)
(

εi
h1

)
K
(

Xi−x
h2

)(
Xi−x
h2

)
− E

(
ϕ(1)

(
εi
h1

)
K
(

Xi−x
h2

)(
Xi−x
h2

))]
= (ñ)−1/2

(h1h
d
2)

−1/2
∑

i∈In ∆j(x) and Var (An) = (ñh1h
d
2)

−1
∑

i∈In E
[
∆2

j (x)
]
+(ñ)−1/2

(h1h
d
2)

−1
∑

{i,j∈In|∃k:ik ̸= jk} E [∆i(x)∆j(x)] = Ĩ(x) + R̃(x), where ∆i(x) =

ϕ(1)
(

εi
h1

)
K
(

Xi−x
h2

)(
Xi−x
h2

)
. Then, for any cn = (cn1, · · · , cnN) ∈ ZN with 1

< cnk < nk for all k = 1, · · · , N , we achieve

|R̃(x)| ≤ C
(
ñh1h

d
2

)−1
[
J̃1(x) + J̃2(x)

]
→ 0,

where we have J̃1(x) = h5
1h

2d
2

∏N
k=1 (nkcnk) and J̃2(x) = (h1h

d
2)

2/(2+δ)ñ
∑N

k=1(∑ns

|js|=1,s=1,··· ,k−1

∑nk

|jk|=cnk

∑ns

|js|=1,s=k+1,··· ,N {φ (j1, · · · , jN)}δ/(2+δ) ). If fur-
thermore φ (j1, · · · , jN) takes the form φ(∥j∥), we have J̃2(x) ≤ C(h1h

d
2)

2/(2+δ)
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ñ
∑N

k=1

(∑∥n∥
t=cnk

tN−1{φ(t)}δ/(2+δ)
)
.

Proof. According to the assumptions in this paper and the Lebesgue density

theorem, we obtain

(h1h
d
2)

−1E[∆i(x)∆j(x)] = (h1h
d
2)

−1
{
E
[
ϕ(1)

(
εi
h1

)
K

(
Xi − x

h2

)(
Xi − x

h2

)
ϕ(1)

(
εj
h1

)
K

(
Xj − x

h2

)(
Xj − x

h2

)]
− E

[
ϕ(1)

(
εi
h1

)
K

(
Xi − x

h2

)
(
Xi − x

h2

)]
E
[
ϕ(1)

(
εj
h1

)
K

(
Xj − x

h2

)(
Xj − x

h2

)]}
=h1h

d
2

∫∫∫∫
ϕ (t) tK(u)uϕ (s) sK(v)vg(th1, sh1 | xi,xj)

f(uh2 + x,vh2 + x)dtdudsdv − h1h
d
2

∫∫
ϕ (t) tg(th1 | x)K(u)u

f(uh2 + x)dtdu

∫∫
ϕ (s) sg(sh1 | x)K(v)vf(vh2 + x)dsdv ≤ Ch4

1h
d
2.

Let cn = (cn1, · · · , cnN) ∈ RN be a sequence of vectors with positive

components. Define

S1 := {i ̸= j ∈ In : |jk − ik| ≤ cnk, for all k = 1, · · · , N} ,

S2 := {i, j ∈ In : |jk − ik| > cnk, for some k = 1, · · · , N} .

Clearly,

Card (S1) ≤ 2N ñ
N∏
k=1

cnk.

Splitting R̃(x) into
(
ñh1h

d
2

)−1
(J1 + J2) , with Jℓ :=

∑
i,j∈Sℓ

E∆j(x)∆i(x), ℓ

= 1, 2, it follows from the above calculation that

|J1| ≤ Ch5
1h

2d
2 Card (S1) ≤ 2NCh5

1h
2d
2 ñ

N∏
k=1

cnk.
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Turning to J2, we have |J2| ≤
∑

i,j∈S2
|E∆j(x)∆i(x)|. According to

Lemma 1 and the boundedness of ∆i(x), setting r = s = 2 + δ and

t = (2 + δ)/δ yields

|E∆j(x)∆i(x)|

≤C

(
E
[∣∣ϕ(1)

