Supplementary Materials of “On Robust Clustering of Event Stream
Data"

Supporting materials are collected in this file. In Section[A] we provide more details about the Catoni’s influence
function. Extensive discussions on the intensity-based metrics are provided in Section [B] The construction
of basis functions is given in Section[C] Section[D]includes some explanations on the remarks in Section 3.2.
More simulation results including ablation studies are summarized in Section[E] Additional figures and tables
for numerical sections are listed in Section[F Section[H|to Section [[]collect all technical proofs for the main

theorems, propositions, and supporting lemma.

A Supporting Information of Catoni’s Influence Function

We specifically choose the following Catoni’s influence function,

10g(1+x+0.5-a}2) <2,
#(x) = €0.032/9 - (x —9.5)> + 1.5+ log(5) 2 <z <9.5, (D
1.5 + log(5) x> 9.5,
for x € RY and ¢(0) = 0. When z < 0, define ¢(z) := —¢(—=). It is not hard to see that the constructed

¢(x) has the continuous second derivative, which facilitates the theoretical analyses.

Remark 1 The constant (e.g. 9.5) in (1) could be modified. Here the only principle in choosing ¢ is that it
satisfies (2.1) and is sufficiently smooth, that is, the second derivative is continuous.

We provide the graphical illustrations of Catoni’s influence function ¢(x) and its derivative ¢'(z) in Figure
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Figure 1: Left figure: Catoni influence function ¢ and the widest influence function ¢g4,,;; and the
narrowest influence function @4pqrp. Right figure: First-order derivatives of ¢, ¢qyy and @gparp. For
the definitions of ¢4y and Gsparp, please refer to () and ().

The first-order derivative and second-order derivative of the function can be derived as
1+

s <2
1+ + 0.522 r=a
!
¢ () = 10.032/3 (x—9.5)° 2<az <95
0 ©>95
and )
z + 0.5x
Lt < 9:
1t+z+0522)2 ~=%
¢ (x) = .
0.064/3 - (z —9.5) 2<z<9.5;
0 x> 9.5.



The formula of ¢y and @sparp plotted in Figure[Tare given as follows.

log(1 + x4 2|z|?) x>0
Paun(x) = 2 2
—log(l—z+ 3|z[*) =<0,
and
—log2 ifer < -1

—log(l1—z+ 2*) if —1<z<0,
¢sharp(x) = 2 (3)
log(1 4+ z + $|z|?) if0 <z <1,

log 2 ifx > 1.

B Literature on Intensity-based Distance

For the ease of discussion, throughout this section, we suppose all events are observed within time interval
[0, T, where T is a fixed real number. Most existing distances for TPPs are based on the random time change
theorem [Brown et al.| [2002[]. That is, an event stream S = (tl, ot N) is distributed according to a TPP
with intensity A" (¢) on the time interval [0, T'] if and only if the transformed sequence Z := (v1,...,vN) =
(A* (t1),...,A" (tn)) is distributed according to a standard Poisson process on [0, A*(T")], where A*(t) :=

fot A" (u)du is the cumulative intensity function.

Barnard| [1953|] proposed a Kolmogorov-Smirnov (KS) statistic-based metric, which quantifies the distance
between observed event stream .S and the theoretical intensity A* (¢). The idea is to check whether the transformed
arrival times v+, . . ., vy are uniformly distributed within interval [0, T']. To do so, it compares Fyr , the empirical
cumulative distribution function (CDF) of the arrival times, with Fiur (u) = w/A*(T), the CDF of the uniform
random variable. Specifically, the distance is defined as
Farr (S, A7 () == VN - sup_ Fux (u) = Fun (u)|,
u€lo,

where Fyr (u) = NN 1 (v < w).

Another possible metric relies on the fact that the inter-event time w; := wv;4+1 — v; follows the standard
exponential distribution (Cox and Lewis| [1966]). It then compares Fim, the empirical CDF of w;’s, and
Fine (u) := 1 — exp(—u). This leads to

Kin (S, X)) == VN - sup |Fn (u) — Fi (u)]

u€[0,00)

where Fiy (u) = (N + 1)1 SV 1 (w; < w).

i=1
Although metrics k. and kin are popular in testing the goodness-of-fit of various Poisson processes |Daley et al.
[2003]],|Gerhard et al.| [2011]], Alizadeh et al.|[2013]], [Kim and Whitt|[2014], |Li et al.|[2018]], {Tao et al.|[2018]],
they still have many limitations. They suffer severe non-identifiability issues. Two very different event streams

can be very close under such metrics. More failure modes of k. and ki can be found in Pillow|[2009].

Taking into account the above problems, |Shchur et al.|[2021]] proposed a sum-of-squared-spacings metric,
AR N+1

* 2 1 2
Ksss(S, A" (+)) := W ; w; = WT) Z (vi —viz1)”,

=1
which extends the idea in |Greenwood| [[1946]. As we can see, the above method can measure the closeness
between the sample and the specific distribution well. However, they fail to meet the data requirements in
our scenarios. To be more specific, we can only observe the sample data and has no information of model
specification, which means that A*(-) or A*(-) is unknown. For any two samples S; and Sz, of course, we can
consider to estimate A7 (-) (A3(+)) based on sample S1 (S2) first, and then calculate the above KS-type distance
between sample Sz (S1) and the estimated A7 (-) (A3(+)). Unfortunately, this procedure makes it not symmetric

about S; and S> and also fails to satisfy the triangle inequality. As a result, it is not a proper metric distance.



C Construction of Spline Basis

Let U = (uo,u1,...,un) be asetof H 4+ 1 non-decreasing numbers satisfying 0 = up < u1-+- < upg =7
(We may treat T = 1 for the ease of presentation). Points u;’s are called knots and the set U is known as the
knot vector, and the half-open interval [u;, u;+1) the i-th knot span. For practical use, the knots are usually
equally spaced, i.e., ui+1 — u; is a constant equal to Au := T'/H for 0 < ¢ < H — 1. To construct the cubic
spline basis functions, we follow the classical procedure by defining N; ,(u) as the i-th B-spline basis function
of degree p. Then its formula can be recursively written as

Nio(u) = 1 ifu; <u< it ’

0 otherwise

U — Ujg

Uq —Uu
Nip(u) = “Nip-1(u) + — P~ Ny (u).

Ui+p — Usq Uit+p+1 — Uit
The above is usually referred to as the Cox-deBoor recursion formula [De Boor}|1972]]. Applying the Cox-deBoor
recursion formula, the first cubic spline basis function x1(+) can be found as follows.

1 3
@u ’ u € [0, Aul,
k() = G%US (2Au — w)u® + (u — Au)(4Au — u)(3Au — u) + (4Au — u)(u — Au)Z) we [Au, 20,
64y ((u = 48u)° (u = 28u) + (u = Aw)(4du — w)(3Au —u) + (v = 380)%u) , u € [2Au, 3Au)
Gau Au =) u € [3Au, 4Ad].

6Au3
For h € {2,...,H}, we can define h-th basis kx(u) := ki(u — hAu). (When u < hAu, kp(u) =
k1(u — hAu+T).)

D Additional Comments on Remarks

Explanations of Remark|l| In addition to the non-homogeneous Poisson model given in the main context,
we can use other types of TPPs. For example, to capture more temporal dependencies, we can take it to be the
self-exciting process (also known as the Hawkes process, Hawkes and Oakes|[[1974])),

H H'
Ak(t) = Z b, nkn(t) + Z Z g, g (t — ti), C)

h=1 t;<th'=1

where g, (t)’s is another set of basis functions for modelling the triggering part. To account for more individual

heterogeneity, we can take it to be the frailty model [Duchateau and Janssen, 2008]],

H
Ae(t) i=w - <Z bk,h,‘ih(t)> R (5
h=1

where w is a positive random variable (e.g. log-normal, gamma, etc.).

Explanations of Remark[3] When using other optimization methods, the main modification lies in the robust

objective (3.11). For VI, (3.11)) changes to

N
>4l By log NHP (S, | Bi)] — 1) =0, ©)
n=1

where qff,z and ¢)’s are the variational distributions. For stochastic EM, (3.11) changes to

N
> 12 = k} - (g NHP (S, | Bx) — 1) =0, ™
n=1

where Z\) follows the multinomial(rffl) yeen TS 1><)~



E Additional Simulation Results
E.1 Working model: Hakwes Process

In this setting, the inlier event sequences are generated according to the 4-class Hawkes process. The correspond-

ing intensity functions are

/\Z,hawkes(t) = A1*;(15)/2 + Z gZ(t - tj)7 k € {1727374}7 (8)

t; <t

where A (t)’s are the same as in the main context and gj; (¢)’s are given as follows.

. 0.05 ) e 01 )
gi(t) = FQXP(*t /4),92(t) = WGXP(*t /9),
(1) = T2 exp(—1/4),6i 1) = 5 exp(~12/9)

We still consider three types of outlier event sequences. The first two types are the same as in the previous
subsection, while the sequences from the third type follow Aout, hawkes(t) = Aouts(t) + th<t Jours(t — t;)
with goues(t) = 0.5 exp(—t*/9)/(1.5y/7) and

Mours(t) = 25/2 - exp(—(t — 24 - B1)?/0.03) + 25/3 - exp(—(t — 24 - B2)?/0.03)
+25/6 - exp(—(t — 24 - B3)?/0.03),

where B; ~ U(0,1) + 0.1, Vi € {1,2,3}.

