
Supplementary Materials of “On Robust Clustering of Event Stream
Data"

Supporting materials are collected in this file. In Section A, we provide more details about the Catoni’s influence

function. Extensive discussions on the intensity-based metrics are provided in Section B. The construction

of basis functions is given in Section C. Section D includes some explanations on the remarks in Section 3.2.

More simulation results including ablation studies are summarized in Section E. Additional figures and tables

for numerical sections are listed in Section F. Section H to Section L collect all technical proofs for the main

theorems, propositions, and supporting lemma.

A Supporting Information of Catoni’s Influence Function

We specifically choose the following Catoni’s influence function,

ϕ(x) =


log(1 + x+ 0.5 · x2) x ≤ 2,

0.032/9 · (x− 9.5)3 + 1.5 + log(5) 2 < x ≤ 9.5,

1.5 + log(5) x > 9.5,

(1)

for x ∈ R+ and ϕ(0) = 0. When x < 0, define ϕ(x) := −ϕ(−x). It is not hard to see that the constructed

ϕ(x) has the continuous second derivative, which facilitates the theoretical analyses.

Remark 1 The constant (e.g. 9.5) in (1) could be modified. Here the only principle in choosing ϕ is that it

satisfies (2.1) and is sufficiently smooth, that is, the second derivative is continuous.

We provide the graphical illustrations of Catoni’s influence function ϕ(x) and its derivative ϕ′(x) in Figure 1.

Figure 1: Left figure: Catoni influence function ϕ and the widest influence function ϕdull and the
narrowest influence function ϕsharp. Right figure: First-order derivatives of ϕ, ϕdull and ϕsharp. For
the definitions of ϕdull and ϕsharp, please refer to (2) and (3).

The first-order derivative and second-order derivative of the function can be derived as

ϕ′(x) =


1 + x

1 + x+ 0.5x2
x ≤ 2;

0.032/3 · (x− 9.5)2 2 < x ≤ 9.5;

0 x ≥ 9.5

and

ϕ′′(x) =


− x+ 0.5x2

(1 + x+ 0.5x2)2
x ≤ 2;

0.064/3 · (x− 9.5) 2 < x ≤ 9.5;

0 x ≥ 9.5.
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The formula of ϕdull and ϕsharp plotted in Figure 1 are given as follows.

ϕdull(x) =

log(1 + x+ 1
2
|x|2) x ≥ 0

− log(1− x+ 1
2
|x|2) x < 0,

(2)

and

ϕsharp(x) =



− log 2 if x ≤ −1

− log(1− x+ 1
2
|x|2) if − 1 ≤ x ≤ 0,

log(1 + x+ 1
2
|x|2) if 0 < x ≤ 1,

log 2 if x ≥ 1.

(3)

B Literature on Intensity-based Distance

For the ease of discussion, throughout this section, we suppose all events are observed within time interval
[0, T ], where T is a fixed real number. Most existing distances for TPPs are based on the random time change
theorem [Brown et al., 2002]. That is, an event stream S = (t1, . . . , tN ) is distributed according to a TPP
with intensity λ∗(t) on the time interval [0, T ] if and only if the transformed sequence Z := (v1, . . . , vN ) =

(Λ∗ (t1) , . . . ,Λ
∗ (tN )) is distributed according to a standard Poisson process on [0,Λ∗(T )], where Λ∗(t) :=∫ t

0
λ∗(u)du is the cumulative intensity function.

Barnard [1953] proposed a Kolmogorov-Smirnov (KS) statistic-based metric, which quantifies the distance
between observed event stream S and the theoretical intensity λ∗(t). The idea is to check whether the transformed
arrival times v1, . . . , vN are uniformly distributed within interval [0, T ]. To do so, it compares F̂arr , the empirical
cumulative distribution function (CDF) of the arrival times, with Farr (u) = u/Λ∗(T ), the CDF of the uniform
random variable. Specifically, the distance is defined as

κarr (S, λ
∗(·)) :=

√
N · sup

u∈[0,V ]

∣∣∣F̂arr (u)− Farr (u)
∣∣∣ ,

where F̂arr (u) = N−1∑N
i=1 1 (vi ≤ u).

Another possible metric relies on the fact that the inter-event time wi := vi+1 − vi follows the standard
exponential distribution (Cox and Lewis [1966]). It then compares F̂int , the empirical CDF of wi’s, and
Fint (u) := 1− exp(−u). This leads to

κint (S, λ
∗(·)) :=

√
N · sup

u∈[0,∞)

∣∣∣F̂int (u)− Fint (u)
∣∣∣ ,

where F̂int (u) = (N + 1)−1∑N+1
i=1 1 (wi ≤ u).

Although metrics κarr and κint are popular in testing the goodness-of-fit of various Poisson processes Daley et al.
[2003], Gerhard et al. [2011], Alizadeh et al. [2013], Kim and Whitt [2014], Li et al. [2018], Tao et al. [2018],
they still have many limitations. They suffer severe non-identifiability issues. Two very different event streams
can be very close under such metrics. More failure modes of κarr and κint can be found in Pillow [2009].

Taking into account the above problems, Shchur et al. [2021] proposed a sum-of-squared-spacings metric,

κsss(S, λ
∗(·)) := 1

Λ∗(T )

N+1∑
i=1

w2
i =

1

Λ∗(T )

N+1∑
i=1

(vi − vi−1)
2 ,

which extends the idea in Greenwood [1946]. As we can see, the above method can measure the closeness
between the sample and the specific distribution well. However, they fail to meet the data requirements in
our scenarios. To be more specific, we can only observe the sample data and has no information of model
specification, which means that λ∗(·) or Λ∗(·) is unknown. For any two samples S1 and S2, of course, we can
consider to estimate Λ∗

1(·) (Λ∗
2(·)) based on sample S1 (S2) first, and then calculate the above KS-type distance

between sample S2 (S1) and the estimated Λ∗
1(·) (Λ∗

2(·)). Unfortunately, this procedure makes it not symmetric
about S1 and S2 and also fails to satisfy the triangle inequality. As a result, it is not a proper metric distance.
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C Construction of Spline Basis

Let U = (u0, u1, . . . , uH) be a set of H + 1 non-decreasing numbers satisfying 0 = u0 < u1 · · · < uH = T .

(We may treat T = 1 for the ease of presentation). Points ui’s are called knots and the set U is known as the

knot vector, and the half-open interval [ui, ui+1) the i-th knot span. For practical use, the knots are usually

equally spaced, i.e., ui+1 − ui is a constant equal to ∆u := T/H for 0 ≤ i ≤ H − 1. To construct the cubic

spline basis functions, we follow the classical procedure by defining Ni,p(u) as the i-th B-spline basis function

of degree p. Then its formula can be recursively written as

Ni,0(u) =

1 if ui ≤ u < ui+1

0 otherwise
,

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u).

The above is usually referred to as the Cox-deBoor recursion formula [De Boor, 1972]. Applying the Cox-deBoor

recursion formula, the first cubic spline basis function κ1(·) can be found as follows.

κ1(u) =



1

6∆u3
u3, u ∈ [0,∆u],

1

6∆u3

(
(2∆u− u)u2 + (u−∆u)(4∆u− u)(3∆u− u) + (4∆u− u)(u−∆u)2

)
, u ∈ [∆u, 2∆u],

1

6∆u3

(
(u− 4∆u)2(u− 2∆u) + (u−∆u)(4∆u− u)(3∆u− u) + (u− 3∆u)2u

)
, u ∈ [2∆u, 3∆u],

1

6∆u3
(4∆u− u)3, u ∈ [3∆u, 4∆u].

For h ∈ {2, ..., H}, we can define h-th basis κh(u) := κ1(u − h∆u). (When u < h∆u, κh(u) =

κ1(u− h∆u+ T ).)

D Additional Comments on Remarks

Explanations of Remark 1. In addition to the non-homogeneous Poisson model given in the main context,

we can use other types of TPPs. For example, to capture more temporal dependencies, we can take it to be the

self-exciting process (also known as the Hawkes process, Hawkes and Oakes [1974]),

λk(t) :=

H∑
h=1

bk,hκh(t) +
∑
ti<t

H′∑
h′=1

αk,h′gh′(t− ti), (4)

where gh′(t)’s is another set of basis functions for modelling the triggering part. To account for more individual

heterogeneity, we can take it to be the frailty model [Duchateau and Janssen, 2008],

λk(t) := ω ·

(
H∑
h=1

bk,hκh(t)

)
, (5)

where ω is a positive random variable (e.g. log-normal, gamma, etc.).

Explanations of Remark 3. When using other optimization methods, the main modification lies in the robust

objective (3.11). For VI, (3.11) changes to
N∑
n=1

q
(t)
nk

(
Eq(t) [log NHP (Sn | Bk)]− µ

)
= 0, (6)

where q
(t)
nk and q(t)’s are the variational distributions. For stochastic EM, (3.11) changes to

N∑
n=1

1{Z(t)
n = k} · (logNHP (Sn | Bk)− µ) = 0, (7)

where Z
(t)
n follows the multinomial(r(t)n1 , ..., r

(t)
nK ).
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E Additional Simulation Results

E.1 Working model: Hakwes Process

In this setting, the inlier event sequences are generated according to the 4-class Hawkes process. The correspond-

ing intensity functions are

λ∗
k,hawkes(t) = λ∗

k(t)/2 +
∑
tj<t

g∗k(t− tj), k ∈ {1, 2, 3, 4}, (8)

where λ∗
k(t)’s are the same as in the main context and g∗k(t)’s are given as follows.

g∗1(t) =
0.05√

π
exp(−t2/4), g∗2(t) =

0.1

3
√
π/2

exp(−t2/9),

g∗3(t) =
0.15√

π
exp(−t2/4), g∗4(t) =

0.15

3
√
π/2

exp(−t2/9).

We still consider three types of outlier event sequences. The first two types are the same as in the previous

subsection, while the sequences from the third type follow λout,hawkes(t) = λout3(t) +
∑
tj<t

gout3(t− tj)

with gout3(t) = 0.5 exp(−t2/9)/(1.5
√
π) and

λout3(t) = 25/2 · exp(−(t− 24 ·B1)
2/0.03) + 25/3 · exp(−(t− 24 ·B2)

2/0.03)

+ 25/6 · exp(−(t− 24 ·B3)
2/0.03),

where Bi ∼ U(0, 1) + 0.1, ∀i ∈ {1, 2, 3}.

The choices of N,L,M,N ′, ϵ, and α remain the same. In addition, we set H ′ = 6 and ρ = 0.8 ·√∫ T
0

log2 λ
(0)
k (t) · λ(0)

k (t)dt, where H ′ is selected according to Xu and Zha [2017]. The results are sum-

marized in Table A.

E.2 Working model: Frailty model

In this setting, the inlier sequences follow the four-class frailty model with

λ∗
1(t) = ω · (5/3 exp(−(t+ 4.8)2/10) + 5/3 exp(−(t− 2.4)2/50)),

λ∗
2(t) = ω · (5/3 exp(−(t− 6)2/4) + 15/4 exp(−(t− 21.6)2/4)),

λ∗
3(t) = ω(15/4 exp(−(t− 4.8)2/1.5) + 35/12 exp(−(t− 12)2) + 15/4 exp(−(t− 19.2)2/1.5)),

λ∗
4(t) = ω · (10/3 exp(−(t− 21.6)2/40) + 5/3 exp(−(t− 26.4)2/10)),

where the frailty ω ∼ Lognormal(−0.1, 0.2). Outlier generation procedure are almost the same as before except

for the third type, which has the following intensity formula λout3(t) = ω ·125/3 ·exp(−(t− 24 ·B1)
2/0.01),

where ω ∼ Lognormal(−0.1, 0.2) and B1 ∼ U(0, 1). We replace EM algorithm by VI method as described

in Remark 3. In the experiment, we set tuning parameter ρ for class k to be 2 ·
√∫ T

0
log2 λ

(0)
k (t) · λ(0)

k (t)dt,

H = 10, ϵ = 0.1, α = 0.2, β = 0.3, M = 30, and N ′ = 0.6 ·N . The results are summarized in Table B.