(
εi
h1

)
K

(
Xi − x

h2

)(
Xi − x

h2

) ∣∣2+δ
])2/(2+δ)

{φ(j− i)}δ/(2+δ)

≤C(h1h
d
2)

2/(2+δ)

(
(h−1

1 h−d
2 )E

[∣∣ϕ(1)

(
εi
h1

)
K

(
Xi − x

h2

)(
Xi − x

h2

) ∣∣2+δ
]2/(2+δ)

)
{φ(j− i)}δ/(2+δ) ≤ C(h1h

d
2)

2/(2+δ){φ(j− i)}δ/(2+δ).

Hence,

|J2| ≤ C(h1h
d
2)

2/(2+δ)
∑ ∑

i,j∈S2

{φ(j− i)}δ/(2+δ).

For any N -tuple 0 ̸= ℓ = (ℓ1, · · · , ℓN) ∈ {0, 1}N , set

S (ℓ1, · · · , ℓN) := {i, j ∈ In : |jk − ik| > cnk

if ℓk = 1 and |jk − ik| ≤ cnk if ℓk = 0, k = 1, · · · , N}

and

V (ℓ1, · · · , ℓN) :=
∑ ∑

i,j∈S(ℓ1,··· ,ℓN )

{φ(j− i)}δ/(2+δ).

Then, we can get

∑ ∑
i,j∈S2

{φ(j− i)}δ/(2+δ) =
∑

0 ̸=ℓ∈{0,1}N
V (ℓ1, · · · , ℓN)

≤
∑

0 ̸=ℓ∈{0,1}N
ñ
∑
|j1|

· · ·
∑
|jk|

· · ·
∑
|jN |

{φ (j1, · · · , jN)}δ/(2+δ)
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with the sums
∑

|jk| running over all jk’s such that 1 ≤ |jk| ≤ nk when

ℓk = 0, and cn1 ≤ |jk| ≤ nk when ℓk = 1. Since all terms are non-negative,

for 1 ≤ cnk ≤ nk, sums of the form
∑nk

|jk|=cnk
· · · are smaller than those of

the form
∑nk

|jk|=1 · · · . Thus, following the same arguments as Hallin et al.

(2009), we can achieve

|J2| ≤C(h1h
d
2)

2/(2+δ)ñ
N∑
k=1

n1∑
|j1|=1

· · ·
nk−1∑

|jk−1|=1

nk∑
|jk|=cnk

nk+1∑
|jk+1|=1

· · ·
nN∑

|jN |=1

{φ (j1, · · · , jN)}δ/(2+δ).

If φ (j1, · · · , jN) depends on ∥j∥ only, we obtain

n1∑
|j1|=1

· · ·
nk−1∑

|jk−1|=1

nk∑
|jk|=cnk

nk+1∑
|jk+1|=1

· · ·
nN∑

|jN |=1

{φ(∥j∥)}δ/(2+δ)

≤
∥n∥∑

|j1|=1

· · ·
t∑

|jN−1|=1

{φ(t)}δ/(2+δ) ≤
∥n∥∑

t=cnk

tN−1{φ(t)}δ/(2+δ).

After that, we need to show |R̃(x)| → 0. Let cank := (h1h
d
2)

−δ/(2+δ) → ∞.

Clearly, cnk < nk because of nk(h1h
d
2)

δ/(2+δ)a > 1 for all k. Based on the

above results, with a > δN/(2 + δ), we arrive at

(
ñh1h

d
2

)−1
J2 ≤ C

N∑
k=1

(
cank

∞∑
t=cnk

tN−1{φ(t)}δ/(2+δ)

)
→ 0,

(
ñh1h

d
2

)−1
J1 ≤ Ch4

1h
d
2cn1 · · · cnN = Ch4

1h
d
2(h1h

d
2)

−δN/(2+δ)a → 0.