The choices of N, L, M, N’ ¢, and o remain the same. In addition, we set H' = 6 and p = 0.8 -
\/fOT log? )\,im(t) . )\,(CO)(t)dt, where H' is selected according to [Xu and Zha [2017]]. The results are sum-
marized in Table[Al

E.2 Working model: Frailty model
In this setting, the inlier sequences follow the four-class frailty model with

- (5/3 exp(—(t + 4.8)>/10) + 5/3 exp(—(t — 2.4)*/50)),

Al(t) =w

A3(t) = w- (5/3exp(—(t — 6)?/4) + 15/4exp(—(t — 21.6)? /4)),

Ai(t) = w(15/4exp(—(t — 4.8)*/1.5) + 35/12 exp(—(t — 12)%) 4 15/4 exp(—(t — 19.2)*/1.5)),
Ni(t) = w- (10/3 exp(—(t — 21.6)* /40) + 5/3 exp(—(t — 26.4)*/10)),

where the frailty w ~ Lognormal(—0.1, 0.2). Outlier generation procedure are almost the same as before except
for the third type, which has the following intensity formula Aoyt (t) = w-125/3-exp(—(t — 24 - B1)?/0.01),
where w ~ Lognormal(—0.1,0.2) and By ~ U(0, 1). We replace EM algorithm by VI method as described
in Remark In the experiment, we set tuning parameter p for class & to be 2 - \/fOT log? )\20) (t) - )\io) (t)dt,
H=10,e=0.1,a=0.2,3=10.3, M = 30,and N’ = 0.6 - N. The results are summarized in Table

E.3 Comments on the Baseline

To end the simulation section, we explain the reason why we do not include another baseline, Algorithm 1 with
proposed initialization but without robust influence function, in our simulation. Such baseline method may have
obvious defects. Consider a case that the inlier event streams are from homogeneous Poisson process of four
classes, whose intensities are 1, 2, 3, and 4, respectively. There are 30 event sequences for each class and one
outlier event sequence which follows a Poisson process with intensity 100. In this case, even if we start from

the true values, it still leads to bad classification result if ¢, is not used. To see this, after the first iteration, the



type 1 | type 2 | type 3

i i |

Time Algorithm [K=1 K=5 K=6|K=1 K=5 K=0]K=4 K=5 K=0
Standard 05061 06355 07748 | 04479 05467 06415 | 0.7371 08247 0.8507

L=1 Robust 05681 06764 07896 | 06248 07438 08291 | 0.8370 0.8725 0.8869
Robust & Initialization | 0.7514 08901 0.8913 | 0.7262 0.8853 0.8868 | 0.8565 0.8848 0.8868
Standard 06835 09064 09673 | 05134 0.6909 08146 | 0.8745 09314 0.9634

L=2 Robust 07754 09725 09752 | 09145 0.9790 09780 | 0.9076 09581 0.9763
Robust & Initialization | 0.8709 09644 0.9742 | 08940 0.9495 09780 | 0.9517 09763 0.9757
Standard 06993 07993 0.8690 | 06596 0.7748 08994 | 0.8127 0.8888 0.9232

L=4 Robust 0.8393 0.8693 09144 | 0.7894 09041 0.9387 | 0.8283 09186 0.9233
Robusté Initialization | 0.9340 09986 0.9986 | 0.8943 0.9493 09993 | 0.9477 0.9681 0.9979

Table A: Purity indices returned by three algorithms under the setting of outlier type 1, 2, and 3 with Hawkes
process working model.

. . | type 1 | type 2 | type 3

Time Algorithm [K=1T K=5 K=6|K=1 K=5 K=06|K=1 K=5 K=0
Standard 05797 07000 08715 | 0.3546 03410 0.3967 | 0.8598 09310 0.9357

L=1 Robust 07303 08543 09011 | 0.6850 07891 08574 | 0.8036 0.8883 0.9258
Robust & Initialization | 0.8938 0.9399 0.9364 | 0.9318 09459 09433 | 0.8683 09318  0.9492
Standard 0.6367 0.7983 09418 | 0.3002 03589 04243 | 0.7506 07795 0.8447

L=2 Robust 0.8423 09534 09824 | 09292 09667 0.9867 | 07007 07350 0.8232
Robust & Initialization | 0.8708 0.9601 09927 | 09055 0.9683 09817 | 0.9026 09327 0.9774
Standard 07085 08594 09348 | 0.4451 06141 07428 | 0.5348 05596 06198

L=14 Robust 08199 08537 0.9014 | 0.8188 0.8843 09147 | 0.5450 05649 0.6258
Robust& Initialization | 0.8127 09433 09681 | 0.9191 09940 09540 | 0.8949 0.9598 0.9894

Table B: Purity indices returned by three algorithms under the setting of outlier type 1, 2, and 3 with Frailty
working model.

outlier will be classified into class 4 and the intensity parameter of this class will be updated to approximately
(30 x 4 +100)/31 = 7.10. After the second iteration, event streams from class 3 and 4 will be mixed together
and the intensity parameter of four classes will be approximately 1, 2, 3.5, and 100, respectively. Then the
algorithm converges in the next iteration. Therefore, outlier is classified into a single class and purity index is no

larger than 0.75. This indicates the usefulness of ¢,.

E.4 Ablation study

Here we provide additional ablation studies to show the effectiveness of each component in the proposed
algorithms[[|and 2] In particular, we answer the following questions.
a Is the robust estimation part useful? In other words, can wif,g be removed by being replaced with 1?

b Is the proposed distance induced by the cubic splines useful? What is the performance like when other

common metrics replace it?

¢ In the inlier weighting part, we adopt the K-means++ algorithm. Does the performance change when

we use other clustering algorithms?

d Can the role of normalizers M 4 and Mp in distance[3.2]be replaced by the corresponding L;, norm of

the intensity functions?

e Whether the results are sensitive to the choices of the hyperparameters (e.g. p, N') in the proposed

algorithm?

[

What will the results look like if we do not take into account the time shift when there truly exists such

phenomena in the data?

To address all the above issues, we compare the proposed method with several baselines under the same NHP
setting as described in Section “Standard & Initialization" denotes the algorithm with wf:k) being replaced with
1. “Frechet distance" denotes the algorithm by replacing the proposed distance with Frechet distance. “Spectral

clustering" denotes the algorithm by replacing K-means++ with the spectral clustering algorithm. In addition



to the purity index, we also report the performance of different algorithms under the other two metrics, the
Adjusted Rand Index (ARI) and the silhouette scores (Silhouette), whose definitions are given Supplementary
[G The comparative results are given in Table[C] We additionally consider using L1 and L2 norms to replace
the normalizers M4 and Mp. The results are given in Table @} We also choose different p = 1.2, 0.3, or
N’ = 0.65, 0.83. The results are reported in Table@ Moreover, we compare the results by using or not using
the shift-invariant distance for the time-shifted data. The results are summarized in Table [Fl

Results from Table [C|suggest that the proposed algorithm can achieve much better performance than the other
baselines when the outlier type is 1 or 2, and can have competitive performance when the outlier type is 3.
As a result, all components designed in the proposed algorithm play a useful role. Results from Table
suggest that the original normalization consistently yields better clustering performance. It indicates that the
square-root normalization maintains superior adaptability to density fluctuations compared to L1/L2-normalized
counterparts in our framework. From Table [E] we can see that the algorithm with modified hyperparameters
(p = 0.3,1.2 vs original 0.6; N’ = 0.65,0.83 vs original 0.75) shows no significant performance difference
compared to the default settings, demonstrating a relatively wide selection range for these parameters. The
results in Table [F] demonstrate that applying the non-shift invariant distance to the shifted data significantly
underperformed compared to the shift-based approach, thereby validating the effectiveness of the shift-invariant

metric in handling temporal misalignments during event stream clustering.

. . \ Purity | ARI | Silhouette
Outlier Type Algorithm K=1 K=5 K=6|K=1 K=5 K=06|K=1 K=5 K=0
Standard & Initialization | 0.7172 0.9000 0.9599 | 0.6692 0.8808 (0.9376 | 04622 0.5438 0.5384
Tve| | Robust & Initialization | 09300 09925 1 | 0.9152 09814 09609 | 05782 05855 05192
yp Frechetdistance | 04875 0.6025 0.7075 | 03387 04933 0.6300 | 03555 04027 0.4084
Spectral clustering | 08425 0.8975 0.9525 | 0.7869 08391 0.8834 | 0.4886 04879 0.4648
Standard & Initialization | 0.5048 0.6550 07900 | 04142 0.5988 07564 | 0.3977 04581 0.5108
Tvees | Robust & Initialization | 09200 09825 09975 | 0.9047 09655 09510 | 05754 05732 05198
yp Frechet distance | 0.5850 07575 0.8625 | 04793 0.6986 0.8112 | 03826 04500 0.4538
Spectral clustering | 07700 0.8450 0.9075 | 0.7100 07894 0.8444 | 04607 04844 04752
Standard & Initialization | 0.9795 0.9873 1 | 09749 0.9676 0.9635 | 06118 0.5692 0.5340
Twne3 | Robust & Initialization | 09772 09924 1 | 09717 09678 09464 | 06108 05642 05051
yp Frechetdistance | 09598 1 I | 09526 09868 09677 | 0.5990 05896 0211
Spectral clustering | 08127 09175 0.9250 | 0.7694 08865 0.8768 | 0.5177 05447 0.4920

Table C: Performance metrics (Purity, ARI, Silhouette) returned by four algorithms under three different outlier
types with non-homogeneous Poisson working model. “Robust & Initialization" stands for the proposed
method.

Outlier Type | Lp-norm Purity AIRI Silhouette

K=4 K=5 K=6|K=4 K=5 K=6|K=4 K=5 K=6

Default | 0.9300 0.9925 1 0.9152  0.9814 0.9609 | 0.5782 0.5855 0.5192
Type 1 p=1 0.4700 0.6000 0.7000 | 0.3113 0.4868 0.6285 | 0.3419 0.4069 0.4067
p=2 0.4650 0.6100 0.6826 | 0.3048 0.5067 0.6012 | 0.3479 0.4082 0.4023

Default | 0.9200 0.9825 0.9975 | 0.9047 0.9655 0.9510 | 0.5754 0.5732 0.5198
Type 2 p=1 0.5950  0.7200 0.8250 | 0.5005 0.6356 0.7651 | 0.4065 0.4186 0.4492
p=2 0.5974 0.7125 0.8300 | 0.4987 0.6406 0.7704 | 0.3974 0.4490 0.4535

Default | 0.9772 0.9924 1 09717 09678 0.9464 | 0.6108 0.5642 0.5051
Type 3 p=1 0.9500 0.9975 1 09415 09847 0.9702 | 0.5903 0.5870 0.5291
p=2 0.9399  0.9950 1 0.9301 0.9828 0.9720 | 0.5833 0.5820 0.5404

Table D: Performance metrics (Purity, AR, Silhouette) returned by different L,-norm normalizations under
three outlier types with non-homogeneous Poisson working model. “Default" stands for the original proposed
method.