E.3 Comments on the Baseline

To end the simulation section, we explain the reason why we do not include another baseline, Algorithm 1 with

proposed initialization but without robust influence function, in our simulation. Such baseline method may have

obvious defects. Consider a case that the inlier event streams are from homogeneous Poisson process of four

classes, whose intensities are 1, 2, 3, and 4, respectively. There are 30 event sequences for each class and one

outlier event sequence which follows a Poisson process with intensity 100. In this case, even if we start from

the true values, it still leads to bad classification result if ϕρ is not used. To see this, after the first iteration, the
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Time Algorithm type 1 type 2 type 3
K = 4 K = 5 K = 6 K = 4 K = 5 K = 6 K = 4 K = 5 K = 6

L = 1
Standard 0.5061 0.6355 0.7748 0.4479 0.5467 0.6415 0.7371 0.8247 0.8507
Robust 0.5681 0.6764 0.7896 0.6248 0.7438 0.8291 0.8370 0.8725 0.8869

Robust & Initialization 0.7514 0.8901 0.8913 0.7262 0.8853 0.8868 0.8565 0.8848 0.8868

L = 2
Standard 0.6835 0.9064 0.9673 0.5134 0.6909 0.8146 0.8745 0.9314 0.9634
Robust 0.7754 0.9725 0.9752 0.9145 0.9790 0.9780 0.9076 0.9581 0.9763

Robust & Initialization 0.8709 0.9644 0.9742 0.8940 0.9495 0.9780 0.9517 0.9763 0.9757

L = 4
Standard 0.6993 0.7993 0.8690 0.6596 0.7748 0.8994 0.8127 0.8888 0.9232
Robust 0.8393 0.8693 0.9144 0.7894 0.9041 0.9387 0.8283 0.9186 0.9233

Robust& Initialization 0.9340 0.9986 0.9986 0.8943 0.9493 0.9993 0.9477 0.9681 0.9979

Table A: Purity indices returned by three algorithms under the setting of outlier type 1, 2, and 3 with Hawkes
process working model.

Time Algorithm type 1 type 2 type 3
K = 4 K = 5 K = 6 K = 4 K = 5 K = 6 K = 4 K = 5 K = 6

L = 1
Standard 0.5797 0.7000 0.8715 0.3546 0.3410 0.3967 0.8598 0.9310 0.9357
Robust 0.7303 0.8543 0.9011 0.6850 0.7891 0.8574 0.8036 0.8883 0.9258

Robust & Initialization 0.8938 0.9399 0.9364 0.9318 0.9459 0.9433 0.8683 0.9318 0.9492

L = 2
Standard 0.6367 0.7983 0.9418 0.3002 0.3589 0.4243 0.7506 0.7795 0.8447
Robust 0.8423 0.9534 0.9824 0.9292 0.9667 0.9867 0.7007 0.7350 0.8232

Robust & Initialization 0.8708 0.9601 0.9927 0.9055 0.9683 0.9817 0.9026 0.9327 0.9774

L = 4
Standard 0.7085 0.8594 0.9348 0.4451 0.6141 0.7428 0.5348 0.5596 0.6198
Robust 0.8199 0.8537 0.9014 0.8188 0.8843 0.9147 0.5450 0.5649 0.6258

Robust& Initialization 0.8127 0.9433 0.9681 0.9191 0.9940 0.9840 0.8949 0.9598 0.9894

Table B: Purity indices returned by three algorithms under the setting of outlier type 1, 2, and 3 with Frailty
working model.

outlier will be classified into class 4 and the intensity parameter of this class will be updated to approximately

(30× 4 + 100)/31 ≈ 7.10. After the second iteration, event streams from class 3 and 4 will be mixed together

and the intensity parameter of four classes will be approximately 1, 2, 3.5, and 100, respectively. Then the

algorithm converges in the next iteration. Therefore, outlier is classified into a single class and purity index is no

larger than 0.75. This indicates the usefulness of ϕρ.

E.4 Ablation study

Here we provide additional ablation studies to show the effectiveness of each component in the proposed

algorithms 1 and 2. In particular, we answer the following questions.

a Is the robust estimation part useful? In other words, can w
(t)
nk be removed by being replaced with 1?

b Is the proposed distance induced by the cubic splines useful? What is the performance like when other

common metrics replace it?

c In the inlier weighting part, we adopt the K-means++ algorithm. Does the performance change when

we use other clustering algorithms?

d Can the role of normalizers MA and MB in distance 3.2 be replaced by the corresponding Lp norm of

the intensity functions?

e Whether the results are sensitive to the choices of the hyperparameters (e.g. ρ,N ′) in the proposed

algorithm?

f What will the results look like if we do not take into account the time shift when there truly exists such

phenomena in the data?

To address all the above issues, we compare the proposed method with several baselines under the same NHP

setting as described in Section 5. “Standard & Initialization" denotes the algorithm with w
(t)
nk being replaced with

1. “Frechet distance" denotes the algorithm by replacing the proposed distance with Frechet distance. “Spectral

clustering" denotes the algorithm by replacing K-means++ with the spectral clustering algorithm. In addition
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to the purity index, we also report the performance of different algorithms under the other two metrics, the
Adjusted Rand Index (ARI) and the silhouette scores (Silhouette), whose definitions are given Supplementary
G. The comparative results are given in Table C. We additionally consider using L1 and L2 norms to replace
the normalizers MA and MB . The results are given in Table D. We also choose different ρ = 1.2, 0.3, or
N ′ = 0.65, 0.83. The results are reported in Table E. Moreover, we compare the results by using or not using
the shift-invariant distance for the time-shifted data. The results are summarized in Table F.

Results from Table C suggest that the proposed algorithm can achieve much better performance than the other
baselines when the outlier type is 1 or 2, and can have competitive performance when the outlier type is 3.
As a result, all components designed in the proposed algorithm play a useful role. Results from Table D
suggest that the original normalization consistently yields better clustering performance. It indicates that the
square-root normalization maintains superior adaptability to density fluctuations compared to L1/L2-normalized
counterparts in our framework. From Table E, we can see that the algorithm with modified hyperparameters
(ρ = 0.3, 1.2 vs original 0.6; N ′ = 0.65, 0.83 vs original 0.75) shows no significant performance difference
compared to the default settings, demonstrating a relatively wide selection range for these parameters. The
results in Table F demonstrate that applying the non-shift invariant distance to the shifted data significantly
underperformed compared to the shift-based approach, thereby validating the effectiveness of the shift-invariant
metric in handling temporal misalignments during event stream clustering.

Outlier Type Algorithm Purity ARI Silhouette
K = 4 K = 5 K = 6 K = 4 K = 5 K = 6 K = 4 K = 5 K = 6

Type 1

Standard & Initialization 0.7172 0.9000 0.9599 0.6692 0.8808 0.9376 0.4622 0.5438 0.5384
Robust & Initialization 0.9300 0.9925 1 0.9152 0.9814 0.9609 0.5782 0.5855 0.5192

Frechet distance 0.4875 0.6025 0.7075 0.3387 0.4933 0.6300 0.3555 0.4027 0.4084
Spectral clustering 0.8425 0.8975 0.9525 0.7869 0.8391 0.8834 0.4886 0.4879 0.4648

Type 2

Standard & Initialization 0.5048 0.6550 0.7900 0.4142 0.5988 0.7564 0.3977 0.4581 0.5108
Robust & Initialization 0.9200 0.9825 0.9975 0.9047 0.9655 0.9510 0.5754 0.5732 0.5198

Frechet distance 0.5850 0.7575 0.8625 0.4793 0.6986 0.8112 0.3826 0.4500 0.4538
Spectral clustering 0.7700 0.8450 0.9075 0.7100 0.7894 0.8444 0.4607 0.4844 0.4752

Type 3

Standard & Initialization 0.9795 0.9873 1 0.9749 0.9676 0.9635 0.6118 0.5692 0.5340
Robust & Initialization 0.9772 0.9924 1 0.9717 0.9678 0.9464 0.6108 0.5642 0.5051

Frechet distance 0.9598 1 1 0.9526 0.9868 0.9677 0.5990 0.5896 0.5211
Spectral clustering 0.8127 0.9175 0.9250 0.7694 0.8865 0.8768 0.5177 0.5447 0.4920

Table C: Performance metrics (Purity, ARI, Silhouette) returned by four algorithms under three different outlier
types with non-homogeneous Poisson working model. “Robust & Initialization" stands for the proposed
method.

Outlier Type Lp-norm Purity AIRI Silhouette
K = 4 K = 5 K = 6 K = 4 K = 5 K = 6 K = 4 K = 5 K = 6

Type 1
Default 0.9300 0.9925 1 0.9152 0.9814 0.9609 0.5782 0.5855 0.5192
p = 1 0.4700 0.6000 0.7000 0.3113 0.4868 0.6285 0.3419 0.4069 0.4067
p = 2 0.4650 0.6100 0.6826 0.3048 0.5067 0.6012 0.3479 0.4082 0.4023

Type 2
Default 0.9200 0.9825 0.9975 0.9047 0.9655 0.9510 0.5754 0.5732 0.5198
p = 1 0.5950 0.7200 0.8250 0.5005 0.6356 0.7651 0.4065 0.4186 0.4492
p = 2 0.5974 0.7125 0.8300 0.4987 0.6406 0.7704 0.3974 0.4490 0.4535

Type 3
Default 0.9772 0.9924 1 0.9717 0.9678 0.9464 0.6108 0.5642 0.5051
p = 1 0.9500 0.9975 1 0.9415 0.9847 0.9702 0.5903 0.5870 0.5291
p = 2 0.9399 0.9950 1 0.9301 0.9828 0.9720 0.5833 0.5820 0.5404

Table D: Performance metrics (Purity, ARI, Silhouette) returned by different Lp-norm normalizations under
three outlier types with non-homogeneous Poisson working model. “Default" stands for the original proposed
method.

An important question for the practitioner is how to choose the optimal number of clusters. Here we propose a
criterion, the adjusted Bayesian Information Criterion (adjusted BIC),

BICadj = −2
∑

n:Sn∈Sin

log NHP
(
Sn | B̂k(n)

)
+ Cadj ·Θall · log(|Sin|), (9)
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Outlier Type Algorithm Purity AIRI Silhouette
K = 4 K = 5 K = 6 K = 4 K = 5 K = 6 K = 4 K = 5 K = 6

Type 1

Default 0.9300 0.9925 1 0.9152 0.9814 0.9609 0.5782 0.5855 0.5192
ρ = 1.2 0.9325 0.9875 0.9974 0.9183 0.9734 0.9568 0.5795 0.5753 0.5080
ρ = 0.3 0.9275 0.9925 0.9925 0.9134 0.9742 0.9378 0.5793 0.5820 0.4965

N ′ = 0.65 0.9474 0.9950 1 0.9378 0.9816 0.9544 0.5944 0.5840 0.5071
N ′ = 0.83 0.8950 0.9825 0.9950 0.8762 0.9732 0.9543 0.5693 0.5995 0.6193

Type 2

Default 0.9200 0.9825 0.9975 0.9047 0.9655 0.9510 0.5754 0.5732 0.5198
ρ = 1.2 0.9450 0.9850 1 0.9356 0.9663 0.9583 0.5932 0.5696 0.5284
ρ = 0.3 0.9425 0.9850 1 0.9329 0.9676 0.9609 0.5938 0.5823 0.5304

N ′ = 0.65 0.9300 0.9850 0.9950 0.9176 0.9622 0.9458 0.5847 0.5653 0.5171
N ′ = 0.83 0.8225 0.9425 0.9875 0.7920 0.9260 0.9568 0.5314 0.5798 0.5524

Type 3

Default 0.9772 0.9924 1 0.9717 0.9678 0.9464 0.6108 0.5642 0.5051
ρ = 1.2 0.9675 1 1 0.9612 0.9817 0.9518 0.6049 0.5742 0.5181
ρ = 0.3 0.9675 1 1 0.9606 0.9706 0.9670 0.6067 0.5558 0.4939

N ′ = 0.65 0.9673 0.9925 1 0.9611 0.9706 0.9577 0.4762 0.6193 0.5490
N ′ = 0.83 0.9350 0.9900 0.9975 0.9250 0.9726 0.9502 0.5867 0.5752 0.5215

Table E: Performance metrics (Purity, ARI, Silhouette) with different hyperparameters under three outlier types

Outlier Type Algorithm Shift Data
K = 4 K = 5 K = 6

Type 1 no-shift 0.5134 0.5300 0.5732
shift 0.7610 0.7728 0.7910

Type 2 no-shift 0.5308 0.5553 0.5903
shift 0.7969 0.8026 0.8233

Type 3 no-shift 0.5167 0.5368 0.5708
shift 0.6735 0.7356 0.8083

Table F: Purity metrics for the algorithms using shift-invariant distance or no-shift version on the
shift data.

where k(n) := argmaxk r̂nk is the estimated label of sample n, Θall represents the number of parameters, i.e.,

Θall = KH +K − 1 for K clusters and Cadj is a constant that can be tuned by the user. We suggest choosing

Cadj = 25. We apply the adjusted BIC to the proposed algorithm. The results are given in Table G It is clear

that this criterion can consistently choose the underlying number of clusters, i.e., K∗ = 4.