Lemma 4 Let the spatial process {Yi,Xi} satisfy the mixing property in
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Definition 2.2, and denote Ũj, j = 1, · · · ,M, as a M−tuple of measurable

functions such that Ũj is measurable with respect to
{
(Yi,Xi) , i ∈ ℓ̃j

}
,

where l̃j ⊂ ℓn. If Card
(
ℓ̃j

)
≤ p and d

(
ℓ̃ℓ, ℓ̃j

)
≥ q for any ℓ ̸= j, then∣∣∣∣∣E

[
exp

{
iu

M∑
j=1

Ũj

}]
−

M∏
j=1

E
[
exp

{
iuŨj

}] ∣∣∣∣∣ ≤ C

M−1∑
j=1

χ(p, (M − j)p)φ(q),

where i =
√
−1.

Proof. The proof can be seen in Hallin et al. (2009).

S7-1 Proof of Theorem 2.1

Following Ullah et al. (2023), let αn = (ñh3
1h

d
2)

−1/2 + h2
1 + h2

2. We need to

show that for any given η > 0, there exists a constant c such that

P

{
sup
∥µ∥=c

Qñ (θ + αnµ) < Qñ (θ)

}
⩾ 1− η.

By rewriting the kernel-based objective function, we have

Qñ(θ) =
1

ñh1hd
2

∑
i∈In

ϕ

(
Yi − θTX∗

i

h1

)
K

(
Xi − x

h2

)
,

where X∗
i = [1 (Xi − x)h−1

2 ]T is the rescaled local design vector. To study

the local perturbation θ → θ + αnµ, we use the following decomposition

of the residuals, i.e., Yi − θTX∗
i = εi + S(Xi) and Yi − (θ + αnµ)

TX∗
i =

εi+S(Xi)−αnµ
TX∗

i , where εi = Yi−m(Xi), and S(Xi) = m(Xi)−m(x)−

m(1)(x)T (Xi − x) denotes the local linear approximation error. Using this
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representation, the difference in the kernel-weighted objective function can

be rewritten as

Qñ (θ + αnµ)−Qñ (θ)

=
1

ñh1hd
2

∑
i∈In

ϕ

(
εi + S(Xi)− αnµ

TX∗
i

h1

)
K

(
Xi − x

h2

)

− 1

ñh1hd
2

∑
i∈In

ϕ

(
εi + S(Xi)

h1

)
K

(
Xi − x

h2

)
.

Because αn → 0, the perturbation term −αnµ
TX∗

i is infinitesimal. There-

fore, it is legitimate to invoke Taylor’s theorem to expand ϕ(·) around the

unperturbed argument (εi + S(Xi))/h1. Then, according to Taylor expan-

sion, we can obtain

Qñ (θ + αnµ)−Qñ (θ)

=
1

ñh1hd
2

∑
i∈In

[
− ϕ(1)

(
εi + S(Xi)

h1

)(
αnµ

TX∗
i

h1

)
K

(
Xi − x

h2

)

+
1

2
ϕ(2)

(
εi + S(Xi)

h1

)(
αnµ

TX∗
i

h1

)2

K

(
Xi − x

h2

)
− 1

6
ϕ(3)

(
ε∗i
h1

)(
αnµ

TX∗
i

h1

)3

K

(
Xi − x

h2

)]
= I1 + I2 + I3,

where ε∗i is between εi + S(Xi) and εi + S(Xi) − αnµ
TX∗

i . Following the

same steps as proving Lemma 2, we can get

E(I1) = −E
(

1

h1hd
2

ϕ(1)

(
εi + S(Xi)

h1

)(
αnµ

TX∗
i

h1

)
K

(
Xi − x

h2

))
= −E

(
1

h1hd
2

(
ϕ(1)

(
εi
h1

)
+ ϕ(2)

(
εi
h1

)
S(Xi) + o(S(Xi))

)
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(
αnµ

TX∗
i

h1

)
K

(
Xi − x

h2

))
= Op(cαn(h

2
1 + h2

2)).

Var(I1) =
1

ñ
Var

(
1

h1hd
2

ϕ(1)

(
εi + S(Xi)

h1

)(
αnµ

TX∗
i

h1

)
K

(
Xi − x

h2

))
=Op(c

2α2
n(ñh

3
1h

d
2)

−1).