An important question for the practitioner is how to choose the optimal number of clusters. Here we propose a
criterion, the adjusted Bayesian Information Criterion (adjusted BIC),

BICadj = -2 Z log NHP (Sn | Bk(n)) + Oadj - Oai - log(\SmD, ©)
n:Spn€Sin



. . Purity AIRI Silhouette
Outlier Type | Algorithm s g g =1 K =5 K=6|K=4 K=5 K=0
Default | 09300 09925 1 | 09152 09814 0.9609 | 0.5782 05855 0.5192
p=1.2 | 09325 09875 09974 | 09183 09734 09568 | 0.5795 0.5753 0.5080
Type 1 p=03 | 09275 09925 09925 | 0.9134 09742 09378 | 0.5793 0.5820 0.4965
N’ =065 | 09474 09950 1 | 09378 09816 09544 | 0.5944 05840 0.5071
N'=083 | 0.8950 09825 09950 | 0.8762 09732 0.9543 | 0.5693 0.5995 0.6193
Default | 0.9200 09825 09975 | 0.9047 09655 09510 | 0.5754 05732 05198
p=1.2 | 09450 09850 1 | 09356 09663 09583 | 0.5932 0.5696 0.5284
Type 2 p=03 | 09425 09850 1 | 09329 09676 09609 | 0.5938 0.5823 0.5304
N =065 | 09300 09850 09950 | 09176 09622 09458 | 0.5847 05653 0.5171
N =083 | 08225 09425 09875 | 07920 09260 09568 | 0.5314 05798 0.5524
Default | 0.9772 09924 1 | 0.9717 09678 09464 | 0.6108 05642 0.5051
p=12 | 09675 1 109612 09817 09518 | 0.6049 05742 05181
Type 3 p=03 | 09675 1 109606 09706 09670 | 0.6067 05558 0.4939
N =065 | 09673 09925 1 | 09611 09706 09577 | 04762 0.6193 0.5490
N’ =083 | 09350 09900 09975 | 0.9250 09726 09502 | 0.5867 05752 0.5215

Table E: Performance metrics (Purity, ARL Silhouette) with different hyperparameters under three outlier types

Outlier Type | Algorithm =1 SI}gt:Dgta =%
Tvoe | no-shift | 0.5134 0.5300 0.5732
ype shift 0.7610 0.7728 0.7910
Tvoe 2 no-shift | 0.5308 0.5553 0.5903
yP shift 0.7969 0.8026 0.8233
Tvne 3 no-shift | 0.5167 0.5368 0.5708
M shift 0.6735 0.7356 0.8083

Table F: Purity metrics for the algorithms using shift-invariant distance or no-shift version on the

shift data.

where k(n) := arg maxy, 7 is the estimated label of sample 1, ©4;; represents the number of parameters, i.e.,

Oau = KH + K — 1 for K clusters and C,g4; is a constant that can be tuned by the user. We suggest choosing

Cladgj = 25. We apply the adjusted BIC to the proposed algorithm. The results are given in Table[G]It is clear

that this criterion can consistently choose the underlying number of clusters, i.e., K* = 4.

Lastly, we include the additional experiments with reduced outlier proportion (7 = 5%) and outlier-free scenarios

(n = 0%) in Table [H] confirming that our method maintains effectiveness across these configurations. As a

result, the proposed method works well under both realistic sparse-outlier conditions ( < 5%) and the ideal

outlier-absent environments.

Outlier Type | K =2 K=3 K=4 K=5 K=6
Type 1 -46588.07 -49121.01 -50203.39 -50065.27 -49303.61
Type 2 -45723.89 -47818.59 -48774.43 -48228.51 -47525.22
Type 3 -45326.24 -47061.89 -48394.52 -48047.19 -47242.43

Table G: The adjusted BIC values for K=2 to 6 under the non-homogeneous Poisson working model, evaluated
with three different outlier types.



Outlier Type | Algorithm | Purity | ARI | Silhouette
\ |K=4 K=5 K=6|K=4 K=5 K=6|K=4 K=5 K=6
Standard & Initialization | 0.7508 0.9352 0.9826 | 0.7115 0.9180 0.9628 | 0.4721 0.5544 0.5450
Type 1 Robust & Initialization | 0.9552 1 0.9975 | 0.9396 0.9709 0.9321 | 0.5802 0.5262 0.4497
5%) Standard 0.7509 0.7683 0.8306 | 0.7104 0.7307 0.8030 | 0.4485 0.4612 0.5052
Robust 0.7608 0.7808 0.8356 | 0.7220 0.7452 0.8088 | 0.4556 0.4700 0.5089
Standard & Initialization | 0.8966 0.9829 0.9924 | 0.8762 0.9727 0.9718 | 0.5643 0.5931 0.5618
Type 2 Robust & Initialization | 0.9701 0.9950 0.9999 | 0.9621 0.9631 0.9318 | 0.6026 0.5477 0.4650
(5%) Standard 0.7528 0.7708 0.8231 | 0.7118 0.7334 0.7942 | 0.4504 0.4639 0.5012
Robust 0.8729 0.9278 0.9551 | 0.8522 09159 0.9472 | 0.5370 0.5765 0.5899
Standard & Initialization | 0.9676 1 1 09611 09855 0.9578 | 0.6037 0.5752 0.5069
Type 3 Robust & Initialization | 0.9751 1 1 0.9684 0.9631 09124 | 0.6072 0.5439 0.4384
(5%) Standard 1 1 1 0.9999 0.9986 0.9976 | 0.6265 0.6155 0.5981
Robust 1 1 1 0.9999 0.9992 0.9977 | 0.6265 0.6175 0.5996
Standard & Initialization | 0.9700 0.9975 0.9975 | 0.9605 0.9782 0.9561 | 0.5974 0.5555 0.4750
No outlier Robust & Initialization | 0.9850 1 1 0.9804 0.9668 0.9248 | 0.6129 0.5115 0.4077
0%) Standard 1 1 1 1 0.9997 0.9987 | 0.6284 0.6249 0.6151
Robust 1 1 1 1 0.9997 0.9990 | 0.6284 0.6238 0.6171

Table H: The performance indices (Purity, ARI, Silhouette) of four algorithms at outlier proportions
ranging from 0% to 5% under the non-homogeneous Poisson model framework.



F Additional Figures and Tables in Numerical Studies

To help readers to gain more intuitions, the curves of intensity function considered in simulation studies are

shown in Figure 2]
B N e ot 1
4 —_— cluster73 40 I \ —_= oull%eriz
cluster 4 [ === outlier 3
_ i
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Figure 2: Left: Intensity functions of inlier event streams from 4 classes. Right: Intensity functions
of outlier event streams of three types. Due to the randomness of A\,,+1 - Aowuts, curves are shown
with one random realization of .

The following Table [] and Table [l] give a quick overview of two real data sets, IPTV and Last.FM, in our
numerical studies. We can see that users have a sequence of events of watching TV or listening to music in their

daily lives.

id time user_id time
1 55357201  2012/01/01 18:33:15 1 user000685  2005/12/10 06:23:10
2 55357201  2012/01/01 18:34:55 2 user000685  2005/12/10 06:26:35
4145 55357201  2012/11/28 02:01:42 84441  user000685  2009/05/22 06:44:01
4146 55357201  2012/11/28 02:04:01 84442  user000685  2009/05/23 11:12:10

Table I: IPTV dataset. "id": user identifier. "time": Table J: Last.FM 1K Dataset. "user_id": user iden-
the time stamp when the user started to watch a TV tifier. "time": the time stamp when the user played
program. a song track.



The frequency plots of two real data sets are given in Figure [3|and Figure[d It empirically indicates the existence

of daily effect in user behaviors, i.e., the period of event sequences can be viewed as 24 hours.

Frequency Distribution Curve

,4
e ©

Frequency
Noa
o 8 8

Figure 3: IPTV data: the frequency plot of four randomly selected households.

Frequency Distribution Curve

~
o o

Frequency
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o 8 8

204 \ ” \
oA

5
Day

Figure 4: Last.FM 1K User Dataset: the frequency plot of four randomly selected users.
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G Details of Performance Metrics

To be self-complete, the details of two metrics, ARI and Silhouette, in our setting are given as follows. The
Adjusted Rand Index Halkidi et al.|[2002] is defined by

S (M5) = [k () 2w ("5)]/(5)
% [Ek (]\;k) + Zk’ (Nfl)] - [Zk (Agk) Ek’ (Nzkl)} /(I;)

Here, N is the number of data points in a given data set and Ny = |Sk NS} |, Ny = |Sk| and Ny = |S}5|.

ARI =

The silhouette scores Kaufman and Rousseeuw| [2009], Rousseeuw|[[1987] is defined as follows: for any pair of

event sequences S; and S;, we define the following d-index,
T

as. s = [

0

where \; (t) is the estimated intensity function of sample .S; via cubic spline approximation.

Ai(t) — Xj(t)| dt, (10)

For sequences .S; in class k, let

a(S)= = > d(Si,5))

Sk =1 S €8y i
be the mean distance between S; and all other sequences in the same cluster, where |$’k| is the number of points

belonging to cluster Sk.

