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In the document, Section A provides the proofs for our main results
Lemma 1 and Theorem 1. Section B presents the technical lemmas for the
main results. Section C includes the details of the dLASSO algorithm and
the time complexity comparison of dOnFL and dLASSO. Section D display
the additional experimental results that are discussed but not included in

the main paper.

A Main Proofs

Proof of Lemma 1

Note that %[«a’b} in (3.18) also corresponds to a lasso problem, it differs from

B[“’b}()\[a,b]) in (2.1) in the data utilized. By Lemma 5.2, with probability
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at least 1 — p~3, we have

la,b]

[ Yl S 8 Ay

Based on the triangle inequality and Lemma 5.1, with probability at least

1 — p3, we have

15 = 32l < 149 = el + [y = %2
<5 (A9 + Nay)
< /log / logp )
] a
logp
<s, _

Proof of Theorem 1

Recall the existing notations XY = ((X(“))T,...,(X(b))T)T , ylot =

()7 oo ()T et = ()T, (€)1 = (GO )
0. (a)yT ONAW - : .
and z; " = <(xr (@) > . The estimator in (2.10) can be written

as follows:

Hlab Ala sla a -1 sla a sla a,b] Qla
bl = Bl g ()T ale )T { (A Tyl (sl )T e |
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p

_ BT[,a,b] + {(Z@?["a,b])TxLa,b]}*l {Z(ﬁia,b])Txgca,b] <5 5[”) ( 7[a7b})T€[a,b]}’

k=1

(8.1)

where the second equality is obtained by substituting yl®? = Xt 5, 4 elob]
and [ is the true parameters.

By subtracting [y from both sides of the equation (5.1), we have

(21[na7b])T€[a b] Zp (2 [a, b]) [a,b] (5 a,b] — Bo k>

[ab /8
€,r OT - a a
! (21T gl
1219 (21T elot) k#r(z[a ! (5[(1 ! BO”“)
Tl B 121
(S.2)
= 7wl 4 Al (53)
where
[ab\T, [a.b] { Alasb]
plotl _ (BB et = (éia’b])Ta“’b]’ [) _ e (577) 2 ( —he '“)
(& Ty [ESE [ESE
(S.4)

On the one hand, based on Lemma 5.5, we have wi" % A/(0,02). On

the other hand, according to Lemma 5.3 and Lemma 5.4, we have

~la,b a,b a,b)
o D (1)
AP = 12| = 0,(1). (S.5)
T 2
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Meanwhile, with the help of Proposition 1 in Zhang and Zhang (2014), we

have
b b

(BLe¥)Talet) = ST (0D = ST (ED + X950)  (S6)

j:a j:a

b b
=D PN+ D AN
j=a j=a
Then, by Lemma 5.3, we have

] _ [EalE e 1 1

b ~(7 b i~ — b ~(j ~la,b -
S B+ S AP T S 1B a5

T

Therefore, for every r = 1,...,p and large enough Z;’.:a n;, we have

(Baes = Bor) /7l = wit® 4 A,

de,r

And with probability at least 1 — p=3, (F*™)=1(31% _ 5y & A(0, 0?)

de,r

holds.

B Technical Lemmas

Lemma S.1. Suppose Assumption 1 holds, n; 2 s,logp and A = %

in (2.6) for j=1,...,b. Then, for everyr =1,2,...,p, with probability at

j=a

U2
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least 1 — p=3, the ’%(,j) in (2.6) and the ~, in (3.17) satisfies

199 =3l < s A, (5.7)

Proof of lemma S.1. Let S, = {k : O, # 0,k # r}, and then s, = |S,|.
We define the matrix %9 .= (X)X /p. 5 —a b

Firstly, by Assumption 1 and with the help of the Corollary 1 in Raskutti

et al. (2010), we can obtain that for all v satisfying ||vse|[i < 3||vg, |1, as

> s, log p, it holds that

~Y

long as n;

lvs, |12 < (VT5Y)0)s,, (S.8)

4, Namely, f)(j )

bt

with probability at least 1 — p~ satisfies the compatibility

condition for the set S,.
(4)

Secondly, since 4’/ is the lasso estimator defined in (2.6), and due to

the optimality of &f«j ), we have

T

1 .
— 28 — X993 + AP 3D, < Q—Hw XDy 2+ 29 7 1.