Consequently, I1 = Op(cαn(h
2
1 + h2

2)) + cαnOp((ñh
3
1h

d
2)

−1/2) = Op(cα
2
n).

Similarly, we have

E(I2) =
1

2
E

(
1

h1hd
2

ϕ(2)

(
εi + S(Xi)

h1

)(
αnµ

TX∗
i

h1

)2

K

(
Xi − x

h2

))

=
1

2
E

(
1

h1hd
2

(
ϕ(2)

(
εi
h1

)
+ ϕ(3)

(
εi
h1

)
S(Xi) + o(S(Xi))

)
(
αnµ

TX∗
i

h1

)2

K

(
Xi − x

h2

))
= Op(c

2α2
n).

Var(I2) =
1

ñ
Var

(
1

2h1hd
2

ϕ(2)

(
εi + S(Xi)

h1

)(
αnµ

TX∗
i

h1

)2

K

(
Xi − x

h2

))

=Op(c
4α4

n(ñh
5
1h

d
2)

−1).

As a result, I2 = Op(c
2α2

n) + c2α2
nOp((ñh

5
1h

d
2)

−1/2) = Op(c
2α2

n). In

addition, we get

E(I3) = −1

6
E

(
1

h1hd
2

ϕ(3)

(
εi
h1

)(
αnµ

TX∗
i

h1

)3

K

(
Xi − x

h2

))
= Op(c

3α3
n).

Based on these, we can choose c large enough such that I2 dominates both

I1 and I3 with probability 1 − η. Because the second term is negative,

P
{
sup∥µ∥=cQñ (θ + αnµ) < Qñ (θ)

}
⩾ 1− η holds.

□
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S7-2 Proof of Lemma 2.2

Define R(Xi) = S(Xi)−(θ̂−θ0)
TXi. Then, Yi−a−bT (Xi−x) = εi+R(Xi).

The solution θ̂ satisfies the equation∑
i∈In

Kiϕ
(1)
h1

(εi +R(Xi))X
∗
i

=
∑
i∈In

Ki

{
ϕ
(1)
h1

(εi) + ϕ
(2)
h1

(εi)R(Xi) +
1

2
ϕ
(3)
h1

(ε∗i )R
2(Xi)

}
X∗

i = 0,

where ε∗i is between εi and εi + R(Xi). Based on the proof of Lemma 2,

regarding the second term on the left-hand side of the above equation, we

can obtain

∑
i∈In

Kiϕ
(2)
h1

(εi)X
∗
iS(Xi) = ñE(g(2)(0 | X = x))

h2
2

2
Λ + op(ñh

2
2),

−
∑
i∈In

Kiϕ
(2)
h1

(εi)X
∗
i (θ̂−θ0)

TX∗
i = −ñE(g(2)(0|X = x))f(x)S(1+op(1))(θ̂−θ0),

where

Λ =

 f(x)
∑d

i=1

∑d
j=1mij(x)

∫
Rd uiujK(u)du

f(x)
∑d

i=1

∑d
j=1mij(x)

∫
Rd uiujuK(u)du

 ,

S =

 f(x)
∫
Rd K(u)du f(x)

∫
Rd u

TK(u)du

f(x)
∫
Rd uK(u)du f(x)

∫
Rd uu

TK(u)du

 .

Also, from Theorem 2.1, we know that ∥θ̂ − θ0∥ = Op((nh
d
2h

3
1)

−1/2 +

h2
1 + h2

2). Thus, we can achieve

sup
i:

Xi−x

h2
≤1

|R(Xi)| ≤ sup
i:

Xi−x

h2
≤1

[|S(Xi)|+ |(θ̂− θ0)
TXi|] = Op(∥θ̂− θ0∥) = op(1).
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sup
i:

Xi−x

h2
≤1

|R(Xi)|2 = op(1)Op(∥θ̂ − θ0∥) = op(αn).