We then define the mean dissimilarity of sequences S; to some cluster k’ # k as the mean of the distance from

S; to all sequence in Sy For each sequence S; € Sk, we now define

1
b(8:) = min Sl = d(Si, S;j)
J k!

to be the smallest mean distance of \S; to all sequences in any other cluster. The cluster with the smallest mean

dissimilarity is said to be the neighboring cluster of \S; because it is the next best fit cluster for point S;.

We now define the silhouette value of sequence S;

50 = axfa(8), (S0}

if | S| > 1

and

S(SZ) = 0, lf|$‘k‘ =1.

From the above definition, it is clear that —1 < s(.S;) < 1. Then the final silhouette coefficient can be calculated

as 3. | 5(S;)/N. The values closer to 1 indicate better performance.

11



H Proof of Propositions

Proof of Proposition [T] First, we consider the case where f is a constant value function, such as f being
always equal to 1. If X follows a Poisson distribution with parameter A\, we prove that the variance of v X is

approximately 1/4 + O(1/)). In general, for a smooth g(X'), we can do a Taylor expansion around the mean

A = E(X), so we have
9() = 900 + WX -0+ LN (x2+ CN e 3 4oy - 29

Therefore E[g(X)] = g(A\) + g (A) 2+ L (A)mg + o(g"”"(\)m®), where m; is the i-th centered moment.

In our case my = m3 = A, thus

EVX]=VA—

N 1/2 ' 3/2
8 + 16
which indicates that the expected value is approximately v/X. Taking square of it, it gives

(BVE)) =2~ + oo to (i)

Then Var(v/X) = 1/4 — 9/(64A) + o(1/)), which is approximately 1/4 for large \.

+o(A¥?),

Next, we divide the interval [0, 7] into n segments, each of whichis 0 = ap < a1 < - < apn-1 < an =T.
Write X; := N (T)~'/? >t e(asr.an £ (7). then var(X -t f‘“ FA()dt-(1/4—9/(64X)+o0(1/N)).
So the variance of N (T")~*/2 th f(ty)is >, var( -1 fo t)dt - O(1/X).

Proof of Proposition By the definition of /1’ (B}), we know that

8; {erff,i LS -0 (logNHP(Sn | By) /L(Sn) — iy’ (Bk))} =0,

which implies

Opy (Br)
0B

3 r{09), (log NHP (S, | Bi) /L(S.) — fua(B{ ™)) 9log NHP (S, | By)
= 0 i) (10g NHP (S, | Bi) /L(Sa) = fis(BY ™)) L(Sn) OBy

Plugging By, = B(t Y into the above formula, we get the desired gradient g . This completes the proof.

I Proof of Theorem/I]

Here we would like to point out that we say the event sequence S is different from S’ if their induced intensity

As /v M’s are different. Otherwise, we treat them as the same event sequence.

Proof of Theorem[1]It is easy to know that the distance between an object and itself is always zero and the
distance between distinct objects is always positive. Moreover, the distance from S4 to Sp is always the same

as the distance from Sp to S4. We only need to prove that d(Sa, Sp) satisfies the triangle inequality.

By definition we know that d(Sa,Sg) = fo ’)\A JNMa — Mg (t +65) /v/Mg|dt, where g =
arg minsg fo ‘)\A ) /VMa — A (t+08) /v B’ dt. In the same way we define d¢. Then

d(Sp,Sc) < / ’Ac (t+6c) /v Mc — /\B(t+5B /F‘dt
s/o ]Xo(t+5o)/¢m—xA(t)/m\dt+A [ (1) VAL = A 1+ 65) /M

= d(Sa, SB) + d(Sa, Sc).

12



J Proof of Theorem 2/ and Theorem 3|

We first provide a lemma showing that the “outlier screening" procedure can eliminate all outliers with high
probability.

Lemma 1 Under Assumption[I|and [ steps 3-5 in Algorithm[2|eliminate all outliers with high probability.

Proof of Lemma|I|Without loss of generality, we consider Cluster 1. Assume that Cluster 1 accounts for m;
proportion of the set S. When we select M samples from an [V-element set, it is easy to know that the amount
of Cluster 1 obey the binomial distribution B(M, 71). Then the probability of a-quantile being smaller than

Tmag = MAXS,, ,S,, €81 d(Snl ) S"Q) is

p(a) = Z]P’(X €Cr) P(Xais >M-a) = Z Tk Z (A,/[)Wllc S(L=m)M

k i>a M

where Xg;5 ~ B(M, ).

We choose a suitable o such that p(a) > 1 — 41, and then choose /3 such that 37, 5 (Izl)p(a)i(l —

p(a))™ '=* > 1 — §,, where &1, 6, are small enough positive numbers. Repeat it until we choose enough

samples, and we avoid selecting outliers with a high probability.

Next we show that the proposed “inlier weighting" procedure can produce a set of good initial centers. In
the following proof, we consider an arbitrary pseudo-metric d which has quasi-triangular properties, that is,
d(z,z) < M(d(z,y) + d(y, z)) forall z,y, z € S. For our proposed distance function, it holds M = 1.

Overview of Proof of Theorem 2} In order to find the upper bound of the T, we use mathematical induction to
prove that the upper bound of the objective function T can be controlled after adding several centers. Lemma 3]
proves the case of one-step addition and Lemma [f] generalizes to the general case. As defined previously, we
know that under the optimal center set Copr, each sequence will be classified into the same class of an element
in CopT, so we can divide S;,, into K sub-sets.

Lemma 2 Let S be a set of sequences, and let s1 and s2 be two arbitrary sequences. Then ZIGS d(z, s1 )2 —
2M? Y s d(w,s2)% < 2MP|S| - d(s1, 52)%.

Lemma 3 Let A be an arbitrary data set, and let C be an arbitrary set of centers.  Define Tc(A) :=
> aca Mineec d(a, ¢)% Teopr (A) i= Y aca Milcecopr d (a, ¢)®. If we add a random center to C from A,
chosen with D? weighting (i.e. step (b)), then E[Yc(A)] < 16 M*Ycgpr (A).

Proof of Lemma [3] The probability that we choose some fixed ao as our center is precisely
D (a0)? /3 acA D(a)?. Furthermore, after choosing the center ao, a sequence a will contribute precisely
min (D(a), d(a, ao))? to the potential. Therefore,

E[Yc(A)] = Z ZaeA Z min ( ,d(a,a0))?.

ap€A
Note by the triangle inequality that D (ao) < M (D(a) + d(a, ao)) for all a, ag. From this, the powermean
inequality implies that D (ao)®> < 2M?(D(a)?+d(a, ao)?). Summing over all a, we then have that D (ao)® <
% > aea D(a)® + % ZaeA d(a, ao)?. Then E[TC(A)] is at most

LocaD Z min ( ,d(a,a0))?

'A agEA ZGGA acA
a,a
Z 2aca Ua, a0) Z min ( ,d(a,a0))”.
apEA G«E.A ac€A

13



In the first expression, we substitute min (D(a), d(a, ao))®> < d(a, ao)?, and in the second expression, we

substitute min (D(a), d(a, ao))? < D(a)?. Simplifying, we then have,
4M> 2 4
E[Yc(A)] < A > > d(a,a0)® < 16M* Yeopr (A).
apEAacA

The last step here follows from Lemmal[Z]

Lemma 4 Let C be the current center set, when we choose u > 0 "uncovered" class, and let S,, denote the set
of sequences in these class. Also let Sc = S — Su. Now suppose we add t < u random centers to C, chosen
with D? weighting. Let C' denote the new center set, and let X ¢/ (S) denote the corresponding potential. Then
E [T/ (S)] is at most

(Te (S2) + 16M Tegpr (Su)) - (1+ Ho) + L Te (Sa).

Here Hy denotes the harmonic sum, 1 +1/2+ --- 4+ 1/t.

Proof of Lemmal[d]

We prove the conclusion by induction, showing that if the result holds for (¢ — 1, u) and (¢ — 1,u — 1), then it

also holds for (¢, u). Therefore, it suffices to check ¢ = 0,u > 0 and ¢ = u = 1 as our base cases.

If t = 0 and u > 0, the result follows from the fact that 1 + H; = (u — ¢)/u = 1. Next, suppose t = u = 1.
We choose our one new center from one uncovered class with probability exactly Y¢ (Su) /YTc(S). In this case,
Lemmaguarantees that E [T/ (S)] < Ye (Se) + 16M* Yeppr (Su). Since Ter(S) < YTe(S), even if we

choose a center from a covered class, we have

E[Te(s)] < Y45

<2YTc (Se) + 16M* Yeppr (Su)

TC (Sc)
Te(S)

(Ye (Se) + 16M* Yoo pr (Su)) + “Te(S)

Since 1 + H; = 2 here, we have shown the result holds for both base cases.

We now proceed to prove the inductive step. It is convenient here to consider two cases. First, suppose we
choose our first center from a covered class. As above, this happens with probability exactly Te¢ (S.) /Yc(S).
Note that this new center can only decrease Y¢(S). We apply the inductive hypothesis with the same choice of
covered class, but with ¢ decreased by 1. It follows that our contribution to E [Y¢/(S)] in this case is at most,

TC (Sc)
Te(S)

u—t—&—l.
u

: <(Tc (8c) +16M Yeopy (Su)) - (1 + He) + Ye («S‘u)) :

On the other hand, suppose we choose our first center from some uncovered class .A. This happens with
probability Y¢ (A) /T (S). Let p, denote the probability that we choose a € A as our center, given the
center is somewhere in .4, and let T, denote Y¢ (\A) after we choose a as our center. Once again we apply our
inductive hypothesis, as well as decrease both ¢ and w by 1. It follows that our contribution to E [Y¢ ] in this

case is at most,

T

c E?; S pe{ (T (82) + Ta 4 16M*Feopn (S2) — 16M* Yagur (A)) - (14 Hy )

TC acA
+ U (T (S) — Te (AN}
< T8 (e (S0 + 160 Teqpn () (14 Hior) + 220 (Te (S1) = Ye (A) ).