Lastly, we include the additional experiments with reduced outlier proportion (η = 5%) and outlier-free scenarios

(η = 0%) in Table H, confirming that our method maintains effectiveness across these configurations. As a

result, the proposed method works well under both realistic sparse-outlier conditions ( < 5%) and the ideal

outlier-absent environments.

Outlier Type K = 2 K = 3 K = 4 K = 5 K = 6

Type 1 -46588.07 -49121.01 -50203.39 -50065.27 -49303.61

Type 2 -45723.89 -47818.59 -48774.43 -48228.51 -47525.22

Type 3 -45326.24 -47061.89 -48394.52 -48047.19 -47242.43
Table G: The adjusted BIC values for K=2 to 6 under the non-homogeneous Poisson working model, evaluated
with three different outlier types.
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Outlier Type Algorithm Purity ARI Silhouette

K = 4 K = 5 K = 6 K = 4 K = 5 K = 6 K = 4 K = 5 K = 6

Type 1
(5%)

Standard & Initialization 0.7508 0.9352 0.9826 0.7115 0.9180 0.9628 0.4721 0.5544 0.5450
Robust & Initialization 0.9552 1 0.9975 0.9396 0.9709 0.9321 0.5802 0.5262 0.4497

Standard 0.7509 0.7683 0.8306 0.7104 0.7307 0.8030 0.4485 0.4612 0.5052
Robust 0.7608 0.7808 0.8356 0.7220 0.7452 0.8088 0.4556 0.4700 0.5089

Type 2
(5%)

Standard & Initialization 0.8966 0.9829 0.9924 0.8762 0.9727 0.9718 0.5643 0.5931 0.5618
Robust & Initialization 0.9701 0.9950 0.9999 0.9621 0.9631 0.9318 0.6026 0.5477 0.4650

Standard 0.7528 0.7708 0.8231 0.7118 0.7334 0.7942 0.4504 0.4639 0.5012
Robust 0.8729 0.9278 0.9551 0.8522 0.9159 0.9472 0.5370 0.5765 0.5899

Type 3
(5%)

Standard & Initialization 0.9676 1 1 0.9611 0.9855 0.9578 0.6037 0.5752 0.5069
Robust & Initialization 0.9751 1 1 0.9684 0.9631 0.9124 0.6072 0.5439 0.4384

Standard 1 1 1 0.9999 0.9986 0.9976 0.6265 0.6155 0.5981
Robust 1 1 1 0.9999 0.9992 0.9977 0.6265 0.6175 0.5996

No outlier
(0%)

Standard & Initialization 0.9700 0.9975 0.9975 0.9605 0.9782 0.9561 0.5974 0.5555 0.4750
Robust & Initialization 0.9850 1 1 0.9804 0.9668 0.9248 0.6129 0.5115 0.4077

Standard 1 1 1 1 0.9997 0.9987 0.6284 0.6249 0.6151
Robust 1 1 1 1 0.9997 0.9990 0.6284 0.6238 0.6171

Table H: The performance indices (Purity, ARI, Silhouette) of four algorithms at outlier proportions
ranging from 0% to 5% under the non-homogeneous Poisson model framework.
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F Additional Figures and Tables in Numerical Studies

To help readers to gain more intuitions, the curves of intensity function considered in simulation studies are

shown in Figure 2.

Figure 2: Left: Intensity functions of inlier event streams from 4 classes. Right: Intensity functions
of outlier event streams of three types. Due to the randomness of λout1 - λout3, curves are shown
with one random realization of u.

The following Table I and Table J give a quick overview of two real data sets, IPTV and Last.FM, in our

numerical studies. We can see that users have a sequence of events of watching TV or listening to music in their

daily lives.

id time

1 55357201 2012/01/01 18:33:15

2 55357201 2012/01/01 18:34:55

· · · · · · · · ·
4145 55357201 2012/11/28 02:01:42

4146 55357201 2012/11/28 02:04:01

Table I: IPTV dataset. "id": user identifier. "time":
the time stamp when the user started to watch a TV
program.

user_id time

1 user000685 2005/12/10 06:23:10

2 user000685 2005/12/10 06:26:35

· · · · · · · · ·
84441 user000685 2009/05/22 06:44:01

84442 user000685 2009/05/23 11:12:10

Table J: Last.FM 1K Dataset. "user_id": user iden-
tifier. "time": the time stamp when the user played
a song track.
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The frequency plots of two real data sets are given in Figure 3 and Figure 4. It empirically indicates the existence

of daily effect in user behaviors, i.e., the period of event sequences can be viewed as 24 hours.

Figure 3: IPTV data: the frequency plot of four randomly selected households.

Figure 4: Last.FM 1K User Dataset: the frequency plot of four randomly selected users.
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G Details of Performance Metrics

To be self-complete, the details of two metrics, ARI and Silhouette, in our setting are given as follows. The

Adjusted Rand Index Halkidi et al. [2002] is defined by

ARI =

∑
k,k′

(
Nkk′

2

)
−
[∑

k

(
Nk
2

)∑
k′
(
Nk′
2

)]
/
(
N
2

)
1
2

[∑
k

(
Nk
2

)
+
∑
k′
(
Nk′
2

)]
−
[∑

k

(
Nk
2

)∑
k′
(
Nk′
2

)]
/
(
N
2

)
Here, N is the number of data points in a given data set and Nkk′ = |Ŝk ∩ S∗

k′ |, Nk = |Ŝk| and Nk′ = |S∗
k′ |.

The silhouette scores Kaufman and Rousseeuw [2009], Rousseeuw [1987] is defined as follows: for any pair of

event sequences Si and Sj , we define the following d-index,

d(Si, Sj) =

∫ T

0

∣∣∣λ̂i(t)− λ̂j(t)
∣∣∣ dt, (10)

where λ̂i(t) is the estimated intensity function of sample Si via cubic spline approximation.

For sequences Si in class k, let

a(Si) =
1

|Ŝk| − 1

∑
Sj∈Ŝk,i̸=j

d(Si, Sj)

be the mean distance between Si and all other sequences in the same cluster, where |Ŝk| is the number of points

belonging to cluster Ŝk.

We then define the mean dissimilarity of sequences Si to some cluster k′ ̸= k as the mean of the distance from

Si to all sequence in Ŝk′ . For each sequence Si ∈ Ŝk, we now define

b(Si) = min
k′ ̸=k

1

|Ŝk′ |

∑
j∈Ŝk′

d(Si, Sj)

to be the smallest mean distance of Si to all sequences in any other cluster. The cluster with the smallest mean

dissimilarity is said to be the neighboring cluster of Si because it is the next best fit cluster for point Si.

We now define the silhouette value of sequence Si

s(Si) =
b(Si)− a(Si)

max{a(Si), b(Si)}
, if |Ŝk| > 1

and

s(Si) = 0, if |Ŝk| = 1.

From the above definition, it is clear that −1 ≤ s(Si) ≤ 1 . Then the final silhouette coefficient can be calculated

as
∑N
i=1 s(Si)/N . The values closer to 1 indicate better performance.
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H Proof of Propositions

Proof of Proposition 1 First, we consider the case where f is a constant value function, such as f being

always equal to 1. If X follows a Poisson distribution with parameter λ, we prove that the variance of
√
X is

approximately 1/4 +O(1/λ). In general, for a smooth g(X), we can do a Taylor expansion around the mean

λ = E(X), so we have

g(X) = g(λ) + g′(λ)(X − λ) +
g′′(λ)

2!
(X − λ)2 +

g′′′(λ)

3!
(X − λ)3 + o(g′′′(λ)(X − λ)3).

Therefore E[g(X)] = g(λ) + g′′(λ)
2!

m2 +
g′′′(λ)

3!
m3 + o(g′′′(λ)m3), where mi is the i-th centered moment.

In our case m2 = m3 = λ, thus

E[
√
X] =

√
λ− λ−1/2

8
+

λ−3/2

16
+ o(λ−3/2),

which indicates that the expected value is approximately
√
λ. Taking square of it, it gives(

E[
√
X]
)2

= λ− 1

4
+

9

64λ
+ o

(
1

λ

)
.

Then Var(
√
X) = 1/4− 9/(64λ) + o(1/λ), which is approximately 1/4 for large λ.

Next, we divide the interval [0, T ] into n segments, each of which is 0 = a0 < a1 < · · · < an−1 < an = T .

Write Xi := N(T )−1/2∑
tj∈(ai−1,ai)

f(tj), then var(Xi) = T−1
∫ ai
ai−1

f2(t)dt ·(1/4−9/(64λ)+o(1/λ)).

So the variance of N(T )−1/2∑
tj
f(tj) is

∑
i var(Xi) = T−1

∫ T
0

f2(t)dt ·O(1/λ).

Proof of Proposition 2: By the definition of µ̂(t)
ϕ (Bk), we know that

∂

∂Bk

{
N∑
n=1

r
(t)
nk · L(Sn) · ϕρ

(
log NHP (Sn | Bk) /L(Sn)− µ̂

(t)
ϕ (Bk)

)}
= 0,

which implies

∂µ̂
(t)
ϕ (Bk)

∂Bk

=

N∑
n=1

r
(t)
nkϕ

′
ρ

(
log NHP (Sn | Bk) /L(Sn)− µ̂ϕ(B

(t−1)
k )

)
∑N
n=1 r

(t)
nkϕ

′
ρ

(
log NHP (Sn | Bk) /L(Sn)− µ̂ϕ(B

(t−1)
k )

)
L(Sn)

· ∂ log NHP (Sn | Bk)

∂Bk
.

Plugging Bk = B
(t−1)
k into the above formula, we get the desired gradient ϱ(t)k . This completes the proof.

I Proof of Theorem 1

Here we would like to point out that we say the event sequence S is different from S′ if their induced intensity

λ̂S/
√
M ’s are different. Otherwise, we treat them as the same event sequence.

Proof of Theorem 1 It is easy to know that the distance between an object and itself is always zero and the

distance between distinct objects is always positive. Moreover, the distance from SA to SB is always the same

as the distance from SB to SA. We only need to prove that d(SA, SB) satisfies the triangle inequality.

By definition we know that d(SA, SB) =
∫ T
0

∣∣∣λ̂A (t) /
√
MA − λ̂B (t+ δB) /

√
MB

∣∣∣ dt, where δB =

argminδB
∫ T
0

∣∣∣λ̂A (t) /
√
MA − λ̂B (t+ δB) /

√
MB

∣∣∣ dt. In the same way we define δC . Then

d(SB , SC) ≤
∫ T

0

∣∣∣λ̂C (t+ δC) /
√
MC − λ̂B (t+ δB) /

√
MB

∣∣∣ dt
≤
∫ T

0

∣∣∣λ̂C (t+ δC) /
√
MC − λ̂A (t) /

√
MA

∣∣∣ dt+ ∫ T

0

∣∣∣λ̂A (t) /
√
MA − λ̂B (t+ δB) /

√
MB

∣∣∣ dt
= d(SA, SB) + d(SA, SC).
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J Proof of Theorem 2 and Theorem 3

We first provide a lemma showing that the “outlier screening" procedure can eliminate all outliers with high

probability.

Lemma 1 Under Assumption 1 and 2, steps 3-5 in Algorithm 2 eliminate all outliers with high probability.

Proof of Lemma 1 Without loss of generality, we consider Cluster 1. Assume that Cluster 1 accounts for π1

proportion of the set S. When we select M samples from an N -element set, it is easy to know that the amount

of Cluster 1 obey the binomial distribution B(M,π1). Then the probability of α-quantile being smaller than

rmax := maxSn1 ,Sn2∈S1 d(Sn1 , Sn2) is

p(α) :=
∑
k

P(X ∈ Ck) · P(Xdis ≥ M · α) =
∑
k

πk
∑
i≥α·M

(
M
i

)
πik · (1− πk)

M−i

 ,

where Xdis ∼ B(M,πk).