Meanwhile, similar to the proof of Lemma 2, for j = 0 or 1, we have

E

[
K

(
Xi − x

h2

)(
Xi − x

h2

)j
]
=

∫
Rd

1

hd
2

K

(
Xi − x

h2

)(
Xi − x

h2

)j

f(x)dx

= f (x)

∫
Rd

ujK(u)du+ o(1).

Hence, in terms of the third term
∑

i∈In Kiϕ
(3)
h1

(ε∗i )R
2(Xi)X

∗
i , we get

E

(∑
i∈In

Kiϕ
(3)
h1

(ε∗i )R
2(Xi)X

∗
i

)
= o(∥θ̂−θ0∥)

∑
i∈In

E
(
Kiϕ

(3)
h1

(ε∗i )X
∗
i

)
= op(αn).

Var
(∑

i∈In

Kiϕ
(3)
h1

(ε∗i )R
2(Xi)X

∗
i

)
= o(∥θ̂ − θ0∥2)Var

(∑
i∈In

(
Kiϕ

(3)
h1

(ε∗i )X
∗
i

))
= op(α

2
n).

Thus, the second term will dominate the third term. With the definition of

Wñ, we obtain

θ̂ − θ0 =
h2
2

2
S−1Λ(1 + op(1)) +

S−1Wñ

ñg(2)(0 | X = x)
(1 + op(1)).

□

S7-3 Proof of Theorem 2.2

The main idea in the proof is to utilize the block decomposition method.

Based on Lemma 2, we know

1

h2
1h

d
2

∑
i∈In

ϕ(1)

(
εi
h1

)
K

(
Xi − x

h2

)

=− ñ
h2
1

2
f(x)g(3)(0 | X = x)

∫
Rd

K(u)du+ op(1).
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Also, by directly calculating, we can have

1

h2
1h

d
2

∑
i∈In

ϕ(1)

(
εi
h1

)
K

(
Xi − x

h2

)(
Xi − x

h2

)

=− ñ
h2
1

2
f(x)g(3)(0 | X = x)

∫
Rd

uK(u)du+ op(1).

Then, we can obtain

E
(
θ̂ − θ0

)
=

(
h2
2

2
S−1Λ− h2

1

2
S−1 g

(3)(0 | X = x)

g(2)(0 | X = x)
Γ

)
(1 + op(1)),

where Γ =

 f(x)
∫
Rd K(u)du

f(x)
∫
Rd uK(u)du

.

We consider the variance of 1
ñh2

1h
d
2

∑
i∈In ϕ

(1)
(

εi
h1

)
K
(

Xi−x
h2

)
X∗

i . By cal-

culating, we have

Var

(
1

ñh2
1h

d
2

∑
i∈In

ϕ(1)

(
εi
h1

)
K

(
Xi − x

h2

)
X∗

i

)

=
1

ñh4
1h

2d
2

∫∫
ϕ2

(
εi
h1

)(
εi
h1

)2

K2

(
Xi − x

h2

)
X∗

iX
∗T
i g(ε | X)dεdF (X)

(1 + op(1)) =

∫
ϕ2(t)t2dt

ñh3
1h

d
2

g(0 | X = x)f(x)Σ(1 + op(1)),

where Σ =


∫
Rd K

2(u)du
∫
Rd u

TK2(u)du∫
Rd uK

2(u)du
∫
Rd uu

TK2(u)du

. Then, we get

Var
(
θ̂ − θ0

)
=

∫
ϕ2(t)t2dt

ñh3
1h

d
2

g(0 | X = x)

(g(2)(0 | X = x))2
f(x)S−1ΣS−1(1 + op(1)).

To prove Theorem 2.2, it is sufficient to show that
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√
h3
1h

d
2ñ

1

ñh2
1h

d
2

∑
i∈In

[
ϕ(1)

(
εi
h1

)
K

(
Xi − x

h2

)
X∗

i − E(ϕ(1)

(
εi
h1

)

K

(
Xi − x

h2

)
X∗

i

)]
d→ N

(
0,

∫
ϕ2(t)t2dtE(g(0 | X = x))f(x)Σ

)
.