. . . 2 . ~ (i
O EDO < 2 (20— X905.)" X000 4+ 230 (1, ~ 149 ]1)
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2 . . . . ) )
< —max| (o) = XE) T2 | 09l + 222 (el = 159 1)-
j T

(S.9)

Denote I-th element of z¥ by ! l and the I-th row of XY by X(j Ac-

cording to Assumption 1 (i), we have
(o) = X80 =3 () = X el (310)

which is the sum of i.i.d random variables, and they satisfies E(:Bgl) - X (jﬁ’m)%fj l) =
0 and (:L‘£, - X (JZ ) x,(j 2 follows sub-exponential distribution. The bound
of (5.10) could be obtained by Bernstein’s inequality, that is, with proba-

bility at least 1 — p~*, it holds that

S y/njlogp.

>l X

)

Therefore, due to Bonferroni’s inequality, with probability at least 1 —p~4,

we have

max (ZL'S,]) _X(j)'}/r)Tl’](gj) _

2 > (@l = X))

< v/njlogp.

(S.11)
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Combining (S.9) with (S.11), with probability at least 1 — p~3,

(YS90 < = /nTogplo 5 + 209 (s — 139 1)
J

< O3 + 259 (1 | ~ K9 ). (S.12)

To simplify notation, we temporarily omit the subscript r for ~, and %j ),

that is, we have vU) = 40) — 5. Meanwhile,

1 AP = 11As, 11+ Ase

1Vl = v, 1+ [|vse ”

Due to ||yse|[v = 0 and based on the triangle inequality, we have

L < ol = @

vl = 1300 = lls, = s, [l = 13

Therefore, (5.12) can be written as

D)D) < AP 0P + 209 ([0 1 — 0]

1)

= AP B[ [l = [v§ 1),

which implies that ||vg;||1 < 3va3|\1.

Finally, under the assumption of n; 2 s, logp, and with the help of the
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compatibility condition of £Y) in (5.8), it holds that

I < 501,60 < XD

As a result, with probability at least 1 — p~3, we have
199 =l = 109l < 4oy < 5.2, (5.13)

Since (5.13) holds for any j = a,...,band r = 1,...,p, we finish the proof

of Lemma S.1. [ |

Lemma S.2. Suppose Assumption 1 holds, Z sologp, and A\jqp <

J= anJN

,/zlff’#. Then, with probability at least 1 — p=3, the lasso estimator
J a

B[&b}()\[ayb]) m (21) SatiSﬁQS
18 (Atas)) = Bolli < SoAas. (S.14)

Proof of Lemma S.2. The proof of Lemma 5.2 is similar as that of Lemma
S.1. First, define the matrix 3% := (X[a b])TX[a b]/ ZJ . 1j- Then, similar
to the derivation of (5.8), we can easily prove that when Zé’.:a n; 2 sologp

1 < 3llvs, ||, S satisfies the compatibility condition for the set

T

and ||vge
S,. Then, utilizing the optimality of 5** and the Bernstein’s inequality,

we can obtain (S.14). The proof is quite similar and thus we omit it. W
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Lemma S.3. Suppose the conditions in Lemma S.1 holds. If

2

- 1

b—a)slogp _ 1y, (S.15)
Zj:a n.?

then ||Z[ab]||2x S n;.

j=a

T ,
Proof of Lemma S.5. Note that 2" = ((zﬁa))T, ey (zr(b))T> , where 2% =

29— X (f?? 7,(1 ), j=a,...,b. Based on the triangle inequality, we have

b
12z < 1=z + 12 = 20l = (1l + | D N5 = =13 =1+ 11

(S.16)