We choose a suitable α such that p(α) ≥ 1 − δ1, and then choose β such that
∑
i≥β·N′

(
N′

i

)
p(α)i(1 −

p(α))N
′−i > 1 − δ2, where δ1, δ2 are small enough positive numbers. Repeat it until we choose enough

samples, and we avoid selecting outliers with a high probability.

Next we show that the proposed “inlier weighting" procedure can produce a set of good initial centers. In

the following proof, we consider an arbitrary pseudo-metric d which has quasi-triangular properties, that is,

d(x, z) ≤ M(d(x, y) + d(y, z)) for all x, y, z ∈ S. For our proposed distance function, it holds M ≡ 1.

Overview of Proof of Theorem 2. In order to find the upper bound of the Υ, we use mathematical induction to

prove that the upper bound of the objective function Υ can be controlled after adding several centers. Lemma 3

proves the case of one-step addition and Lemma 4 generalizes to the general case. As defined previously, we

know that under the optimal center set COPT, each sequence will be classified into the same class of an element

in COPT, so we can divide Sin into K sub-sets.

Lemma 2 Let S be a set of sequences, and let s1 and s2 be two arbitrary sequences. Then
∑
x∈S d(x, s1)

2 −
2M2∑

x∈S d(x, s2)
2 ≤ 2M2|S| · d(s1, s2)2.

Lemma 3 Let A be an arbitrary data set, and let C be an arbitrary set of centers. Define ΥC(A) :=∑
a∈A minc∈C d (a, c)2, ΥCOPT(A) :=

∑
a∈A minc∈COPT d (a, c)2. If we add a random center to C from A,

chosen with D2 weighting (i.e. step (b)), then E[ΥC(A)] ≤ 16M4ΥCOPT(A).

Proof of Lemma 3 The probability that we choose some fixed a0 as our center is precisely

D (a0)
2 /
∑
a∈A D(a)2. Furthermore, after choosing the center a0, a sequence a will contribute precisely

min (D(a), d(a, a0))
2 to the potential. Therefore,

E[ΥC(A)] =
∑
a0∈A

D (a0)
2∑

a∈A D(a)2

∑
a∈A

min (D(a), d(a, a0))
2 .

Note by the triangle inequality that D (a0) ≤ M(D(a) + d(a, a0)) for all a, a0. From this, the powermean

inequality implies that D (a0)
2 ≤ 2M2(D(a)2+d(a, a0)

2). Summing over all a, we then have that D (a0)
2 ≤

2M2

|A|
∑
a∈A D(a)2 + 2M2

|A|
∑
a∈A d(a, a0)

2. Then E[ΥC(A)] is at most

r
2M2

|A| ·
∑
a0∈A

∑
a∈A D(a)2∑
a∈A D(a)2

·
∑
a∈A

min (D(a), d(a, a0))
2

+
2M2

|A| ·
∑
a0∈A

∑
a∈A d(a, a0)

2∑
a∈A D(a)2

·
∑
a∈A

min (D(a), d(a, a0))
2 .
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In the first expression, we substitute min (D(a), d(a, a0))
2 ≤ d(a, a0)

2, and in the second expression, we

substitute min (D(a), d(a, a0))
2 ≤ D(a)2. Simplifying, we then have,

E[ΥC(A)] ≤ 4M2

|A| ·
∑
a0∈A

∑
a∈A

d(a, a0)
2 ≤ 16M4ΥCOPT(A).

The last step here follows from Lemma 2.

Lemma 4 Let C be the current center set, when we choose u > 0 "uncovered" class, and let Su denote the set

of sequences in these class. Also let Sc = S − Su. Now suppose we add t ≤ u random centers to C, chosen

with D2 weighting. Let C′ denote the new center set, and let ΥC′(S) denote the corresponding potential. Then

E [ΥC′(S)] is at most (
ΥC (Sc) + 16M4ΥCOPT (Su)

)
· (1 +Ht) +

u− t

u
·ΥC (Su) .

Here Ht denotes the harmonic sum, 1 + 1/2 + · · ·+ 1/t.

Proof of Lemma 4

We prove the conclusion by induction, showing that if the result holds for (t− 1, u) and (t− 1, u− 1), then it

also holds for (t, u). Therefore, it suffices to check t = 0, u > 0 and t = u = 1 as our base cases.

If t = 0 and u > 0, the result follows from the fact that 1 +Ht = (u− t)/u = 1. Next, suppose t = u = 1.

We choose our one new center from one uncovered class with probability exactly ΥC (Su) /ΥC(S). In this case,

Lemma 3 guarantees that E [ΥC′(S)] ≤ ΥC (Sc) + 16M4ΥCOPT (Su). Since ΥC′(S) ≤ ΥC(S), even if we

choose a center from a covered class, we have

E [ΥC′(S)] ≤ ΥC (Su)
Υ

·
(
ΥC (Sc) + 16M4ΥCOPT (Su)

)
+

ΥC (Sc)
ΥC(S)

·ΥC(S)

≤ 2ΥC (Sc) + 16M4ΥCOPT (Su)

Since 1 +Ht = 2 here, we have shown the result holds for both base cases.

We now proceed to prove the inductive step. It is convenient here to consider two cases. First, suppose we

choose our first center from a covered class. As above, this happens with probability exactly ΥC (Sc) /ΥC(S).
Note that this new center can only decrease ΥC(S). We apply the inductive hypothesis with the same choice of

covered class, but with t decreased by 1. It follows that our contribution to E [ΥC′(S)] in this case is at most,

ΥC (Sc)
ΥC(S)

·
((

ΥC (Sc) + 16M4ΥCOPT (Su)
)
· (1 +Ht−1) +

u− t+ 1

u
·ΥC (Su)

)
.

On the other hand, suppose we choose our first center from some uncovered class A. This happens with

probability ΥC (A) /ΥC(S). Let pa denote the probability that we choose a ∈ A as our center, given the

center is somewhere in A, and let Υa denote ΥC (A) after we choose a as our center. Once again we apply our

inductive hypothesis, as well as decrease both t and u by 1. It follows that our contribution to E [ΥCOPT ] in this

case is at most,

ΥC (A)

ΥC(S)
·
∑
a∈A

pa{
(
ΥC (Sc) + Υa + 16M4ΥCOPT (Su)− 16M4ΥCOPT(A)

)
· (1 +Ht−1)

+
u− t

u− 1
· (ΥC (Su)−ΥC (A))}

≤ ΥC (A)

ΥC(S)
·
((

ΥC (Sc) + 16M4ΥCOPT (Su)
)
· (1 +Ht−1) +

u− t

u− 1
· (ΥC (Su)−ΥC (A))

)
.

The last step here follows from the fact that
∑
a∈A paΥa ≤ 16M4ΥCOPT(A), which is implied by Lemma 3.

14



Now, the power-mean inequality implies that
∑

A⊂Su
ΥC (A)2 ≥ ΥC (Su)2 /u. Therefore, if we sum over all

uncovered class A, we obtain a contribution at most,

ΥC (Su)
ΥC(S)

·
(
ΥC (Sc) + 16M4ΥCOPT (Su)

)
· (1 +Ht−1) +

1

Υ
· u− t

u− 1
·
(
ΥC (Su)2 −

1

u
·ΥC (Su)2

)
=

ΥC (Su)
ΥC(S)

·
((

ΥC (Sc) + 16M4ΥCOPT (Su)
)
· (1 +Ht−1) +

u− t

u
·ΥC (Su)

)
.

Combining the potential contribution to E [ΥC′(S)] from both cases, we now obtain the desired bound:

E [ΥC′(S)] ≤
(
ΥC (Sc) + 16M4ΥCOPT (Su)

)
· (1 +Ht−1) +

u− t

u
·ΥC (Su) +

ΥC (Sc)
ΥC(S)

· ΥC (Su)
u

≤
(
ΥC (Sc) + 16M4ΥCOPT (Su)

)
·
(
1 +Ht−1 +

1

u

)
+

u− t

u
·ΥC (Su) .

The inductive step now follows from the fact that 1/n ≤ 1/t.

Proof of Theorem 2 Consider the clustering Cini after we have completed Step 1. Applying Lemma 4 with

S = Sin, t = u = k − 1 and with Sc being the first covered class, we have,

E[ΥCini(Sin) | Sin] = E[E[ΥCini(Sin) | Sc] | Sin]

≤ E[
(
Υ(Sc) + 16M4ΥCOPT(Su)

)
· (1 +Hk−1) | Sin]

= E[
(
Υ(Sc) + 16M4ΥCOPT(Sin)− 16M4ΥCOPT(Sc)

)
· (1 +Hk−1) | Sin]

≤ 16M4(lnK + 2)ΥCOPT(Sin).

The result now follows from Lemma 3, and from the fact that Hk−1 ≤ 1 + ln k.

Proof of Theorem 3 By Assumption 2, we know that there are at least α proportion of samples here that are not

classified into the correct class. Denote the correctly classified set as Sright, and the incorrectly classified set as

Swrong . Then

ΥClack (Sin) =
∑

x∈Swrong

min
c∈Clack

d (x, c)2 +
∑

x∈Sright

min
c∈Clack

d (x, c)2 . (11)

We consider the part Sright first, we know that for each sample, there is an estimated function of cu-

bic spline approximation, which is λ̂(t) =
∑H
h=1 bhκh(t). When sequences x and c are generated

from the same class, the distance between them is d(x, c) =
∫ T
0

∣∣∣λ̂x(t)/√Mx − λ̂c(t)/
√
Mc

∣∣∣ dt ≤∑H
h=1

∣∣bxh/√Mx − bch/
√
Mc

∣∣ ∫ T
0

κh(t)dt. Thus we know d(x, c) ∼ O(L−1/2). As L → ∞, we get that

ΥCOPT(Sin)/ΥClack (Sin) ∼ O(L−1/2). Therefore, ΥClack (Sin) > 16(logK + 2)ΥCOPT(Sin) with high

probability whenever L is sufficiently larger than (logK)2.

K Proof of Theorem 4 and Theorem 5

We first provide several supporting results regarding the properties of Poisson random variables and Poisson

processes.

Let h : [−1,∞) → R be the function defined by h(u) := 2[(1 + u) ln(1 + u)− u]/u2.

Lemma 5 Let X ∼ Poisson(λ) with λ > 0. Then, for any x > 0, we have

P (X ≥ λ+ x) ≤ exp

(
−x2

2λ
h
(x
λ

))
and, for any 0 < x < λ,

P (X ≤ λ− x) ≤ exp

(
−x2

2λ
h
(
−x

λ

))
.

In particular, this implies that P (X ≥ λ+ x) and P (X ≤ λ− x) ≤ exp
(
−x2/(2(λ+ x))

)
, for x > 0; from

which

P (|X − λ| ≥ x) ≤ 2 exp

(
− x2

2(λ+ x)

)
, x > 0.
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Proof of Lemma 5 Recall that if
(
Y (n)

)
n≥1

is a sequence of independent random variables such that Y (n)

follows a Binomial (n, λ/n) distribution, then
(
Y (n)

)
n≥1

converges in law to X , a random variable with

Poisson (λ) distribution. In particular, since convergence in law corresponds to pointwise convergence of

distribution functions, this implies that, for any t ∈ R,

P
(
Y (n) ≥ t

)
−→
n→∞

P (X ≥ t) .

For any fixed n ≥ 1, by the definition, we can write Y (n) as Y (n) =
∑n
k=1 Y

(n)
k , where Y

(n)
1 , . . . , Y

(n)
n

are i.i.d. random variables with Bernoulli (λ/n) distribution. Note that E
[
Y (n)

]
= λ and Var

[
Y (n)

]
=

λ (1− λ/n) ≤ λ. As E
[
Y

(n)
k

]
= λ/n and

∣∣∣Y (n)
k

∣∣∣ ≤ 1 for all 1 ≤ k ≤ n, we can apply Bennett’s inequality

[Boucheron et al., 2013], to obtain, for any t ≥ 0,

P
(
Y (n) ≥ λ+ x

)
= P

(
Y (n) ≥ E

[
Y (n)

]
+ x
)
≤ exp

(
−x2

2λ
h
(x
λ

))
.

Taking the limit as n goes to infinity, we obtain that P (X ≥ λ+ x) ≤ exp
(
−x2h (x/λ) /(2λ)

)
.