The last step here follows from the fact that 3 _ 4, paTo < 16M *Ycopr (A), which is implied by Lemma

14



Now, the power-mean inequality implies that 3 , -5 Yc (A)? > Ye (Su)? /u. Therefore, if we sum over all

uncovered class A, we obtain a contribution at most,
Tc (Su)
(

(Yo (Se) + 16M* Yegpr (Su)) - (14 Hi—1) + % . Z:i . (Tc (Su)® - % “Ye (su)2>

)
Te(S) <(Tc (82) +16M ey (S2) - (1 He1) + 0w (Su>> .

Te(S)
Combining the potential contribution to E [T ¢/ (S)] from both cases, we now obtain the desired bound:
—t Te (SC) Te (Su)
, < A 4 L)) - B u—-v, » —C\9e) | 2C O
E (Y. (S)}_(TC(S)+16M YTeopr (S )) (I14+ Hi1) + " Te (Su) + Te(S) "
1
< (Yo (Se) + 16M* Yegpr (Su)) - <1 +Hi + 5) +—— Y (Su)-

The inductive step now follows from the fact that 1/n < 1/t.

Proof of Theorem Consider the clustering C™ after we have completed Step 1. Applying LemmaEwith
S = Sin,t = u =k — 1 and with S, being the first covered class, we have,
E[Ycini (Sin) | Sin] = E[E[Ycini (Sin) | Sc] | Sin]
< E[(T(SC) + 16M4TCOPT (Su)) ) (1 + kal) | Sin]
= E[(T(‘SC) + 16M4TCOPT (Sin) — 16M4TCOPT (SC)) ~(1+ Hi-1) | Sin]
< 16M*(In K + 2)Yegpr (Sin).-
The result now follows from Lemma and from the fact that Hx_1 < 1+ Ink.
Proof of Theorem 3| By Assumption[2] we know that there are at least o proportion of samples here that are not

classified into the correct class. Denote the correctly classified set as Syi4n¢, and the incorrectly classified set as
Swrong. Then

2 2
Yoo (Sin) = 3, min d@e’+ > min d(zc). (1n
zE€Swrong TESright

We consider the part Syigne first, we know that for each sample, there is an estimated function of cu-

bic spline approximation, which is A(f) = ZhH 1 bhmh(t). When sequences z and c are generated
from the same class, the distance between them is d(z,c) = fo (t) )/ My — Xe(t)//Me| dt <

Eh:l |bf; /M — b5, [/ M, |f0 kr(t)dt. Thus we know d(z,c) ~ O(L_l/Q). As L — oo, we get that
Yeopr (Sin)/ Yoo (Sin) ~ O(L‘I/Q). Therefore, Yc,,., (Sin) > 16(log K + 2)Ycpr (Sin) with high
probability whenever L is sufficiently larger than (log k).

K Proof of Theorem 4 and Theorem

We first provide several supporting results regarding the properties of Poisson random variables and Poisson

processes.

Let h : [~1,00) — R be the function defined by h(u) := 2[(1 + u) In(1 + u) — u]/u.

Lemma 5 Ler X ~ Poisson(\) with A > 0. Then, for any x > 0, we have
2
z z
> <
P(X >A+x) exp( 2)\h(/\)>

and, forany 0 < x < A,

]P’(ng—x)gexp(——j\h( ;))
< exp

In particular, this implies that P (X > A+ z) and P (X <\ —x) (=2*/(2(\ + 2))), for > 0; from
which

2
P(X — A > 2z) < 2exp (-ﬁ) x> 0.

15



Proof of LemmaRecall that if (Y(")) is a sequence of independent random variables such that ¥ (™

n>1
follows a Binomial (n, A/n) distribution, then (Y“”) converges in law to X, a random variable with
n>1
Poisson () distribution. In particular, since convergence in law corresponds to pointwise convergence of
distribution functions, this implies that, for any ¢t € R,
P(YW Zt) S P(X >1).

n—r oo

For any fixed n > 1, by the definition, we can write Y (™ as Y = Sry Yk(n), where Yl(")7 .. ,Y,f”)
are i.i.d. random variables with Bernoulli (A/n) distribution. Note that E [Y“”] = X and Var [Y(”)] =
A(1=A/n) <\ ASE [Y,j")] = A/nand (Y,j’”
[Boucheron et al.l 2013], to obtain, for any ¢ > 0,

P (YW > A+x) —P (Y(") >E [Y("q +m) < exp (—ﬁh (f)> .

< 1forall 1 <k < n, we can apply Bennett’s inequality

22\
Taking the limit as n goes to infinity, we obtain that P (X > X + z) < exp (—zh (z/)) /(2))).

Lemma 6 (Bernstein’s inequality [Vershynin, 2018]) Let Xi,..., Xn be independent, mean zero, sub-

exponential random variables, and a = (a1, ...,an) € RV, Then, for every t > 0, we have

t? t
P >t| <2exp [fcmin (7,7)} ,
( — ) K2?|lall3’ Klla]ls

N
S,
=1

where K = max; || X;|,, and || X ||y, := inf{t > 0: Eexp(|X|/t) < 2}.

Lemma 7 When event sequence S is sampled from the NHP process with parameter A, its log-likelihood
function log NHP (S | B;) follows a sub-exponential distribution.

Proof of Lemma [7| Divide the interval [0, 7' into M small intervals [ao, a1], - - , [ar—1, am], where 0 =
ap < a1 < -+ < ap = T. Within the small interval [a;, a;+1], there is approximately a homogeneous Poisson
process with intensity A(a; + 1), where 7 < a;+1 — a;. At this point we can divide the log-likelihood function
into M parts Fy, -+, Fam, where Fy := 2, (., | o,1og(t:). At this time Fy/log(a; + 1) approximately
obeys the homogeneous Poisson process with the parameter A\(a; + 1) - (a;+1 — a;), so its variance is A(a; +
n)(ai+1 — a;) - log(A(a; + n))>. According to Lemma each of F} follows a sub-exponential distribution.
Using Lemma[f] we know that

) L(S)?t? L(S)t
) _ >S4 < _
P (|logNHP(S | B;)/L(S) — pavg| > t) < 2exp [ cmin <02 maxlog(0)2’ Cmaxlog0) ) |

where C'is a finite constant depend on B; and piqvg := Eg~x, logNHP(S | B;)/L(S).
Similar to the derivative function of log NHP (S | B;), there is

L(8)*t? L
> t) < 2exp | —cmin 5 (S)Kfmx = (Szim .
C?(max W) C'max {mex

B/ LAS) = hasg

. <‘810gNHP(S | B:)

Corollary 1 According to proposition 2.7.1 from [[Vershynin| |2018|], m(S) follow a sub-exponential distri-
bution. From Lemma @ we know that for m(S) with L periods, it follows a sub-exponential distribution
as well, and P (‘m(S)/L - fOT )\*(t)dt‘ > t) < 2exp(—KoLt). Take a small enough 6 > 0, we have

P (m(S)/L > m.) < 6 when m. > fOT A« (t)dt +10g(2/0)/(L - Ko). Define Cy := mc - L, which can be

viewed as the high probability bound of number of events in event sequence S.

Overview of Proof Theorem[d] In order to prove the local convergence property of the proposed algorithm, we
need to check the following three key important aspects. (i) What is the difference |u(By|B3,) — pw(Bx|Bj)|
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when Bj, and By, are close; see Lemma! (i1) What is the difference between sample gradient g( ) and
population gradient V (B, |B§: 1)) (“V" stands for the derivative with respect to parameter By); see Lemma
(iii) The local concavity of M(Bk|B§:)) holds around Bj, = Bj,; see Lemma

Define the weight wi,(S; B) = m NHP(S | By)/3; m; NHP(S | B;) for k € [K].

Lemma 8 If || By — Bjl|l, < a/(T - Kmax) for Vk € [K), there exists a constant G > 0 such that

d1log NHP(S | By)||”
OBy

Es {wk(S; B) (1 — wx(S;B))

} ~ O(L(S)? exp(~G - L(S)))
forp=1,2.

Proof of LemmaWithout loss of generality, we prove the claim for £ = 1. Taking the expectation of .S, we get
‘8logNHP(S | B1) p]
]

0B1
H 0log NHP(S | B1)
]

0B
]
0logNHP(S | B1)
For the the first term, we define event £, = {S : § ~ POT (B}); ||01og NHP(S | B})/0B|| < r- L(S)}
for some r > 0. According to the assumption that |[B1 — Bi|| < a/(T * Kmax), we know that

Es [m(s; B) (1 - wi(S;B))

=Y mE, poz(s) {wl(S;B) (1 —wi(S;B))

ke[K]

0log NHP(S | B1)
0B:

<TE, por(sg) |01(51B) (1 = wr(SiB) H

- kzﬂ ™E, poz(s;) [wl(S; B) (1 ~wi(5B)) H 0B,

max [AB, (s) — Ap: (s)| < a/T. Then for S € &M using triangle inequality, we have

m(S) T
Z h((t)) 7/0 kn(x)dx

AB,
T m(S)
kn(st) 1 1
d _
Z )\B* 50 / kn(x)dz| + ; nh(st)()\Bl(St) )\B’f(st))
S
<L(S)-r+ mT(TQ)“, Vhe{l, - H}.

Because ‘/\Bk )f/\B*(t)’ < a/T for k = 1,2,...,K, then we have logNHP(S | B;) =
> logAB, (t:) — [ AB, (s)ds > log NHP(S | BY) — m(S)log (T + a/T)/7) — a - L(S).