For I, consider &, := E{(zﬁjl))z} = E{(xfﬂ]l) - X@’l%)z}, where zfjl), xfﬂf
and X (]7«1 denote the first element of zY ,a:r and the first row of X
respectively. By Assumption 1 (i) and (744), for some constant ¢ and C', we

have ¢ < 02, <& < 3,; < C, then

b b b b
1A9E =< B(ZM13) + 4| Doy =& ) ni+ 4| D _ny =Y ny.
j=a j=a j=a j=a

For 11, recall the definition of 27 = 2z — X949 and £Y) = (X )TXU /n;.



Xiao Guo et al.

Based on Lemma 5.1, we obtain

an 2P = Zux 9 =)l
—Z| SRUDEACEESB

< annz@zummﬁﬂ — 72 (S.17)

Next, we analyze Hi@”oo in (5.17). Similar to the proof of Lemma 5.1,

with probability at least of 1 — p~*, we have
o 1
129 -2l S 4 /=20

~Y Y

U

2 sylogp and ||X_,||» is bounded, by the triangle

~

for j =a,...,b. Since n;

inequality again,

log p

150 < 12 lloo + [EY) = 2]l S M +

<0, (S18)

J

where M and C' are some constants. With the help of Lemma 5.1, and

combining (5.17) and (S.18), we conclude

b b
DIEY =203 S nilA = wll? NZHJ (A)? (5.19)
j=a j=a
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b

log p
< § 52 < (b—a)s’logp.
~ n]ST n‘y N( G)ST ng

j=a

As a result, under the assumption of (5.15), we have the upper bound of

(5.16), that is,

b
12y < T+ 115 (| Y nj+/(b—a)s2logp S
Jj=a

Meanwhile, we have

B

b
o > (2108 ly — |20 — ¥y = T — 1T > | S .
j:a

In summary, H,é,[ﬂa’b] |2 =< Z?Za n;. We finish the proof of Lemma 5.3.

Lemma S.4. Suppose the condition in Lemma 5.1 holds. If

SpSy lo b
° g]zz” VI ), (S.20)
Zj:a n]

~la,b a,b Hla,b
then i#(,zw[n ])TDCL ! <5;[C I 50,/%)‘ = op( Z?’:a n;)-

y o] _ (st NONAY 20) _
Proof of lemma 5./. Recall that 2" = ((27)", ..., (&) and 27 =
o) — X(,jr)%@, r=1,2,...,p, where ’yﬁj) is the lasso estimates obtained

based on the subset D;. To completely eliminate bias, we need to utilize
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A T
4% and obtain 7Y = 21— X(]T)%[fl M forming 2" = <(§£a))T, e (Ef«b))T) :
r=1,2,...,p. However, under the conditions of this paper, obtaining % bl

is not feasible.

Z(év[na’b])Tx?b] <Al£‘a,b] - ﬁo,k>

k#r

< ST (e - )

k#r

D (aled] — sl ol (B8 — o)

k#r

+

=I1IT+1V.

Term I11 represents a term that cannot be obtained in practice but
enables complete bias correction. Due to |a’b| < |la||«]||b]|1, for any vector

a and b, we have

b

Z n;logp < sologp,

. a, 1
111 < H@[mb] 50H1mjx‘(z[ ])T [ b]’ < g | 08P
j=a

b
Zj:a n]

where the second from the last inequality utilizes the Karush-Kuhn-Tucker
conditions and Lemma S.2.