Using Slutsky’s theorem, Theorem 2.2 follows directly. After that, for any

unit vector C ∈ Rd+1, we need to prove the following asymptotic result

{CTCov(W ∗
ñ)C}−1/2{CTW ∗

ñ − CTE(W ∗
ñ)}

d→ N (0, 1),

where W ∗
ñ −E(W ∗

ñ) =
√

1
ñh1hd

2

∑
i∈In

[
ϕ(1)

(
εi
h1

)
K
(

Xi−x
h2

)
X∗

i −E
(
ϕ(1)

(
εi
h1

)
K
(

Xi−x
h2

)
X∗

i

)]
=
∑

i∈In ∆i. Now, we decompose CTW ∗
ñ − E(CTW ∗

ñ) into

smaller pieces involving “large” and “small” blocks. More specifically, we

consider

U(1,n, j) :=

jk(pk+q)+pk∑
ik=jk(pk+q)+1,k=1,··· ,N

∆i,

U(2,n, j) :=

jk(pk+q)+pk∑
ik=jk(pk+q)+1,k=1,··· ,N−1

(jN+1)(pN+q)∑
iN=jN (pN+q)+pN+1

∆i,

U(3,n, j) :=

jk(pk+q)+pk∑
ik=jk(pk+q)+1,k=1,··· ,N−2

(jN−1+1)(pN−1+q)∑
iN−1=jN−1(pN−1+q)+pN−1+1

jN (pN+q)+pN∑
iN=jN (pN+q)+1

∆i,

U(4,n, j) :=

jk(pk+q)+pk∑
ik=jk(pk+q)+1,k=1,··· ,N−2

(jN−1+1)(pN−1+q)∑
iN−1=jN−1(pN−1+q)+pN−1+1

(jN+1)(pN+q)∑
iN=jN (pN+q)+pN+1

∆i,

and so on. It is noticed that

U
(
2N − 1,n, j

)
:=

(jk+1)(pk+q)∑
ik=jk(pk+q)+pk+1,k=1,··· ,N−1

jN (pN+q)+pN∑
iN=jN (pN+q)+1

∆i,
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U
(
2N ,n, j

)
:=

(jk+1)(pk+q)∑
ik=jk(pk+q)+pk+1,k=1,··· ,N

∆i.

Without loss of generality, assume that, for some integers r1, · · · , rN ,

n = (n1, · · · , nN) is such that n1 = r1 (p1 + q) , · · · , nN = rN (pN + q) , with

rk → ∞ for all k = 1, · · · , N. For each integer 1 ≤ i ≤ 2N , define

T (n, i) :=

rk−1∑
jk=0,k=1,··· ,N

U(i,n, j).

Then, we have

CTW ∗
ñ =

2N∑
i=1

T (n,x, i).

Note that T (n, 1) is the sum of the random variables ∆i over “large”

blocks, whereas T (n,x, i), 2 ≤ i ≤ 2N , are sums over “small” blocks. If it is

not the case that n1 = r1 (p1 + q) , · · · , nN = rN (pN + q) for some integers

r1, · · · , rN , then an additional term T
(
n, 2N + 1

)
containing all the ∆i’s

that are not included in the big or small blocks can be considered. This

term will not change the proof much. As n → ∞, we obtain

Q1 :=
∣∣∣E[exp[iuT (n, 1)]]− rk−1∏

jk=0,k=1,··· ,N

E[exp[iuU(1,n, j)]]
∣∣∣→ 0,

Q2 := E

 2N∑
i=2

T (n, i)

2

→ 0,

Q3 :=

rk−1∑
jk=0,k=1,··· ,N

E[U(1,n, j)]2 →
∫

ϕ2(t)t2dtE(g(0 | X = x))f(x)CTΣC,
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Q4 :=

rk−1∑
jk=0,k=1,··· ,N

E
[
(U(1,n, j))2I

{
|U(1,n, j)| > ϵ

∫
ϕ2(t)t2dt

E(g(0 | X = x))f(x)CTΣC
}]

→ 0,

for every ϵ > 0. We then prove equations Q1-Q4.