Lemma 6 (Bernstein’s inequality [Vershynin, 2018]) Let X1, . . . , XN be independent, mean zero, sub-

exponential random variables, and a = (a1, . . . , aN ) ∈ RN . Then, for every t ≥ 0, we have

P

(∣∣∣∣∣
N∑
i=1

aiXi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

[
−cmin

(
t2

K2∥a∥22
,

t

K∥a∥∞

)]
,

where K = maxi ∥Xi∥ψ1
and ∥X∥ψ1 := inf{t > 0 : E exp(|X|/t) ≤ 2}.

Lemma 7 When event sequence S is sampled from the NHP process with parameter λ∗, its log-likelihood

function log NHP(S | Bi) follows a sub-exponential distribution.

Proof of Lemma 7 Divide the interval [0, T ] into M small intervals [a0, a1], · · · , [aM−1, aM], where 0 =

a0 < a1 < · · · < aM = T . Within the small interval [ai, ai+1], there is approximately a homogeneous Poisson

process with intensity λ(ai + η), where η < ai+1 − ai. At this point we can divide the log-likelihood function

into M parts F1, · · · , FM, where Fℓ :=
∑
ti∈[aℓ−1,aℓ]

log(ti). At this time Fℓ/log(ai + η) approximately

obeys the homogeneous Poisson process with the parameter λ(ai + η) · (ai+1 − ai), so its variance is λ(ai +

η)(ai+1 − ai) · log(λ(ai + η))2. According to Lemma 5, each of Fℓ follows a sub-exponential distribution.

Using Lemma 6, we know that

P (|log NHP(S | Bi)/L(S)− µavg| ≥ t) ≤ 2 exp

[
−cmin

(
L(S)2t2

C2 max log(λ∗)2
,

L(S)t

Cmax log(λ∗)

)]
,

where C is a finite constant depend on Bi and µavg := ES∼λ∗ log NHP(S | Bi)/L(S).

Similar to the derivative function of log NHP(S | Bi), there is

P
(∣∣∣∣∂ log NHP(S | Bi)

∂Bi
/L(S)− µavg

∣∣∣∣ ≥ t

)
≤ 2 exp

[
−cmin

(
L(S)2t2

C2(max κmax
λ∗(t)

)2
,

L(S)t

Cmax κmax
λ∗(t)

)]
.

Corollary 1 According to proposition 2.7.1 from [Vershynin, 2018], m(S) follow a sub-exponential distri-

bution. From Lemma 6, we know that for m(S) with L periods, it follows a sub-exponential distribution

as well, and P
(∣∣∣m(S)/L−

∫ T
0

λ∗(t)dt
∣∣∣ > t

)
≤ 2 exp(−K0Lt). Take a small enough δ > 0, we have

P (m(S)/L > mc) < δ when mc ≥
∫ T
0

λ∗(t)dt + log(2/δ)/(L ·K0). Define C0 := mc · L, which can be

viewed as the high probability bound of number of events in event sequence S.

Overview of Proof Theorem 4. In order to prove the local convergence property of the proposed algorithm, we

need to check the following three key important aspects. (i) What is the difference |µ(Bk|B′
k)− µ(Bk|B′′

k)|

16



when B′
k and B′′

k are close; see Lemma 13. (ii) What is the difference between sample gradient ϱ(t)k and

population gradient ∇µ(Bk|B(t−1)
k ) (“∇" stands for the derivative with respect to parameter Bk); see Lemma

14. (iii) The local concavity of µ(Bk|B(t)
k ) holds around Bk = B∗

k; see Lemma 12.

Define the weight wk(S;B) = πk NHP(S | Bk)/
∑
j πj NHP(S | Bj) for k ∈ [K].

Lemma 8 If ∥Bk −B∗
k∥2 < a/(T · κmax) for ∀k ∈ [K], there exists a constant G > 0 such that

ES
[
wk(S;B) (1− wk(S;B))

∥∥∥∥∂ log NHP(S | Bk)

∂Bk

∥∥∥∥p] ∼ O(L(S)p exp(−G · L(S)))

for p = 1, 2.

Proof of Lemma 8 Without loss of generality, we prove the claim for k = 1. Taking the expectation of S, we get

ES
[
w1(S;B) (1− w1(S;B))

∥∥∥∥∂ log NHP(S | B1)

∂B1

∥∥∥∥p]
=
∑
k∈[K]

πkEs∼POI(B∗
k)

[
w1(S;B) (1− w1(S;B))

∥∥∥∥∂ log NHP(S | B1)

∂B1

∥∥∥∥p]

≤π1Es∼POI(B∗
1)

[
w1(S;B) (1− w1(S;B))

∥∥∥∥∂ log NHP(S | B1)

∂B1

∥∥∥∥p]
+
∑
k ̸=1

πkEs∼POI(B∗
k)

[
w1(S;B) (1− w1(S;B))

∥∥∥∥∂ log NHP(S | B1)

∂B1

∥∥∥∥p] .
For the the first term, we define event E(1)

r = {S : S ∼ POI (B∗
1) ; ∥∂ log NHP(S | B∗

1)/∂B1∥ ≤ r · L(S)}
for some r > 0. According to the assumption that ∥B1 −B∗

1∥ ≤ a/(T ∗ κmax), we know that

max
∣∣λB1(s)− λB∗

1
(s)
∣∣ ≤ a/T . Then for S ∈ E(1)

r , using triangle inequality, we have∣∣∣∣∣∣
m(S)∑
t

κh(st)

λB1(st)
−
∫ T

0

κh(x)dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
m(S)∑
t

κh(st)

λB∗
1
(st)

−
∫ T

0

κh(x)dx

∣∣∣∣∣∣+
∣∣∣∣∣∣
m(S)∑
t

κh(st)(
1

λB1(st)
− 1

λB∗
1
(st)

)

∣∣∣∣∣∣
≤L(S) · r + m(S)a

Tτ2
, ∀h ∈ {1, · · · , H}.

Because
∣∣∣λBk (t)− λB∗

k
(t)
∣∣∣ < a/T for k = 1, 2, . . . ,K, then we have log NHP(S | B1) =∑

i log λB1(ti)−
∫
λB1(s)ds ≥ log NHP(S | B∗

1)−m(S) log ((τ + a/T )/τ)− a · L(S).

For k ̸= 1, log NHP(S | Bk) − log NHP(S | B∗
k) =

∑
k log

(
λBk (ti)/λB∗

k
(ti)
)
−
∫
(λBk (s) −

λB∗
k
(s))ds ≤ a · L(S) +m(S) log ((τ + a/T )/τ). By Assumption 5, we know that log NHP(S | Bk) ≤

log NHP(S | B∗
1)− C · L(S) + a · L(S) +m(S) log ((τ + a/T (S))/τ). Then we get that

ES
[
w1(S;B) (1− w1(S;B))

∥∥∥∥∂ log NHP(S | B1)

∂B1

∥∥∥∥p | E(1)
r

]
≤ 1− π1

π1
exp

(
2a · L(S) + 2m(S) log

(
τ + a/T (S)

τ

)
− C · L(S)

)
·
(
rL(S) +

a

τ2

m(S)

T (S)

)p
.

For Ecr part, we now have ∥∂ log NHP(S | B1)/∂B1∥ > r · L(S). We define

Mh :=

∫ L(S)∗T

0

κh(t)

λB1(t)
dN(t)−

∫ L(S)∗T

0

κh(x)dx

=

L(S)∑
l=1

∫ l∗T

(l−1)∗T

κh(t)

λB1(t)
dN(t)−

∫ l∗T (S)

(l−1)∗T
κh(x)dx

=

L(S)∑
l=1

Xl,

17



where Xl’s are independent. According to Lemma 7, there exists c0 > 0 such that

P (|Mh/L(S)| ≥ t) ≤ 2 exp

(
− tL(S)

c0

)
.

Obviously we have w1(S;B) (1− w1(S;B)) ≤ 1/4. Then

ES
[
w1(S;B) (1− w1(S;B))

∥∥∥∥∂ log NHP(S | B1)

∂B1

∥∥∥∥p | Ecr
]

≤ 1

4

∫ ∞

r

tpdP
(∥∥∥∥∂ log NHP(S | B1)

∂B1

∥∥∥∥ ≥ t · L(S)
)

=
1

4

(
rp · L(S)P

(∥∥∥∥∂ log NHP(S | B1)

∂B1

∥∥∥∥ ≥ r · L(S)
)

+

∫ ∞

r

ptp−1P
(∥∥∥∥∂ log NHP(S | B1)

∂B1

∥∥∥∥ ≥ t · L(S)
)
dt
)

≤ 1

2

(
rpL(S) exp

(
−rL(S)

c0

)
+

∫ ∞

r

ptp−1 exp

(
− tL(S)

c0

)
dt

)
.

For fixed r ≥ 0, when L(S) → ∞, it is easy to know that

1

2

(
rpL(S) exp

(
−rL(S)

c0

)
+

∫ ∞

r

ptp−1 exp

(
− tL(S)

c0

)
dt

)
→ 0.

Next we consider the remainder of the gradient. For k ̸= 1,

πkEs∼POI(B∗
k)

[
w1(S;B)

∥∥∥∥∂ log NHP(S | B1)

∂B1

∥∥∥∥p]
=

∫
∥∥∥∥ ∂ log NHP(S|B∗

k
)

∂Bk

∥∥∥∥<r·L(S)

π1 NHP(S | B1)πk NHP(S | B∗
k)∑

k πk NHP(S | Bk)

∥∥∥∥∂ log NHP(S | B1)

∂B1

∥∥∥∥p dS︸ ︷︷ ︸
I1

+

∫
∥∥∥∥ ∂ log NHP(S|B∗

i
)

∂Bi

∥∥∥∥>r·L(S)

π1 NHP(S | B1)πk NHP(S | B∗
k)∑

k πk NHP(S | Bk)

∥∥∥∥∂ log NHP(S | B1)

∂B1

∥∥∥∥p dS︸ ︷︷ ︸
I2

.

When ∥∂ log NHP(S | B∗
k)/∂Bk∥ < r · L(S), we have

NHP(S | Bk)

NHP(S | B∗
k)

≤ exp

(
a · L(S) +m(S) log

(
τ + a/T

τ

))
and

NHP(S | B∗
k)

NHP(S | Bk)
≤ exp

(
a · L(S) +m(S) log

(
τ + a/T

τ

))
.

Then it holds

I1 ≤
πk NHP(S | B∗

k)

πi NHP(S | Bk)
·
∫∥∥∥∥∥ ∂ log NHP(S|B∗

k
)

∂Bk

∥∥∥∥∥<rL(S)

π1 NHP(S | B1)

∥∥∥∥∂ log NHP(S | B1)

∂B1

∥∥∥∥p

dS

≤ π1 exp

(
aL(S) + m(S) log(

τ + a/T

τ
)

)∫∥∥∥∥∥ ∂ log NHP(S|B∗
k
)

∂Bk

∥∥∥∥∥<rL(S)

NHP(S | B1)

∥∥∥∥∂ log NHP(S | B1)

∂B1

∥∥∥∥p

dS

≤ π1 exp

(
aL(S) + m(S) log(

τ + a/T

τ
)

)
·
∫∥∥∥∥∥ ∂ log NHP(S|B∗

k
)

∂Bk

∥∥∥∥∥<rL(S)

NHP(S | B∗
k) exp

(
−CL(S) + 2aL(S) + 2m(S) log(

τ + a/T

τ
)

)
(C0L(S))

p
dS

≤ π1 exp

(
−CL(S) + 2aL(S) + 2m(S) log(

τ + a/T

τ
)

)
· (C0L(S))

p
,

where C0 is the upper bound of ∥∂ log NHP(S | Bk)/∂Bk∥, ∀k = 1, · · · ,K with probability of 1− δ.
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When ∥∂ log NHP(S | B∗
k)/∂Bk∥ > r · L(S) and L(S) → ∞, it holds

I2 =
π1 NHP(S | B1)∑
k πk NHP(S | Bk)

·
∫
∥∥∥∥ ∂ log NHP(S|B∗

k
)

∂Bk

∥∥∥∥>r·L(S)

πk NHP(S | B∗
k)

∥∥∥∥∂ log NHP(S | B1)

∂B1

∥∥∥∥p dS
≤
∫
∥∥∥∥ ∂ log NHP(S|B∗

k
)

∂Bk

∥∥∥∥>r·L(S)

πk NHP(S | B∗
k)

∥∥∥∥∂ log NHP(S | B1)

∂B1

∥∥∥∥p dS
≤ πi(C0L(S))

p

∫
∥∥∥∥ ∂ log NHP(S|B∗

k
)

∂Bk

∥∥∥∥>r·L(S)

NHP(S | B∗
k)dS

≤ 2πi(C0L(S))
p exp

(
− tL(S)

c0

)
dS,

where we use the same conclusion obtained above that P (∥∂ log NHP(S | B∗
k)/∂Bk∥ /L(S) ≥ t) ≤

2 exp (−tL(S)/c0). We take G = min{Cgap − 2a − 2mc log((τ + a/T (S))/τ), t/c0}, where

P (|M(S)/L(S)| ≥ mc) < δ for small enough δ > 0. Thus we get the result.