Term IV represents the error between the bias correction term in this

~la,b] gla,b})T (a,b] _

paper and the ideal bias correction term. Note that (Z; Ty

Z;’.:a(é(j) — 297290 is a number, and for any vector a = (ay, . .., a,)” and
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b= (by,...,by)T, we have aib; + ... + apb, < mgx|ak|||b||1, then
b
1V < 1814 = Bollimax |37 (20) — 20)Tar)
j=a

By the definition of 79 and 2V ), we have

~(j a (T ; la , . ,
(60 — 2072 = (314 = 49) T (X0 < |50 = AP limae ().

m

where (X9)7{ = ((@)a)7,..., (@) e, (@) e, (@) e)T)

is the k-th column of the p x p matrix ©Y). Therefore, by (5.18), we have

max max (xgﬂb)) () ||E(] lloo <

k#r m%#r

According to Lemma S.2 and Lemma 1, we obtain

IV < 15—l Y 15— 49 ) luma mase | ()
] =a
logp 1og
S 0 >

Z] =a 1Y j=a
_ Sosylogp Zj:a«/”j
- .
Zj:a n]
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In summary, under the assumption of (5.20) and Z?:a N T ,/Z?.:a nj,

we have

s08, logp Z?’:a Vi
b
Zj:a n]

T+ 1V < sglogp +

Lemma S.5. Suppose Assumption 1 holds, then

. <2£a’b})T€[a,b] p
UJT[, 0] = W — N(O, 02). (821)

Proof of Lemma 5.5. We have

where recall that ﬁ i) = 93731) — X_'rﬂ?"' ,1=1,2,...,njand j = a,...,b,

and we use zf,]l), xgl), ) and XY ., to denote the I-th element of 2 29 29 )

and the I-th row of XY respectively. Note that z )’s are not independent

—r

with each other with respect to [, since they are computed using the same
data X and 4

To show the asymptotic normality, we use a martingale central limit
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theorem. Specifically, similar to the proof of Lemma 3 in Han et al. (2024),
we will demonstrate that the folowing two conditions (S.22) and (S.23) of

Corollary 3.1 in Hall and Heyde (2014) hold. Let there exists a nested

o-field Fi,) such that

ZZE{ Tl |.7-"[a } — d?, for some d > 0, (S.22)
Z] an] j=a l=1

> ZZE{ MPadel 2 (3 on) )

]anJ]all

Jr[a,b}} — 0, n — 00,
(S.23)

with probability approaching one, where 1{-} is the indicator function. In

our case, we let Fl,p = o(X@, ... X®). Then, 27(?1) is Fjqp-measurable.

Now, we prove that (5.22) holds. By Lemma 5.3 and Assumption 1 (iv),

we have

Z ZZE{ rlel |}_ab]} Z ZZU (J (S.24)

]a]yall ]aJ]all
2
= ¥ =< 2.

b
Zj:a n]

Next, we proof that (5.23) holds. We first derive the upper bound of
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max max \z l] Specifically,
a<j<b1<i<n;

@) 20()

max max \z l|— max max |a: = X
a<j<b 1<i<n; a<j<b 1<I<n;
< max max ]a; X( Y| + max max \XJ (Y — )]
a<j<b1<i<n; a<j<b 1<I<n;
For sub-Gaussian random design X,, = (z1, ..., x,), by Hoeffding’s inequal-

ity, with probability at least 1 — p™, || X, llee S /logmax{p,n}; see the

proof of Corollary 2 in Han et al. (2024). By Assumption 1 (i) and Lemma

1, as well as the condition in Lemma S.4, the following inequality holds

max max |27 ]| < \/logp+ s max
a<j<b 1<1<n; | ”| &P Sr

where we assumed p 2 n; and the last equality follows from the assumption
in Theorem 1. Then, we have

b
Z ZZE{ ]) (J 21{|Z Elj)| > (Z nj)l/Q}‘Jr[a,b}}

]anJ]a11

E (4) 21 > 1/2
Zy a gz;lz; { El {|€ | Zn] /Igjai(blg%% |Z

j
- ? 2 1/2 ()2
Zj:ang { Hlel 2 Zn / max, max B |}‘]'—[ab}2(zr’l) ,

=1

| /\

ab]}
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where € is an i.i.d copy of el(j ). Since we have

b
2 > Z /2 5(7)
el 2 (2 my) ™/ max max |2,
Jj=a

} — 0, asn — oo

holds with probability approaching to one. Meanwhile,

b
2 > N1/2 s\ < 2
el {|6| 2 (E' n;) /52%122’; 2l <€
j=a

According to the dominated convergence theorem, (5.23) holds.
Finally, based on Corollary 3.1 in Hall and Heyde (2014) and Lemma