For k # 1, logNHP(S | B,) — logNHP(S | B}) = ¥, log ()\Bk(ti)/)\gz(ti)) — [(By(s) —
AB;(s))ds < a- L(S) +m(S)log ((r +a/T)/7). By Assumption we know that log NHP(S | By) <
logNHP(S | BY) — C - L(S) +a- L(S) + m(S)log ((t + a/T(S))/T). Then we get that

Es {wl(S;B) (1 —wi(S;B)) Halogm;g(ls | B) || | Sﬁ”]
<> ;T P (2a - L(S) +2m(5) log (w) -C- L(S)) : (TL(S) + 7‘_12 %)p

For & part, we now have ||0log NHP(S | B1)/0B1|| > r - L(S). We define

L(S)«T L(S)«T
My, = / Fn) N — / won(z)dz
0 >\Bl(t) 0

L(S) s

k(1) dN(t) — /(Z*T(S) kn(z)dz

a lz:; /(lfl)*T AB (t) 1=1)+T

L(S)

= Z X,
=1
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where X;’s are independent. According to Lemmal7] there exists co > 0 such that

Z))

Co

B (|Ma/L(S)| > t) < 2exp (f

Obviously we have w1 (S; B) (1 — w1(S;B)) < 1/4. Then
H dlogNHP(S | By) ||

| 5:}

ES |:U)1(S;B) (1—11}1 S B

0B

1>, dlog NHP(S | By) .
g4/r th(‘ 3B, >t L(S)
1y 0log NHP(S | B1)
=1 (r? - L(S)P <H 9B, >r-L(S)

o 8log NHP(S | B1)
p—1 >

+/7~ ptP TP <‘ 5B, t- L(S) | dt)
< 1 (TPL(S) exp (—L(S)> +/ pt?~exp <—tL(S)>dt> .

2 Co r Co

For fixed r > 0, when L(S) — oo, it is easy to know that

% (rpL(S) exp (—%@) + /Tooptpflexp <—tLC(0S)>dt> — 0.

Next we consider the remainder of the gradient. For k # 1,

P
™E, poz(s;) |:’u)1(S;B) HalogNI;E(ls | B1) }
_/ 7 NHP(S | B )m, NHP(S | BY) H@logNHP(S|B1) Y
' Oloe S < ns) >_x ™ NHP(S | By) 9B
I;
+/ 71 NHP(S | By )m, NHP(S | B}) HGlogNHP(S|Bl) .
HalogN;II;’ES\B*) > L(S) >, m NHP(S | By) 9B,

I

When ||01log NHP(S | B},)/0Bg|| < r - L(S), we have

NHP(S | Bk) < exp (a - L(S) +m(S)log <%)>

NHP (S | B)

and
NHP(S | By) T+a/T
o W TR . e/t )
NHP(S | B = exp | a- L(S) +m(S)log -

Then it holds

NHP(S | Bj
Tk (S| ) ds

log NHP B P
1 NHP(S | B1) ‘3%—“‘!1)

! = 7,NHP(S | By) ' <rL(S) 0B,
dlog NHP(S | By) ||?
< mexp (aL($) + m(s) log(” )/‘magm(sm ) e e e
<rL(S) 1
T
< 71 exp (aL(S) + m(S) log(ﬂ)>
-

NHP(S | BY)exp <7CL(S) + 2aL(S) + 2m(S) log(%)> (CoL(S))PdS

‘/alogNHP(S\B’j)
4“319 = | <rL(S)

THaT, ) (CoL(S))”,

< 71 exp (7CL(S) + 2aL(S) + 2m(S) log(

where Cj is the upper bound of ||0log NHP(S | By)/0Bg||, Yk =1, - , K with probability of 1 — ¢.
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When [|01log NHP(S | B})/0Bg|| > r - L(S) and L(S) — oo, it holds

p

0log NHP(S | B1)

m NHP(S | By) / )
I = : NHP(S | B d
* T ¥, m NHP(S | By) ‘%}ts\fw ™ (S| By) 0B, s
. ||9log NHP(S | By) ||”
< . 7 NHP(S | B ‘ ds
/‘fw L) (1B%) 9B
Sm(CoL(S))P/alogNHp(sle) NHP(S | B})dS
’T >r-L(S)

< 2 (CoL(S))? exp (—w)db‘,

Co

where we use the same conclusion obtained above that P (||0log NHP(S | B)/0Bx|| /L(S) >t) <
2exp (—tL(S)/co). We take G = min{Cyap — 2a — 2mclog((t + a/T(S))/7),t/co}, where
P (|M(S)/L(S)| > mc) < § for small enough § > 0. Thus we get the result.

Lemma9 If||Byx — Bj|| < a/(T - kmax) for Vk € [K], then it holds

IVwi (S, B)|| ~ O(VHL(S) exp(~G - L(S)))-

Proof of Lemma|§| Without loss of generality, we prove the lemma for & = 1. Recall the definition of w1 (S; B)

, for any given .S, consider the function B — w1 (S; B), it is easy to know that

dlog NHP(S | B1)

—w1(9;B) (1 — w1 (S;B)) B,
w1 (85 B)ws (S; B)alogNHP(S | B2)
Vi (S;B) = 9B;

91log NHP(S | Bx)

w1(S; B)wk (S; B) 5B
K

where
( T

m(S) T
F(se) rk1(z)dx
Z ABk(st) /O 1( )d

OlogNHP(S | By)
OBy, N

S) . T
LZICON ka(x)dz
; AB (5t) /0 #(@)d

To calculate the upper bound of || Vw; (S, B)

, we start by considering the first line. By Lemma it is easy to
know that the first line is of order O(L(SS) exp(—G - L(S))). Then we turn to other lines. Note that

dlogNHP(S | B;)
OB,

dlog NHP(S | B)
OB,

Es [wl(S;B)wds;B) H

H < Es [wxs;B)(l ~ wi(SiB)) H

for Vi # 1. Therefore the upper bound of line ¢ has the same order as that of line 1.

Lemma 10 If || B, — Bj|| < a/(T - £max), Vk € [K]. Then Vi, j € [K), we have

dlog NHP(S | B;)
9B,

B [ui(5 Bu,(5:B) |

||@log NHP(S | B))
OB,

H ~ O(L(S)? exp(—G - L(9))).
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Proof of Lemmalm Taking the expectation with respect to .S, we get
dlog NHP(S | B;) ’ . H dlog NHP(S | B;)

Es [ui(5: BJus(5:B) H

|

0B; 0B;
0logNHP(S | B; OlogNHP(S | B,
<Es |:'U)i(S;B)'LUj(S;B) H o8 BB(» | B:) ’ o8 8B(v | B,) ‘ |50} P(&o)
7 J
0logNHP(S | B;) 0logNHP(S | Bj)
+ mE, . [wi S;B)w;(S; B H .
; k 'POZ(Bk) ( ) ]( ) aBZ aB] |
0logNHP(S | By)
<
H OBy, =7
= Iy +Zlk
k

Next we consider the remainder of the gradient. When ||0log NHP(S | Bj,)/0By|| < r - L(S), we have
NHP(S | B;,)/NHP(S | By) < exp (a - L(S) + m(S)log((r + a/T)/7)). Then for I,

s / 7 NHP(S | B;)m; NHP(S | B;)m, NHP(S | Bj) HalogNHP(s | B,) ‘ ‘BlogNHP(S | B;)
L =
S

(Zj 5 NHP(S ‘ Bj))2 8B1 BBJ
7 NHP(S | Bi)r; NHP(S | B;)m, NHP(S | By) exp (aL(S) +m(S) 1og(%))
/5 (22, ™ NHP(S | B;))?

0logNHP(S | Bj)
OB;

as

<

|| 9log NHP(S | B:)
0B;

as.

Because ¢ # j, it is easy to know that at least one of i, j is not equal to k. Without loss of generality, assume
that ¢ # k, we have

7; NHP(S | B;)m, NHP(S | By) exp (aL(S) +m(8) 1og(—f+j/T))
(22; ™ NHP(S | B;))?
OlogNHP(S | B;) dlog NHP(S | B;)
./SNHP(S|B1~) H 9B, ‘H 3B,

< i exp <aL(S) +m(S) log(%ﬂ /S NHP(S | B;)

Iy =m;

ds

‘ dlog NHP(S | B;)

0B,
.HGIOgNgIZ(jSWBj) ‘dS

< 7 exp <aL(S) +m(S) 1og(%))

. /SNHP(S | B) * exp (—CL(S) +aL(S) +m(S) 1og(%)) (CoL(S))%dS

< miexp (—CL(S) + 2aL(S) + 2m(S) log(%

)) - (Cor(s)*
where Cy is the upper bound of ||0log NHP (S | B)/0B;||, Vi =1, -- , K with probability of 1 — ¢.
When ||0log NHP(S | B})/0B;|| > r- L(S), if L(S) — oo,

0log NHP(S | B1)

T NHP(S | B1) / N
Io = : . NHP(S | B d
' TS mNR(S | By) J|eeeimp ) ™ NS D 9B, S
. |[@1og NHP(S | By)
< /1““;*;?(5“ g, TNHP(S | B ' oy ds

NHP(S | B})dS
>r-L(S)

< TFiCOL(S)/BlogNHP(S|B:‘)
‘ — B,

< 2m,CoL(S) exp <—M>d&

Co
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where we use the same conclusion obtained above that P (||0log NHP(S | BY)/0B;| /L(S) >t) <
2exp (—tL(S)/co). We still take G = min{Cyap — 2a — 2mc log((7 + a/T(S))/7),t/co}, where
P(|M(S)/L(S)| > mc) < ¢ for small enough 6 > 0.

Lemma 11 (Matrix Chernoff I [Tropp, 2012]) Consider a finite sequence of independent, random, self-
adjoint matrices {Xy} with dimension d.  Assume that each random matrix satisfies: X =

0 and Muax(Xk) < R almost surely. Define

Momin = >\min (ZEX]C> and Mmax = )\max (ZEXk) .
k

k

Then we have

e Hmin / R
Amin Zxk 1 — 5),umm <d- {m} ford e [07 1)
el Hmax/ R
mzu Zxk 1 + 5),Uzmax S d- [W] j0r5 2 0.

Lemma 12 Function p(By, | B;Ct)) is a locally concave function with high probability for k = 1,2,... K.