Lemma 9 If ∥Bk −B∗
k∥ < a/(T · κmax) for ∀k ∈ [K], then it holds

∥∇wk(S,B)∥ ∼ O(
√
HL(S) exp(−G · L(S))).

Proof of Lemma 9 Without loss of generality, we prove the lemma for k = 1. Recall the definition of w1(S;B)

, for any given S, consider the function B → w1(S;B), it is easy to know that

∇w1(S;B) =



−w1(S;B) (1− w1(S;B))
∂ log NHP(S | B1)

∂B1

w1(S;B)w2(S;B)
∂ log NHP(S | B2)

∂B2
...

w1(S;B)wK(S;B)
∂ log NHP(S | BK)

∂BK


,

where

∂ log NHP(S | Bk)

∂Bk
=



m(S)∑
t

κ1(st)

λBk (st)
−
∫ T

0

κ1(x)dx

...
m(S)∑
t

κH(st)

λBk (st)
−
∫ T

0

κH(x)dx



⊤

.

To calculate the upper bound of ∥∇wi(S,B)∥, we start by considering the first line. By Lemma 8, it is easy to

know that the first line is of order O(L(S) exp(−G · L(S))). Then we turn to other lines. Note that

ES
[
w1(S;B)wi(S;B)

∥∥∥∥∂ log NHP(S | Bi)

∂Bi

∥∥∥∥] ≤ ES
[
wi(S;B) (1− wi(S;B))

∥∥∥∥∂ log NHP(S | Bi)

∂Bi

∥∥∥∥]
for ∀i ̸= 1. Therefore the upper bound of line i has the same order as that of line 1.

Lemma 10 If ∥Bk −B∗
k∥ < a/(T · κmax), ∀k ∈ [K]. Then ∀i, j ∈ [K], we have

ES
[
wi(S;B)wj(S;B)

∥∥∥∥∂ log NHP(S | Bi)

∂Bi

∥∥∥∥ · ∥∥∥∥∂ log NHP(S | Bj)

∂Bj

∥∥∥∥] ∼ O(L(S)2 exp(−G · L(S))).
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Proof of Lemma 10 Taking the expectation with respect to S, we get

ES
[
wi(S;B)wj(S;B)

∥∥∥∥∂ log NHP(S | Bi)

∂Bi

∥∥∥∥ · ∥∥∥∥∂ log NHP(S | Bj)

∂Bj

∥∥∥∥]
≤ES

[
wi(S;B)wj(S;B)

∥∥∥∥∂ log NHP(S | Bi)

∂Bi

∥∥∥∥ · ∥∥∥∥∂ log NHP(S | Bj)

∂Bj

∥∥∥∥ | E0

]
P(E0)

+
∑
k

πkEs∼POI(B∗
k)

[
wi(S;B)wj(S;B)

∥∥∥∥∂ log NHP(S | Bi)

∂Bi

∥∥∥∥ · ∥∥∥∥∂ log NHP(S | Bj)

∂Bj

∥∥∥∥ |∥∥∥∥∂ log NHP(S | Bk)

∂Bk

∥∥∥∥ ≤ r

]
:= I0 +

∑
k

Ik.

Next we consider the remainder of the gradient. When ∥∂ log NHP(S | B∗
k)/∂Bk∥ < r · L(S), we have

NHP(S | B∗
k)/NHP(S | Bk) ≤ exp (a · L(S) +m(S) log((τ + a/T )/τ)). Then for Ik,

Ik =

∫
S

πiNHP(S | Bi)πj NHP(S | Bj)πk NHP(S | B∗
k)

(
∑
j πj NHP(S | Bj))2

∥∥∥∥∂ log NHP(S | Bi)

∂Bi

∥∥∥∥∥∥∥∥∂ log NHP(S | Bj)

∂Bj

∥∥∥∥ dS
≤
∫
S

πiNHP(S | Bi)πj NHP(S | Bj)πk NHP(S | Bk) exp
(
aL(S) +m(S) log( τ+a/T

τ
)
)

(
∑
j πj NHP(S | Bj))2

·
∥∥∥∥∂ log NHP(S | Bi)

∂Bi

∥∥∥∥ ∥∥∥∥∂ log NHP(S | Bj)

∂Bj

∥∥∥∥ dS.
Because i ̸= j, it is easy to know that at least one of i, j is not equal to k. Without loss of generality, assume

that i ̸= k, we have

Ik = πi
πj NHP(S | Bj)πk NHP(S | Bk) exp

(
aL(S) +m(S) log( τ+a/T

τ
)
)

(
∑
j πj NHP(S | Bj))2

·
∫
S

NHP(S | Bi)

∥∥∥∥∂ log NHP(S | Bi)

∂Bi

∥∥∥∥ · ∥∥∥∥∂ log NHP(S | Bj)

∂Bj

∥∥∥∥ dS
≤ πi exp

(
aL(S) +m(S) log(

τ + a/T

τ
)

)∫
S

NHP(S | Bi)

∥∥∥∥∂ log NHP(S | Bi)

∂Bi

∥∥∥∥
·
∥∥∥∥∂ log NHP(S | Bj)

∂Bj

∥∥∥∥ dS
≤ πi exp

(
aL(S) +m(S) log(

τ + a/T

τ
)

)
·
∫
S

NHP(S | B∗
k) ∗ exp

(
−CL(S) + aL(S) +m(S) log(

τ + a/T

τ
)

)
(C0L(S))

2dS

≤ π1 exp

(
−CL(S) + 2aL(S) + 2m(S) log(

τ + a/T

τ
)

)
· (C0L(S))

2,

where C0 is the upper bound of ∥∂ log NHP(S | B∗
i )/∂Bi∥, ∀i = 1, · · · ,K with probability of 1− δ.

When ∥∂ log NHP(S | B∗
i )/∂Bi∥ > r · L(S), if L(S) → ∞,

I0 =
π1 NHP(S | B1)∑
j πj NHP(S | Bj)

·
∫
∥∥∥∥ ∂ log NHP(S|B∗

i
)

∂Bi

∥∥∥∥>r·L(S)

πiNHP(S | B∗
i )

∥∥∥∥∂ log NHP(S | B1)

∂B1

∥∥∥∥ dS
≤
∫
∥∥∥∥ ∂ log NHP(S|B∗

i
)

∂Bi

∥∥∥∥>r·L(S)

πiNHP(S | B∗
i )

∥∥∥∥∂ log NHP(S | B1)

∂B1

∥∥∥∥ dS
≤ πiC0L(S)

∫
∥∥∥∥ ∂ log NHP(S|B∗

i
)

∂Bi

∥∥∥∥>r·L(S)

NHP(S | B∗
i )dS

≤ 2πiC0L(S) exp

(
− tL(S)

c0

)
dS,
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where we use the same conclusion obtained above that P (∥∂ log NHP(S | B∗
i )/∂Bi∥ /L(S) ≥ t) ≤

2 exp (−tL(S)/c0). We still take G = min{Cgap − 2a− 2mc log((τ + a/T (S))/τ), t/c0}, where

P (|M(S)/L(S)| ≥ mc) < δ for small enough δ > 0.

Lemma 11 (Matrix Chernoff I [Tropp, 2012]) Consider a finite sequence of independent, random, self-

adjoint matrices {Xk} with dimension d. Assume that each random matrix satisfies: Xk ⪰

0 and λmax(Xk) ≤ R almost surely. Define

µmin = λmin

(∑
k

EXk

)
and µmax = λmax

(∑
k

EXk

)
.

Then we have

P

(
λmin

(∑
k

Xk

)
≤ (1− δ)µmin

)
≤ d ·

[
e−δ

(1− δ)1−δ

]µmin/R

for δ ∈ [0, 1)

P

(
λmax

(∑
k

Xk

)
≥ (1 + δ)µmax

)
≤ d ·

[
eδ

(1 + δ)1+δ

]µmax/R

for δ ≥ 0.

Lemma 12 Function µ(Bk | B(t)
k ) is a locally concave function with high probability for k = 1, 2, . . . ,K.

Proof of Lemma 12 Without loss of generality, we let k = 1. We abuse the notation by treating α = ρ in the

following proof. By taking the first derivative of the estimating equation, we have

0 = ∇B1

(
N∑
n=1

w1(Sn;B
(t))ϕα

(
log NHP(Sn | B1)/L(Sn)− µ(B1 | B(t)

1 )
))

=

N∑
n=1

w1(Sn;B
(t))ϕ

′
α

(
log NHP(Sn | B1)/L(Sn)− µ(B1 | B(t)

1 )
)

·
(
∇ log NHP(Sn | B1)/L(Sn)−∇µ(B1 | B(t)

1 )
)
.

By taking the second derivative, we have

0 = ∇2
B1

(
N∑
n=1

w1(Sn;B
(t))ϕα

(
log NHP(Sn | B1)/L(Sn)− µ(B1 | B(t)

1 )
))

=

N∑
n=1

w1(Sn;B
(t))ϕ

′
α

(
log NHP(Sn | B1)/L(Sn)− µ(B1 | B(t)

1 )
)

·
(
∇2 log NHP(Sn | B1)/L(Sn)−∇2µ(B1 | B(t)

1 )
)

+

N∑
n=1

w1(Sn;B
(t))ϕ

′′
α

(
log NHP(Sn | B1)/L(Sn)− µ(B1 | B(t)

1 )
)

· α
(
∇ log NHP(Sn | B1)/L(Sn)−∇µ(B1 | B(t)

1 )
)2

.

With a high probability, there exists cϕ such that cϕ|ϕ
′
(η)| > |ϕ

′′
(η)|, where η ∈ (−9.5 +

2/cϕ, 9.5 − 2/cϕ). By Matrix Chernoff inequalities (Lemma 11), as L(S) → ∞, we claim that

λmin
(
∇2 log NHP(Sn | B1)/L(Sn)

)
−cϕαλmax

(
∇(logNHP(Sn | B1)/L(Sn))

2
)
⪰ 0. Next we explain

the reasons. Write Sn as {Sn,1, Sn,2, · · · , Sn,m(S)}, then
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[
∇ log NHP(Sn | B1)

L(Sn)

]2
=



m(S)∑
t=1

κ1(Sn,t)

λB1(Sn,t) · L(Sn)
−
∫ T

0

κ1(x)dx

...
m(S)∑
t=1

κH(Sn,t)

λB1(Sn,t) · L(Sn)
−
∫ T

0

κH(x)dx



·



m(S)∑
t=1

κ1(Sn,t)

λB1(Sn,t) · L(Sn)
−
∫ T

0

κ1(x)dx

...
m(S)∑
t=1

κH(Sn,t)

λB1(Sn,t) · L(Sn)
−
∫ T

0

κH(x)dx



⊤

:= G ·G⊤.

Therefore the largest eigenvalue of ∇ log NHP(Sn | B1)/L(Sn) is the l2-norm of vector G.

For each component of G, we know that E
[∑m(S)

t=1 κh(Sn,t)/(λB1(Sn,t)L(Sn))−
∫ T
0

κh(x)dx
]

=∫ T
0

[(κh(t)λB1(t))/λB1(t)] dt/L(Sn)−
∫ T
0

κh(x)dx = 0,∀h = 1, · · · , H . When Sn is generated from the

Poisson process with the intensity function λB1(·), we know that ∥G∥ ∼ O(
√
H ·L−1/2) with high probability.

Thus, we get the result that αcϕλmax
(
∇(logNHP(Sn | B∗

1)/L(Sn))
2
)
∼ O(αL−1/2) → 0 as L → 0. For

fixed B
(t)
1 , we also know that ∥G∥ ∼ O(

√
HL−1/2), while λmin

(
∇2 log NHP(Sn | B1)/L(Sn)

)
∼ O(1).