S.3, 5 1 — (é,La’b])Te[a’b} converges to a normal distribution N (0, 0?). |
j=a "]

C dLASSO algorithm and time complexity comparison

The whole procedure of the dLASSO algorithm is summarized in Algo-
rithm 5.1. The details of the time complexity comparison of dOnFL and
dLASSO are summarized in Table S.1, where the details for the set-up and

the corresponding findings are discussed in the main paper.
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Algorithm S.1 Debiased LASSO (dLASSO)

1:

Input: step size 7p41, regularization parameters Ajq41,5+1] and /\$b+1), 88 DSLa’b],
S8V, pSY) and ny, for j=a,....bandr=1,...,p

: Collect data batch: D@41y = {X(b+1),y(b+1>}, i.e., the available data batches are

D[a+1,b+1] — {X[a+1,b+1],y[a+1,b+1}}_

3: Stage I: Parameter estimation.
4: Compute statistics SS*TV = {S(b+1),U(b+1)} with S+ = (XEHNT x O+ and

10:
11:

12:

13:

14:

15:

16:

17:

U+ — (X G+ (04D,

: Update statistics SSl*TH0+1 = {S[a+1’b+1]7U[“+1’b+l]} defined in (2.5) using SS!**),

88 and SS®HY:

: repeat
Step 1: glattt+1l  jlatlb+l] _ _ Mot (S[a+1,b+1]5[a+1,b+1] _ U[a+1,b+1]),
Zﬁiig g '
Step 2: B£9+1’b+1] + Soft (BT[q+l’b+1],nb+1)\[a+17b+1]) forr=1,...,p;
: until convergence.

Stage II: Bias-correction.
for r =1 to p do

Step 1: Compute 2 glatto4i] _ platlodi] Xkljl’bﬂ]%[«aﬂ‘bﬂ], where
1
P = i ko
yERP—1 2Z] at+1 7

Step 2: Compute DSl = {a[ffl’bﬂ], [;fl b+1],A[f+1’b+1]} with

[a+1,b+1]
a; o (

[a+1 b+1] e

a+1, b+1]) [a+1,b+1]_

)

3,—‘

a+1,b+1] ) [a+1,b4+1],
Y

)

%

A[a+1,b+1] _ (2[ +1,b+1]) xlot1,6+1],

)

Step 3: Using B[“+1’b+1] to construct the debiased estimator

c[zaLt;ls?olr B[a+1 b+1]+{ la+1, b+1]} {[a+1 ,b+1] A[Ta+1,b+1]é[a+1,b+1]}_

end for

Store and Clear: Store SSl*+1¢+1 DS[TGH’H”, S8, DS&”, njforj=a+1,...,0+1
and r = 1,...,p; and clear others.
Output: The non-debiased estimator 510+ and debiased estimator j3 dﬁ;gg”.
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Table S.1: The time complexity of the dOnFL and the dLASSO when updating from
time stamp b with available data batches being Dy, ) = {Da, ..., Dp} to time stamp b+ 1
with available data batches being Diq41,p41] = {Dat1, s Doy1}, where b —a+1="T.

Algorithm dOnFL dLASSO
Compute statistics Ss+1) np? np?
Stage T Update stat.istics Sslet1b+i] p? p?
(ISTA algorithm) 5 B
Obtain lasso estimator B2TH+1 (L iterations) kp kp
(C(cj)r'iq:lllgt(e)rj;;{fl)), r € {1,...,p} (l-iterations) np? [Tnp?
Compute 2.,7 € {1,...,p} np? Tnp?
Stage IT Compute statistics 'DSS}H—I),T € [p] np? -
Update statistics ’D‘S«'[T“'*'l’lH'l]7 r € [p] p? Tnp?
Obtain debiasd lasso estimator ﬁA([iZ+1’b+1] p? p?
Total complexity O(lnp® + kp?)  O(Tinp® + kp?)