Proof of Lemma@ Without loss of generality, we let £ = 1. We abuse the notation by treating o« = p in the

following proof. By taking the first derivative of the estimating equation, we have

0=Vg, (Z w1 (Sn; BM) (log NHP(S, | B1)/L(S») — u(B1 | BP)))

Z (50 B“) 6o (10g NHP(S, | B1)/L(Sa) — u(B1 | B{"))

. (v log NHP(S,, | B1)/L(S,) — Vu(B: | BY))) .

By taking the second derivative, we have

0=V3, (Zm :B)ga (log NHP(S, | B1)/L(S) - u(BlBﬁt)))>

Mz

wi($:: B, (log NHP(S, | B1)/L(S) — u(B1 | BY"))

i

+

n=1

log NHP(S,, | B1)/L(Sy) — V2u(B1 | B))

-3

w1 (S0 BY) 6., (10g NHP (S, | B1)/L(Sa) — u(B1 | BY))

1

a (Vieg NHP(S,, | B1)/L(Sy) — V(B | BY)))2

n

/\

With a high probability, there exists ¢, such that cold ()| > \¢//(n)|, where n € (—=9.5 +
2/c$,9.5 — 2/cy). By Matrix Chernoff inequalities (Lemma [TI), as L(S) — oo, we claim that
Amin (V2 1og NHP (S, | B1)/L(Sn)) — c6QAmaz (V(log NHP(S,, | B1)/L(Sn))?) = 0. Next we explain

the reasons. Write Sy, as {Sn,1,Sn,2,"+ , Sp,m(s)}, then
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m(S) T T
ffl(Sn t) /
: — k1 (x)dx
) 2 RanSn) L5y O
log NHP(S,, | Bl)}
L(S,) © ‘
. HH(SWL t) /T
_— KH(x)dx
g Ner (Sm) - L(Sw)  Jy "4
m(s) T 17
K/l(sn t) /
: - k1 (z)dx
2 e (5o L) Jy @
m(S) T
KH(Sn t) /
: K (x)dx
_; AB, (Sn,t) - L(Sn) 0 ) i
= G-G'.
Therefore the largest eigenvalue of VlegNHP(S, | B1)/L(Sn) is the 12-norm of vector G.

For each component of G, we know that E [ ) ki (Snse)/(ABy (Snyt) L(Sn)) — fOT /{h(a:)dx] =
fOT [(kn(O)AB, (8))/AB, (V)] dt/L(Sn) — fOT kn(x)dx = 0,Yh =1,--- , H. When S, is generated from the
Poisson process with the intensity function A, (-), we know that ||G|| ~ O(v/H - L~*/?) with high probability.
Thus, we get the result that acgAmaz (V(log NHP(S,, | B})/L(Sn))?) ~ O(aL™'?) = 0as L — 0. For
fixed B{", we also know that ||G|| ~ O(VHL™*/?), while Ain (V2 log NHP(S,, | B1)/L(S5)) ~ O(1).
Because of the continuity of ¢ and ¢", it is easy to confirm the continuity of V2u(B; | B{").

Lemma 13 If HB;’” _ B
¥||B - Bi

L) —0as L — co.

< a/(T - Kmax) for k € [K), then HW(B?) | B — vu(BY | BY)

] <

. When we take the tuning parameter o sufficiently small, we get that v ~ O(v H exp(—GL) -

Proof of Lemma

LetB" = B +u (BW - B*) ,Vu € [0, 1]. Then we know that
Vay (w1(5;B")¢% (log NHP(S | B{")/L(S) - u(BY" | BY)))
=Viywi(S;B*) - ¢ (1og NHP(S | B{")/L(S) - u(B{" | BY))

—wi(S; B¢, (1og NHP(S | B")/L(S) - u(B{" | BY)) - Veyu(B{" | BY),
where VB?M(B@ | BY) satisfy
0 =Es [le (S;BY) ¢ (log NHP(S | B?) — u(B{" | B“{))

— w1 (5;B") ¢, (logNHP(s | BY") - u(BY" | BY)) Vayu(B\" | BY)|.

With a high probability, there exists ¢, such that cs|¢ (n)| > |¢" (n)], where n € (=9.5 + 2/c4,9.5 —
2/cs). So we know that Es[w: (S; B*)¢!, (logNHP(S | B /L(S) — u(BY | Bi‘)) - Veeu(BY |
BY)] < csBslun(S;B*)¢l, (logNHP(S | B”)/L(S) — w(BY" | BY)) - Veyu(B\" | BY)] = cs -
Es[Vu (S;B") ¢a (log NHP(S | BY") - u(B{" | BY))].
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By Taylor’s expansion, we have

[vaB? | B{) - vuB{” | B)

s (o (5:B) , (s ue(s ) — 2| 2E)

—w1 ($;B%) ¢/, (log NHP(S | B{") — u(B{" | B]))) - aV log NHP(S | B{"))/L(5)||

1
- Huz [/ v (wl(S; BY)¢, (logNHP(S | B) — w(BY | B’f’))) du - &V log NHP(S | Bgﬂ)/L(S)} H
u=0
1 dlog NHP(S | BY) T dlog NHP(S | BV
< E/ wl(S;B“)(l—wl(S;Bu))% (ng _BI)O‘%/L(S)M
u=0 1 1
1 dlog NHP(S | B¥) T dlog NHP(S | B{Y
—E [ s Bws B TEREELE) (g0 pr) o ZEREIE LR s)au 1,
iz1 Ju=0 oB; 0By
1
+|E / _ wi(SiBg] (10g NHP(S | B{")/L(S) - w(B{" | BY)) Vayu(BY" | BY)du

.aV log NHP(S | Bg“)T/L(S)”

() *
<t B - B + ; Ui

B¢ _ B*

i

1+ sup HIEle(S;B”)aV log NHP(S | B<1‘>)T/L(S)H < CpPman - ||B§t> - B}
u€[0,1] 2

s

Io
where
log NHP(S | B\ uy T

Ur= sup ||Ewi(S:BY) (1 — wi(S;BY) a/r(s) 18 NHP(S [ By ) Olog NHP(S | Bf)

we0,1] 0B 0B, ,

(t) uy T

Us = sup Ewl(S;B")wi(S;Bu)a/L(S)aIOgNHP(S | Bi”) 0log NHP(S | B}')

u€l0,1]

2

For U, by triangle inequality, we have

u uy T
Ui < sup Ewl(S;B“)(lfwl(S;B“))a/L(S)alogNI;g(s|Bl)alogNI;g(SlBl)
u€e(0,1] 1 1 2
w\2 uy\ T
T+ osup [Ewi(SiBY) (1 — wi(8;BY) a/L(s) LENHES | BI g pio) O1oaNHP(S | Bi)
uw€l0,1] 0B 0B
u uy\ T
< sup |[Ewi(S:BY) (1 —wl(S;B"))a/L(S)aIOgNHP(S | BY) 0logNHP(S | BY)
u€(0,1] 331 aBl )
u u\2
+a sup Ewl(s;B“)(kwl(s;B“))alogNg;(S|Bl) ‘.HalogNHP(zswl) /L(S)H.
uw€e(0,1] 1 0B7

According to Lemma, we know that Uy ~ O(v/H exp(—GL) - L) . When L — oo, Uy — 0. Similarly, for
Ui,i # 1,

U< sup |[Buws (5B )wn(s: By 1(5) 1B NHP(S | BY) Qlog NHP(S | BY)
wel0,1] 0B, OB; )
u u\2
+a sup ||[Ew:(S;B*)w:(S; Bu)BlogNHP(S | BY) ’ . H@logNHP(2S | BY) /L(S)H )
welo,1] 0B; 0B3

Refer to Lemma[T0] we can get that U; — 0.

Similarly to Uy and U;, we use Lemmaandand know that Io < 3, Ui - cydmac = O(VH exp(—GL) -
L) — 0 with a high probability when L(S) — 0.
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Lemma 14 For cluster i, we write
Va(Bi| B)s (=)
% Les wi(52B)6, (10 NHP(S, | Bi)/L(Sy) = i(B: | B{")s) - V1og NHP(S, | Bi)/L(S,)

) % 2 wi (5,3 B)¢, (log NHP(S, | BJ)/L(S.) — u(B: | BY)s)

)

Vu(Bi| BY)

Buwi (5. B)6, (10 NHP(S, | B)/L(S.) = u(B: | B")) - VogNHP (S, | B)/L(S:)
Bwi(8.:B)d) (log NHP(S, | Bi)/L(S.) — u(Bi | BY")) .