Because of the continuity of ϕ′ and ϕ′′, it is easy to confirm the continuity of ∇2µ(B1 | B(t)
1 ).

Lemma 13 If
∥∥∥B(t)

k −B∗
k

∥∥∥ < a/(T · κmax) for k ∈ [K], then
∥∥∥∇µ(B

(t)
k | B(t)

k )−∇µ(B
(t)
k | B∗

k)
∥∥∥ ≤

γ
∥∥∥B(t)

k −B∗
k

∥∥∥. When we take the tuning parameter α sufficiently small, we get that γ ∼ O(
√
H exp(−GL) ·

L) → 0 as L → ∞.

Proof of Lemma 13

Let Bu = B∗ + u
(
B(t) −B∗

)
,∀u ∈ [0, 1]. Then we know that

∇Bu
1

(
w1(S;B

u)ϕ′
α

(
log NHP(S | B(t)

1 )/L(S)− µ(B
(t)
1 | Bu

1 )
))

=∇Bu
1
w1(S;B

u) · ϕ′
α

(
log NHP(S | B(t)

1 )/L(S)− µ(B
(t)
1 | Bu

1 )
)

−w1(S;B
u)ϕ′′

α

(
log NHP(S | B(t)

1 )/L(S)− µ(B
(t)
1 | Bu

1 )
)
· ∇Bu

1
µ(B

(t)
1 | Bu

1 ),

where ∇Bu
1
µ(B

(t)
1 | Bu

1 ) satisfy

0 =ES
[
∇w1 (S;B

u)ϕα
(
log NHP(S | B(t)

1 )− µ(B
(t)
1 | Bu

1 )
)

− w1 (S;B
u)ϕ′

α

(
log NHP(S | B(t)

1 )− µ(B
(t)
1 | Bu

1 )
)
∇Bu

1
µ(B

(t)
1 | Bu

1 )
]
.

With a high probability, there exists cϕ such that cϕ|ϕ
′
(η)| > |ϕ

′′
(η)|, where η ∈ (−9.5 + 2/cϕ, 9.5 −

2/cϕ). So we know that ES [w1(S;B
u)ϕ′′

α

(
log NHP(S | B(t)

1 )/L(S)− µ(B
(t)
1 | Bu

1 )
)
· ∇Bu

1
µ(B

(t)
1 |

Bu
1 )] < cϕES [w1(S;B

u)ϕ′
α

(
log NHP(S | B(t)

1 )/L(S)− µ(B
(t)
1 | Bu

1 )
)
· ∇Bu

1
µ(B

(t)
1 | Bu

1 )] = cϕ ·

ES [∇w1 (S;B
u)ϕα

(
log NHP(S | B(t)

1 )− µ(B
(t)
1 | Bu

1 )
)
].
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By Taylor’s expansion, we have
∥∥∥∇µ(B

(t)
1 | B(t)

1 ) − ∇µ(B
(t)
1 | B∗

1)
∥∥∥

=
∥∥∥ES

(
w1

(
S;B

(t)
)
ϕ
′
α

(
log NHP(S | B(t)

1 ) − µ(B
(t)
1 | B(t)

1 )
)

−w1

(
S;B

∗)
ϕ
′
α

(
log NHP(S | B(t)

1 ) − µ(B
(t)
1 | B∗

1)
))

· α∇ log NHP(S | B(t)
1 ))/L(S)

∥∥∥
=

∥∥∥∥E [∫ 1

u=0

∇
(
w1(S;B

u
)ϕ

′
α

(
log NHP(S | B(t)

1 ) − µ(B
(t)
1 | Bu

1 )
))

du · α∇ log NHP(S | B(t)
1 )/L(S)

]∥∥∥∥
≤

∥∥∥∥∥E
∫ 1

u=0

w1(S;B
u
)
(
1 − w1(S;B

u
)
) ∂ log NHP(S | Bu

1 )

∂B1

⊤ (
B

(t)
1 − B

∗
1

)
α
∂ log NHP(S | B(t)

1 )

∂B1

/L(S)du

−
∑
i̸=1

E
∫ 1

u=0

w1(S;B
u
)wi(S;B

u
)
∂ log NHP(S | Bu

i )

∂Bi

⊤ (
B

(t)
i − B

∗
i

)
α
∂ log NHP(S | B(t)

1 )

∂B1

/L(S)du

∥∥∥∥∥∥ϕ
′
max

+

∥∥∥∥E ∫ 1

u=0

w1(S;B
u
)ϕ

′′
α

(
log NHP(S | B(t)

1 )/L(S) − µ(B
(t)
1 | Bu

1 )
)
∇Bu

1
µ(B

(t)
1 | Bu

1 )du

·α∇ log NHP(S | B(t)
1 )

⊤
/L(S)

∥∥∥
≤U1

∥∥∥B(t)
1 − B

∗
1

∥∥∥
2
+

∑
i̸=1

Ui

∥∥∥B(t)
i − B

∗
i

∥∥∥
2

+ sup
u∈[0,1]

∥∥∥E∇w1(S;B
u
)α∇ log NHP(S | B(t)

1 )
⊤
/L(S)

∥∥∥
2
· cϕϕmax︸ ︷︷ ︸

I0

·
∥∥∥B(t)

1 − B
∗
1

∥∥∥
2
,

where

U1 = sup
u∈[0,1]

∥∥∥∥∥Ew1(S;B
u) (1− w1(S;B

u))α/L(S)
∂ log NHP(S | B(t)

1 )

∂B1

∂ log NHP(S | Bu
1 )

∂B1

⊤
∥∥∥∥∥
2

Ui = sup
u∈[0,1]

∥∥∥∥∥Ew1(S;B
u)wi(S;B

u)α/L(S)
∂ log NHP(S | B(t)

1 )

∂B1

∂ log NHP(S | Bu
i )

∂Bi

⊤
∥∥∥∥∥
2

.

For U1, by triangle inequality, we have

U1 ≤ sup
u∈[0,1]

∥∥∥∥∥Ew1(S;B
u) (1− w1(S;B

u))α/L(S)
∂ log NHP(S | Bu

1 )

∂B1

∂ log NHP(S | Bu
1 )

∂B1

⊤
∥∥∥∥∥
2

+ sup
u∈[0,1]

∥∥∥∥∥Ew1(S;B
u) (1− w1(S;B

u))α/L(S)
∂ log NHP(S | Bu

1 )
2

∂B2
1

(Bu
1 −B

(t)
1 )

∂ log NHP(S | Bu
1 )

∂B1

⊤
∥∥∥∥∥
2

≤ sup
u∈[0,1]

∥∥∥∥∥Ew1(S;B
u) (1− w1(S;B

u))α/L(S)
∂ log NHP(S | Bu

1 )

∂B1

∂ log NHP(S | Bu
1 )

∂B1

⊤
∥∥∥∥∥
2

+ a sup
u∈[0,1]

∥∥∥∥Ew1(S;B
u) (1− w1(S;B

u))
∂ log NHP(S | Bu

1 )

∂B1

∥∥∥∥ · ∥∥∥∥∂ log NHP(S | Bu
1 )

2

∂B2
1

/L(S)

∥∥∥∥ .
According to Lemma 8 , we know that U1 ∼ O(

√
H exp(−GL) · L) . When L → ∞, U1 → 0. Similarly, for

Ui, i ̸= 1,

Ui ≤ sup
u∈[0,1]

∥∥∥∥∥Ew1(S;B
u)wi(S;B

u)α/L(S)
∂ log NHP(S | Bu

1 )

∂B1

∂ log NHP(S | Bu
i )

∂Bi

⊤
∥∥∥∥∥
2

+ a sup
u∈[0,1]

∥∥∥∥Ew1(S;B
u)wi(S;B

u)
∂ log NHP(S | Bu

i )

∂Bi

∥∥∥∥ · ∥∥∥∥∂ log NHP(S | Bu
1 )

2

∂B2
1

/L(S)

∥∥∥∥ .
Refer to Lemma 10, we can get that Ui → 0.

Similarly to U1 and Ui, we use Lemma 8 and 10 and know that I0 ≤
∑
i Ui · cϕϕmax = O(

√
H exp(−GL) ·

L) → 0 with a high probability when L(S) → 0.
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Lemma 14 For cluster i, we write

∇µ(Bi | B(t)
i )S (≡ ϱ

(t)
i )

:=

1
N

∑
n∈S w1(Sn;B)ϕ

′
ρ

(
log NHP(Sn | Bi)/L(Sn)− µ(Bi | B(t)

i )S
)
· ∇ log NHP(Sn | Bi)/L(Sn)

1
N

∑N
n w1(Sn;B)ϕ′

ρ

(
log NHP(Sn | Bi)/L(Sn)− µ(Bi | B(t)

i )S
) ,

∇µ(Bi | B(t)
i )

:=
Ew1(Sn;B)ϕ

′
ρ

(
log NHP(Sn | Bi)/L(Sn)− µ(Bi | B(t)

i )
)
· ∇ log NHP(Sn | Bi)/L(Sn)

Ew1(Sn;B)ϕ′
ρ

(
log NHP(Sn | Bi)/L(Sn)− µ(Bi | B(t)

i )
) .

Then we have
∥∥∥∇µ(Bi | B(t)

i )S −∇µ(Bi | B(t)
i )
∥∥∥ ≤ O(

√
HL exp(−GL)/

√
N + (ρ+

√
H)(1/

√
NL+

(ρv)/L+ logN/(ρN) + η/ρ)).

Proof of Lemma 14 Recall that S = Sinlier ∪ Soutlier with Sinlier = S1 ∪ ... ∪ SK . We define

˜∇µ(Bi | B(t)
i )Sinlier

:=

N−1
∑

n∈Sinlier

w1(Sn;B)ϕ
′
ρ

(
log NHP(Sn | Bi)/L(Sn)− µ(Bi | B(t)

i )Sinlier

) ∇ log NHP(Sn | Bi)

L(Sn)

N−1
∑
n∈Sinlier

w1(Sn;B)ϕ′
ρ

(
log NHP(Sn | Bi)/L(Sn)− µ(Bi | B(t)

i )Sinlier

)
:=

A

B
,

which is the gradient based on the inlier samples only. By triangle inequality, we have∥∥∥∇µ(Bi | B(t)
i )S −∇µ(Bi | B(t)

i )
∥∥∥

≤
∥∥∥∥∇µ(Bi | B(t)

i )S − ˜∇µ(Bi | B(t)
i )Sinlier

∥∥∥∥︸ ︷︷ ︸
I1

+

∥∥∥∥ ˜∇µ(Bi | B(t)
i )Sinlier

−∇µ(Bi | B(t)
i )

∥∥∥∥︸ ︷︷ ︸
I2

.

We consider the part I2 first. According to Lemma 16 and Lemma 17, the deviation of µ(Bi | B(t)
i )Sinlier

from E[log NHP(Sn | Bi)/L(Sn)] is O((ρv)/L + logN/(ρN) + η/ρ + L2 exp{−GL} + ρ2/
√
L),

so
∣∣∣log NHP(Sn | Bi)/L(Sn)− µ(Bi | B(t)

i )Sinlier

∣∣∣ ∼ O(1/
√
L + (ρv)/L + logN/(ρN) + η/ρ +

L2 exp{−GL}). The standard deviation of

ϕ
′
ρ

(
log NHP(Sn | Bi)/L(Sn)− µ(Bi | B(t)

i )Sinlier

)
is O(ρ/

√
L + (ρ2v)/L + logN/N + η +

ρL2 exp{−L}), so the standard deviation of B is O(ρ/
√
NL+ (ρ2v)/L+ logN/N + η + ρL2 exp{−L}).

The standard deviation of part A is similar to part B. Similarly, the standard deviation of ∥
∑
N ∇ log NHP(Sn |

Bi)/NL∥ is O(
√
H/

√
NL), then I2 ∼ O((ρ+

√
H)/

√
NL+ (ρ2v)/L+ logN/N + η + ρL2 exp{−L}).