Note: For simplicity, let the sample size n; = n for each data batch and assume n < p.

D Additional experimental results

Table 5.2-5.6 presents additional results where the covariates and noise dis-
tributions are not Gaussian. Figure S.1 illustrates the impact of different
tuning parameter selection methods (i.e., AIC, BIC and CV) on the per-
formance of the compared methods. Table 5.7 displays the performance
of compared methods under different set-ups of the step size in the ISTA
algorithm for lasso. Table 5.8 reports results from a higher-dimensional
experiment compared to those presented in the main paper. Notably, all
experimental settings and the corresponding findings have been discussed

in detail in the main paper.
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Table S.2: The average performance of dOnFL, OnFL and dLASSO over 20 replications
as the sample size (i.e., the number of samples in the available batches at each time
stamp) increases. The error terms are i.i.d. U(—0.5,0.5) and the covariates for each
sample are i.1.d. p-dimensional Gaussian N(0,%) with ¥ = 1.

S le Si
Performance Metric Algorithm ample >1ze

30 60 90 120 150 180

OnFL 0.186 0.180 0.174 0.164 0.160 0.159
dOnFL 0.178 0.121 0.096 0.082 0.073 0.065
dLASSO 0.185 0.122 0.090 0.074 0.059 0.047

Scaled L7 norm of
weak signals Bo » = 0.3

OnFL 0.171 0.144 0.130 0.124 0.120 0.118
dOnFL 0.096 0.057 0.045 0.038 0.031 0.027
dLASSO 0.094 0.053 0.038 0.031 0.025 0.021

Scaled L7 norm of
strong signals fo,r» =1

dOnFL 1.329 1.086 0.833 0.679 0.608 0.563

Cl-length
dLASSO 1.414 1.219  0.991 0.866 0.850 0.865

dOnFL 0.672 0.843 0.892 0.903 0.913 0.924

Coverage rate
dLASSO 0.682 0.865 0.917  0.926 0.925 0.928

dOnFL 31.235 37.510 46.690 52.215  58.970 64.400

Running time (seconds)
dLASSO 35.545 49.705 70.340 92.940 126.385 164.965

Table S.3: The average performance of dOnFL, OnFL and dLASSO over 20 replications
as the sample size (i.e., the number of samples in the available batches at each time
stamp) increases. The error terms are i.i.d. U(—0.5,0.5) and the covariates for each
sample are i.i.d. U(—1,1).

Sample Size

Performance Metric Algorithm
30 60 90 120 150 180

OnFL 0.186 0.180 0.174 0.164 0.160 0.159
dOnFL 0.178 0.121 0.096 0.082 0.073 0.065
dLASSO 0.185 0.122 0.090 0.074 0.059 0.047

Scaled L1 norm of
weak signals Bo,» = 0.3

OnFL 0.171 0.144 0.130 0.124 0.120 0.118
dOnFL 0.096 0.057 0.045 0.038 0.031 0.027
dLASSO 0.094 0.053 0.038 0.031 0.025 0.021

Scaled L norm of
strong signals By, = 1

dOnFL 1.329 1.086 0.833 0.679 0.608 0.563

ClI-length
dLASSO 1.414 1.219 0.991 0.866 0.850 0.865

dOnFL 0.672 0.843 0.892 0.903 0.913 0.924

Coverage rate
dLASSO 0.682 0.865 0.917  0.926 0.925 0.928

dOnFL 31.235 37.510 46.690 52.215  58.970 64.400

Running time (seconds)
dLASSO | 35.545 49.705 70.340 92.940 126.385 164.965
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Table S.4: The average performance of dOnFL, OnFL and dLASSO over 20 replications
as the sample size (i.e., the number of samples in the available batches at each time
stamp) increases. The error terms are i.i.d. Exzp(5) and all covariates for each sample

are i.i.d. U(—1,1) .