Rank the random variables U(1,n,x, j) in an arbitrary manner and

refer to them as Ũ1, · · · , ŨM . Note that M =
∏N

k=1 rk = n̂
{∏N

k=1 (pk+

q)}−1 ≤ n̂/p, where p =
∏N

k=1 pk. Let

ℓ(1,n,x, j) := {i : jk (pk + q) + 1 ≤ ik ≤ jk (pk + q) + pk, k = 1, · · · , N} .

Following the results in Lemma 4, we have

Q1 ⩽
M−1∑
k=1

M∑
j=k+1

∣∣∣E(exp [iuŨk

]
− 1
)(

exp
[
iuŨj

]
− 1
) M∏

s=j+1

exp
[
iuŨs

]

− E
(
exp

[
iuŨk

]
− 1
)
E
(
exp

[
iuŨj

]
− 1
) M∏

s=j+1

exp
[
iuŨs

]

≤
M−1∑
k=1

M∑
j=k+1

∣∣∣E(exp [iuŨk

]
− 1
)(

exp
[
iuŨj

]
− 1
)

− E
(
exp

[
iuŨk

]
− 1
)
E
(
exp

[
iuŨj

]
− 1
) ∣∣∣

≤C
M−1∑
k=1

min{p, (M − k)p}φ(q) ≤ CMpφ(q) ≤ Cñφ(q) → 0.

In order to prove Q2, it is enough to show that

E[T 2(n, i)] → 0 for any 2 ≤ i ≤ 2N .

Without loss of generality, we consider E [T 2(n, 2)]. Ranking the ran-

dom variables U(2,n, j) in an arbitrary manner and referring them as
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Û1, · · · , ÛM , we can get

E
[
T 2(n, 2)

]
=

M∑
i=1

Var
(
Ûi

)
+ 2

∑
1≤i<j≤M

Cov
(
Ûi, Ûj

)
= B1 +B2.

We shall prove B1 → 0 and B2 → 0 below.

As we know ∆i ≈ (ñh1h
d
2)

−1/2ϕ(1)
(

εi
h1

)
K
(

Xi−x
h2

)
X∗

i , then

Var(∆i) ≈(ñh1h
d
2)

−1(h1h
d
2)

∫∫
ϕ2(t)t2K2(u)X∗

iX
∗T
i g(th1 | X = x)

f(h2u+ x)dtdu(1 + op(1)) ≤ Cñ−1.

According to the calculation, we obtain

E(∆i∆j) ≈(ñh1h
d
2)

−1

∫∫∫∫
ϕ(t)tϕ(s)sK(u)K(v)X∗

iX
∗T
j g(th1, sh1 | X = x)

f(h2u+ x, h2v + x)dtdsdudv(1 + op(1)) ≤ C
(
ñh1h

d
2

)
.

Based on the results from Lemma 3, we have

B1 = E

( pk∑
ik=1,k=1,··· ,N−1

q∑
iN=1

∆i

)2
+

∑
i̸=j∈F

E [∆i∆j] ≤ C

((
N−1∏
k=1

pk

)
q

Var {∆i}+ h4
1h

d
2ñ

−1

(
N−1∏
k=1

pkcnk

)
qcnN + ñ(h1h

d
2)

−1(h1h
d
2)

2/(2+δ)

(
N−1∏
k=1

pk

)

q
N∑
k=1

∥n∥∑
t=cnk

tN−1{φ(t)}δ/(2+δ)

)
≤ Cñ−1

(
N−1∏
k=1

pk

)
q ≤ C(q/pN) → 0,

where F = F(p, q) := {i, j : 1 ≤ ik, jk ≤ pk, k = 1, · · · , N − 1, and 1 ≤

iN , jN ≤ q}.