Next we consider the part I1. Again by Lemma 16,
∣∣∣µ(Bi | B(t)

i )S − µ(Bi | B(t)
i )Sinlier

∣∣∣ ∼ O((ρv)/L +

logN/(ρN) + η/ρ+ L2 exp{−GL}). Note that
1

N

∑
n∈S

w1(Sn;B)ϕ
′
ρ

(
log NHP(Sn | Bi)/L(Sn)− µ(Bi | B(t)

i )S
)
· ∇ log NHP(Sn | Bi)/L(Sn)

=
1

N

∑
n∈S1

w1(Sn;B)ϕ
′
ρ

(
log NHP(Sn | Bi)/L(Sn)− µ(Bi | B(t)

i )S
)
· ∇ log NHP(Sn | Bi)/L(Sn)︸ ︷︷ ︸

W1

+
1

N

∑
n∈Sinlier\S1

w1(Sn;B)ϕ
′
ρ

(
log NHP(Sn | Bi)/L(Sn)− µ(Bi | B(t)

i )S
)
· ∇ log NHP(Sn | Bi)/L(Sn)︸ ︷︷ ︸

W2

+
1

N

∑
n∈Soutlier

w1(Sn;B)ϕ
′
ρ

(
log NHP(Sn | Bi)/L(Sn)− µ(Bi | B(t)

i )S
)
· ∇ log NHP(Sn | Bi)/L(Sn)︸ ︷︷ ︸

W3

.
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According to Lemma 8, ∥W2∥ ≤
∥∥∥N−1∑

n∈Sinlier\S1
w1(Sn;B) · ∇ log NHP(Sn | Bi)/L(Sn)

∥∥∥ ∼
O(

√
HL exp(−GL)), so ∥W2 − EW2∥ ∼ O(

√
HL exp(−GL)/

√
N). Similarly, ∥W1 − EW1∥ ∼

O(
√
HL exp(−GL)/

√
N). When

∣∣∣log NHP(Sn | Bi)/L(Sn)− µ(Bi | B(t)
i )S

∣∣∣ < 9.5, the gradient

of outlier are less than a constant cout with a high probability, then ∥W3∥ ≤ O(η/ρ). Then

∥W1 +W2 +W3 −A∥ ≤ ∥W1 −A∥+∥W2∥+∥W3∥ ∼ O(
√
HL exp(−GL)/

√
N+η/ρ). The standard de-

viation of part A is similar to part B. Hence ∥I1∥ ≤ O(
√
HL exp(−GL)/

√
N+(ρv)/L+logN/(ρN)+η/ρ).

In summary,
∥∥∥∇µ(Bi | B(t)

i )S −∇µ(Bi | B(t)
i )
∥∥∥ ≤ I1 + I2 ≤ O(

√
HL exp(−GL)/

√
N + (ρ +

√
H)(1/

√
NL+ (ρv)/L+ logN/(ρN) + η/ρ)).

Proof of Theorem 4 Recall the update rule and definition of ∇µ(B
(t)
1 |B(t)

1 ), we know that

B
(t+1)
1 = B

(t)
1 − lr · ϱ(t)1 = B

(t)
1 − lr · ∇µ(B

(t)
1 |B(t)

1 )S .

By triangle inequality and Lemma 13 and 14, we have∥∥∥B(t+1)
1 −B∗

1

∥∥∥ =
∥∥∥B(t)

1 −B∗
1 + lr · ∇µ(B

(t)
1 | B(t)

1 )S

∥∥∥
≤
∥∥∥B(t)

1 −B∗
1 + lr · ∇µ(B

(t)
1 | B∗

1)
∥∥∥+ lr ·

∥∥∥∇µ(B
(t)
1 | B(t)

1 )−∇µ(B
(t)
1 | B∗

1)
∥∥∥

+ lr ·
∥∥∥∇µ(B

(t)
1 | B(t)

1 )−∇µ(B
(t)
1 | B(t)

1 )S

∥∥∥
≤ λmax − λmin

λmax + λmin

∥∥∥B(t)
1 −B∗

1

∥∥∥+ 2

λmax + λmin
γ
∥∥∥B(t)

1 −B∗
1

∥∥∥+ ϵunif

≤ λmax − λmin + 2γ

λmax + λmin

∥∥∥B(t)
1 −B∗

1

∥∥∥+ ϵunif .

To see why the second inequality holds, note that, for any B′
1 with ∥B′

1 −B∗∥ ≤ a, ∆µ(B
(t)
1 | B′

1) has the

largest eigenvalue −λmin and smallest eigenvalue −λmax. Applying the classical result for gradient descent

with step size lr = 2/(λmax + λmin), it guarantees (see Nesterov [2003])∥∥∥B(t)
1 −B∗

1 + lr · ∇µ(B
(t)
1 | B∗

1)
∥∥∥ ≤ λmax − λmin

λmax + λmin

∥∥∥B(t)
1 −B∗

1

∥∥∥ .
This completes the proof.

Lemma 15 For each sample Sn ∈ S, when we select robust parameter α ∼ O(Lβ), 0 < β < 1/2. Then as

L → ∞, the weight function ϕ′
α (logNHP (Sn | B) /L(Sn)− µ̂ϕ(B)) tends to 1 with a high probability. If

So is not sampled from B, as L → ∞, the weight function ϕ′
α (logNHP (so | B) /L(Sn)− µ̂ϕ(B)) tends to

0 with a high probability.

Proof of Lemma 15 By Lemma 7, we know that the standard deviation of log NHP (Sn | B) /L(Sn) is

O(L(Sn)
−1/2). From Lemma 16, we know that µ̂ϕ(B) − µ∗(B) = Op((ρv)/L + logN/(ρN) + η/ρ +

L2 exp{−GL}). So we have

log NHP (Sn | B) /L(Sn)− µ̂ϕ(B) ∼ O

(
L−1/2 +

ρv

L
+

logN

ρN
+

η

ρ
+ L2 exp{−GL}

)
⇒α (logNHP (Sn | B) /L(Sn)− µ̂ϕ(B)) ∼ O(Lβ−1/2 + L2+β exp{−GL}) → 0

for any α = O(Lβ) with 0 < β < 1/2, when L → ∞. Looking back at the definition of robust function (1), we

can easily know that limx→0 ϕ(x) = 1. At this time there is ϕ′
α (logNHP (Sn | B) /L(Sn)− µ̂ϕ(B)) → 1.

For So we have

log NHP (So | B) /L(So)− µ̂ϕ(B) ∼ O(1),

which implies

α (logNHP (So | B) /L(So)− µ̂ϕ(B)) ∼ O(Lβ) → ∞
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when L → ∞. Because of limx→∞ ϕ(x) = 0, so we have ϕ′
α (logNHP (So | B) /L(So)− µ̂ϕ(B)) → 0.

Proof of Theorem 5 According to Lemma 15, we know that the weight function will tend to 0 for all outliers as

L → ∞. Therefore we can distinguish almost all outliers with a high probability by setting the cutoff as 0.1.

Remark 2 In all the above proofs, we do not take into account the shift parameter. The local convergence result

could be still applied, if the algorithm starts with the true shift parameter and
∥∥∥B(0)

k −B∗
k

∥∥∥ is small enough

for k ∈ {1, 2, · · · ,K}.

L Supporting Results of µ̂(t)
ϕ (Bk) and µ(Bk|B∗

k)

In this section, we provide two supporting lemmas to characterize the difference between µ̂
(t)
ϕ (Bk) and

µ(Bk|B∗
k).

Lemma 16 When ∥B̂(t)

k −B∗
k∥ ≤ a and η := |Soutlier|/N < 1/[4(log 5 + 1.5)], it holds

|µ̂(t)
ϕ (Bk)− µ∗(Bk)| = Op

(
ρv

L
+

logN

ρN
+

η

ρ
+ L2 exp{−GL}

)
, (12)

where µ∗(Bk) = ES∼λ∗
k
[log NHP(S|Bk)] and v := supBk

E[(logNHP(S|Bk))
2] (S is an event sequence

on [0, T ] generated according to λ∗
k(t)).

Proof of Lemma 16 First, we define µ̄
(t)
ϕ (Bk) to be the solution to

N∑
n=1

1/L(Sn) · ϕρ (logNHP (Sn | Bk) /L(Sn)− µ) = 0 (13)

with respect to µ. We can show that

|µ̄(t)
ϕ (Bk)− µ̂

(t)
ϕ (Bk)| = Op(L

2 exp{−GL}). (14)

To see this, we compare the difference between

1

N

N∑
n=1

1/L(Sn) · ϕρ
(
log NHP (Sn | Bk) /L(Sn)− µ̄

(t)
ϕ (Bk)

)
and

1

N

N∑
n=1

r
(t)
nk/L(Sn) · ϕρ

(
log NHP (Sn | Bk) /L(Sn)− µ̄

(t)
ϕ (Bk)

)
.

By the previous analysis, we have already shown that |r(t)nk − 1| = Op(L exp{−GL}). Then such difference

is bounded by CL exp{−GL} ·
∑
n L(Sn)ϕρ

(
log NHP (Sn | Bk) /L(Sn)− µ̄

(t)
ϕ (Bk)

)
which is order of

exp{−GL}(η/ρ+logL) and is less than L exp{−GL}. (Here we use the fact that η/ρ → 0). By the definition

of µ̄(t)
ϕ (Bk), we have

| 1
N

N∑
n=1

r
(t)
nk/L(Sn) · ϕρ

(
log NHP (Sn | Bk) /L(Sn)− µ̄

(t)
ϕ (Bk)

)
| ≤ L exp{−GL}.

It can be also checked that ∇µ

(
N−1∑N

n=1 r
(t)
nk/L(Sn) · ϕρ (logNHP (Sn | Bk) /L(Sn)− µ)

)
≥ 1/2L for

all bounded µ with probability 1. Therefore,

1

2L
|µ̄(t)
ϕ (Bk)− µ̂

(t)
ϕ (Bk)|

≤ | 1
N

N∑
n=1

r
(t)
nk/L(Sn) · ϕρ

(
log NHP (Sn | Bk) /L(Sn)− µ̄

(t)
ϕ (Bk)

)
| ≤ L exp{−GL},

which gives the desired result (14).
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Next, we construct

B+,Bk (µ) = (µ∗(Bk)− µ) +
ρ

2
(
v∗(Bk)

L
+ (µ∗(Bk)− µ)2) +

2 logN

π∗
kNρ

, (15)

B−,Bk (µ) = (µ∗(Bk)− µ)− ρ

2
(
v∗(Bk)

L
+ (µ∗(Bk)− µ)2)− 2 logN

π∗
kNρ

,

where v∗(Bk) = ES∼λ∗
k
[(log NHP(S|Bk))

2], to put the upper and lower bounds on ϕρ in (3.13). Following

the proof of Theorem 3.1 in Bhatt et al. [2022] and the compactness of parameter space, we can have

|µ̄(t)
ϕ (Bk)− µ∗(Bk)| = Op

(
ρv

L
+

logN

ρN
+

η

ρ

)
(16)

for all Bk, where v = maxBk v∗(Bk). Combining (14) and (16), we prove the lemma.

Lemma 17 It holds

|µ(Bk | B∗
k)− µ∗(Bk)| = O

(
L2 exp{−GL}+ ρ2

√
1

L

)
, (17)

where µ∗(Bk) is defined the same as that in Lemma 16.

Proof of Lemma 17 We first define µ̄(Bk | B∗
k) to be the solution to

ES [ϕρ (logNHP(S | Bk))/L(S)− µ)] = 0

with respect to µ. By the same procedure as in the first part of proof of Lemma 16, we can show that

|µ(Bk | B∗
k)− µ̄(Bk | B∗

k)| ≤ L2 exp{−GL}. (18)

Next we compute the bound of |ES [ϕρ (logNHP(S | Bk))/L(S)− µ∗(Bk))]|. Note that ϕρ(x) = x −
ρ2x3/6 + o(ρ2x3) by Taylor expansion. Therefore, for sufficiently small ρ, we have

|ES [ϕρ (logNHP(S | Bk))/L(S)− µ∗(Bk))]|

≤ ρ2

3
|ES [(log NHP(S | Bk))/L(S)− µ∗(Bk))

3]|

≤ ρ2

3

(
ES [(logNHP(S | Bk))/L(S)− µ∗(Bk))

6]
)1/2

= O

(
ρ2
√

1

L

)
. (19)

Lastly, note that ∇µ(ES [ϕρ (logNHP(S | Bk))/L(S)− µ)]) ≥ 1/2. Therefore, we have

|µ̄(Bk | B∗
k)− µ∗(Bk)| ≤ 2|ES [ϕρ (logNHP(S | Bk))/L(S)− µ∗(Bk))]| = O

(
ρ2
√

1

L

)
.

In summary, we get the desired result

µ(Bk | B∗
k)− µ∗(Bk) = O

(
L2 exp{−GL}+ ρ2

√
1

L

)
.
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