o Si
Performance Metric Algorithm Sample Size
30 60 90 120 150 180
OnFL 0.189 0.174  0.173 0.166 0.161 0.157
Scaled L; norm of dOnFL
weak signals 8o, = 0.3 On 0.176 0.118 0.101 0.088 0.077 0.066
dLASSO 0.181 0.122 0.098 0.080 0.069 0.059
OnFL 0.176 0.143 0.134 0.123 0.120 0.118
Scaled L; norm of d L
strong signals Bo.» = 1 OnF 0.104 0.059 0.051 0.037 0.032 0.028
dLASSO 0.101 0.055 0.044 0.032 0.027 0.024
dOnFL 1.361 1.179 0.819 0.701 0.624 0.608
Cl-length
dLASSO 1.453 1.313 0.975 0.899 0.871 0.933
dOnFL 0.628 0.854 0.855 0.900 0.908 0.932
Coverage rate
dLASSO 0.643 0.878 0.886 0.921 0.928 0.940
. . dOnFL 21.705 28.900 35.850 43.970  50.260 56.850
Running time (seconds)
dLASSO 26.220 41.855 61.025 87.205 123.285 162.690

Table S.5: The average performance of dOnFL, OnFL and dLASSO over 20 replications
as the sample size (i.e., the number of samples in the available batches at each time
stamp) increases. The error terms are i.i.d. t(10) and all covariates for each sample are

i.i.d. U(=5,5).
o Si
Performance Metric Algorithm Sample Size
30 60 90 120 150 180
Scaled L ¢ OnFL 0.183 0.179 0.166 0.169 0.161 0.154
caled L; norm o
weak signals fo.,, = 0.3 dOnFL 0.171 0.127 0.097 0.083 0.072 0.066
dLASSO 0.176 ~ 0.129  0.093  0.076 0.060 0.052
OnFL 0.167 0.143 0.127 0.123 0.118 0.118
Scaled L; norm of o
strong signals 8o, = 1 dOnFL 0.108 0.063 0.042 0.038 0.031 0.027
dLASSO 0.106  0.059  0.038  0.033 0.026 0.021
dOnFL 1.170 1.094 0.838  0.673 0.607 0.575
ClI-length
dLASSO 1.240 1.228 0.996 0.859 0.849 0.880
dOnFL 0.539  0.807 0.897  0.899 0.917 0.920
Coverage rate
dLASSO 0.559  0.830 0920 0.918 0.926 0.931
. . dOnFL 22.780 32.955 43.600 51.910 60.895  68.950
Running time (seconds)
dLASSO | 27.450 46.575 70.345 96.925 134.400 177.685
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Table S.7: The effect of step size on the performance of dOnFL, OnFL and dLASSO,
where the baseline n; is the theoretical value in Remark 1. The sample size n; = 40.
The error terms are 7.i.d. €) ~ N(0,(0.3)?I,,) and the covariates for each sample are
i.i.d. p-dimensional Gaussian N (0,%) with X;; = 0.4/,

1 f n,
Performance Metric Algorithm Value of 1,
0.51; n; L.5n; 2n; 2.51; 3n;
OnFL 0.175 0.167 0.160 0.153 0.145 0.137
Scaled L; norm of OnF
weak signals fo.r = 0.3 dOnFL 0.101 0.086 0.076 0.070  0.065 0.061
dLASSO 0.092 0.080 0.072 0.066 0.062 0.058
OnFL 0.166 0.135 0.111 0.095 0.083 0.075
Scaled L; norm of o
strong signals fo.r = 1 dOnFL 0.039 0.038 0.034 0.032 0.030 0.029
dLASSO 0.032 0.031 0.029 0.027  0.027  0.026
dOnFL 1.998 0.862 0.636 0.540  0.464 0.419
Cl-length
dLASSO 2.618 1.115 0.820 0.693 0.597  0.537
dOnFL 0.9365 0.9260 0.9115 0.9030 0.8910 0.8825
Coverage rate
dLASSO | 0.9490 0.9310 0.9260 0.9255 0.9195 0.9220