Set ℓ(2, n,x, j) := {i : jk (pk + q) + 1 ≤ ik ≤ jk (pk + q) + pk, 1 ≤ k ≤

N − 1, jN (pN + q)+ pN + 1 ≤ iN ≤ (jN + 1) (pN + q)}. Then, U(2,n, j) =
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i∈ℓ(2,n,i) ∆i. Since pk > q, if i and i′ belong to two distinct sets ℓ(2,n,x, j)

and ℓ (2,n,x, j′) , we have ∥i− i′∥ > q. In view of Lemma 3 by taking

nk = pk and nN = q, following the same arguments as proving B1, we get

|B2| ≤ 2
∑

1≤i<j≤M

|Cov
(
Ûi, Ûj

)
| ≤ C

∑
{i,j:∥i−j∥≥q,1≤ik,jk≤nk}

|E [∆i∆j]|

≤ C(h1h
d
2)

−1
∑

{i,j:∥i−j∥≥q,1≤ik,jk≤nk}

(h1h
d
2)

2/(2+δ){φ(∥j− i∥)}δ/(2+δ)

≤ C(h1h
d
2)

−δ/(2+δ)

(
N∏
k=1

nk

) ∥n∥∑
t=q

tN−1{φ(t)}δ/(2+δ)

 .

Take cank = (h1h
d
2)

−δ/(2+δ) → ∞. As q(h1h
d
2)

δ/a(2+δ) > 1, so that cnk < q ≤

pk. Thus, Q2 follows.

Q3 : The result can be easily obtained by following the initial procedures

in this proof and the arguments for Q2. Particularly, let S
′
n := T (n, 1) and

S ′′
n :=

∑2N

i=2 T (n, i). Then, S
′
n is a sum of Yj’s over the “large” blocks and

S ′′
n over the “small” ones. We can write

E (S ′
n)

2
= ES2

n + E (S ′′
n)

2 − 2ESnS
′′
n.

In the beginning, we have shown that E [|Sn|2] →
∫
ϕ2(t)t2dtE(g(0 |

X = x))f(x)Σ. Also, Q2 implies E (S ′′
n)

2 → 0. To demonstrate

E
[
|S ′

n|2
]
→
∫

ϕ2(t)t2dtE(g(0 | X = x))f(x)Σ,

it is sufficient to show that ñ−1ESnS
′′
n → 0, as by Cauchy-Schwartz’s in-

equality, we can write
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|ESnS
′′
n| ≤ E|SnS

′′
n| ≤

(
ES2

n

)1/2 (ES ′′2
n

)1/2
.

Recall that T (n, 1) =
∑

j∈J U(1,n, j). We then have

E [|S ′
n|2] =

∑rk−1
jk=0,k=1,··· ,N E [U2(1,n, j)]

+
∑

i̸=j∈J ∗ Cov(U(1,n, j), U(1,n, i)),

where J ∗ = J ∗(p, q) := {i, j : 1 ≤ ik, jk ≤ rk − 1, k = 1, · · · , N}. By the

same argument used in showing B2, we can prove that

C(h1h
d
2)

−δ/(2+δ)
∑
∥i∥>q

nk−1∑
ik=1,k=1,··· ,N

{φ(∥i∥)}δ/(2+δ)

≤C(h1h
d
2)

−δ/(2+δ)

(
∞∑
t=q

tN−1{φ(t)}δ/(2+δ)

)
→ 0.

Q4 : At first, we know |U(1,n, j)| ≤ Cp(ñh1h
d
2)

−1/2. It follows that

Q4 ≤Cp2(ñh1h
d
2)

−1

rk−1∑
jk=0,k=1,··· ,N

P
[
|U(1,n, j)|

>ϵ

(∫
ϕ2(t)t2dtE(g(0 | X = x))f(x)CTΣC

)1/2

ñ1/2
]
.

Moreover,

|U(1,n, j)|
/((∫

ϕ2(t)t2dtE(g(0 | X = x))f(x)CTΣC

)1/2

ñ1/2

)

≤Cp(ñh1h
d
2)

−1/2 → 0,

since p = [(ñh1h
d
2)

1/2/sn], where sn → ∞. Thus, we can obtain

P

[
|U(1,n, j)| > ϵ

(∫
ϕ2(t)t2dtE(g(0 | X = x))f(x)CTΣC

)1/2

ñ1/2

]
= 0

for sufficiently larger n at all j.

□
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