Then we have HV[L(Bi | B s — V(B | Bgt))H < O(WHLexp(—GL)/V'N + (p+VH)(1/VNL +
(pv)/L +1og N/(pN) +n/p))-

Proof of Lemma[14] Recall that S = Sipnjier U Souttier With Sintier = S1 U ... U Si. We define

—~

V(B | Bgt))s

inlier
V1og NHP(S, | B:)
L(Sy)

NTUST wi(SwiB)g, (log NHP(S, | Bi)/L(S) — pu(Bi | B{)s,u1 )

nESinlier

NS e @1(503B)), (1o NHP(S, | Bi)/L(Sa) — i(Bi | B)s,,5.. )

inlier

A

=5

which is the gradient based on the inlier samples only. By triangle inequality, we have
|Vu(Bi | B)s — vu(B: | BY)|

Vu(B: | B)s — Vu(Bi | BY)

mtier || T HVM(Bi | Bgt))sinlier — V(B | Bit))H '

Iy Iy

We consider the part I> first. According to Lemma and Lemma , the deviation of p(B; | B§t>)sinlier
from Ellog NHP(S,, | B:)/L(Sw)] is O((pv)/L + log N/(pN) + n/p + L*exp{—GL} + p*/V),
5o [1og NHP (S, | Bi)/L(S0) = i(B: | B)se| ~ O(/VL + (p0)/L + 10g N/(pN) + n/p +
L? exp{—GL}). The standard deviation of

&y, (10 NHP(S, | B)/L(Sa) = i(B: | B ), ) is O(p/VL + (p%0)/L + logN/N + n +
pL? exp{—L}), so the standard deviation of B is O(p/v/NL + (p*v)/L + log N/N + 1 4 pL? exp{—L}).
The standard deviation of part A is similar to part B. Similarly, the standard deviation of || 3\, V log NHP (S, |
B;)/NL|is O(WH/vVNL), then I ~ O((p+VH)/VNL+ (p*v)/L +log N/N +n+ pL? exp{—L}).
Next we consider the part I;. Again by Lemma , ‘M(Bi | BE”)S — u(Bi | Bl('t))Ssnner ~ O((pv)/L +
log N/(pN) +n/p + L? exp{—GL}). Note that

% > wi(Sn3 B)g, (1og NHP(S, | Bi)/L(Sa) = iu(Bi | BY")s) - V1og NHP (S, | B:)/L(Sn)
nes

= % 3" wi(SiB)g, (10gNHP(S, | Bi)/L(Sy) — u(Bi | B)s) - V1og NHP(S,, | Bi)/L(S)
nesSy

Wy
1 /
Y wi(SuiB)g, (10gNHP(S, | BJ)/L(S:) — u(B: | B{")s) - Vlog NHP(S, | B:)/L(S,)
nESintier \S1

Wa

3 wi(S.B)g, (logNHP(Sn | Bi)/L(Sn) — u(B; | BE“)S) - V1og NHP(S,, | B:)/L(S,).

n€Soutlier

L1
N

W3
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~

According to Lemma [§| [Wall < [N 5, 05,15, 9150 B) - Viog NHP(S,, | B.)/L(S.)
O(VHLexp(—GL)), so ||Wa — EWs| ~ O(HLexp(—GL)/v/N). Similarly, ||W; — EW1| ~
O(WHLexp(—GL)/vN). When llogNHP(Sn | By)/L(S,) — u(Bi | B")s| < 9.5, the gradient
of outlier are less than a constant co,: with a high probability, then |[Ws| < O(n/p). Then
[Wi + Wa + W3 — Al < ||[W1 — A||+||Wa|+||Ws|| ~ O(VHL exp(—GL)/vN+n/p). The standard de-
viation of part A is similar to part B. Hence || I1|| < O(VHL exp(—GL)/vN+(pv)/L+log N/(pN)+n/p).

In summary, Hvu(Bi | BY)s — Vu(B; | BE”)H < L+ < OVHLexp(~GL)/VN + (p +
VH)(1/VNL + (pv)/L +1log N/(pN) +1/p)).
Proof of TheoremE] Recall the update rule and definition of V.(BS"|B{"), we know that
B\ = B —1r. 0" = B —1r. viu(B"|B{")s.
By triangle inequality and Lemma|[T3]and[T4] we have

Js+ 5

= [BY - Bi 41 V(B | B

<|BY - B+ vuB? | BY)

1| VB | BY) - v | BY)

+1r-||VaB | B") - vu(BY" | B)s||
2

Amax — Amin (t) * (t) * unif
—— ||B;’ — B _ HB - B

- >\max + )\min ! ! + )\max + )\min 7 ! ! te
)\m x Amin + 2')/ t % .

- i\max + >\min HB(l - Bl * eunlf.

To see why the second inequality holds, note that, for any B/ with | B} — B*|| < a, Au(B" | B) has the
largest eigenvalue —Amin and smallest eigenvalue —Amax. Applying the classical result for gradient descent
with step size Ir = 2/(Amax + Amin), it guarantees (see|Nesterov|[2003]))

< >\max - )\min
- Amax + )\min

|3 - Bi + - vuB | BY) BY - B;

This completes the proof.

Lemma 15 For each sample S,, € S, when we select robust parameter o ~ O(LB), 0 < B < 1/2. Then as
L — oo, the weight function ¢, (log NHP (S, | B) /L(Sn) — jis(B)) tends to 1 with a high probability. If
S, is not sampled from B, as L — oo, the weight function ¢}, (log NHP (s, | B) /L(S) — fis(B)) tends to
0 with a high probability.

Proof of Lemma (15| By Lemma [/] we know that the standard deviation of log NHP (S,, | B) /L(S,) is
O(L(S,)~*?). From Lemma we know that jis(B) — 1" (B) = Op((pv)/L + logN/(pN) + n/p +
L? exp{—GL}). So we have

log NHP (5. | B) /L(S,) ~ o(B) ~ O (L7724 524 PB4 14 12 exp(-Gr} )
=a (logNHP (S,, | B) /L(S,) — fis(B)) ~ O(L? ™% + L**# exp{—GL}) = 0

forany o = O(L?) with 0 < 8 < 1/2, when L — oc. Looking back at the definition of robust function (T), we
can easily know that lim, .0 ¢(z) = 1. At this time there is ¢y, (log NHP (S, | B) /L(S») — fis(B)) — 1.

For S, we have
log NHP (S, | B) /L(So) — fig(B) ~ O(1),
which implies

o (1og NHP (S, | B) /L(S,)  jis(B)) ~ O(L”) = 00
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when L — oo. Because of lim,—,oc ¢(x) = 0, so we have ¢, (log NHP (S, | B) /L(S,) — jis(B)) — 0.

Proof of Theorem 5] According to Lemmal[T3] we know that the weight function will tend to O for all outliers as

L — oo. Therefore we can distinguish almost all outliers with a high probability by setting the cutoff as 0.1.

Remark 2 In all the above proofs, we do not take into account the shift parameter. The local convergence result
could be still applied, if the algorithm starts with the true shift parameter and HB ;CO) — B}, H is small enough
forke{1,2,--- | K}.

L Supporting Results of /lf;)(Bk) and ;(By|By)

In this section, we provide two supporting lemmas to characterize the difference between /,L (Bk) and
#(Bk|By).

Lemma 16 When || B}’ — BL|| < a and n = |Soutticr| /N < 1/[4(log5 + 1.5)], it holds

(g . _ pv  logN m o
0 (B = (8] = 0, (5 + 5T+ Lk 1 exp(-GL) ) 1)

where ji*(B) = Esx; [log NHP(S|By)| and v := supg, E[(log NHP(S|By))?] (S is an event sequence
on [0, T] generated according to Aj,(t)).

Proof of LemmaFlrst we define u ) (B}) to be the solution to

N

> 1/L(Sn) - ¢ (log NHP (S, | By) /L(Sn) — ) =0 (13)

n=1

with respect to . We can show that
ﬁ(t) By) — ﬂ(t) By)| = Op(L? exp{—GL 14
| ) ( k) ) ( k)| p( € p{ }) (14)

To see this, we compare the difference between

LS LS. - ¢, (108 NHP (S, | Be) /L(S.) - i(B.)

and

< Z ) @ (log NHP (S, | Br) /L(Sh) — i) (B1))

By the previous analysis, we have already shown that |r£f,z — 1] = Op(L exp{—GL}). Then such difference
is bounded by C'L exp{—GL} - 3, L(Sn)é, (1og NHP (S, | B) /L(Sn) — ‘(t)(Bk)) which is order of
exp{—GL}(n/p+log L) and is less than L exp{—GL}. (Here we use the fact that 7/p — 0). By the definition
of ;]f;) (Br), we have

%Z (/L) - 6, (log NHP (S, | Bi) /L(Sa) = i) (Bi)) | < Lexp{-GL}.

n=1

It can be also checked that V,, (N~ N # ) /1(S,) - ¢, (log NHP (S, | By,) /L(Sy) — ) ) > 1/2L for

n=1 Tnk
all bounded p with probability 1. Therefore,

o (B — ) (BL)
< \%Z S/L(S.) - &, (logNHP (S, | Bu) /L(S,) = ) (B1) ) | < Lexp{~GL},

n=1

which gives the desired result (T4).
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Next, we construct

Boop, (i) = (" (Br) = )+ 5P 4 (0 (B — ) + 2285 1s)
Beop () = (" (B) = ) = (P (0 (B = ) - 5

where v*(By) = Esx: [(log NHP(S|By))?], to put the upper and lower bounds on ¢,, in (3.13). Following

the proof of Theorem 3.1 in Bhatt et al.|[2022] and the compactness of parameter space, we can have

_(t) * pv logN n
By) — By)| = — — 1
iy’ (Bk) — 1" (Bu)] OP(L + N + p) (16)

for all By, where v = maxg, v*(B}). Combining (T4) and (I6), we prove the lemma.
Lemma 17 It holds

|W(Bx | B) — p*(By)| = O <L2 exp{GL}+p2\/E>, (17
where 1" (By) is defined the same as that in LemmalI6]

Proof of Lemma [17] We first define /i( B | Bj) to be the solution to
Es[6, (log NHP(S | BL))/L(S) — )] = 0
with respect to . By the same procedure as in the first part of proof of Lemmal[T6] we can show that
|u(By, | B) — i(By | Bi)| < L? exp{—GL}. (18)

Next we compute the bound of [Es[¢, (logNHP(S | By))/L(S) — u*(Bk))]|. Note that ¢,(z) = = —

>z /6 + o(p>x>) by Taylor expansion. Therefore, for sufficiently small p, we have

[Es[é, (log NHP(S | By))/L(S) — " (Bx))l|

5 |Es[(1og NHP(S | By))/L(S) — 1" (Bx))’]|

IN

IN

2 (Esl10sNHP(S | B)/L(S) ' (Bi)))
2 1
= 0 <p L) . 19
Lastly, note that V,(Es[¢, (logNHP(S | By))/L(S) — p)]) > 1/2. Therefore, we have
A(Bi | Bi) — 1" (By)| < 2[Es[é, (g NHP(S | B1))/L(S) — " (Ba)]| = O <p2 ;) .

In summary, we get the desired result

#(Bk | By) = (By) = O <L2 exp{—GL} + p° \/E> ,
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