Table S.6: The average performance of dOnFL, OnFL and dLASSO over 20 replications
as the sample size (i.e., the number of samples in the available batches at each time
stamp) increases. The error terms are i.i.d. Exp(10) and all covariates for each sample

are i.i.d. t(10).

Sample Size

Performance Metric Algorithm
30 60 90 120 150 180
Scaled L ¢ OnFL 0.183 0.179 0.166 0.169 0.161 0.154
caled L; norm o
weak signals fo.,, = 0.3 dOnFL 0.171 0.127 0.097 0.083 0.072 0.066
dLASSO 0.176 ~ 0.129  0.093  0.076 0.060 0.052
OnFL 0.167 0.143 0.127 0.123 0.118 0.119
Scaled L; norm of o
strong signals 8o, = 1 dOnFL 0.108 0.063 0.042 0.038 0.031 0.027
dLASSO 0.106  0.059  0.038  0.033 0.026 0.021
dOnFL 1.170 1.094 0.838  0.673 0.607 0.575
ClI-length
dLASSO 1.240 1.228 0.995 0.859 0.849 0.880
dOnFL 0.5385 0.8070 0.8970 0.8985 0.9165  0.9200
Coverage rate
dLASSO | 0.5590 0.8295 0.9195 0.9175 0.9260  0.9305
. . dOnFL 22.780 32.955 43.600 51.910 60.895  68.950
Running time (seconds)
dLASSO | 27.450 46.575 70.345 96.925 134.400 177.685
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Table S.8: The average performance of dOnFL, OnFL and dLASSO over 20 replications
as the sample size (i.e., the number of samples in the available batches at each time
stamp) increases. The dimension p = 800 and at each time stamp, the number of
available data batches at each time stamp T = 2. The error terms are i.i.d. € ~
N(0,(0.3)I,,) and the covariates for each sample are i.i.d. p-dimensional Gaussian

N(0,%) with ;; = 0.4,

Sample Size

160 240 320 400 480

OnFL 0.190 0.187 0.186 0.184 0.184
dOnFL 0.098 0.077 0.071 0.061 0.054
dLASSO 0.098 0.076 0.067 0.055 0.044

OnFL 0.185 0.183 0.183 0.182 0.182
dOnFL 0.048 0.038 0.032 0.027 0.022
dLASSO 0.047 0.035 0.028 0.023 0.018
dOnFL 1.114 0.962 0.825 0.682 0.563
dLASSO 1.196 1.062 0.932 0.794 0.676
dOnFL 0.817 0.846 0.862 0.890 0.936
dLASSO 0.835 0.872 0.902 0.939 0.968
dOnFL 458.73 550.98 619.14 684.32 731.83
dLASSO | 528.09 704.75 859.01 1011.23 1205.52

Performance Metric Algorithm

Scaled L norm of
weak signals 8o = 0.3

Scaled L norm of
strong signals o, = 1

Cl-length

Coverage rate

Running time (seconds)
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(a) Scaled L1 norm under weak signals
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Figure S.1: The performance of dOnFL, OnFL, and dLASSO in terms of the scaled
L1 norms under the three selection methods for tuning parameters including AIC, BIC
and CV. The scaled norms are reported separately for (a) weak signals 5y, = 0.3 and
(b) strong signals By, = 1. The error terms are .i.d. €’) ~ A(0,(0.3)%L,,) and the
covariates for each sample are i.i.d. p-dimensional Gaussian N(0,%) with ¥ =T.
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